SOLUCIÓN PRUEBA FINAL - 18 DE MAYO DE 2019.

Ejercicio 1.

Sea $T: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ una transformación de Möbius tal que

$$T(z) = \frac{2z - i}{-iz - 2}.$$

- 1. Sea $D = \{z \in \mathbb{C} : |z| < 1\}$. Probar que T(D) = D.
- 2. Sea \mathcal{F} la familia de todas las rectas por el origen. Probar que existe un único elemento r_0 de \mathcal{F} tal que $T(r_0)$ es una recta.
- 3. Hallar explícitamente la recta $T(r_0)$.

Parte 1. Primero vamos a probar que $T(\{z \in \mathbb{C} : |z| = 1\}) = \{z \in \mathbb{C} : |z| = 1\}$. Como las transformaciones de Möebius llevan rectas y circunferencias en rectas y circunferencias, es suficiente mostar que |T(1)| = |T(i)| = |T(-1)| = 1.

$$|T(1)| = \left| \frac{2-i}{-i-1} \right| = 1, \quad |T(i)| = \left| \frac{2i-i}{-ii-1} \right| = 1, \quad |T(-1)| = \left| \frac{-2-i}{i-2} \right| = 1.$$

Ahora, como las transformaciones de Möbius son continuas y biyectivas, el interior del disco va al interior del disco, o al exterior. Basta entonces con ver que $T(0) = \frac{i}{2} \in D$ para concluir que T(D) = D. También se puede utilizar un argumento con el hecho de que Möebius preserva orientación.

Parte 2. Dada una recta r_0 por el origen, $T(r_0)$ es una recta si y solo $\infty \in T(r_0)$ si y solo si $2i \in r_0$ (ya que $T(2i) = \infty$). La única recta que pasa por el orgien y por el punto 2i es el eje Oy.

Parte 3. Por la parte anterior, $T(r_0)$ es la recta que pasa por $T(0) = \frac{i}{2}$ y por T(i) = -i. O sea el eje Oy.

Ejercicio 2.

- 1. Defina función meroforma.
- 2. Sea fmeromorfa en $\Omega\subset\mathbb{C},$ con f distinta de la función nula.
 - a) Probar que si $a \in \Omega$ es un cero o un polo de f entonces a es un polo de f'/f.
 - b) Si a es un polo de $f^{'}/f$ entonces a es un cero o un polo de f.
- 3. Probar el siguiente resultado: Sea γ un camino cerrado en un abierto conexo Ω , tal que $\operatorname{Ind}_{\gamma}(a)=0, \ \forall a\notin\Omega.$ Supongamos que $\operatorname{Ind}_{\gamma}(a)$ solo puede tomar valores 0 y 1 y sea $\Omega_1=\{a\in\Omega: \ \operatorname{Ind}_{\gamma}(a)=1\}$. Sea f una función meromorfa en Ω , f no nula, N_f el número de ceros de f en Ω_1 contando su multiplicidades y P_f el número de polos en Ω_1 . Si f no tiene ceros ni polos en γ^* entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = N_f - P_f = \operatorname{Ind}_{f \circ \gamma}(0).$$

Ver notas 2019.

Ejercicio 3.(25 puntos)

Sean $A = \{i, 0, -i\}$, $f \in H(\mathbb{C} \setminus A)$ con todos los elementos de A polos de orden uno. Sean γ_1, γ_2 y γ_3 tres caminos como en la figura 1, con $\int_{\gamma_1} f(z)dz = \pi i$, $\int_{\gamma_2} f(z)dz = 2\pi i$ y $\int_{\gamma_3} f(z)dz = -2\pi i$. Se sabe además que f(1) = 1 y que f'(1) = 2. Calcular

$$\int_{\Gamma} \frac{f(z)}{(z-1)^2} dz$$
, siendo Γ el camino de la figura 2 .

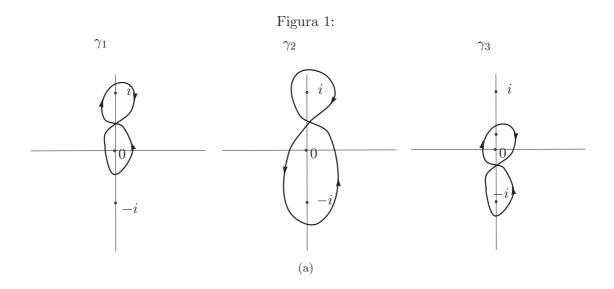
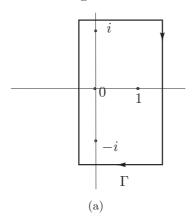


Figura 2:



Usando el teorema de Residuos tenemos que:

•
$$\int_{\gamma_1} f(z)dz = 2\pi i (Res(0) - Res(i)) = \pi i,$$

Resolviendo el sistema queda que Res(0) = 3/2, Res(i) = 1 y Res(-i) = 1/2.

