Q-learning

Santiago Paternain and Miguel Calvo-Fullana Electrical and Systems Engineering, University of Pennsylvania \{spater,cfullana\}@seas.upenn.edu

November 7 —November 14, 2019

Q-learning
 Q-learning - proof of convergence

On Policy

- Recall: value function for given policy π

$$
v_{\pi}(s)=\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]=\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s\right], \text { for all } s \in \mathcal{S}
$$

- Goal: Obtain optimal policy which maximizes $v_{\pi}(s)$

$$
v_{\star}(s)=\max _{\pi} v_{\pi}(s) \text { for all } s \in \mathcal{S}
$$

- So far we have been considering policy gradient and variants
- And running gradient ascent, we update the parameters of the policy as

$$
\theta_{k+1}=\theta_{k}+\alpha \nabla v_{\pi_{\theta}}\left(\theta_{k}\right)
$$

- We can only establish convergence to a local maximum
\Rightarrow Can we do better? \Rightarrow At least for tabular cases we can
\Rightarrow Q-learning and Sarsa
- Recall the definition of the q-function

$$
q_{\pi}(s, a)=\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right]=\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]
$$

- If we are able to compute the optimal q-function

$$
q_{\star}(s, a) \doteq \max _{\pi} \boldsymbol{q}_{\pi}(s, a)
$$

- Optimal value function maximizes over the immediate action

$$
v_{\star}(s)=\max _{a \in \mathcal{A}(s)} q_{\star}(s, a)
$$

- This action is easy to select in tabular cases
- If we consider function approximations only for specific cases
- Bellman equation for q_{\star} :

$$
q_{\star}(s, a)=\mathbb{E}_{S_{t+1}, R_{t+1}}\left[R_{t+1}+\gamma \max _{a^{\prime}} q_{\star}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right]
$$

- Q-learning will find a fixed point of this equation
- Let us prove the result
\Rightarrow By definition of q_{\star} and the q-function we have that

$$
q_{\star}(s, a)=\max _{\pi} q_{\pi}(s, a)=\max _{\pi} \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]
$$

\Rightarrow Expectation is linear and R_{t+1} independent of π since $A_{t}=a$

$$
q_{\star}(s, a)=\mathbb{E}_{R_{t+1}}\left[R_{t+1} \mid S_{t}=s, A_{t}=a\right]+\gamma \max _{\pi} \mathbb{E}\left[\sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]
$$

- From the previous slide we had that

$$
\boldsymbol{q}_{\star}(s, a)=\mathbb{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a\right]+\gamma \max _{\pi} \mathbb{E}\left[\sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]
$$

- We will show that

$$
\max _{\pi} \mathbb{E}\left[\sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]=\mathbb{E}\left[\max _{a^{\prime}} q_{\star}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right]
$$

- That being the case we have that

$$
q_{\star}(s, a)=\mathbb{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a\right]+\gamma \mathbb{E}\left[\max _{a^{\prime}} q_{\star}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right]
$$

- Regrouping would complete the proof

$$
q_{\star}(s, a)=\mathbb{E}\left[R_{t+1}+\gamma \max _{a^{\prime}} q_{\star}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right]
$$

- It remains to prove that

$$
\max _{\pi} \mathbb{E}\left[\sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]=\mathbb{E}\left[\max _{a^{\prime}} q_{\star}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right]
$$

- We will use that expectation w.r.t. S_{t+1} does not depend on π
- Notice that the left hand by the towering property is

$$
\begin{aligned}
& \max _{\pi} \mathbb{E}\left[\mathbb{E}\left[\sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k+1} \mid S_{t+1}\right] \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{\pi} \mathbb{E}\left[v_{\pi}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]=\mathbb{E}\left[\max _{\pi} v_{\pi}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\mathbb{E}\left[v_{\star}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]=\mathbb{E}\left[\max _{a^{\prime}} q_{\star}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

- Define Bellman operator $F(q): \mathbb{R}^{N_{S} \times N_{A}} \rightarrow \mathbb{R}^{N_{S} \times N_{A}}$ given by

$$
\left.F(q)\right|_{(s, a)}=\mathbb{E}_{S_{t+1}, R_{t+1}}\left[R_{t+1}+\gamma \max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right]
$$

- Bellman equation can be written as $q_{*}=F\left(q_{*}\right)$
- Will prove:
$\Rightarrow F(q)$ is a contraction: $\left\|F\left(q^{\prime}\right)-F(q)\right\| \leq \gamma\left\|q^{\prime}-q\right\|$
\Rightarrow Optimal q_{\star} is the unique fixed point of $F(q)$; i.e., $q_{\star}=F\left(q_{\star}\right)$
\Rightarrow The iteration $q_{n+1}=F\left(q_{n}\right)$ converges to q_{*} from any initial point q_{0}
- Think of tabular q as a matrix

q	$s=1$	$s=2$	\ldots	$s=N_{s}$
$a=1$	3	2	\cdots	4
$a=2$	4	1	\cdots	2
\ldots	\ldots	\ldots	\cdots	\ldots
$a=N_{s}$	1	2	\ldots	5

- Infinite (maximum) norm $\|q\|_{\infty}:=\max _{s \in S, a \in A}|q(s, a)|$
- Claim: Bellman operator is contractive $\left\|F\left(q^{\prime}\right)-F(q)\right\|_{\infty} \leq \gamma\left\|q^{\prime}-q\right\|_{\infty}$

$$
\left.F(q)\right|_{(s, a)}=\mathbb{E}_{S_{t+1}, R_{t+1}}\left[R_{t+1}+\gamma \max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right]
$$

