Lossless Source Coding

Geometric distributions and Golomb codes - Part 1

Distributions on the nonnegative integers

$\square \mathbb{N}=\{0,1,2, \ldots\}$: the nonnegative integers (natural numbers).
Probability mass function $P: \mathbb{N} \rightarrow[0,1], \quad \sum_{k \geq 0} P(k)=1$.
$\square X \sim P$ may have finite or infinite entropy

$$
H(X)=-\sum_{k=0}^{\infty} P(k) \log P(k)
$$

\square Clearly, \mathbb{N} here can be used as proxy for any countable alphabet underlying P. We refer to P as a countable distribution (or countable PMF).

Example: PMF with infinite entropy

$$
P(k)=\frac{c}{k \log ^{2} k}, \quad k \geq 2, \quad c=\left(\sum_{k=2}^{\infty} \frac{1}{k \log ^{2} k}\right)^{-1}
$$

- We have $H(P)=\infty$
- why: $\sum_{k=2}^{\infty} \frac{1}{k \log k}$ is divergent.

Example: PMF with finite entropy (1)

\square Zeta distribution:

$$
P(k)=\frac{1}{\zeta(s)} \frac{1}{k^{s}}, \quad s>1, k \geq 1, \quad \zeta(s)=\sum_{k=1}^{\infty} \frac{1}{k^{s}}
$$

Riemann zeta function (we'll omit the argument s)
\square Writing $s-1=2 \epsilon(\epsilon>0)$,

Example: PMF with finite entropy (2)

- The geometric distribution $\mathrm{GD}(\gamma)$:

$$
P(k)=(1-\gamma) \gamma^{k}, \quad \gamma \in(0,1), \quad k \geq 0
$$

We have $\sum_{k \geq 0} P(k)=1$ (prove!), and

$$
\begin{aligned}
& H(x)=-\sum_{k \geq 0}(1-\gamma) \gamma^{k}[\log (1-\gamma)+k \log \gamma] \\
&=-(1-\gamma) \log (1-\gamma) \sum_{k \geq 0} \gamma^{k}-(1-\gamma) \log \gamma \sum_{k \geq 0} k \gamma^{k} \\
&=\frac{-(1-\gamma) \log (1-\gamma)-\gamma \log \gamma}{1-\gamma}=\frac{h_{2}(\gamma)}{1-\gamma}<\infty . \\
& \quad \begin{array}{c}
h_{2}(x)=-x \log x-(1-x) \log (1-x) \\
\text { binary entropy }
\end{array}
\end{aligned}
$$

Binary prefix codes for countable distributions

$\square \mathcal{C}: \mathbb{N} \rightarrow\{0,1\}^{*}$, such that $\mathcal{C}(i)$ is not a prefix of $\mathcal{C}(j)$ for any $i \neq j$.
\square As in the finite case, a prefix code must satisfy Kraft's condition:

$$
\sum_{k \geq 0} 2^{-\operatorname{length}(\mathcal{C}(k))} \leq 1
$$

$\square \mathcal{C}$ can be represented by an infinite binary tree.
\square The tree is complete if every node that is not a leaf has exactly two children.

- Differently from the finite case, a complete infinite tree may have a Kraft sum <1.
\square Given a PMF P, the average code length of \mathcal{C} is

$$
L(\mathcal{C})=\sum_{k \geq 0} P(k) \cdot \text { length }(\mathcal{C}(k))
$$

which, again, may be finite or infinite.
$\square \mathcal{C}$ is optimal for P if $L(\mathcal{C}) \leq L\left(\mathcal{C}^{\prime}\right)$ for any code \mathcal{C}^{\prime};
\Rightarrow makes sense only when $L(\mathcal{C})<\infty$.

Code convergence

\square A sequence of finite binary prefix codes $\mathcal{C}_{0}, \mathcal{C}_{1}, \mathcal{C}_{2}, \ldots$ for subsets of \mathbb{N} converges to an infinite code \mathcal{C} for \mathbb{N} iff

- for every integer $i \in \mathbb{N}$ there is an index $J_{i} \geq 0$ such that \mathcal{C}_{j} assigns a codeword to i for all $j \geq J_{i}$,
- for every integer $i \in \mathbb{N}$ there is an index $J^{\prime}{ }_{i} \geq J_{i}$ such $\mathcal{C}_{j}(i)$ remains constant, and equal to $\mathcal{C}(i)$, for all $j \geq J^{\prime}{ }_{i}$.

