Lossless Source Coding

Geometric distributions and Golomb codes – Part 1

Distributions on the nonnegative integers

- \square $\mathbb{N} = \{0, 1, 2, ...\}$: the nonnegative integers (natural numbers).
- Probability mass function $P: \mathbb{N} \to [0,1], \sum_{k \ge 0} P(k) = 1.$
- \square X~P may have finite or infinite entropy

$$H(X) = -\sum_{k=0}^{\infty} P(k) \log P(k)$$

Clearly, N here can be used as proxy for any *countable* alphabet underlying *P*. We refer to *P* as a *countable distribution* (or *countable PMF*).

Example: PMF with infinite entropy

$$P(k) = \frac{C}{k \log^2 k} , \quad k \ge 2, \quad c = \left(\sum_{k=2}^{\infty} \frac{1}{k \log^2 k}\right)^{-1}$$

We have $H(P) = \infty$
We have $\frac{1}{k \log^2 k}$

• why: $\sum_{k=2}^{\infty} \frac{1}{k \log k}$ is divergent.

Example: PMF with finite entropy (1)

Zeta distribution:

$$P(k) = \frac{1}{\zeta(s)} \frac{1}{k^s}, \quad s > 1, \ k \ge 1, \quad \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$$

Riemann zeta function

(we'll omit the argument *s*)

 $\Box \text{ Writing } s - 1 = 2\epsilon \quad (\epsilon > 0),$

Example: PMF with finite entropy (2)

□ The geometric distribution $GD(\gamma)$: $P(k) = (1 - \gamma)\gamma^k, \qquad \gamma \in (0,1), \qquad k \ge 0$

• We have $\sum_{k\geq 0} P(k) = 1$ (prove!), and

$$H(x) = -\sum_{k \ge 0} (1 - \gamma) \gamma^k \left[\log(1 - \gamma) + k \log \gamma \right]$$
$$= -(1 - \gamma) \log(1 - \gamma) \sum_{k \ge 0} \gamma^k - (1 - \gamma) \log \gamma \sum_{k \ge 0} k \gamma^k$$
$$= \frac{-(1 - \gamma) \log(1 - \gamma) - \gamma \log \gamma}{1 - \gamma} = \frac{h_2(\gamma)}{1 - \gamma} < \infty.$$

$$h_2(x) = -x \log x - (1 - x) \log(1 - x)$$

binary entropy

Binary prefix codes for countable distributions

 $2^{-\operatorname{length}(\mathcal{C}(k))} \leq 1.$

- $\square \mathcal{C}: \mathbb{N} \to \{0,1\}^*$, such that $\mathcal{C}(i)$ is not a prefix of $\mathcal{C}(j)$ for any $i \neq j$.
- As in the finite case, a prefix code must satisfy *Kraft's condition*:

- The tree is complete if every node that is not a leaf has exactly two children.
 - Differently from the finite case, a complete infinite tree may have a Kraft sum < 1.
- Given a PMF P, the average code length of C is

 $L(\mathcal{C}) = \sum_{k \ge 0} P(k) \cdot \text{length}(\mathcal{C}(k))$

which, again, may be finite or infinite.

□ *C* is optimal for *P* if $L(C) \le L(C')$ for any code *C*'; ⇒ makes sense only when $L(C) < \infty$.

Code convergence

- A sequence of *finite* binary prefix codes C₀, C₁, C₂, ... for subsets of N converges to an *infinite* code C for N iff
 - for every integer $i \in \mathbb{N}$ there is an index $J_i \ge 0$ such that \mathcal{C}_j assigns a codeword to i for all $j \ge J_i$,
 - for every integer $i \in \mathbb{N}$ there is an index $J'_i \ge J_i$ such $\mathcal{C}_j(i)$ remains *constant*, and equal to $\mathcal{C}(i)$, for all $j \ge J'_i$.