- Define $\Delta F(s, a)=|F(q)|_{s, a}-\left.F\left(q^{\prime}\right)\right|_{s, a} \mid$, for every (s, a) we have

$$
\begin{aligned}
\Delta F(s, a) & =\left\lvert\, \mathbb{E}_{S_{t+1}, R_{t+1}}\left[R_{t+1}+\gamma \max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right) \left\lvert\, \begin{array}{l}
S_{t}=s \\
S_{t}=a
\end{array}\right.\right]\right. \\
& \left.-\mathbb{E}_{S_{t+1}, R_{t+1}}\left[R_{t+1}+\gamma \max _{a^{\prime}} q^{\prime}\left(S_{t+1}, a^{\prime}\right) \left\lvert\, \begin{array}{l}
S_{t}=s \\
A_{t}=a
\end{array}\right.\right] \right\rvert\,
\end{aligned}
$$

- The expectation of R_{t+1} is independent of the q function

$$
\Delta F(s, a)=\gamma\left|\mathbb{E}_{S_{t+1}}\left[\max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right)-\max _{a^{\prime}} q^{\prime}\left(S_{t+1}, a^{\prime}\right) \left\lvert\, \begin{array}{c}
S_{t}=s \\
A_{t}=a
\end{array}\right.\right]\right|
$$

- Using the fact that $|\mathbb{E} X| \leq \mathbb{E}|X|$

$$
\Delta F(s, a) \leq \gamma \mathbb{E}_{S_{t+1}}\left[\left|\max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right)-\max _{a^{\prime}} q^{\prime}\left(S_{t+1}, a^{\prime}\right)\right| \left\lvert\, \begin{array}{l}
S_{t}=s \\
A_{t}=a
\end{array}\right.\right]
$$

[^0]
Contractive map

- From the previous slide we have that

$$
\Delta F(s, a) \leq \gamma \mathbb{E} s_{t+1}\left[\left|\max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right)-\max _{a^{\prime}} q^{\prime}\left(S_{t+1}, a^{\prime}\right)\right| \left\lvert\, \begin{array}{l}
S_{t}=s \\
A_{t}=a
\end{array}\right.\right]
$$

- Commutation of maximum and difference operators

$$
\left|\max _{a^{\prime}} \varphi\left(a^{\prime}\right)-\max _{a^{\prime}} \psi\left(a^{\prime}\right)\right| \leq \max _{a^{\prime}}\left|\varphi\left(a^{\prime}\right)-\psi\left(a^{\prime}\right)\right|
$$

$$
\begin{aligned}
& \varphi(\arg \max \varphi)-\psi(\arg \max \psi) \\
& \leq \varphi(\arg \max \varphi)-\psi(\arg \max \varphi) \\
& \leq \max _{a^{\prime}}\left|\varphi\left(a^{\prime}\right)-\psi\left(a^{\prime}\right)\right|
\end{aligned}
$$

- Using the commutation of maximum and difference operators

$$
\Delta F(s, a) \leq \gamma \mathbb{E} s_{t+1}\left[\max _{a^{\prime}}\left|q\left(S_{t+1}, a^{\prime}\right)-q^{\prime}\left(S_{t+1}, a^{\prime}\right)\right| \left\lvert\, \begin{array}{c}
S_{t}=s \\
A_{t}=a
\end{array}\right.\right]
$$

- From the previous slide we have that

$$
\Delta F(s, a) \leq \gamma \mathbb{E}_{S_{t+1}}\left[\max _{a^{\prime}}\left|q\left(S_{t+1}, a^{\prime}\right)-q^{\prime}\left(S_{t+1}, a^{\prime}\right)\right| \left\lvert\, \begin{array}{c}
S_{t}=s \\
A_{t}=a
\end{array}\right.\right]
$$

- Maximum and expectation inequality $E_{s^{\prime}}\left[\varphi\left(s^{\prime}\right)\right] \leq \max _{s^{\prime}} \varphi\left(s^{\prime}\right)$

$$
\Delta F(s, a) \leq \gamma \max _{a^{\prime}} \max _{s^{\prime}}\left|q\left(s^{\prime}, a^{\prime}\right)-q^{\prime}\left(s^{\prime}, a^{\prime}\right)\right|=\gamma\left\|q-q^{\prime}\right\|_{\infty}
$$

- Hence by definition of the infinity norm we have that

$$
\left\|F(q)-F\left(q^{\prime}\right)\right\|_{\infty}=\max _{s} \max _{a} \Delta F(s, a) \leq \gamma\left\|q-q^{\prime}\right\|_{\infty}
$$

- We showed that $F(q)$ is contractive $\left\|F(q)-F\left(q^{\prime}\right)\right\| \leq \gamma\left\|q-q^{\prime}\right\|$
- Optimal q_{\star} is the unique fixed point of $F(q)$
\Rightarrow Assume that q^{\dagger} is also a fix point $F\left(q^{\dagger}\right)=q^{\dagger}$

$$
\left\|q^{\dagger}-q^{\star}\right\|=\left\|F\left(q^{\dagger}\right)-F\left(q^{\star}\right)\right\| \leq \gamma\left\|q^{\dagger}-q^{*}\right\| \Rightarrow\left\|q^{\dagger}-q^{\star}\right\|=0
$$

