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Q-learning - proof of convergence

On Policy

Santiago Paternain, Miguel Calvo-Fullana Q-learning 2



Optimal policies

I Recall: value function for given policy π

vπ(s) = Eπ [Gt |St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
, for all s ∈ S

I Goal: Obtain optimal policy which maximizes vπ(s)

v?(s) = max
π

vπ(s) for all s ∈ S

I So far we have been considering policy gradient and variants

I And running gradient ascent, we update the parameters of the policy as

θk+1 = θk + α∇vπθ (θk)

I We can only establish convergence to a local maximum

⇒ Can we do better? ⇒ At least for tabular cases we can

⇒ Q-learning and Sarsa
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Links between v and q functions

I Recall the definition of the q-function

qπ(s, a) = Eπ [Gt |St = s,At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s,At = a

]
I If we are able to compute the optimal q-function

q?(s, a)
.

= max
π

qπ(s, a)

I Optimal value function maximizes over the immediate action

v?(s) = max
a∈A(s)

q?(s, a)

I This action is easy to select in tabular cases

I If we consider function approximations only for specific cases
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Certificate for optimality

I Bellman equation for q?:

q?(s, a) = ESt+1,Rt+1 [Rt+1 + γmax
a′

q?(St+1, a
′)|St = s,At = a]

I Q-learning will find a fixed point of this equation

I Let us prove the result

⇒ By definition of q? and the q-function we have that

q?(s, a) = max
π

qπ(s, a) = max
π

E

[
∞∑
k=0

γkRt+k+1|St = s,At = a

]

⇒ Expectation is linear and Rt+1 independent of π since At = a

q?(s, a) = ERt+1 [Rt+1|St = s,At = a]+γmax
π

E

[
∞∑
k=1

γk−1Rt+k+1|St = s,At = a

]
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Proof of Bellman equations for q?(s, a)

I From the previous slide we had that

q?(s, a) = E[Rt+1|St = s,At = a]+γmax
π

E

[
∞∑
k=1

γk−1Rt+k+1|St = s,At = a

]
I We will show that

max
π

E

[
∞∑
k=1

γk−1Rt+k+1|St = s,At = a

]
= E

[
max
a′

q?(St+1, a
′) |St = s,At = a

]
I That being the case we have that

q?(s, a) = E[Rt+1|St = s,At = a] + γE
[

max
a′

q?(St+1, a
′) |St = s,At = a

]
I Regrouping would complete the proof

q?(s, a) = E
[
Rt+1 + γmax

a′
q?(St+1, a

′) |St = s,At = a

]
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Proof of Bellman equations for q?(s, a)

I It remains to prove that

max
π

E

[
∞∑
k=1

γk−1Rt+k+1 | St = s,At = a

]
= E

[
max
a′

q?(St+1, a
′) |St = s,At = a

]
I We will use that expectation w.r.t. St+1 does not depend on π

I Notice that the left hand by the towering property is

max
π

E

[
E

[
∞∑
k=1

γk−1Rt+k+1|St+1

] ∣∣∣∣∣St = s,At = a

]

= max
π

E

[
vπ(St+1)

∣∣∣∣∣St = s,At = a

]
= E

[
max
π

vπ(St+1)

∣∣∣∣∣St = s,At = a

]

= E

[
v?(St+1)

∣∣∣∣∣St = s,At = a

]
= E

[
max
a′

q?(St+1, a
′)|St = s,At = a

]
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Iterative solution of Bellman equations

I Define Bellman operator F (q) : RNS×NA → RNS×NA given by

F (q)|(s,a) = ESt+1,Rt+1 [Rt+1 + γmax
a′

q(St+1, a
′)|St = s,At = a]

I Bellman equation can be written as q? = F (q?)

I Will prove:

⇒ F (q) is a contraction: ‖F (q′)− F (q)‖ ≤ γ‖q′ − q‖
⇒ Optimal q? is the unique fixed point of F (q); i.e., q? = F (q?)