Code convergence: Example

\square The unary code $C(k)=\overbrace{00 \ldots 0}^{k} 1$ is the limit of the sequence of codes

$$
\mathcal{C}_{n}=\left\{1,01,001, \ldots, 0^{n} 1,0^{n} 0\right\}, n \geq 0
$$

\square Say $P(k)=2^{-(k+1)}$ (geometric distribution $\gamma=\frac{1}{2}$)
Then, $L(\mathcal{C})=\sum_{k \geq 0}(k+1) 2^{-(k+1)}=2$, and

$$
H(X)=-\sum_{k \geq 0} P(k) \log P(k)=\sum_{k \geq 0} 2^{-(k+1)}(k+1)=2 .
$$

Questions of interest

\square How does the average code length $L(\mathcal{C})$ relate to the entropy $H(X)$?
\square Are there optimal codes for countable distributions?
\square If so, for what distributions?
\square Can we construct them?
\square Can we describe them compactly?
\square Some answers:

- Shannon's lower bound applies also to countable distributions, i.e.,

$$
L(\mathcal{C}) \geq H(X)
$$

- Therefore, the code in the previous example is optimal. Clearly, it can be described compactly.
- How about more general cases? We cannot use Huffman's procedure!

Existence of optimal codes

$\square \quad X \sim P$, where P is a countable distribution. The truncated random variable $X_{n} \sim P_{n}$ has finite support $\{0,1, \ldots, n\}$, with $P_{n}(k)=P(k) / \sum_{j=0}^{n} P(j)$.

- A truncated Huffman code $\mathcal{C}_{n}^{\text {Huf }}$ for X is a Huffman code for X_{n}.

Theorem [Linder, Tarokh, Zeger '97], [Kato, Han, Nagoka '96]
Let X be a random variable with countable support, and with finite entropy. Then,

- there exists a sequence of binary truncated Huffman codes for X which converges to an optimal code for X,
- the sequence of average code lengths of the truncated Huffman codes converges to the minimum possible average code length for X,
- any optimal prefix code for X must satisfy the Kraft condition with equality.
\square The proof is not constructive: it does not tell us how to choose or construct the sequence of truncated Huffman codes.
In fact, there are very few classes of countable distributions for which an optimal prefix code can be constructed and described compactly.
\square We will study such a construction for arbitrary geometric distributions.

Why geometric distributions?

Geometric distributions are useful in practice
\square Consider random variable $B \sim \operatorname{Bernoulli}(\gamma)$ (i.e., $P(0)=\gamma$). We are interested in describing long sequences of independent realizations of B.

- We could use an arithmetic coder, but we are interested in a simpler solution.
- Let b_{1}^{n} be the sequence of interest, emitted by B^{n}. Parse b_{1}^{n} as

$$
b_{1}^{n}=\overbrace{00 \ldots 0}^{k_{1}} 1 \overbrace{00 \ldots 0}^{k_{2}} 1 \overbrace{00 \ldots 0}^{k_{3}} 1 \ldots \ldots \overbrace{00 \ldots 0}^{k_{N}} 1
$$

We have

$$
P(\overbrace{00 \ldots 0}^{k} 1)=\gamma^{k}(1-\gamma)
$$

$\Rightarrow B_{1}^{n}$ can be represented by a sequence of independent random variables distributed as $\operatorname{GD}(\gamma)$.

Why geometric distributions?

Geometric distributions are useful in practice
\square In natural, continuous tone images, differences between contiguous pixels are well modeled by a two-sided geometric distribution (discrete Laplacian)

+ we will see that optimal codes for geometric distributions are very easy to implement!

Golomb codes

\square In 1966, Golomb described a family of prefix-free codes for \mathbb{N} (motivated by sequences of Bernoulli trials).
\square Consider an integer $m \geq 1$. The m th order Golomb code G_{m} encodes an integer $i \geq 0$ in two parts, as follows:

$$
G_{m}(i)=\operatorname{binary}_{m}(i \bmod m) \mid \operatorname{unary}(i \operatorname{div} m)
$$

\square Here,

- $i \bmod m, i \operatorname{div} m=$ remainder and quotient in integer division $\frac{i}{m}$ (resp.)
- binary $_{m}(j)=$ binary encoding of j in an optimal code for $\{0,1, \ldots, m-1\}$ under a uniform distribution ($\lfloor\log m\rfloor$ or $\lceil\log m\rceil$ bits, shorter codes for smaller numbers)
- Example: $m=5$, lengths 2 and 3: 0:00 1:01 2: 10 3: 110 4: 111
- unary $(j)=\overbrace{00 \ldots 0}^{j} 1$ unary representation of j.
\square Given m and $G_{m}(i)$, a decoder uniquely reconstructs

$$
i=(i \operatorname{div} m) \cdot m+(i \bmod m)
$$

Golomb codes - Examples

$m=5$		
i	$G_{m}(i)$	$\ell(i)$
0	001	3
1	011	3
2	101	3
3	1101	4
4	1111	4
5	0001	4
6	0101	4
7	1001	4
8	11001	5
9	11101	5
10	00001	5
11	01001	5
12	10001	5
13	110001	6
14	111001	6
!	!	!