- Iteration $q_{n+1}=F\left(q_{n}\right)$ converges to q_{\star} from any initial point q_{0}

$$
\left\|q_{n+1}-q^{\star}\right\|=\left\|F\left(q_{n}\right)-F\left(q^{\star}\right)\right\| \leq \gamma\left\|q_{n}-q^{\star}\right\| \leq \gamma^{n+1}\left\|q_{0}-q^{\star}\right\| \rightarrow 0
$$

- We have derived the iterative method $q_{n+1}=F\left(q_{n}\right)$ for obtaining q^{\star}
\Rightarrow Requires computing $\mathbb{E}_{s_{t+1}, R_{t+1}}[\cdot]$ at each iteration - unavailable
\Rightarrow Idea: use stochastic approximation \Rightarrow q-learning
- Iteration $q_{n+1}=F\left(q_{n}\right)$ converges to q_{\star} from any initial point q_{0}
- Consider modified version with $\alpha \in(0,1]$

$$
q_{n+1}=q_{n}+\alpha\left(F\left(q_{n}\right)-q_{n}\right)
$$

- Notice that $q_{n+1}=F\left(q_{n}\right)$ is just the same algorithm $\alpha=1$
- Smaller step-sizes are useful in stochastic versions to reduce noise
- New algorithm also converges to optimal q^{\star}
- Let us prove this claim
- We are analyzing the following algorithm with $\alpha \in(0,1]$

$$
q_{n+1}=q_{n}+\alpha\left(F\left(q_{n}\right)-q_{n}\right)
$$

- Let us look at the difference $\left\|q_{n+1}-q^{\star}\right\|_{\infty}$

$$
\begin{aligned}
\left\|q_{n+1}-q^{\star}\right\|_{\infty} & =\left\|q_{n}+\alpha\left(F\left(q_{n}\right)-q_{n}\right)-q_{\star}\right\|_{\infty} \\
& =\left\|(1-\alpha)\left(q_{n}-q_{\star}\right)+\alpha\left(F\left(q_{n}\right)-q^{\star}\right)\right\|_{\infty}
\end{aligned}
$$

- Using the triangle inequality we have that

$$
\begin{aligned}
\left\|q_{n+1}-q^{\star}\right\|_{\infty} & \leq(1-\alpha)\left\|q_{n}-q_{\star}\right\|_{\infty}+\alpha\left\|F\left(q_{n}\right)-q_{\star}\right\|_{\infty} \\
& =(1-\alpha)\left\|q_{n}-q_{\star}\right\|+\alpha\left\|F\left(q_{n}\right)-F\left(q_{\star}\right)\right\|_{\infty} \\
& \leq(1-\alpha)\left\|q_{n}-q_{\star}\right\|+\alpha \gamma\left\|q_{n}-q_{\star}\right\|_{\infty}
\end{aligned}
$$

- We have used that $F(q)$ is contractive and q^{\star} is a fixed point of $F(q)$

$$
\left\|q_{n+1}-q^{\star}\right\|_{\infty}=(1-\alpha+\alpha \gamma)\left\|q_{n}-q_{\star}\right\|_{\infty} \leq(1-\alpha+\alpha \gamma)^{n+1}\left\|q_{0}-q_{\star}\right\|_{\infty}
$$

- Error converges to zero since $\gamma<1 \Rightarrow 1-\alpha+\alpha \gamma<1$
- Given a deterministic algorithm

$$
q_{t+1}=q_{t}+\alpha \mathbb{E}_{w}\left[\varphi\left(q_{t}, w\right)\right]
$$

- Drop expectation and run

$$
q_{t+1}=q_{t}+\alpha_{t} \varphi\left(q_{t}, w_{t}\right)
$$

- Then $q_{t} \rightarrow q^{\star}$ such that $\mathbb{E}_{w}\left[\varphi\left(q_{\star}, w\right)\right]=0$ for square-summable α_{t}
- For q-learning we had that that

$$
q_{t+1}=q_{t}+\alpha\left(\mathbb{E}_{S_{t+1}, R_{t+1}}\left[R_{t+1}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)-q_{t}(s, a) \mid S_{t}=s, A_{t}=a\right]\right)
$$

- Consider matrix valued function

$$
\left.\varphi\left(q_{t}, S_{t+1}, R_{t+1}\right)\right|_{s, a}:=R_{t+1}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)-q_{t}(s, a)
$$

with $w_{t}=\left(S_{t+1}, R_{t+1}\right)$ distributed by $p\left(S_{t+1}, R_{t+1} \mid S_{t}=s, A_{t}=a\right)$

- By Bellman's equation we have that q^{\star} is the argument that satisfies

$$
\mathbb{E}_{S_{t+1}, R_{t+1}}\left[\varphi\left(q, S_{t+1}, R_{t+1}\right)\right]=0
$$

- Stochastic q-iteration: for all $(s, a) \in N_{S} \times N_{A}$

$$
q_{t+1}(s, a)=q_{t}(s, a)+\alpha_{t}\left(R_{t+1}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)-q_{t}(s, a)\right)
$$

- Converges to q^{\star} with probability one
- Need to update all entries of matrix q
- For an online implementation \Rightarrow asynchronos stochastic approximation
- Idea: update only one entry of q at a time
\Rightarrow select entry $q(a, s)$ and update it according to

$$
q_{t+1}(s, a)=q_{t}(s, a)+\alpha_{t}\left(R_{t+1}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)-q_{t}(s, a)\right)
$$