⇒ The iteration qn+1 = F (qn) converges to q? from any initial point q0
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Contractive map

I Think of tabular q as a matrix

q s = 1 s = 2 . . . s = Ns

a = 1 3 2 . . . 4
a = 2 4 1 . . . 2
. . . . . . . . . . . . . . .

a = Ns 1 2 . . . 5

I Infinite (maximum) norm ‖q‖∞ := maxs∈S,a∈A |q(s, a)|
I Claim: Bellman operator is contractive ‖F (q′)− F (q)‖∞ ≤ γ‖q′ − q‖∞

F (q)|(s,a) = ESt+1,Rt+1 [Rt+1 + γmax
a′

q(St+1, a
′)|St = s,At = a]
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Contractive map - Proof1

I Define ∆F (s, a) = |F (q)|s,a − F (q′)|s,a|, for every (s, a) we have

∆F (s, a) =

∣∣∣∣ESt+1,Rt+1

[
Rt+1 + γmax

a′
q(St+1, a

′)

∣∣∣∣St=s
At=a

]
−ESt+1,Rt+1

[
Rt+1 + γmax

a′
q′(St+1, a

′)

∣∣∣∣St=s
At=a

]∣∣∣∣
I The expectation of Rt+1 is independent of the q function

∆F (s, a) = γ

∣∣∣∣ESt+1

[
max
a′

q(St+1, a
′)−max

a′
q′(St+1, a

′)

∣∣∣∣St=s
At=a

]∣∣∣∣
I Using the fact that |EX | ≤ E |X |

∆F (s, a) ≤ γESt+1

[∣∣∣∣max
a′

q(St+1, a
′)−max

a′
q′(St+1, a

′)

∣∣∣∣ ∣∣∣∣St=s
At=a

]

1T. Jaakkola, M. I. Jordan, S. P. Singh “On the convergence of Stochastic Iterative Dynamic
Programming Algorithms” Neural Computations,, vol. 6, no. 6, pp. 1185-1201, Nov. 1994.
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Contractive map

I From the previous slide we have that

∆F (s, a) ≤ γESt+1

[∣∣∣∣max
a′

q(St+1, a
′)−max

a′
q′(St+1, a

′)

∣∣∣∣ ∣∣∣∣St=s
At=a

]
I Commutation of maximum and difference operators∣∣∣∣max

a′
ϕ
(
a′
)
−max

a′
ψ
(
a′
)∣∣∣∣ ≤ max

a′
|ϕ(a′)− ψ(a′)|

ϕ(arg maxϕ)− ψ(arg maxψ)

≤ ϕ(arg maxϕ)− ψ(arg maxϕ)

≤ max
a′
|ϕ(a′)− ψ(a′)|

I Using the commutation of maximum and difference operators

∆F (s, a) ≤ γESt+1

[
max
a′

∣∣q(St+1, a
′)− q′(St+1, a

′)
∣∣ ∣∣∣∣St=s

At=a

]
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Contractive map - proof

I From the previous slide we have that

∆F (s, a) ≤ γESt+1

[
max
a′

∣∣q(St+1, a
′)− q′(St+1, a

′)
∣∣ ∣∣∣∣St=s

At=a

]
I Maximum and expectation inequality Es′ [ϕ(s ′)] ≤ maxs′ ϕ(s ′)

∆F (s, a) ≤ γmax
a′

max
s′
|q(s ′, a′)− q′(s ′, a′)| = γ‖q − q′‖∞

I Hence by definition of the infinity norm we have that

‖F (q)− F (q′)‖∞ = max
s

max
a

∆F (s, a) ≤ γ‖q − q′‖∞
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Properties of the Bellman operator

I We showed that F (q) is contractive ‖F (q)− F (q′)‖ ≤ γ‖q − q′‖
I Optimal q? is the unique fixed point of F (q)

⇒ Assume that q† is also a fix point F (q†) = q†

‖q† − q?‖ = ‖F (q†)− F (q?)‖≤ γ‖q† − q∗‖ ⇒ ‖q† − q?‖ = 0

I Iteration qn+1 = F (qn) converges to q? from any initial point q0

‖qn+1 − q?‖ = ‖F (qn)− F (q?)‖ ≤ γ‖qn − q?‖ ≤ γn+1‖q0 − q?‖ → 0

I We have derived the iterative method qn+1 = F (qn) for obtaining q?

