
Lossless Source Coding

Geometric distributions and Golomb codes – Part 1



Distributions on the nonnegative integers

q ℕ = 0, 1, 2, … : the nonnegative integers (natural numbers).

q Probability mass function 𝑃:ℕ → [0,1],   ∑!"# 𝑃 𝑘 = 1. 

q 𝑋~𝑃 may have finite or infinite entropy

𝐻 𝑋 = −3
!$#

%

𝑃 𝑘 log 𝑃 𝑘

q Clearly, ℕ here can be used as proxy for any countable alphabet 
underlying 𝑃. We refer to 𝑃 as a countable distribution (or countable 
PMF).
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𝑃 𝑘 log 𝑃 𝑘

Example: PMF with infinite entropy

𝑃 𝑘 =
𝑐

𝑘 log" 𝑘 , 𝑘 ≥ 2, 𝑐 = 3
!$-

%
1

𝑘 log- 𝑘

./

q We have 𝐻 𝑃 = ∞

● why:  ∑!"#$ %
! &'( !

is divergent.
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convergent
series



Example: PMF with finite entropy (1)

q Zeta distribution:

𝑃 𝑘 = /
0(1)

/
!!
, 𝑠 > 1, 𝑘 ≥ 1, 𝜁 𝑠 = ∑!$/% /

!!
Riemann zeta function

q Writing   𝑠 − 1 = 2𝜖 (𝜖 > 0) ,

𝐻 𝑥 = −
1
𝜁
3
!$/

%
log 𝑘.1 − log 𝜁

𝑘1
=
𝑠
𝜁
3
!$/

%
log 𝑘
𝑘1

+ log 𝜁

≤
𝑠
𝜁
3
!$/

2"./ log 𝑘
𝑘1

+
𝑠
𝜁
3
!$2"

%
1

𝑘1.3
+ log 𝜁 < ∞ .
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𝐾% such that
log 𝑘 ≤ 𝑘& ∀𝑘 ≥ 𝐾% 𝑠 − 𝜖 = 1 + 𝜖 > 1finite sum

(we’ll omit the argument 𝑠)



Example: PMF with finite entropy (2)

q The geometric distribution GD 𝛾 :
𝑃 𝑘 = 1 − 𝛾 𝛾! , 𝛾 ∈ 0,1 , 𝑘 ≥ 0

q We have ∑!"# 𝑃 𝑘 = 1 (prove!),  and

𝐻 𝑥 = −3
!"#

1 − 𝛾 𝛾! log 1 − 𝛾 + 𝑘 log 𝛾

= − 1 − 𝛾 log 1 − 𝛾 3
!"#

𝛾! − 1 − 𝛾 log 𝛾3
!"#

𝑘𝛾!

=
− 1 − 𝛾 log 1 − 𝛾 − 𝛾 log 𝛾

1 − 𝛾
=
ℎ-(𝛾)
1 − 𝛾

< ∞.
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ℎ# 𝑥 = −𝑥 log 𝑥 − 1 − 𝑥 log(1 − 𝑥)
binary entropy



Binary prefix codes for countable distributions

q 𝒞:ℕ → 0,1 ∗, such that 𝒞(𝑖) is not a prefix of 𝒞 𝑗 for any 𝑖 ≠ 𝑗 .
q As in the finite case, a prefix code must satisfy Kraft’s condition:

3
!"#

2.6789:;(𝒞 ! ) ≤ 1.

q 𝒞 can be represented by an infinite binary tree.
q The tree is complete if every node that is not a leaf

has exactly two children.
● Differently from the finite case, a complete infinite

tree may have a Kraft sum < 1.

q Given a PMF 𝑃, the average code length of 𝒞 is

𝐿 𝒞 = ∑!"# 𝑃 𝑘 O length(𝒞 𝑘 )

which, again, may be finite or infinite.

q 𝒞 is optimal for 𝑃 if 𝐿 𝒞 ≤ 𝐿(𝒞 =) for any code 𝒞 =;
⇒ makes sense only when 𝐿 𝒞 < ∞ .
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q A sequence of finite binary prefix codes 𝒞#, 𝒞/, 𝒞-, … for subsets of ℕ
converges to an infinite code 𝒞 for ℕ iff

● for every integer 𝑖 ∈ ℕ there is an index 𝐽) ≥ 0 such that 𝒞* assigns a 
codeword to 𝑖 for all 𝑗 ≥ 𝐽) ,

● for every integer 𝑖 ∈ ℕ there is an index 𝐽′) ≥ 𝐽) such 𝒞*(𝑖) remains constant, 
and equal to 𝒞(𝑖), for all 𝑗 ≥ 𝐽+). 