Code convergence: Example

The unary code $C(k) = 00 \dots 01$ is the limit of the sequence of codes

Then, $L(\mathcal{C}) = \sum_{k \ge 0} (k+1) 2^{-(k+1)} = 2$, and $H(X) = -\sum_{k \ge 0} P(k) \log P(k) = \sum_{k \ge 0} 2^{-(k+1)} (k+1) = 2.$

Questions of interest

- \Box How does the average code length $L(\mathcal{C})$ relate to the entropy H(X)?
- Are there optimal codes for countable distributions?
- □ If so, for what distributions?
- Can we construct them?
- Can we describe them compactly?
- Some answers:
 - Shannon's lower bound applies also to countable distributions, i.e., $L(\mathcal{C}) \ge H(X)$.
 - Therefore, the code in the previous example is optimal. Clearly, it can be described compactly.
 - How about more general cases? *We cannot use Huffman's procedure!*

Existence of optimal codes

- □ $X \sim P$, where *P* is a countable distribution. The *truncated* random variable $X_n \sim P_n$ has *finite* support {0,1,...,n}, with $P_n(k) = P(k) / \sum_{j=0}^n P(j)$.
- A truncated Huffman code C_n^{Huf} for X is a Huffman code for X_n .

Theorem [Linder, Tarokh, Zeger '97], [Kato, Han, Nagoka '96] Let X be a random variable with countable support, and with finite entropy. Then,

- there exists a sequence of binary truncated Huffman codes for X which converges to an optimal code for X,
- the sequence of average code lengths of the truncated Huffman codes converges to the minimum possible average code length for *X*,
- any optimal prefix code for X must satisfy the Kraft condition with equality.
- The proof is not constructive: it does not tell us how to choose or construct the sequence of truncated Huffman codes.
- In fact, there are very few classes of countable distributions for which an optimal prefix code can be constructed and described compactly.
- We will study such a construction for arbitrary geometric distributions.

Why geometric distributions?

Geometric distributions are useful in practice

- Consider random variable $B \sim \text{Bernoulli}(\gamma)$ (i.e., $P(0) = \gamma$). We are interested in describing long sequences of independent realizations of B.
 - We could use an arithmetic coder, but we are interested in a simpler solution.
 - Let b_1^n be the sequence of interest, emitted by B^n . Parse b_1^n as

$$b_1^n = \underbrace{\overrightarrow{00 \dots 0}}_{k_1} 1 \underbrace{\overrightarrow{00 \dots 0}}_{k_2} 1 \underbrace{\overrightarrow{00 \dots 0}}_{k_3} 1 \dots \underbrace{\overrightarrow{00 \dots 0}}_{k_N} 1 \dots \underbrace{\overrightarrow{00 \dots 0}}_{k_N} 1$$

We have

$$P(\overbrace{00\dots0}^k 1) = \gamma^k (1-\gamma)$$

 $\Rightarrow B_1^n$ can be represented by a sequence of independent random variables distributed as $GD(\gamma)$.

Why geometric distributions?

Geometric distributions are useful in practice

In natural, continuous tone images, differences between contiguous pixels are well modeled by a *two-sided geometric distribution* (discrete Laplacian)

 + we will see that optimal codes for geometric distributions are very easy to implement!

Golomb codes

- In 1966, Golomb described a family of prefix-free codes for N (motivated by sequences of Bernoulli trials).
- □ Consider an integer $m \ge 1$. The *m*th order *Golomb code* G_m encodes an integer $i \ge 0$ in two parts, as follows:

 $G_m(i) = \text{binary}_m(i \mod m) \mid \text{unary}(i \dim m)$

🖵 Here,

- $i \mod m$, $i \dim m$ = remainder and quotient in integer division $\frac{i}{m}$ (resp.)
- binary_m(j) = binary encoding of j in an optimal code for {0, 1, ..., m − 1} under a uniform distribution ([log m] or [log m] bits, shorter codes for smaller numbers)

Example: m = 5, lengths 2 and 3: 0:00 1:01 2:10 3:110 4:111

• $unary(j) = 00 \dots 0 1$ unary representation of j.