⇒ Requires computing ESt+1,Rt+1 [·] at each iteration - unavailable

⇒ Idea: use stochastic approximation ⇒ q-learning
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Towards a stochastic algorithm

I Iteration qn+1 = F (qn) converges to q? from any initial point q0

I Consider modified version with α ∈ (0, 1]

qn+1 = qn + α(F (qn)− qn)

I Notice that qn+1 = F (qn) is just the same algorithm α = 1

I Smaller step-sizes are useful in stochastic versions to reduce noise

I New algorithm also converges to optimal q?

I Let us prove this claim
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Towards a stochastic algorithm

I We are analyzing the following algorithm with α ∈ (0, 1]

qn+1 = qn + α(F (qn)− qn)

I Let us look at the difference ‖qn+1 − q?‖∞

‖qn+1 − q?‖∞ = ‖qn + α(F (qn)− qn)− q?‖∞
= ‖(1− α)(qn − q?) + α(F (qn)− q?)‖∞

I Using the triangle inequality we have that

‖qn+1 − q?‖∞ ≤ (1− α)‖qn − q?‖∞ + α‖F (qn)− q?‖∞
= (1− α)‖qn − q?‖+ α‖F (qn)− F (q?)‖∞
≤ (1− α)‖qn − q?‖+ αγ‖qn − q?‖∞

I We have used that F (q) is contractive and q? is a fixed point of F (q)

‖qn+1 − q?‖∞ = (1− α + αγ)‖qn − q?‖∞ ≤ (1− α + αγ)n+1‖q0 − q?‖∞

I Error converges to zero since γ < 1 ⇒ 1− α + αγ < 1
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Robbins-Monro

I Given a deterministic algorithm

qt+1 = qt + αEw [ϕ(qt ,w)]

I Drop expectation and run

qt+1 = qt + αtϕ(qt ,wt)

I Then qt → q? such that Ew [ϕ(q?,w)] = 0 for square-summable αt

I For q-learning we had that that

qt+1 = qt+α

(
ESt+1,Rt+1 [Rt+1 + γmax

a′
qt(St+1, a

′)− qt(s, a)|St = s,At = a]

)
I Consider matrix valued function

ϕ(qt , St+1,Rt+1)|s,a := Rt+1 + γmax
a′

qt(St+1, a
′)− qt(s, a)

with wt = (St+1,Rt+1) distributed by p(St+1,Rt+1|St = s,At = a)
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Robbins-Monro

I By Bellman’s equation we have that q? is the argument that satisfies

ESt+1,Rt+1 [ϕ(q,St+1,Rt+1)] = 0

I Stochastic q-iteration: for all (s, a) ∈ NS × NA

qt+1(s, a) = qt(s, a) + αt(Rt+1 + γmax
a′

qt(St+1, a
′)− qt(s, a))

I Converges to q? with probability one

I Need to update all entries of matrix q

I For an online implementation ⇒ asynchronos stochastic approximation
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Asynchronous stochastic q-learning algorithm

I Idea: update only one entry of q at a time

⇒ select entry q(a, s) and update it according to

qt+1(s, a) = qt(s, a) + αt(Rt+1 + γmax
a′

qt(St+1, a
′)− qt(s, a))

I All other entries remain unchanged, i.e.,

qt+1(s̄, ā) =

{
qt(s, a) + αt(Rt+1 + γmax

a′
qt(St+1, a

′)− qt(s, a)) if ā = a, s̄ = s

qt(s̄, ā) otherwise

I Asynchronous updates allow for an online implementation

⇒ Given matrix qt and pair (s, a) = (St ,At) sampled from policy bt(s, a)

qt ,St ,At −(SYSTEM)→ Rt+1,St+1 −(Q-LEARNING)→ qt+1(s, a)
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Q-learning algorithm