Code convergence
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q The unary code  𝐶 𝑘 = 00…0
!

1 is the limit of the sequence of codes

𝒞. = 1, 01, 001, … ,0. 1, 0.0 , 𝑛 ≥ 0 .

q Say  𝑃 𝑘 = 2. !>/ (geometric distribution 𝛾 = /
-
)

Then,  𝐿 𝒞 = ∑!"# 𝑘 + 1 2. !>/ =2,  and

𝐻 𝑋 = −∑!"# 𝑃 𝑘 log 𝑃 𝑘 =∑!"# 2. !>/ 𝑘 + 1 = 2.

Code convergence: Example
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Questions of  interest

q How does the average code length 𝐿 𝒞 relate to the entropy 𝐻(𝑋) ?
q Are there optimal codes for countable distributions?
q If so, for what distributions?
q Can we construct them?
q Can we describe them compactly?

q Some answers:
● Shannon’s lower bound applies also to countable distributions, i.e.,

𝐿 𝒞 ≥ 𝐻 𝑋 .
● Therefore, the code in the previous example is optimal. Clearly, it can be 

described compactly.
● How about more general cases?  We cannot use Huffman’s procedure!
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Existence of  optimal codes

q 𝑋~𝑃, where 𝑃 is a countable distribution. The truncated random variable 𝑋.~𝑃.
has finite support {0,1, … , 𝑛}, with 𝑃. 𝑘 = 𝑃(𝑘)/∑*",

. 𝑃(𝑗).

q A truncated Huffman code 𝒞./01 for 𝑋 is a Huffman code for 𝑋..
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Theorem [Linder, Tarokh, Zeger ‘97], [Kato, Han, Nagoka ‘96]
Let 𝑋 be a random variable with countable support, and with finite entropy. Then,

● there exists a sequence of binary truncated Huffman codes for 𝑋 which converges to an 
optimal code for 𝑋,

● the sequence of average code lengths of the truncated Huffman codes converges to the 
minimum possible average code length for 𝑋,

● any optimal prefix code for 𝑋 must satisfy the Kraft condition with equality.

q The proof is not constructive: it does not tell us how to choose or construct the 
sequence of truncated Huffman codes. 

q In fact, there are very few classes of countable distributions for which an optimal 
prefix code can be constructed and described compactly.

q We will study such a construction for arbitrary geometric distributions.



Why geometric distributions?

Geometric distributions are useful in practice
q Consider random variable 𝐵~Bernoulli(𝛾) (i.e., 𝑃 0 = 𝛾). We are 

interested in describing long sequences of independent realizations of 𝐵.
● We could use an arithmetic coder, but we are interested in a simpler solution.
● Let 𝑏%. be the sequence of interest, emitted by 𝐵.. Parse 𝑏%. as 

𝑏%. = 00…0 1
!%

00…0
!&

1 00…0
!'

1……00…0
!(

1

We have 

𝑃(00…0
!

1) = 𝛾!(1 − 𝛾)

⇒ 𝐵%. can be represented by a sequence of independent random variables 
distributed as GD(γ) .
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Why geometric distributions?

Geometric distributions are useful in practice
q In natural, continuous tone images, differences between contiguous pixels 

are well modeled by a two-sided geometric distribution (discrete Laplacian)
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0

𝑃 𝑥'() − 𝑥' = Δ =
1 − 𝛾
1 + 𝛾

𝛾 *

+ we will see that optimal 
codes for geometric 
distributions are 
very easy to implement!