- All other entries remain unchanged, i.e.,

$$
q_{t+1}(\bar{s}, \bar{a})= \begin{cases}q_{t}(s, a)+\alpha_{t}\left(R_{t+1}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)-q_{t}(s, a)\right) & \text { if } \bar{a}=a, \bar{s}=s \\ q_{t}(\bar{s}, \bar{a}) & \text { otherwise }\end{cases}
$$

- Asynchronous updates allow for an online implementation
\Rightarrow Given matrix q_{t} and pair $(s, a)=\left(S_{t}, A_{t}\right)$ sampled from policy $b_{t}(s, a)$

$$
q_{t}, S_{t}, A_{t}-(\text { SYSTEM }) \rightarrow R_{t+1}, S_{t+1}-(\mathrm{Q}-\text { LEARNING }) \rightarrow q_{t+1}(s, a)
$$

Input: Behavior policies $b_{t}(s, a)$, and tabular $q_{0}(s, a)$
Initialize: $q(s, a)=q_{0}(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$
for time $t=0,1,2, \ldots$ do
Draw $(s, a)=\left(S_{t}, A_{t}\right) \sim b_{t}(a, s)$
Run system one step ahead $\Rightarrow R_{t+1}, S_{t+1}$
Update $q(s, a) \leftarrow q(s, a)+\alpha_{t}\left(R_{t+1}+\gamma \max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right)-q(s, a)\right)$
end
Output: $q(s, a)$
Algorithm 1: Q-LEARNING

- Particular case: ϵ - greedy Q-learning
\Rightarrow Uses S_{t} as given by system in previous step
\Rightarrow Selects A_{t} by maximizing current $q_{t}\left(S_{t}, a\right)$
\Rightarrow Explores $A_{t} \sim \operatorname{rand}(\mathcal{A})$ with probability ϵ
Input: State s_{0}, probability ϵ, and tabular $q_{0}(s, a)$
Initialize: $S_{0}=s 0$ and $q(s, a)=q_{0}(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$
for time $t=0,1,2, \ldots$ do
Set S_{t} from previous step
Draw $A_{t}= \begin{cases}\arg \max _{a^{\prime}} q\left(S_{t}, a^{\prime}\right) & \text { w.p. } 1-\epsilon \\ \operatorname{rand}(\mathcal{A}) & \text { w.p. } \epsilon\end{cases}$
Run system one step ahead $\Rightarrow R_{t+1}, S_{t+1}$
Update $q\left(S_{t}, A_{t}\right) \leftarrow q\left(S_{t}, A_{t}\right)+\alpha_{t}\left(R_{t}+\gamma \max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right)-q\left(S_{t}, A_{t}\right)\right)$
end
Output: $q(s, a)$
Algorithm 2: Q-LEARNING (ϵ - greedy)

Q-learning
 Q-learning - proof of convergence

On Policy

- Recall q-learning algorithm

$$
q_{t+1}(s, a)=q_{t}(s, a)+\alpha_{t}\left(R_{t+1}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)-q_{t}(s, a)\right)
$$

\Rightarrow with S_{t+1}, R_{t+1} drawn from $p\left(R_{t+1}, S_{t+1} \mid S_{t}=s, A_{t}=a\right)$

- Derived as stochastic algorithm for the Bellman operator

$$
\left.F(q)\right|_{(s, a)}=\mathbb{E}_{S_{t+1}, R_{t+1}}\left[R_{t+1}+\gamma \max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right]
$$

\Rightarrow Write q-learning in terms of $F(q) \Rightarrow$ Add and subtract $F(q)$

$$
q_{t+1}(s, a)=q_{t}(s, a)+\alpha_{t}\left(\left.F\left(q_{t}\right)\right|_{(s, a)}+w_{t}(s, a)-q_{t}(s, a)\right)
$$

\Rightarrow where the unbiased noise term w_{t} is defined by

$$
w_{t}(s, a)=R_{t+1}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)-\left.F\left(q_{t}\right)\right|_{(s, a)}
$$

- Consider reshaping q into vector $\bar{q} \in \mathbb{R}^{N_{S} N_{A}}$
- Rewrite q-learning as

$$
\bar{q}_{t+1}=\bar{q}_{t}+D_{t}\left(\bar{F}\left(\bar{q}_{t}\right)+\bar{w}_{t}-\bar{q}_{t}\right)
$$

\Rightarrow Bellman's $\bar{F}\left(\bar{q}_{t}\right)$ and noise \bar{w}_{t} are reshaped versions of $F\left(q_{t}\right)$ and w_{t}
$\Rightarrow D_{t}$ diagonal with diagonal $\bar{\alpha}_{t} \quad \rightarrow \quad D_{t}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \bar{\alpha}_{t}(i) & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
\Rightarrow Only one nonzero entry of $\bar{\alpha}_{t}$ per $t \Rightarrow$ entry of \bar{q} to be updated

Theorem (Tsitsiklis'94)
Let $D_{n}=\operatorname{diag}\left(\bar{\alpha}_{t}\right)$ and \bar{q}_{t} be defined by

$$
\bar{q}_{t+1}=\bar{q}_{t}+D_{n}\left(F\left(\bar{q}_{t}\right)+\bar{w}_{n}-\bar{q}_{t}\right)
$$

Under the following assumptions
as1) $\bar{\alpha}_{t}(i) \geq 0: \sum_{t} \bar{\alpha}_{t}(i)=\infty$ and $\sum_{t} \bar{\alpha}_{t}^{2}(i)<\infty$ (as) for all i
as2) $\mathbb{E}\left[\bar{w}_{t} \mid S_{t}, A_{t}\right]=0$ and $\mathbb{E}\left[\bar{w}_{t}^{2} \mid S_{t}, A_{t}\right] \leq A+B \max _{i}\left|\bar{q}_{t}(i)\right|^{2}$ for all i, t
as3) $\left\|\bar{F}(\bar{q})-\bar{F}\left(\bar{q}^{\prime}\right)\right\| \leq \gamma\left\|\bar{q}-\bar{q}^{\prime}\right\|$ with $\bar{F}\left(\bar{q}_{*}\right)=\bar{q}_{*}$,
then for any initial point $\bar{q}_{0}, \bar{q}_{n} \rightarrow \bar{q}_{\star}$ (as).