Input: Behavior policies bt(s, a), and tabular q0(s, a)
Initialize: q(s, a) = q0(s, a), for all s ∈ S, a ∈ A
for time t = 0, 1, 2, . . . do

Draw (s, a) = (St ,At) ∼ bt(a, s)
Run system one step ahead ⇒ Rt+1, St+1

Update q(s, a)← q(s, a) + αt(Rt+1 + γmaxa′ q(St+1, a
′)− q(s, a))

end
Output: q(s, a)

Algorithm 1: Q-LEARNING
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Q-learning algorithm

I Particular case: ε− greedy Q-learning

⇒ Uses St as given by system in previous step

⇒ Selects At by maximizing current qt(St , a)

⇒ Explores At ∼ rand(A) with probability ε

Input: State s0, probability ε, and tabular q0(s, a)
Initialize:S0 = s0 and q(s, a) = q0(s, a), for all s ∈ S, a ∈ A
for time t = 0, 1, 2, . . . do

Set St from previous step

Draw At =

{
arg maxa′ q(St , a

′) w.p. 1− ε
rand(A) w.p. ε

Run system one step ahead ⇒ Rt+1, St+1

Update q(St ,At)← q(St ,At) + αt(Rt + γmaxa′ q(St+1, a
′)− q(St ,At))

end
Output: q(s, a)

Algorithm 2: Q-LEARNING (ε− greedy)
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Convergence of q-learning

I Recall q-learning algorithm

qt+1(s, a) = qt(s, a) + αt(Rt+1 + γmax
a′

qt(St+1, a
′)− qt(s, a))

⇒ with St+1,Rt+1 drawn from p(Rt+1, St+1|St = s,At = a)

I Derived as stochastic algorithm for the Bellman operator

F (q)|(s,a) = ESt+1,Rt+1 [Rt+1 + γmax
a′

q(St+1, a
′)|St = s,At = a]

⇒ Write q-learning in terms of F (q) ⇒ Add and subtract F (q)

qt+1(s, a) = qt(s, a) + αt(F (qt)|(s,a) + wt(s, a)− qt(s, a))

⇒ where the unbiased noise term wt is defined by

wt(s, a) = Rt+1 + γmax
a′

qt(St+1, a
′)− F (qt)|(s,a)
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q-learning in vector form

I Consider reshaping q into vector q̄ ∈ RNSNA

I Rewrite q − learning as

q̄t+1 = q̄t + Dt(F̄ (q̄t) + w̄t − q̄t)

⇒ Bellman’s F̄ (q̄t) and noise w̄t are reshaped versions of F (qt) and wt

⇒ Dt diagonal with diagonal ᾱt → Dt =


0 0 0 0
0 0 0 0
0 0 ᾱt(i) 0
0 0 0 0



⇒ Only one nonzero entry of ᾱt per t ⇒ entry of q̄ to be updated
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Convergence for q-learning

Theorem (Tsitsiklis’94)

Let Dn = diag(ᾱt) and q̄t be defined by

q̄t+1 = q̄t + Dn(F (q̄t) + w̄n − q̄t)

Under the following assumptions

as1) ᾱt(i) ≥ 0 :
∑

t ᾱt(i) =∞ and
∑

t ᾱ
2
t (i) <∞ (as) for all i

as2) E[w̄t |St ,At ] = 0 and E[w̄ 2
t |St ,At ] ≤ A + B maxi |q̄t(i)|2 for all i , t

as3) ‖F̄ (q̄)− F̄ (q̄′)‖ ≤ γ‖q̄ − q̄′‖ with F̄ (q̄?) = q̄?,

then for any initial point q̄0, q̄n → q̄? (as) .
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Proof preliminaries