Golomb codes

q In 1966, Golomb described a family of prefix-free codes for ℕ (motivated by 
sequences of Bernoulli trials).

q Consider an integer 𝑚 ≥ 1. The 𝑚th order Golomb code 𝐺A encodes an 
integer 𝑖 ≥ 0 in two parts, as follows:

𝐺A 𝑖 = binaryA 𝑖 mod 𝑚 | unary 𝑖 div 𝑚
q Here, 

● 𝑖 mod 𝑚, 𝑖 div 𝑚 = remainder and quotient in integer division )
2

(resp.)

● binary2 𝑗 = binary encoding of 𝑗 in an optimal code for 0, 1, … ,𝑚 − 1 under 
a uniform distribution ( log𝑚 or log𝑚 bits, shorter codes for smaller numbers)
§ Example: 𝑚 = 5, lengths 2 and 3:    0: 00   1: 01   2: 10   3: 110   4: 111

● unary 𝑗 = 00…0
*

1 unary representation of 𝑗.
q Given 𝑚 and 𝐺A(𝑖) , a decoder uniquely reconstructs 

𝑖 = 𝑖 div 𝑚 ⋅ 𝑚 + (𝑖 mod 𝑚)
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concatenation

0 1 2
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1 1

1

1

C/C++:
i%m
i/m



Golomb codes ⎼ Examples
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𝒊 𝑮𝒎(𝒊) ℓ(𝒊)

0 00 1 3

1 01 1 3

2 10 1 3

3 110 1 4

4 111 1 4

5 00 01 4

6 01 01 4

7 10 01 4

8 110 01 5

9 111 01 5

10 00 001 5

11 01 001 5

12 10 001 5

13 110 001 6

14 111 001 6

⋮ ⋮ ⋮

𝒊 𝒊 (binary) 𝑮𝒎(𝒊) ℓ(𝒊)

0 00 00 1 3

1 01 01 1 3

2 10 10 1 3

3 11 11 1 3

4 1 00 00 01 4

5 1 01 01 01 4

6 1 10 10 01 4

7 1 11 11 01 4

8 10 00 00 001 5

9 10 01 01 001 5

10 10 10 10 001 5

11 10 11 11 001 5

12 11 00 00 0001 6

13 11 01 01 0001 6

14 11 10 10 0001 6

⋮ ⋮ ⋮

𝑚 = 5 𝑚 = 2! = 4, 𝑘 = 2

⋮

3

5

5

4

4

4

⋮



Golomb PO2 codes

q When 𝑚 = 2! , we call 𝐺A a Golomb power of two (PO2) code and use 𝑘
as the defining parameter: 𝐺!∗ ≜ 𝐺-# .

q PO2 codes are especially simple to implement!
Example: Golomb PO2 encoder
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𝑏+𝑏+,)⋯𝑏! 𝑏!,)𝑏!,#⋯𝑏)𝑏%
input: integer
𝑏 in binary 

representation

𝑘 LS bitsMS bits

𝑏 div 2! 𝑏 mod 2!

counter

unary part binary part

C/C++:
𝑏 mod 2! : b & ((1<<k)-1)

𝑏 div 2! : b >> k



Optimality of  Golomb codes

Theorem [Gallager, Van Voorhis 1975]

Let 𝑋~GD(𝛾) and let 𝑚 be the unique integer satisfying

𝛾A + 𝛾A>/ ≤ 1 < 𝛾A + 𝛾A./.

Then, 𝐺A is an optimal prefix-free code for 𝑋.
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Given 𝛾, we have  
𝑚 = min 𝑚- 𝛾.!+𝛾.!() ≤ 1 .

Golomb (1966) had proved 
optimality for  𝛾 = 2,

"
#, i.e., 𝛾. = )

#
. 

0 1 2 3 4 5 6 7 8 9 10 11

1 + 𝛾
𝛾. + 𝛾.() = 1 + 𝛾 𝛾.

𝑚

1

Why is there a unique such value of 𝑚 ?