Consideramos ahora la función $g(z)=\frac{f(z)}{(z-1)^2}$. Como f tiene un polo de orden uno en z=0, entonces $\lim_{z\to 0} f(z)=\infty$ y $\lim_{z\to 0} z f(z)$ es distinto de cero y distinto de infinito. Entonces $\lim_{z\to 0} g(z)=\lim_{z\to 0} \frac{f(z)}{(z-1)^2}=\lim_{z\to 0} f(z)$. $\lim_{z\to 0} \frac{1}{(z-1)^2}=\infty$, lo que implica que z=0 es un polo para g.

Como lím $_{z\to 0}$ $zg(z)=\lim_{z\to 0}zf(z)$. lím $_{z\to 0}$ $\frac{1}{(z-1)^2}$ y es distinto de cero y distinto de infinito, entonces z=0 es un polo de orden uno para g. Por lo tanto

$$Res(0,g) = \lim_{z \to 0} zg(z) = \lim_{z \to 0} zf(z). \lim_{z \to 0} \frac{1}{(z-1)^2} = Res(0,f), 1 = 3/2.$$

Un razonamiento análogo muestra que z=i y z=-i son polos de orden uno para g.

$$\begin{aligned} Res(i,g) &= \lim_{z \to i} (z-i)g(z) = \lim_{z \to i} (z-i)f(z). \\ \lim_{z \to i} \frac{1}{(z-1)^2} &= Res(i,f). \\ \frac{1}{(i-1)^2}. \\ Res(-i,g) &= \lim_{z \to -i} (z+i)g(z) = \lim_{z \to -i} (z+i)f(z). \\ \lim_{z \to -i} \frac{1}{(z-1)^2} &= Res(-i,f). \\ \frac{1}{(z-1)^2}. \\ \operatorname{Como} f(1) &= 1 \text{ entonces } \\ \lim_{z \to 1} g(z) &= \\ \lim_{z \to 1} \frac{f(z)}{(z-1)^2} &= \infty, \text{ por lo tanto } z = 1 \text{ es un polo para } g. \\ \operatorname{Como} \lim_{z \to 1} (z-1)^2 g(z) &= \\ \lim_{z \to 1} (z-1)^2 \frac{f(z)}{(z-1)^2} &= \\ \lim_{z \to 1} f(z) &= 1, \text{ entonces } z = 1 \text{ es un polo de orden dos para } g. \\ \operatorname{Por lo tanto} Res(1,g) &= \\ \lim_{z \to 1} ((z-1)^2 g(z))' &= \\ \lim_{z \to 1} f'(z) &= 2. \\ \operatorname{Consecuentemente tenemos que} \end{aligned}$$

$$\int_{\Gamma} \frac{f(z)}{(z-1)^2} dz = 2\pi i (-Res(0,g) - Res(i,g) - Res(-i,g) - Res(1,g)).$$

Ejercicio 4.

Sea $\gamma: [0, 2\pi] \to \mathbb{C}$ tal que $\gamma(t) = 2e^{it}$.

1. Probar que

$$\int_{\gamma} \frac{dz}{z^3 + 1} = 0$$

2. Calcular

$$\int_{\gamma} \frac{e^z - 1 - z}{1 - \cos(z)} dz.$$

Parte 1. Como $\lim_{z\to\infty}z.\frac{1}{z^3+1}=0$, entonces por el lema de deformación de caminos se tiene que $\lim_{R\to+\infty}\int_{\gamma_R}\frac{dz}{z^3+1}=0$, siendo $\gamma_R:[0,2\pi]\to\mathbb{C}$ tal que $\gamma_R(t)=Re^{it}$.

Como γ y γ_R (con R>1) son homotópicas entonces, por Cauchy, $\int_{\gamma} \frac{dz}{z^3+1} = \int_{\gamma_R} \frac{dz}{z^3+1}$. Lo que implica que $\int_{\gamma} \frac{dz}{z^3+1} = 0$. Otra forma de verlo es calcular la integral por el método de los residuos.

Parte 2. Aplicando L'Hopital dos veces tenemos que

$$\lim_{z \to 0} \frac{e^z - 1 - z}{1 - \cos(z)} = \lim_{z \to 0} \frac{e^z - 1}{\sin(z)} = \lim_{z \to 0} \frac{e^z}{\cos(z)} = 1.$$

Por lo tanto z=0 es un singularidad evitable para la función $\frac{e^z-1-z}{1-\cos(z)}$. Luego, por el Teorema de Cauchy, $\int_{\gamma} \frac{e^z-1-z}{1-\cos(z)} dz = 0$.