I Subtract q̄? from both sides of the update

q̄t+1 − q̄? = q̄t − q̄? + Dt(F (q̄t)− (q̄t − q̄?)− q̄? + w̄t)

I Define error q̃t = q̄t − q̄?

q̃t+1 = q̃t + Dt(F (q̃t + q̄?)− q̃t−q̄? + w̄t)

I Define F̃ (q̃t) = F̄ (q̃t + q̄?)− q̄?, and w̃t = w̄t

q̃t+1 = q̃t + Dt(F̃ (q̃t)− q̃t + w̃t)

I Fixed point at the origin F̃ (0) = F̄ (q̄?)− q̄? = 0

I Contraction ‖F̃ (q̃)− F̃ (q̃′)‖ = ‖F̄ (q̃ + q̄?)− F̄ (q̃′ + q̄?)‖
≤ γ‖(q̃ + q̄?)− (q̃′ + q̄?)‖ = γ‖q̃ − q̃′‖

I Assumptions as1)-as5) are satisfied by q̃t and F̃ (·) with q̃? = 0

I Proving convergence of q-learning amounts to show that q̃t → 0
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Boundedness

I For notation brevity will drop the tildes, keeping F (0) = 0 and

qt+1 = qt + Dt(F (qt) + wt − qt)

Lemma (Tsitsiklis’94)

Under assumptions as1)-as3) the sequence qt is bounded by a time invariant
random variable M0 with probability one.

I Proof: Let be ε = 1/γ − 1 and mt = maxτ≤t{‖qτ‖}
⇒ Define Gt such that G0 = m0 and

Gt+1 =

{
Gt if mt+1 ≤ (1 + ε)Gt

mt+1 otherwise

⇒ Can select infinite t0 such that Gt0 = mt0 otherwise mt is bounded

⇒ Introduce Wi (t0, t) initialized at Wi (t0, t0) = 0 and defined by

Wi (t0, t + 1) = (1− αt(i))Wi (t0, t) + αt(i)wt(i)/Gt

⇒ We can show that Wi (t0, t)→ 0 as t0 →∞ with t ≥ t0

⇒ ∃ t0 such that |Wi (t0, t)| ≤ ε ∀i and t ≥ t0

Santiago Paternain, Miguel Calvo-Fullana Q-learning 26



Proof of the Lemma

I We want to prove that for all t ≥ t0 Gt = Gt0 and

−Gt0(1+ε) < −Gt0 +Gt0Wi (t0, t) ≤ qt(i) ≤ Gt0 + Gt0Wi (t0, t)< Gt0(1 + ε)

I True for t = t0 since ‖qt0‖ ≤ mt0 = Gt0 and Wi (t0, t0) = 0

I Assume that it holds for time t let us show for time t + 1

qt+1(i) = (1− αt(i))qt(i) + αt(i)(Fi (qt) + wt(i))

≤ (1− αt(i))(Gt0 + Gt0Wi (t0, t)) + αt(i) (γ‖qt‖+ Gtwt(i)/Gt)

I Where we have use that F (qt) is a contraction and that Gt = Gt0

qt+1(i) ≤ (1− αt(i))(Gt0 + Gt0Wi (t0, t)) + αt(i) (γ(1 + ε)Gt0 + Gt0wt(i)/Gt)

I Using that ε = 1/γ − 1 it follows that

qt+1(i) ≤ Gt0+Gt0 ((1− αt(i))Wi (t0, t) + αt(i)wt(i)/Gt) = Gt0(1+Wi (t0, t+1))

I Since |Wi (t0, t + 1)| ≤ ε (We showed it in the previous slide) it follows

‖qt+1‖ < Gt0(1 + ε) = Gt(1 + ε) ⇒ Gt+1 = Gt = Gt0
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Proof overview

I Idea: construct bounding sequences z̄kt (i) and zkt (i) such that

zkt (t) ≤ qt(i) ≤ zkt (i)

I Initialize z̄00 (i) = M0 and z00(i) = −M0 with M0 from the Lemma

I Select ε > 0 such that γ(1 + ε) < 1 and Mk+1 = Mkγ(1 + ε)