Optimality of  Golomb codes
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𝐺) 𝐺# 𝐺/

𝐺0 𝐺1⋯Solution of  𝛾2 + 𝛾23% = 1
𝑚 𝛾2
1 0.6180339887
2 0.7548776662
3 0.8191725134
4 0.8566748839
5 0.8812714616
6 0.8986537126
7 0.9115923535
8 0.9215993196

What range of 𝛾 is 𝐺A optimal for?



Proof  of  optimality

Consider 𝛾 fixed and 𝑚 as determined above. Define an 𝑟-reduced source 𝑆4, for any 
𝑟 ≥ 0, as a source with 𝑟 + 1 + 𝑚 symbols, with the following probabilities:

𝑃F 𝑖 =

1 − 𝛾 𝛾G , 0 ≤ 𝑖 ≤ 𝑟,

1 − 𝛾 𝛾G

1 − 𝛾A
, 𝑟 + 1 ≤ 𝑖 ≤ 𝑟 + 𝑚.

We have ∑)",432𝑃4 𝑖 = 1. In fact, 𝑆4 can be interpreted as defined over an alphabet of 
regular symbols and “super-symbols”,

𝑆4 = 0, 1, 2, … , 𝑟, 𝐴% , 𝐴# , … , 𝐴2 ,

where
𝐴* = 𝑟 + 𝑗 + 𝑡 ⋅ 𝑚 𝑡 = 0, 1, 2, … , 1 ≤ 𝑗 ≤ 𝑚 .

Indeed, we have

𝑃4 𝐴* = 1 − 𝛾 ^
5",

$

𝛾43*35⋅2 =
1 − 𝛾 𝛾43*

1 − 𝛾2
, 1 ≤ 𝑗 ≤ 𝑚.
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Proof  of  optimality (cont.)
Recall: 𝛾A + 𝛾A>/ ≤ 1 < 𝛾A + 𝛾A./ definition of m  (**)

𝑆F = 0,1,2, … , 𝑟, 𝐴/ , 𝐴-, … , 𝐴A ,
𝑃4 𝑖 = 1 − 𝛾 𝛾) , 0 ≤ 𝑖 ≤ 𝑟,

𝑃4 𝐴* = %78 8*+,

%78-
, 1 ≤ 𝑗 ≤ 𝑚.

Consider Huffman coding of 𝑆F .

Claim: The 2 symbols with lowest 
probability in 𝑆F are 𝑟, 𝐴A .

Proof: It suffices to prove

𝑃F 𝑟 < 𝑃F 𝐴A./ ,   𝑃F 𝐴A ≤ 𝑃F 𝑟 − 1 .

1 − 𝛾 𝛾F < /.H H$%&'(

/.H&
⇔ 1 < H&'(

/.H&
⇔ 1 − 𝛾A < 𝛾A./ RHS of (**).

Similarly, 𝑃F 𝐴A ≤ 𝑃F 𝑟 − 1 is implied by the LHS of (**).
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0 1 2 𝑟 − 1 𝑟 𝐴)𝐴# 𝐴.

𝑃!

𝐴.,)



Proof  of  optimality (cont.)
q The 2 symbols with lowest  probability are 𝑟, 𝐴2

⇒ first step of Huffman procedure merges 𝑟, 𝐴2, resulting in a probability

1 − 𝛾 𝛾4 + %78 8*+-

%78-
= %78 8*

%78-

= prob. of symbol 𝐴% in 𝑆47% !

q Also, 𝐴% in 𝑆4 is 𝐴# in 𝑆47%,
𝐴# in 𝑆4 is 𝐴- in 𝑆47%, ... , etc.

q ⇒ Huffman step transforms 𝑆4 into 𝑆47%. 
Continue until we obtain 𝑆7% with

𝑃7% 𝐴) = %78 8./%

%78-
, 1 ≤ 𝑖 ≤ 𝑚.
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...

0 1 2 𝑟 − 1 𝑟 𝐴)𝐴# 𝐴.

𝑃0 𝐴1 =
1 − 𝛾 𝛾021

1 − 𝛾3

𝐴.,)

......

𝑆4

0 1 2 𝑟 − 1 𝐴)𝐴# 𝐴.𝐴.,)

......