Given m and $G_m(i)$, a decoder uniquely reconstructs $i = (i \operatorname{div} m) \cdot m + (i \mod m)$ C/C++:

i%m i∕m

Golomb codes – Examples

$m=2^k=4, \qquad k=2$					
	i	i (binary)	$G_m(i)$	$\ell(i)$	
	0	00	00 1	3	7
	1	01	011	3	
	2	10	10 1	3	
	3	11	11 1	3	
	4	1 00	00 01	4	7
	5	101	01 01	4	
	6	1 10	10 01	4	4
	7	1 11	11 01	4	
	8	10 00	00 001	5	7
	9	10 01	01 001	5	
	10	10 10	10 001	5	Γ ⁴
	11	10 11	11 001	5	
	12	11 00	00 0001	6	
	13	11 01	01 0001	6	:
	14	11 10	10 0001	6	
	:		:	÷	

Golomb PO2 codes

- □ When $m = 2^k$, we call G_m a *Golomb power of two* (PO2) code and use k as the defining parameter: $G_k^* \triangleq G_{2^k}$.
- PO2 codes are especially simple to implement! Example: Golomb PO2 encoder

C/C++:	
$b \mod 2^k$:	b & ((1< <k)-1)< td=""></k)-1)<>
$b \operatorname{div} 2^k$:	b >> k

Optimality of Golomb codes

Why is there a *unique* such value of m?

Given γ , we have $m = \min\{ m' \mid \gamma^{m'} + \gamma^{m'+1} \leq 1 \}.$

Golomb (1966) had proved optimality for $\gamma = 2^{-\frac{1}{m}}$, i.e., $\gamma^m = \frac{1}{2}$.

Optimality of Golomb codes

What range of γ is G_m optimal for?

Solution of $\gamma^m + \gamma^{m+1} = 1$

m	γ_m
1	0.6180339887
2	0.7548776662
3	0.8191725134
4	0.8566748839
5	0.8812714616
6	0.8986537126
7	0.9115923535
8	0.9215993196

Proof of optimality

Consider γ fixed and m as determined above. Define an *r*-reduced source S_r , for any $r \ge 0$, as a source with r + 1 + m symbols, with the following probabilities:

$$P_r(i) = \begin{cases} (1-\gamma)\gamma^i, & 0 \le i \le r, \\ \frac{(1-\gamma)\gamma^i}{1-\gamma^m}, & r+1 \le i \le r+m. \end{cases}$$

We have $\sum_{i=0}^{r+m} P_r(i) = 1$. In fact, S_r can be interpreted as defined over an alphabet of regular symbols and "super-symbols",

$$S_r = \{0, 1, 2, ..., r, A_1, A_2, ..., A_m\},\$$

where

$$A_{j} = \left\{ r + j + t \cdot m \mid t = 0, 1, 2, \dots \right\}, \qquad 1 \le j \le m.$$

Indeed, we have

$$P_r(A_j) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^{r+j+t \cdot m} = \frac{(1-\gamma)\gamma^{r+j}}{1-\gamma^m}, 1 \le j \le m.$$

Recall: $\gamma^m + \gamma^{m+1} \leq 1 < \gamma^m + \gamma^{m-1}$ definition of m (**)

 $S_{r} = \{ 0, 1, 2, ..., r, A_{1}, A_{2}, ..., A_{m} \},$ $P_{r}(i) = (1 - \gamma)\gamma^{i}, \ 0 \le i \le r,$ $P_{r}(A_{j}) = \frac{(1 - \gamma)\gamma^{r+j}}{1 - \gamma^{m}}, 1 \le j \le m.$

Consider Huffman coding of S_r .

<u>Claim</u>: The 2 symbols with lowest probability in S_r are r, A_m .

Proof: It suffices to prove

 $P_r(r) < P_r(A_{m-1}), \quad P_r(A_m) \le P_r(r-1).$

$$(1-\gamma)\gamma^{r} < \frac{(1-\gamma)\gamma^{r+m-1}}{1-\gamma^{m}} \Leftrightarrow 1 < \frac{\gamma^{m-1}}{1-\gamma^{m}} \Leftrightarrow 1-\gamma^{m} < \gamma^{m-1} \operatorname{RHS} \operatorname{of} (**).$$

Similarly, $P_r(A_m) \leq P_r(r-1)$ is implied by the LHS of (**).