I Prove that eventually ‖z̄kt (i)‖ ≤ Mk+1 (same for zkt (i))

I Conclude that qt(i)→ 0
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Bounding sequences

I Define the bounding sequences by iteration starting at tk

zkt+1(i) = z̄kt (i) + αt(i)
(
γMk + wt(i)− zkt (i)

)
, zktk (i) = Mk

zkt+1(i) = zkt (i) + αt(i)
(
−γMk + wt(i)− zkt (i)

)
, zktk (i) = −Mk

I Will prove
zkt (t) ≤ qt(i) ≤ zkt (i)

I Inductive hypothesis ‖qt‖ ≤ Mk , for t ≥ tk

⇒ The previous Lemma established that this is true for k = 0

⇒ So we just need to prove the inductive step
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Bounding sequences

I Let us prove qt+1(i) ≤ zkt+1(i)

qt+1(i) = qt(i) + αt(i) (Fi (qt) + wt(i)− qt(i))

I Add and subtract zkt+1(i) = zkt (i) + αt(i)
(
γMk + wt(i)− zkt (i)

)
qt+1(i) = qt(i) + αt(i) (Fi (qt) + wt(i)− qt(i))

+ zkt+1(i)− zkt (i)− αt(i)
(
γMk + wt(i)− zkt (i)

)
I Rearrange the terms and note that wt(i) cancels

qt+1(i) = zkt+1(i) + (1− αt(i))
(
qt(i)− zkt (i)

)
+ αt(i) (Fi (qt)− γMk)

I Using that Fi (qt) ≤ γ ‖qt‖ ≤ Mk and that qt(i) ≤ zkt (i)

qt+1(i) ≤ zkt+1(i)

I The proof for zkt+1(i) ≤ qt+1(i) is analogous
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Convergence of the bounding sequences

I In next slide we prove that zkt (i)→ γMk

I As a consequence we can establish that for any ε > 0

∃tk+1 : ∀t ≥ tk+1 ⇒ zkt (i) ≤ (1 + ε)γMk = Mk+1

I Correspondingly ∃tk+1 : ∀t ≥ tk+1 ⇒ zkt (i) ≥ −Mk+1

I In particular, let’s select ε such that (1 + ε)γ < 1

I Recall
zkt (i) ≤ qt(i) ≤ zkt (i)

I Define tk+1 = max{tk+1, tk+1} so that |qt(i)| ≤ Mk+1 for t ≥ tk+1

I Since Mk = M0γ
k(1 + ε)k → 0 ⇒ |qt(i)| → 0
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Convergence of the bounding sequences

I It remains to prove that zt → γM (i and k dropped)

zt+1 = zt + αt (γM + wt − zt) , z(0) = M

I Define sequence St = (zt − γM)2 + C
∑∞

t=τ α
2
τ with C ∈ R arbitrary

I Want to prove that St is a super martingale

St+1 = (zt+1 − γM)2 + C
∞∑

τ=t+1

α2
τ

= (zt + αt(γM + wt−zt)−γM)2 + C
∞∑

τ=t+1

α2
τ

I Define yt = zt − γM

St+1 = (yt + αt(wt−yt))2 + C
∞∑

τ=t+1

α2
τ

= (1− αt)
2y 2

t + α2
tw

2
t + 2(1− αtyt)wtαt + C

∞∑
τ=t+1

α2
τ
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Super Martingale

I From the previous slide we have that

St+1 ≤ (1− αt)
2y 2

t + α2
tw

2
t + 2(1− αtyt)wtαt + C

∞∑
τ=t+1

α2
τ

I Recall Assumption 2 E[wt ] and E[w 2
t ] ≤ A + B maxi |qt(i)|

E[St+1|Ft ] = (1− αt)
2y 2

t + α2
tE[w 2

t |Ft ] + C
∞∑

τ=t+1

α2
τ

≤ (1− αt)
2y 2

t + Cα2
t + C

∞∑
τ=t+1

α2
τ

I Where we can chose C = A + BM0 with M0 the bound of the Lemma

E[St+1|Ft ] ≤ (1− αt)
2y 2

t + C
∞∑
τ=t

α2
τ < St

I We established that St is a super martingale ⇒ St → S with E[S ] < E[S0]
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Convergence to the origin

