Matemática discreta 1 IMERL Teórico vespertino (Florencia) 2021

RESUMEN TEÓRICO SEMANA 11 Grafos planos

Este material resume algunos contenidos del capítulo 11 del libro "Matemática discreta y combinatoria" de R. Grimaldi.

Definición Decimos que un (multi)grafo es plano si <u>existe</u> una representación gráfica en la que los segmentos que representan las aristas solo se intersequen en lo vértices.

Ejercicio Determinar si son planos los siguientes grafos:

- A. Q_3
- B. K_4
- $C. K_5$
- D. $K_{2,3}$
- E. $K_{3,3}$

Teorema Sea G un (multi)grafo plano conexo, sean |E| la cantidad de aristas, |V| la cantidad de vértices y |R| la cantidad de regiones que quedan definidas por la representación gráfica plana (entre las regiones se incluye la región infinita). Entonces se cumple que

$$|V| - |E| + |R| = 2.$$

Observación La cantidad de regiones es un invariante del grafo (no depende de la representación gráfica que realicemos).

Corolario Sea G un (multi)grafo plano con k componentes conexas, sean |E| la cantidad de aristas, |V| la cantidad de vértices y |R| la cantidad de regiones que quedan definidas por la representación gráfica plana (entre las regiones se incluye la región infinita). Entonces se cumple que

$$|V| - |E| + |R| = 1 + k.$$

Corolario Sea G un grafo plano sin lazos conexo, sean |E| la cantidad de aristas, |V| la cantidad de vértices y |R| la cantidad de regiones que quedan definidas por la representación gráfica plana (entre las regiones se incluye la región infinita). Entonces se cumple que

$$3|R| \le 2|E|$$
 y $|E| \le 3|V| - 6$.

Definiciones Sea G = (V, E) un grafo sin lazos no vacío.

Una subdivisión elemental de G es el grafo que se obtiene luego de remover una arista $\{x,y\}$ y agregar una vértice z y las aristas $\{x,z\}$ y $\{z,y\}$.

Dos grafos sin lazos se dicen homeomorfos si son isomorfos o se obtienen a partir de subdivisiones elementales de grafos isomorfos.

Observación Si dos grafos G_1 y G_2 son homeomorfos entonces G_1 es plano si y sólo si G_2 lo es.

Observación Dos grafos homeomorfos sólo pueden diferir en la cantidad de vértices de grado 2.

Teorema de Kuratowski.

G es plano si y sólo si no posee subgrafos homeomorfos a K_5 o a $K_{3,3}$. (no realizaremos la prueba)

Observación Una forma sencilla de justificar que un grafo no es plano es encontrar un subgrafo que sea homeomorfo a K_5 o a $K_{3,3}$.