- Subtract \bar{q}_{\star} from both sides of the update

$$
\bar{q}_{t+1}-\bar{q}_{\star}=\bar{q}_{t}-\bar{q}_{\star}+D_{t}\left(F\left(\bar{q}_{t}\right)-\left(\bar{q}_{t}-\bar{q}_{\star}\right)-\bar{q}_{\star}+\bar{w}_{t}\right)
$$

- Define error $\tilde{q}_{t}=\bar{q}_{t}-\bar{q}_{\star}$

$$
\tilde{q}_{t+1}=\tilde{q}_{t}+D_{t}\left(F\left(\tilde{q}_{t}+\bar{q}_{\star}\right)-\tilde{q}_{t}-\bar{q}_{\star}+\bar{w}_{t}\right)
$$

- Define $\tilde{F}\left(\tilde{q}_{t}\right)=\bar{F}\left(\tilde{q}_{t}+\bar{q}_{\star}\right)-\bar{q}_{\star}$, and $\tilde{w}_{t}=\bar{w}_{t}$

$$
\tilde{q}_{t+1}=\tilde{q}_{t}+D_{t}\left(\tilde{F}\left(\tilde{q}_{t}\right)-\tilde{q}_{t}+\tilde{w}_{t}\right)
$$

- Fixed point at the origin $\tilde{F}(0)=\bar{F}\left(\bar{q}_{\star}\right)-\bar{q}_{\star}=0$
- Contraction $\left\|\tilde{F}(\tilde{q})-\tilde{F}\left(\tilde{q}^{\prime}\right)\right\|=\left\|\bar{F}\left(\tilde{q}+\bar{q}_{\star}\right)-\bar{F}\left(\tilde{q}^{\prime}+\bar{q}_{\star}\right)\right\|$

$$
\leq \gamma\left\|\left(\tilde{q}+\bar{q}_{\star}\right)-\left(\tilde{q}^{\prime}+\bar{q}_{\star}\right)\right\|=\gamma\left\|\tilde{q}-\tilde{q}^{\prime}\right\|
$$

- Assumptions as1)-as5) are satisfied by \tilde{q}_{t} and $\tilde{F}(\cdot)$ with $\tilde{q}_{\star}=0$
- Proving convergence of q-learning amounts to show that $\tilde{q}_{t} \rightarrow 0$
- For notation brevity will drop the tildes, keeping $F(0)=0$ and

$$
q_{t+1}=q_{t}+D_{t}\left(F\left(q_{t}\right)+w_{t}-q_{t}\right)
$$

Lemma (Tsitsiklis'94)

Under assumptions as1)-as3) the sequence q_{t} is bounded by a time invariant random variable M_{0} with probability one.

- Proof: Let be $\epsilon=1 / \gamma-1$ and $m_{t}=\max _{\tau \leq t}\left\{\left\|q_{\tau}\right\|\right\}$
\Rightarrow Define G_{t} such that $G_{0}=m_{0}$ and

$$
G_{t+1}= \begin{cases}G_{t} & \text { if } m_{t+1} \leq(1+\epsilon) G_{t} \\ m_{t+1} & \text { otherwise }\end{cases}
$$

\Rightarrow Can select infinite t_{0} such that $G_{t_{0}}=m_{t_{0}}$ otherwise m_{t} is bounded
\Rightarrow Introduce $W_{i}\left(t_{0}, t\right)$ initialized at $W_{i}\left(t_{0}, t_{0}\right)=0$ and defined by

$$
W_{i}\left(t_{0}, t+1\right)=\left(1-\alpha_{t}(i)\right) W_{i}\left(t_{0}, t\right)+\alpha_{t}(i) w_{t}(i) / G_{t}
$$

\Rightarrow We can show that $W_{i}\left(t_{0}, t\right) \rightarrow 0$ as $t_{0} \rightarrow \infty$ with $t \geq t_{0}$
$\Rightarrow \exists t_{0}$ such that $\left|W_{i}\left(t_{0}, t\right)\right| \leq \epsilon \forall i$ and $t \geq t_{0}$

- We want to prove that for all $t \geq t_{0} G_{t}=G_{t_{0}}$ and

$$
-G_{t_{0}}(1+\epsilon)<-G_{t_{0}}+G_{t_{0}} W_{i}\left(t_{0}, t\right) \leq q_{t}(i) \leq G_{t_{0}}+G_{t_{0}} W_{i}\left(t_{0}, t\right)<G_{t_{0}}(1+\epsilon)
$$