I Will show S = 0⇒ yt = St − C
∑∞
τ=t α

2
t → 0

I If αt < 1 then we have that E[St+1|Ft ] ≤ St − 2αty
2
t

E[St+1|Ft−1] ≤ E
[
St − 2αty

2
t |Ft−1

]
≤ St−1−2αt−1y

2
t−1−2E

[
αty

2
t |Ft−1

]
⇒ Recursively we have that E[St+1] ≤ E [S0]− 2

∑t
τ=0 E

[
ατy

2
τ

]
⇒ Rearranging terms

2
t∑
τ=0

E
[
ατy

2
τ

]
≤ E[S0]− E[St+1]→ E[S0]− E[S ] ≤ ∞

⇒ By (as1)
∑

t αt =∞ w.p.1 ⇒ lim inft E
[
y 2
t

]
→ 0

⇒ Fatou’s ⇒ E [lim inft y
2
t ] ≤ lim inft E [y 2

t ] = 0 ⇒ lim inft y
2
t = 0

⇒ Subsequence y 2
tj → 0 ⇒ Stj = ytj + C

∑∞
τ=tj

α2
τ → 0 ⇒ S = 0
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Outline

Q-learning

Q-learning - proof of convergence

On Policy
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Off-policy v.s. On-policy

I So far we have studied q-learning as an Off-policy algorithm

qt+1(s, a) = qt(s, a) + αt(Rt+1 + γmax
a′

qt(St+1, a
′)− qt(s, a))

I Where the exploration can be done with any behavior policy

⇒ Once we have reached St+1 any selection of the action guarantees
convergence to q?

⇒ As long as we explore enough

⇒ In the end we want to always select the action according to

At = argmax
a∈A

q?(St , a)

I We can also do on Policy control ⇒ SARSA
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SARSA vs Q-learning

I The policy being learned about is called the target policy π

I The policy used to generate behavior is called the behavior policy b

I In Q-learning the update is for the greedy target policy

I In SARSA, the target and behavior policy are the same

⇒ typically the ε-greedy policy

I By making ε→ 0, SARSA approximates the optimal policy q?
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SARSA algorithm

Input: State S0, probability ε ∈ (0, 1), and tabular q0(s, a)
Initialize: q(s, s) = q0(s, a), for all s ∈ S, a ∈ A
Draw A0 randomly according to policy.
for time t = 0, 1, 2, . . . do

Run system one step ahead (St ,At)⇒ Rt+1, St+1

Draw At+1 =

{
arg maxa′ q(St+1, a

′) w.p. 1− ε
rand(A) w.p. ε

Update q(st ,At)← q(St ,At) + αt(Rt+1 + γq(St+1,At+1)− q(St ,At))
end
Output: q(s, a)

Algorithm 3: SARSA

I Recall that q-learning udpates using

q(st ,At)← q(St ,At) + αt(Rt+1 + γmax
a∈A

q(St+1, a)− q(St ,At))
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Cliff walking example
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SARSA’s convergence

Sketch of proof for one-step tabular SARSA. (Recall Q-learning assumptions)

Theorem
Let qn be defined by

qn+1 = qn + An(F (qn) + wn − qn)

with An = diag(αn).

as1) Stepsize
∑

t αt(i) =∞ and
∑

t α
2
t (i) <∞ (as) for all i (GLIE)

as2) E [wt |St ,At ] = 0 E [w 2
t |St ,At ] ≤ A + B max |qt(s, a)|2 for all s, a

as3) “Asymptotic contraction” ‖F (q)− q?‖ ≤ γ‖q − q?‖+cn, with cn → 0

then for any initial point q0, qn → q? (as) .