𝑆47%



Proof  of  optimality (cont.)

We obtain 𝑆7% = 𝐴%, 𝐴#, … , 𝐴2 with

𝑃7% 𝐴) =
1 − 𝛾 𝛾)7%

1 − 𝛾2
, 1 ≤ 𝑖 ≤ 𝑚.

We have 
𝑃7% 𝐴% < 𝑃7% 𝐴27% + 𝑃7% 𝐴2 from (**)

⇒ 𝑆7% is a quasi-uniform source with  𝑚 symbols. An optimal code for such a source 

has 2 &'( 2 −𝑚 words of length log𝑚 and 2𝑚 − 2 &'( 2 words of length log𝑚

(shortest codewords assigned to highest probability symbols).
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𝑆./
𝐴% 𝐴# 𝐴-

𝐴9 𝐴:

Example: 𝑚 = 5



Unfolding reduced sources
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𝑆./
𝐴% 𝐴# 𝐴-

𝐴9 𝐴:



Unfolding reduced sources
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𝑆#0
𝐴% 𝐴#

𝐴- 𝐴9𝐴:



Unfolding reduced sources
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𝑆/0 1

𝐴%
𝐴# 𝐴-𝐴9 𝐴:



Unfolding reduced sources
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𝑆L
0 1

3 4

2𝐴% 𝐴# 𝐴-

𝐴9 𝐴:



Unfolding reduced sources
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0 1

3 4

2
5 6

8 9

7
𝑆M𝐴% 𝐴# 𝐴-

𝐴9 𝐴:



Unfolding reduced sources
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GD 𝛾

0 1

3 4

2
5 6

8 9

7

10 11

13 14

12

15 16

18 19

17

● leaves of the

binary3 tree

From each leaf of the binary. tree we “hang” a unary tree:
equivalent to concatenating the two codes!



Proof  of  optimality (cont.)

q We have proved that the sequence of optimal codes 𝒞./, 𝒞#, 𝒞/, … for the 
reduced sources 𝑆./, 𝑆#, 𝑆/, … converges to the Golomb code 𝐺A for 
𝑚 satisfying (**).

q Why is the code optimal for GD 𝛾 ? (intuition is obvious, but …)
d𝐿 = inf d𝐿(𝒞) over all uniquely decipherable codes 𝒞 for GD 𝛾 .
d𝐿; = expected code length for 𝐺2
d𝐿4 = expected code length for 𝒞4 on 𝑆4

● Clearly, we have d𝐿 ≤ d𝐿;
● Also, d𝐿4 ≤ d𝐿 because we can use a subset of the codewords of 𝒞 for 𝑆4, taking 

the original codeword from 𝒞 for 0, 1, … , 𝑟 , and the codeword 𝒞 assigns to
𝑟 + 𝑗 for 𝐴* .
S𝐿 = ∑'"%2 𝑃 𝑖 𝒞 𝑖 +∑3"). ∑'∈5$ 𝑃 𝑖 𝒞 𝑖
> ∑'"%2 𝑃 𝑖 𝒞 𝑖 +∑3"). ∑'∈5$ 𝑃 𝑖 𝒞 𝑟 + 𝑗

= ∑'"%2 𝑃 𝑖 𝒞 𝑖 +∑3"). 𝑃 𝐴3 𝒞 𝑟 + 𝑗 = S𝐿2
● For similar reasons, d𝐿4 is increasing with 𝑟, and it has a limit as 𝑟 → ∞, so 

lim
4→$

d𝐿4 ≤ d𝐿 . But  lim
4→$

d𝐿4 = d𝐿; , so d𝐿; ≤ d𝐿.
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𝑟 + 𝑗 has shortest
codeword in 𝐴1



Expected code length

q Short calculation shows that

k𝐿V = log𝑚 +1 +
𝛾W

1 − 𝛾A
(𝑡 = 2⌊6Y9 A⌋>/ − 𝑚)

● This holds for any 𝛾 and 𝑚 , not necessarily optimal.
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(The G-vV paper 
has an error in 
this formula—
instead of ⌊ ⌋ )