$m=2^{k}=4$			
i	i (binary)	$G_{m}(i)$	$\ell(i)$
0	00	001	3
1	01	011	3
2	10	101	3
3	11	111	3
4	100	0001	4
5	101	0101	4
6	110	1001	4
6	111	1101	4
7	1000	00001	5
8	1001	01001	5
9	1010	10001	5
10	1011	11001	5
11	1100	000001	6
12	1101		
13	1101	010001	6
14	1110	100001	6
\vdots		\vdots	\vdots

Golomb PO2 codes

\square When $m=2^{k}$, we call G_{m} a Golomb power of two (PO2) code and use k as the defining parameter: $G_{k}^{*} \triangleq G_{2^{k}}$.
\square PO2 codes are especially simple to implement!
Example: Golomb PO2 encoder

Optimality of Golomb codes

Theorem [Gallager, Van Voorhis 1975]

Let $X \sim \mathrm{GD}(\gamma)$ and let m be the unique integer satisfying

$$
\gamma^{m}+\gamma^{m+1} \leq 1<\gamma^{m}+\gamma^{m-1}
$$

Then, G_{m} is an optimal prefix-free code for X.

Why is there a unique such value of m ?

Given γ, we have
$m=\min \left\{m^{\prime} \mid \gamma^{m^{\prime}}+\gamma^{m^{\prime}+1} \leq 1\right\}$.

Golomb (1966) had proved optimality for $\gamma=2^{-\frac{1}{m}}$, i.e., $\gamma^{m}=\frac{1}{2}$.

Optimality of Golomb codes

What range of γ is G_{m} optimal for?

Solution of $\gamma^{m}+\gamma^{m+1}=1$

m	γ_{m}
1	0.6180339887
2	0.7548776662
3	0.8191725134
4	0.8566748839
5	0.8812714616
6	0.8986537126
7	0.9115923535
8	0.9215993196

Proof of optimality

Consider γ fixed and m as determined above. Define an r-reduced source S_{r}, for any $r \geq 0$, as a source with $r+1+m$ symbols, with the following probabilities:

$$
P_{r}(i)=\left\{\begin{array}{lc}
(1-\gamma) \gamma^{i}, & 0 \leq i \leq r \\
\frac{(1-\gamma) \gamma^{i}}{1-\gamma^{m}}, & r+1 \leq i \leq r+m
\end{array}\right.
$$

We have $\sum_{i=0}^{r+m} P_{r}(i)=1$. In fact, S_{r} can be interpreted as defined over an alphabet of regular symbols and "super-symbols",

$$
S_{r}=\left\{0,1,2, \ldots, r, A_{1}, A_{2}, \ldots, A_{m}\right\}
$$

where

$$
A_{j}=\{r+j+t \cdot m \mid t=0,1,2, \ldots\}, \quad 1 \leq j \leq m
$$

Indeed, we have

$$
P_{r}\left(A_{j}\right)=(1-\gamma) \sum_{t=0}^{\infty} \gamma^{r+j+t \cdot m}=\frac{(1-\gamma) \gamma^{r+j}}{1-\gamma^{m}}, 1 \leq j \leq m .
$$

Proof of optimality (cont.)

Recall: $\gamma^{m}+\gamma^{m+1} \leq 1<\gamma^{m}+\gamma^{m-1}$ definition of $m\left({ }^{* *}\right)$
$S_{r}=\left\{0,1,2, \ldots, r, A_{1}, A_{2}, \ldots, A_{m}\right\}$,
$P_{r}(i)=(1-\gamma) \gamma^{i}, 0 \leq i \leq r$,
$P_{r}\left(A_{j}\right)=\frac{(1-\gamma) \gamma^{r+j}}{1-\gamma^{m}}, 1 \leq j \leq m$.
Consider Huffman coding of S_{r}.

Claim: The 2 symbols with lowest
 probability in S_{r} are r, A_{m}.
Proof: It suffices to prove
$P_{r}(r)<P_{r}\left(A_{m-1}\right), \quad P_{r}\left(A_{m}\right) \leq P_{r}(r-1)$.
$(1-\gamma) \gamma^{r}<\frac{(1-\gamma) \gamma^{r+m-1}}{1-\gamma^{m}} \Leftrightarrow 1<\frac{\gamma^{m-1}}{1-\gamma^{m}} \Leftrightarrow 1-\gamma^{m}<\gamma^{m-1} \operatorname{RHS}$ of $\left({ }^{* *}\right)$.

