Teoría de Lenguajes

AFD

Expresiones Regulares

Notación formal para definir lenguajes (conjuntos) sobre un alfabeto Σ

- ø es una ER que describe al conjunto ø
- a es una ER ∀a ∈ Σ U {ε}
- Sirysson ER para describir Ry Srespectivamente entonces:
 - □ r|s es una ER para R ∪ S, unión
 - r.s es una ER para R.S, concatenación
 - □ r* es una ER para R*, clausura de Kleene
- $_{ extstyle }$ Estas son todas las Expresiones Regulares definidas sobre $oldsymbol{\Sigma}$

Lenguajes Regulares

Definición (1):

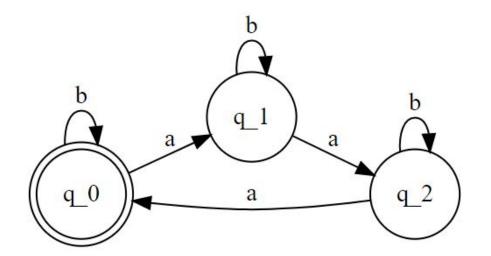
Un lenguaje L es **Regular** si existe una expresión regular r que lo describe, es decir, L = L(r)

Ver algunos ejemplos....

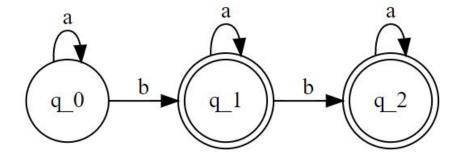
Autómatas Finitos

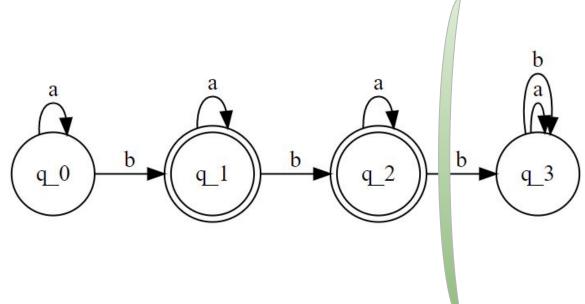

Un AFD es una máquina de estados que se puede representar por la siguiente quíntupla

$$M:(Q,\Sigma,\delta,q_0,F)$$
 donde:


- Q: conjunto de estados
- Σ: alfabeto
- δ : función de transición / δ : Q x ∑ → Q
- q_0 : estado inicial / $q_0 \in Q$
- F: conjunto de estados finales (aceptores) / F⊆Q

Ejemplos dado {a,b}


1) Lenguaje de tiras con cantidad impar de símbolos


2) Lenguaje de tiras con cantidad de a's múltiplo de 3

3) Lenguaje con exactamente una o dos **b**'s

3) Lenguaje con exactamente una o dos **b**'s

Extensión para manejar strings

$$\delta^{\wedge}: Q \times \Sigma^* \to Q$$

$$\delta^{\wedge}(q,\epsilon) = q \quad \forall \ q \in Q$$

$$\delta^{\wedge}(q,wa) = \delta(\delta^{\wedge}(q,w),a) \quad \forall \ q \in Q \quad a \in \Sigma \quad w \in \Sigma^{*}$$

Basado en la definición inductiva de Σ^*

$$\varepsilon \in \Sigma^*$$

si $a \in \Sigma$, $w \in \Sigma^*$ entonces wa $\in \Sigma^*$

Definición:

Lenguaje **L** aceptado por un AFD $M:(Q, \Sigma, \delta, q_o, F)$

$$L = L(M) = \{ x \in \Sigma^* / \delta^{\wedge}(q_0, x) \in F \}$$

Lenguaje Regular

Definición (2):

Un lenguaje L es Regular si es aceptado por un AFD $M:(Q,\Sigma,\delta,q_o,F)$

otra forma

Un lenguaje L es Regular si existe un AFD $M:(Q,\Sigma,\delta,q_o,F)$ que lo reconoce

$$L = L(M)$$

Lenguaje Regular

¿El lenguaje de las tiras de a's y b's / el 3er símbolo de la derecha (desde el final de las tiras) es una b, es regular?

 $(a|b)^*b(a|b)(a|b)$

Entonces es Regular

¿Cómo sería un AFD?