N ^o de parcial Cédula		Apellido y nombre	Salón

Calificación (uso docente)

Ej. 1	Ej. 2	Ej. 3	Ej. 4	Ej. 5	Ej. 6	Ej. 7	Total

Importante

- El parcial dura tres horas
- De los siete ejercicios cada estudiante debe hacer sólo cuatro. Es importante entregar sólo cuatro ejercicios, sino el parcial no se corregirá.
- No se permite el uso de material.
- Cada ejercicio tiene una puntuación de 25 puntos.

Ejercicio 1

- 1. ¿Existe una transformación de Mobius, φ , tal que φ lleva el semiplano superior ($\{z \in \mathbb{C} : Im(z) \geq 0\}$) en la bola unidad cerrada $\overline{B(0,1)}$ y que además lleva la recta Im(z) = Re(z), en el eje real? En caso de existir hallar una fórmula. *Sugerencia: estudiar los ángulos*.
- 2. ¿Existe una transformación de Mobius, φ , tal que φ lleva el semiplano superior $(\{z \in \mathbb{C} : Im(z) \geq 0\})$ en la bola unidad cerrada $\overline{B(0,1)}$? En caso de existir hallar una fórmula.
- 3. Sea $F: \mathbb{C} \to \mathbb{C}$ holomorfa tal que $F(\mathbb{C}) \subset \{z \in \mathbb{C} : Im(z) \geq 0\}$. Probar que F es constante. *Sugerencia: usar la parte 2 y Liouville*.

Ejercicio 2

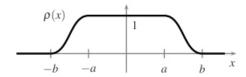
Sea
$$A = \mathbb{C} - \{z \in \mathbb{C} : z = x + iy, y = x^2, x \ge 0\}$$

- 1. Probar que $\int_{\gamma} \frac{1}{z} dz = 0$ para todo camino cerrado γ con $Im \gamma \subset A$.
- 2. Probar que existe $F: A \to \mathbb{C}$ que es primitiva de 1/z en A y tal que $F(i) = i\pi/2$.
- 3. Para la F de la parte anterior, calcular F(-i). Sugerencia: integrar 1/z sobre un segmento de circunferencia que conecta i con -i y usar que F es primitiva.
- 4. Probar que la derivada de $\frac{e^{F(z)}}{z}$ es cero y concluir que $e^{F(z)}=z$ para todo $z\in A$.

Ejercicio 3

Sobre el teorema de los ceros

1. Sea $\rho : \mathbb{R} \to \mathbb{R}$ una función C^{∞} como en la figura. ¿Existe una función holomorfa $F : \mathbb{C} \to \mathbb{C}$ tal que $F(x) = \rho(x) \ \forall x \in \mathbb{R}$?



2. Sea (z_i) una sucesión de numeros complejos distintos dos a dos $(z_i \neq z_j \ \forall i \neq j)$. Probar que si una función holomorfa $F: \mathbb{C} \to \mathbb{C}$ cumple $F(z_i) = 0 \ \forall i$ entonces $z_i \to \infty$ o $F(z) = 0 \ \forall z \in \mathbb{C}$. Sugerencia: notar que si la sucesión z_i no converge a infinto entonces la sucesión entera se encuentra dentro de una bola de radio R con R grande. Usar que infinitos puntos en B(0,R) acumulan en \mathbb{C} .

Ejercicio 4

Sea $f: \mathbb{C} - \{1\} \to \mathbb{C}$ tal que $f(z) = e^{\frac{1}{(z-1)^2}}$.

- 1. Clasificar la singularidad z = 1.
- 2. ¿Cuál es la clausura de $f(B^*(1,r))$? Justifique brevemente. Aquí $B^*(1,r)$ es la bola de centro 1 y radio r > 0 pinchada, es decir, sin el elemento z = 1. Sugerencia: usar la parte 1 simplifica el problema.
- 3. Calcular $f(B^*(1,r))$.

Ejercicio 5

Sea $a \in \mathbb{R}$ con a > 1. Calcular la siguiente integral.

$$\int_0^{2\pi} \frac{\sin \theta}{a + \sin \theta} d\theta.$$

Recordar que si R(x,y) es un cociente de polinomios en las variables x e y tal que no se anula el denominador en la circunferencia unitaria, entonces

$$\int_{0}^{2\pi} R(\cos\theta, \sin\theta) d\theta = -i \int_{\gamma} R\left(\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right) \frac{dz}{z}$$

siendo γ la circunferencia unitaria recorrida en sentido antihorario.

Ejercicio 6

Sean dos conjuntos de números complejos $\{\alpha_i\}_{i=1}^n$ y $\{\beta_i\}_{i=1}^m$ con los α_i y β_i diferentes entre si y diferentes entre ellos y n < m. Sean las siguientes funciones racionales

$$F(z) := \frac{(z - \alpha_1)(z - \alpha_2) \dots (z - \alpha_n)}{(z - \beta_1)(z - \beta_2) \dots (z - \beta_m)}, \ G(z) := \sum_{k=1}^m \frac{\prod_{j=1}^n (\beta_k - \alpha_j)}{\prod_{j \neq k}^m (\beta_k - \beta_j)} \frac{1}{z - \beta_k}.$$

El objetivo de este ejercicio es probar que F(z) = G(z), es decir, G es la descomposición en fracciones simples de F. Esto demuestra que vale la descomposición en fracciones simples.

1. Calcular los residuos de los polos de F y de los de G.

- 2. Sea D(z) := F(z) G(z). De lo anterior, deducir que D tiene singularidades evitables. Pueden asumir que si f y g son dos funciones sin singularidades esenciales, entonces la resta de ellas también.
- 3. Deducir que la función D se extiende a todo el plano complejo, $D: \mathbb{C} \to \mathbb{C}$, y es holomorfa.
- 4. Probar que la función D es acotada. ¿Cuánto vale $\lim_{z\to\infty} D(z)$?
- 5. Probar que la función D es constante y deducir que F = G.

Ejercicio 7

Sea γ la circunferencia unidad recorrida en el sentido anithorario.

1. Demostrar que para $n \in \mathbb{Z}$

$$\int_{\gamma} \frac{1}{z^n} dz = \begin{cases} 0 & \text{si } n \neq 1\\ 2\pi i & \text{si } n = 1 \end{cases}$$

2. Calcular la integral

$$\int_{\gamma} \left(z + \frac{1}{z} \right)^{2n} \frac{1}{z} dz$$

Para este cálculo será útil recordar la fórmula del binomio de Newton:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$= \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

3. Deducir el valor de $\int_0^{2\pi} (\cos t)^{2n} dt$.