Física 1 - Segundo Semestre 2024

Instituto de Física - Facultad de Ingeniería

Resultados Práctico 2

Ejercicio 2

- a) I. t = 1.53 s
 - II. $h_{max} = 11.5 m$
 - III. $\overrightarrow{v}(t=2,0s)=-4,6\,m/s\,\hat{j}; \overrightarrow{d}(t=2,0s)=-9,8\,m/s^2\,\hat{j},$ siendo \hat{j} versor unitario hacia arriba.

b)
$$t = \frac{v_o}{g} + \sqrt{\left(\frac{v_o}{g}\right)^2 + \frac{2h}{g}} - \sqrt{\frac{2h}{g}}$$

Ejercicio 3

- a) h = 26.4 m
- b) Error = 6.9%

Ejercicio 4

 $a \ge 2.05 \, m/s^2$

Ejercicio 5

- a) $v(t) = \frac{At^2}{2} \frac{Bt^3}{3}$; $r(t) = \frac{At^3}{6} \frac{Bt^4}{12}$; $v_{max} = 39.1 \; m/s$
- b) $\vec{v}(t) = 30\hat{i} + (40 10t)\hat{j} ; \vec{a}(t) = -10\hat{j}$
- c) $a(t = 0.50s) = 8.0 \text{ m/s}^2$; r(t = 0.50s) = 1.58 m

Ejercicio 6

$$v_o = 10,7 \, m/s$$

Ejercicio 7

- a) $d = 6804 \, m$
- b) $\overrightarrow{r} = 6804 \, m \, \hat{i} + 3000 \, m \, \hat{j}$, con \hat{i} apuntando en la dirección de la velocidad del avión y \hat{j} vertical hacia arriba.

Física 1 - Segundo Semestre 2024 Instituto de Física - Facultad de Ingeniería

Ejercicio 8

- a) Hay dos soluciones posibles: $\theta_1 = 63^o$ y $\theta_2 = 54^o$
- b) $\theta=27^o$ (apuntando a la posición inicial del mono)

Ejercicio 9

 $\theta = 80^{o}$