- True for $t=t_{0}$ since $\left\|q_{t_{0}}\right\| \leq m_{t_{0}}=G_{t_{0}}$ and $W_{i}\left(t_{0}, t_{0}\right)=0$
- Assume that it holds for time t let us show for time $t+1$

$$
\begin{aligned}
q_{t+1}(i) & =\left(1-\alpha_{t}(i)\right) q_{t}(i)+\alpha_{t}(i)\left(F_{i}\left(q_{t}\right)+w_{t}(i)\right) \\
& \leq\left(1-\alpha_{t}(i)\right)\left(G_{t_{0}}+G_{t_{0}} W_{i}\left(t_{0}, t\right)\right)+\alpha_{t}(i)\left(\gamma\left\|q_{t}\right\|+G_{t} w_{t}(i) / G_{t}\right)
\end{aligned}
$$

- Where we have use that $F\left(q_{t}\right)$ is a contraction and that $G_{t}=G_{t_{0}}$

$$
q_{t+1}(i) \leq\left(1-\alpha_{t}(i)\right)\left(G_{t_{0}}+G_{t_{0}} W_{i}\left(t_{0}, t\right)\right)+\alpha_{t}(i)\left(\gamma(1+\epsilon) G_{t_{0}}+G_{t_{0}} w_{t}(i) / G_{t}\right)
$$

- Using that $\epsilon=1 / \gamma-1$ it follows that

$$
q_{t+1}(i) \leq G_{t_{0}}+G_{t_{0}}\left(\left(1-\alpha_{t}(i)\right) W_{i}\left(t_{0}, t\right)+\alpha_{t}(i) w_{t}(i) / G_{t}\right)=G_{t_{0}}\left(1+W_{i}\left(t_{0}, t+1\right)\right)
$$

- Since $\left|W_{i}\left(t_{0}, t+1\right)\right| \leq \epsilon$ (We showed it in the previous slide) it follows

$$
\left\|q_{t+1}\right\|<G_{t_{0}}(1+\epsilon)=G_{t}(1+\epsilon) \Rightarrow G_{t+1}=G_{t}=G_{t_{0}}
$$

- Idea: construct bounding sequences $\bar{z}_{t}^{k}(i)$ and $\underline{z}_{t}^{k}(i)$ such that

$$
\underline{z}_{t}^{k}(t) \leq q_{t}(i) \leq \bar{z}_{t}^{k}(i)
$$

- Initialize $\bar{z}_{0}^{0}(i)=M_{0}$ and $\underline{z}_{0}^{0}(i)=-M_{0}$ with M_{0} from the Lemma
- Select $\epsilon>0$ such that $\gamma(1+\epsilon)<1$ and $M_{k+1}=M_{k} \gamma(1+\epsilon)$
- Prove that eventually $\left\|\bar{z}_{t}^{k}(i)\right\| \leq M_{k+1}$ (same for $\left.\underline{z}_{t}^{k}(i)\right)$
- Conclude that $q_{t}(i) \rightarrow 0$

- Define the bounding sequences by iteration starting at t_{k}

$$
\begin{array}{ll}
\bar{z}_{t+1}^{k}(i)=\bar{z}_{t}^{k}(i)+\alpha_{t}(i)\left(\gamma M_{k}+w_{t}(i)-\bar{z}_{t}^{k}(i)\right), \quad \bar{z}_{t_{k}}^{k}(i)=M_{k} \\
\underline{z}_{t+1}^{k}(i)=\underline{z}_{t}^{k}(i)+\alpha_{t}(i)\left(-\gamma M_{k}+w_{t}(i)-\underline{z}_{t}^{k}(i)\right), \quad \underline{z}_{t_{k}}^{k}(i)=-M_{k}
\end{array}
$$

- Will prove

$$
\underline{z}_{t}^{k}(t) \leq q_{t}(i) \leq \bar{z}_{t}^{k}(i)
$$

- Inductive hypothesis $\left\|q_{t}\right\| \leq M_{k}$, for $t \geq t_{k}$
\Rightarrow The previous Lemma established that this is true for $k=0$
\Rightarrow So we just need to prove the inductive step
- Let us prove $q_{t+1}(i) \leq \bar{z}_{t+1}^{k}(i)$

$$
q_{t+1}(i)=q_{t}(i)+\alpha_{t}(i)\left(F_{i}\left(q_{t}\right)+w_{t}(i)-q_{t}(i)\right)
$$

- Add and subtract $\bar{z}_{t+1}^{k}(i)=\bar{z}_{t}^{k}(i)+\alpha_{t}(i)\left(\gamma M_{k}+w_{t}(i)-\bar{z}_{t}^{k}(i)\right)$

$$
\begin{aligned}
q_{t+1}(i) & =q_{t}(i)+\alpha_{t}(i)\left(F_{i}\left(q_{t}\right)+w_{t}(i)-q_{t}(i)\right) \\
& +\bar{z}_{t+1}^{k}(i)-\bar{z}_{t}^{k}(i)-\alpha_{t}(i)\left(\gamma M_{k}+w_{t}(i)-\bar{z}_{t}^{k}(i)\right)
\end{aligned}
$$

- Rearrange the terms and note that $w_{t}(i)$ cancels

$$
q_{t+1}(i)=\bar{z}_{t+1}^{k}(i)+\left(1-\alpha_{t}(i)\right)\left(q_{t}(i)-\bar{z}_{t}^{k}(i)\right)+\alpha_{t}(i)\left(F_{i}\left(q_{t}\right)-\gamma M_{k}\right)
$$