□ The 2 symbols with lowest probability are r, A_m ⇒ first step of Huffman procedure merges r, A_m , resulting in a probability

$$(1-\gamma)\gamma^r + \frac{(1-\gamma)\gamma^{r+m}}{1-\gamma^m} = \frac{(1-\gamma)\gamma^r}{1-\gamma^m}$$

= prob. of symbol A_1 in S_{r-1} !

- Also, A_1 in S_r is A_2 in S_{r-1} , A_2 in S_r is A_3 in S_{r-1} , ..., etc.
- □ ⇒ Huffman step transforms S_r into S_{r-1} . Continue until we obtain S_{-1} with

$$P_{-1}(A_i) = \frac{(1-\gamma)\gamma^{i-1}}{1-\gamma^m}, \ 1 \le i \le m.$$

Gadiel Seroussi - Lossless Data Compression - 2021

We obtain $S_{-1} = \{A_1, A_2, ..., A_m\}$ with

$$P_{-1}(A_i) = \frac{(1-\gamma)\gamma^{i-1}}{1-\gamma^m}, \qquad 1 \le i \le m.$$

We have

$$P_{-1}(A_1) < P_{-1}(A_{m-1}) + P_{-1}(A_m)$$
 from (**)

⇒ S_{-1} is a *quasi-uniform* source with m symbols. An optimal code for such a source has $2^{\lceil \log m \rceil} - m$ words of length $\lfloor \log m \rfloor$ and $2m - 2^{\lceil \log m \rceil}$ words of length $\lceil \log m \rceil$ (shortest codewords assigned to highest probability symbols).

From each leaf of the $binary_m$ tree we "hang" a unary tree: equivalent to concatenating the two codes!

- □ We have proved that the sequence of optimal codes $C_{-1}, C_0, C_1, ...$ for the reduced sources $S_{-1}, S_0, S_1, ...$ converges to the Golomb code G_m for *m* satisfying (**).
- U Why is the code *optimal* for $GD(\gamma)$? (intuition is obvious, but ...)
 - $\overline{L} = \inf \overline{L}(\mathcal{C})$ over all uniquely decipherable codes \mathcal{C} for $GD(\gamma)$.
 - \overline{L}_G = expected code length for G_m

 \overline{L}_r = expected code length for \mathcal{C}_r on S_r

- Clearly, we have $\overline{L} \leq \overline{L}_G$
- Also, $\overline{L}_r \leq \overline{L}$ because we can use a subset of the codewords of \mathcal{C} for S_r , taking the original codeword from \mathcal{C} for 0, 1, ..., r, and the codeword \mathcal{C} assigns to r + j for A_j .

 $\overline{L} = \sum_{i=0}^{r} P(i) |\mathcal{C}(i)| + \sum_{j=1}^{m} \sum_{i \in A_j} P(i) |\mathcal{C}(i)| + \sum_{i=1}^{m} \sum_{i=1}^{m} P(i) |\mathcal{C}(i)| + \sum_{i=1}^{m} P(i) |\mathcal{C}(i)| + \sum_{i=1}^{m} P(i) |\mathcal{C}(i)| + \sum_{i=1}^{m} P(i) |\mathcal{C}($

 $> \sum_{i=0}^{r} P(i) |\mathcal{C}(i)| + \sum_{j=1}^{m} \sum_{i \in A_j} P(i) |\mathcal{C}(r+j)|$

r + j has shortest codeword in A_j

 $= \sum_{i=0}^{r} P(i) |\mathcal{C}(i)| + \sum_{j=1}^{m} P(A_j) |\mathcal{C}(r+j)| = \overline{L}_r$

• For similar reasons, \overline{L}_r is increasing with r, and it has a limit as $r \to \infty$, so $\lim_{r \to \infty} \overline{L}_r \leq \overline{L}$. But $\lim_{r \to \infty} \overline{L}_r = \overline{L}_G$, so $\overline{L}_G \leq \overline{L}$.

Expected code length

□ Short calculation shows that

$$\bar{L}_G = \lfloor \log m \rfloor + 1 + \frac{\gamma^t}{1 - \gamma^m} \quad (t = 2^{\lfloor \log m \rfloor + 1} - m)$$

(The G-vV paper has an error in this formula—

• This holds for any γ and m, not necessarily optimal.