Proof in Singh et al. “Convergence Results for Single-Step On-Policy Reinforcement-Learning
Algorithms”, 2000.
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SARSA’s convergence (pt. 2)

I In Q-learning, given s, a,

FQ(qt) = ERt ,St+1

[
Rt + γmax

a′
qt(St+1, a

′)

]
I In SARSA, given s, a, π

F (qt) = E [Rt + γqt(St+1,At+1)]

= E
[
Rt +γmax

a′
qt(St+1, a

′) + γqt(St+1,At+1) −γmax
a′

qt(St+1, a
′)

]
= FQ(qt) + Ct

with Ct = E [γqt(St+1,At+1) − γmaxa′ qt(St+1, a
′)]

I Then,

‖F (qt)− q?‖ = ‖FQ(qt) + Ct − q?‖ ≤ ‖FQ(qt)− q?‖+ ‖Ct‖
≤ γ‖qt − q?‖+ ‖Ct‖

I Finally, because the behaviour policy π used in SARSA tends to the greedy
policy (GLIE assumption), we have that ‖Ct‖ → 0.
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On-Policy vs. Off-Policy

I Off-Policy gives us the optimal solution if the system is an MDP

I On-Policy is more robust to modeling error

I Off-Policy might lead to high variance estimates due to maximization

I Variance is easier to reduce the variance of the estimate On-Policy
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Maximization bias of Q-learning

I Consider the following MDP

I Always start on A ⇒ q(A, right) = 0

I The estimate of q(A, left) may be positive if we received positive rewards

I But from the MDP is clear that the optimal action is choosing right

I With 0.1 = ε-greedy left should be selected only 5% of the time
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Maximization bias of Q-learning

I With ε = 0.1 left should be selected only 5% of the time

I The selection of the maximum bias the policy to choose the action left

I What is this double Q-learning that gets rid of this bias?

⇒ It keeps two estimates of Q and with probability 0.5 updates

q1(St ,At) = q1(St ,At)+α(Rt+1+γq2(St+1, argmax
a

q1(St+1, a))−q1(St ,At))
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n-step SARSA

I As we did before define the n-step return as

Gt:t+n = Rt+1 + γRt+2 + . . .+ γn−1Rt+nγ
n + qt+n−1(St+n,At+n)

I Then it is easy to extend SARSA to n step by updating

qt+n(St ,At) = qt+n−1(St ,At) + α(Gt:t+n − qt+n−1(St ,At))

I It converges because the update is based on the n-step Bellman equation

⇒ It is an assymptotic contraction
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n-step SARSA

Input: Policy π to be ε-greedy, step-size α, positive integer n
Initialize: q(s, a) = 0 for all s ∈ S and a ∈ A
for episode k = 0, 1, 2, . . . do

Initialize and store S0 6= terminal and A0 ∼ π(·|S0) , T =∞ for each
step of the episode t = 0, 1, . . . ,T do

if t < T then
Take action At , observe Rt+1 and state St+1

if St+1 is terminal then
T = t + 1

end
else

Select and store action At+1 ∼ π(·|St+1)
end
τ = t − n + 1 . (time whose state’s estimate is being updated)

end
if τ ≥ 0 then

G =
∑min(τ+n,T )

i=τ+1 γ i−τ−1Ri . (Compute return)
q(Sτ ,Aτ ) =
q(Sτ ,Aτ ) + α [G + γnq(Sτ+n,Aτ+n)1(τ + n < T )− q(Sτ ,Aτ )]

end

end

end
Algorithm 4: Tabular n-Step SARSA
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n-step SARSA: Gridworld example

I All transitions have reward zero except reaching the goal

I Initialization is q(s, a) = 0 for all s, a

I n-step SARSA can update more entries of the q function

q(Sτ ,Aτ ) = q(Sτ ,Aτ ) + α [Gτ :τ+n + γnq(Sτ+n,Aτ+n)− q(Sτ ,Aτ )]
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