- Using that $F_{i}\left(q_{t}\right) \leq \gamma\left\|q_{t}\right\| \leq M_{k}$ and that $q_{t}(i) \leq \bar{z}_{t}^{k}(i)$

$$
q_{t+1}(i) \leq \bar{z}_{t+1}^{k}(i)
$$

- The proof for $\underline{z}_{t+1}^{k}(i) \leq q_{t+1}(i)$ is analogous
- In next slide we prove that $\bar{z}_{t}^{k}(i) \rightarrow \gamma M_{k}$
- As a consequence we can establish that for any $\epsilon>0$

$$
\exists \bar{t}_{k+1}: \forall t \geq \bar{t}_{k+1} \Rightarrow \bar{z}_{t}^{k}(i) \leq(1+\epsilon) \gamma M_{k}=M_{k+1}
$$

- Correspondingly $\exists \underline{t}_{k+1}: \forall t \geq \underline{t}_{k+1} \Rightarrow \underline{z}_{t}^{k}(i) \geq-M_{k+1}$
- In particular, let's select ϵ such that $(1+\epsilon) \gamma<1$
- Recall

$$
\underline{z}_{t}^{k}(i) \leq q_{t}(i) \leq \bar{z}_{t}^{k}(i)
$$

- Define $t_{k+1}=\max \left\{\bar{t}_{k+1}, \underline{t}_{k+1}\right\}$ so that $\left|q_{t}(i)\right| \leq M_{k+1}$ for $t \geq t_{k+1}$

- Since $M_{k}=M_{0} \gamma^{k}(1+\epsilon)^{k} \rightarrow 0 \Rightarrow\left|q_{t}(i)\right| \rightarrow 0$
- It remains to prove that $z_{t} \rightarrow \gamma M$ (i and k dropped)

$$
z_{t+1}=z_{t}+\alpha_{t}\left(\gamma M+w_{t}-z_{t}\right), \quad z(0)=M
$$

- Define sequence $S_{t}=\left(z_{t}-\gamma M\right)^{2}+C \sum_{t=\tau}^{\infty} \alpha_{\tau}^{2}$ with $C \in \mathbb{R}$ arbitrary
- Want to prove that S_{t} is a super martingale

$$
\begin{aligned}
S_{t+1} & =\left(z_{t+1}-\gamma M\right)^{2}+C \sum_{\tau=t+1}^{\infty} \alpha_{\tau}^{2} \\
& =\left(z_{t}+\alpha_{t}\left(\gamma M+w_{t}-z_{t}\right)-\gamma M\right)^{2}+C \sum_{\tau=t+1}^{\infty} \alpha_{\tau}^{2}
\end{aligned}
$$

- Define $y_{t}=z_{t}-\gamma M$

$$
\begin{aligned}
S_{t+1} & =\left(y_{t}+\alpha_{t}\left(w_{t}-y_{t}\right)\right)^{2}+C \sum_{\tau=t+1}^{\infty} \alpha_{\tau}^{2} \\
& =\left(1-\alpha_{t}\right)^{2} y_{t}^{2}+\alpha_{t}^{2} w_{t}^{2}+2\left(1-\alpha_{t} y_{t}\right) w_{t} \alpha_{t}+C \sum_{\tau=t+1}^{\infty} \alpha_{\tau}^{2}
\end{aligned}
$$

Super Martingale

- From the previous slide we have that

$$
S_{t+1} \leq\left(1-\alpha_{t}\right)^{2} y_{t}^{2}+\alpha_{t}^{2} w_{t}^{2}+2\left(1-\alpha_{t} y_{t}\right) w_{t} \alpha_{t}+C \sum_{\tau=t+1}^{\infty} \alpha_{\tau}^{2}
$$

- Recall Assumption $2 \mathbb{E}\left[w_{t}\right]$ and $\mathbb{E}\left[w_{t}^{2}\right] \leq A+B \max _{i}\left|q_{t}(i)\right|$

$$
\begin{aligned}
\mathbb{E}\left[S_{t+1} \mid \mathcal{F}_{t}\right] & =\left(1-\alpha_{t}\right)^{2} y_{t}^{2}+\alpha_{t}^{2} \mathbb{E}\left[w_{t}^{2} \mid \mathcal{F}_{t}\right]+C \sum_{\tau=t+1}^{\infty} \alpha_{\tau}^{2} \\
& \leq\left(1-\alpha_{t}\right)^{2} y_{t}^{2}+C \alpha_{t}^{2}+C \sum_{\tau=t+1}^{\infty} \alpha_{\tau}^{2}
\end{aligned}
$$

- Where we can chose $C=A+B M_{0}$ with M_{0} the bound of the Lemma

$$
\mathbb{E}\left[S_{t+1} \mid \mathcal{F}_{t}\right] \leq\left(1-\alpha_{t}\right)^{2} y_{t}^{2}+C \sum_{\tau=t}^{\infty} \alpha_{\tau}^{2}<S_{t}
$$