Similarly, $P_{r}\left(A_{m}\right) \leq P_{r}(r-1)$ is implied by the LHS of ($\left.{ }^{* *}\right)$.

Proof of optimality (cont.)

\square The 2 symbols with lowest probability are r, A_{m}
\Rightarrow first step of Huffman procedure merges r, A_{m}, resulting in a probability

$$
(1-\gamma) \gamma^{r}+\frac{(1-\gamma) \gamma^{r+m}}{1-\gamma^{m}}=\frac{(1-\gamma) \gamma^{r}}{1-\gamma^{m}}
$$

$=$ prob. of symbol A_{1} in S_{r-1} !
\square Also, A_{1} in S_{r} is A_{2} in S_{r-1}, A_{2} in S_{r} is A_{3} in S_{r-1}, \ldots, etc.
$\square \Rightarrow$ Huffman step transforms S_{r} into S_{r-1}. Continue until we obtain S_{-1} with $P_{-1}\left(A_{i}\right)=\frac{(1-\gamma) \gamma^{i-1}}{1-\gamma^{m}}, 1 \leq i \leq m$.

Proof of optimality (cont.)

We obtain $S_{-1}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ with

$$
P_{-1}\left(A_{i}\right)=\frac{(1-\gamma) \gamma^{i-1}}{1-\gamma^{m}}, \quad 1 \leq i \leq m
$$

We have

$$
P_{-1}\left(A_{1}\right)<P_{-1}\left(A_{m-1}\right)+P_{-1}\left(A_{m}\right) \quad \text { from }\left({ }^{* *}\right)
$$

$\Rightarrow S_{-1}$ is a quasi-uniform source with m symbols. An optimal code for such a source has $2^{\lceil\log m\rceil}-m$ words of length $\lfloor\log m\rfloor$ and $2 m-2^{\lceil\log m\rceil}$ words of length $\lceil\log m\rceil$ (shortest codewords assigned to highest probability symbols).

Example: $m=5$

Unfolding reduced sources

From each leaf of the binary ${ }_{m}$ tree we "hang" a unary tree: equivalent to concatenating the two codes!

Proof of optimality (cont.)

\square We have proved that the sequence of optimal $\operatorname{codes} \mathcal{C}_{-1}, \mathcal{C}_{0}, \mathcal{C}_{1}, \ldots$ for the reduced sources $S_{-1}, S_{0}, S_{1}, \ldots$ converges to the Golomb code G_{m} for m satisfying (${ }^{* *}$).
\square Why is the code optimal for $\operatorname{GD}(\gamma)$? (intuition is obvious, but ...)

$$
\begin{aligned}
& \bar{L}=\inf \bar{L}(\mathcal{C}) \text { over all uniquely decipherable codes } \mathcal{C} \text { for } \operatorname{GD}(\gamma) . \\
& \bar{L}_{G}=\text { expected code length for } G_{m} \\
& \bar{L}_{r}=\text { expected code length for } \mathcal{C}_{r} \text { on } S_{r}
\end{aligned}
$$

- Clearly, we have $\bar{L} \leq \bar{L}_{G}$
- Also, $\bar{L}_{r} \leq \bar{L}$ because we can use a subset of the codewords of \mathcal{C} for S_{r}, taking the original codeword from \mathcal{C} for $0,1, \ldots, r$, and the codeword \mathcal{C} assigns to $r+j$ for A_{j}.
$\begin{aligned} \bar{L} & =\sum_{i=0}^{r} P(i)|\mathcal{C}(i)|+\sum_{j=1}^{m} \sum_{i \in A_{j}} P(i)|\mathcal{C}(i)| & \begin{array}{l}r+j \text { has shortest } \\ \text { codeword in } A_{j}\end{array}\end{aligned}$
$=\sum_{i=0}^{r} P(i)|\mathcal{C}(i)|+\sum_{j=1}^{m} P\left(A_{j}\right)|\mathcal{C}(r+j)|=\bar{L}_{r}$
- For similar reasons, \bar{L}_{r} is increasing with r, and it has a limit as $r \rightarrow \infty$, so $\lim _{r \rightarrow \infty} \bar{L}_{r} \leq \bar{L}$. But $\lim _{r \rightarrow \infty} \bar{L}_{r}=\bar{L}_{G}$, so $\bar{L}_{G} \leq \bar{L}$.

Expected code length

\square Short calculation shows that

$$
\bar{L}_{G}=\lfloor\log m\rfloor+1+\frac{\gamma^{t}}{1-\gamma^{m}} \quad\left(t=2^{\lfloor\log m\rfloor+1}-m\right)
$$

(The G-vV paper has an error in this formula- \rceil instead of [])

- This holds for any γ and m, not necessarily optimal.