- We established that S_{t} is a super martingale $\Rightarrow S_{t} \rightarrow S$ with $\mathbb{E}[S]<\mathbb{E}\left[S_{0}\right]$
- Will show $S=0 \Rightarrow y_{t}=S_{t}-C \sum_{\tau=t}^{\infty} \alpha_{t}^{2} \rightarrow 0$
- If $\alpha_{t}<1$ then we have that $\mathbb{E}\left[S_{t+1} \mid \mathcal{F}_{t}\right] \leq S_{t}-2 \alpha_{t} y_{t}^{2}$
$\mathbb{E}\left[S_{t+1} \mid \mathcal{F}_{t-1}\right] \leq \mathbb{E}\left[S_{t}-2 \alpha_{t} y_{t}^{2} \mid \mathcal{F}_{t-1}\right] \leq S_{t-1}-2 \alpha_{t-1} y_{t-1}^{2}-2 \mathbb{E}\left[\alpha_{t} y_{t}^{2} \mid \mathcal{F}_{t-1}\right]$
\Rightarrow Recursively we have that $\mathbb{E}\left[S_{t+1}\right] \leq \mathbb{E}\left[S_{0}\right]-2 \sum_{\tau=0}^{t} \mathbb{E}\left[\alpha_{\tau} y_{\tau}^{2}\right]$
\Rightarrow Rearranging terms

$$
2 \sum_{\tau=0}^{t} \mathbb{E}\left[\alpha_{\tau} y_{\tau}^{2}\right] \leq \mathbb{E}\left[S_{0}\right]-\mathbb{E}\left[S_{t+1}\right] \rightarrow \mathbb{E}\left[S_{0}\right]-\mathbb{E}[S] \leq \infty
$$

$\Rightarrow \operatorname{By}(\mathrm{as} 1) \sum_{t} \alpha_{t}=\infty$ w.p. $1 \Rightarrow \liminf _{t} E\left[y_{t}^{2}\right] \rightarrow 0$
\Rightarrow Fatou's $\Rightarrow E\left[\liminf _{t} y_{t}^{2}\right] \leq \liminf _{t} E\left[y_{t}^{2}\right]=0 \Rightarrow \liminf _{t} y_{t}^{2}=0$
\Rightarrow Subsequence $y_{t_{j}}^{2} \rightarrow 0 \Rightarrow S_{t_{j}}=y_{t_{j}}+C \sum_{\tau=t_{j}}^{\infty} \alpha_{\tau}^{2} \rightarrow 0 \Rightarrow S=0$

Q-learning
 Q-learning - proof of convergence

On Policy

- So far we have studied q-learning as an Off-policy algorithm

$$
q_{t+1}(s, a)=q_{t}(s, a)+\alpha_{t}\left(R_{t+1}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)-q_{t}(s, a)\right)
$$

- Where the exploration can be done with any behavior policy
\Rightarrow Once we have reached S_{t+1} any selection of the action guarantees convergence to q^{\star}
\Rightarrow As long as we explore enough
\Rightarrow In the end we want to always select the action according to

$$
A_{t}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} q_{\star}\left(S_{t}, a\right)
$$

- We can also do on Policy control \Rightarrow SARSA

SARSA vs Q-learning

- The policy being learned about is called the target policy π
- The policy used to generate behavior is called the behavior policy b
- In Q-learning the update is for the greedy target policy
- In SARSA, the target and behavior policy are the same
\Rightarrow typically the ε-greedy policy
- By making $\varepsilon \rightarrow 0$, SARSA approximates the optimal policy q^{\star}

Input: State S_{0}, probability $\epsilon \in(0,1)$, and tabular $q_{0}(s, a)$
Initialize: $q(s, s)=q_{0}(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$
Draw A_{0} randomly according to policy.
for time $t=0,1,2, \ldots$ do
Run system one step ahead $\left(S_{t}, A_{t}\right) \Rightarrow R_{t+1}, S_{t+1}$
Draw $A_{t+1}= \begin{cases}\arg \max _{a^{\prime}} q\left(S_{t+1}, a^{\prime}\right) & \text { w.p. } 1-\epsilon \\ \operatorname{rand}(\mathcal{A}) & \text { w.p. } \epsilon\end{cases}$
Update $q\left(s_{t}, A_{t}\right) \leftarrow q\left(S_{t}, A_{t}\right)+\alpha_{t}\left(R_{t+1}+\gamma q\left(S_{t+1}, A_{t+1}\right)-q\left(S_{t}, A_{t}\right)\right)$
end
Output: $q(s, a)$

Algorithm 3: SARSA

- Recall that q-learning udpates using

$$
q\left(s_{t}, A_{t}\right) \leftarrow q\left(S_{t}, A_{t}\right)+\alpha_{t}\left(R_{t+1}+\gamma \max _{a \in \mathcal{A}} q\left(S_{t+1}, a\right)-q\left(S_{t}, A_{t}\right)\right)
$$

Cliff walking example

Sketch of proof for one-step tabular SARSA. (Recall Q-learning assumptions)
Theorem
Let q_{n} be defined by

$$
q_{n+1}=q_{n}+A_{n}\left(F\left(q_{n}\right)+w_{n}-q_{n}\right)
$$

with $A_{n}=\operatorname{diag}\left(\alpha_{n}\right)$.
as1) Stepsize $\sum_{t} \alpha_{t}(i)=\infty$ and $\sum_{t} \alpha_{t}^{2}(i)<\infty$ (as) for all i (GLIE)
as2) $E\left[w_{t} \mid S_{t}, A_{t}\right]=0 E\left[w_{t}^{2} \mid S_{t}, A_{t}\right] \leq A+B \max \left|q_{t}(s, a)\right|^{2}$ for all s, a
as3) "Asymptotic contraction" $\left\|F(q)-q_{\star}\right\| \leq \gamma\left\|q-q_{\star}\right\|+c_{n}$, with $c_{n} \rightarrow 0$
then for any initial point $q_{0}, q_{n} \rightarrow q_{\star}$ (as).
Proof in Singh et al. "Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms", 2000.

- In Q-learning, given s, a,

$$
F^{Q}\left(q_{t}\right)=\mathbb{E}_{R_{t}, S_{t+1}}\left[R_{t}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)\right]
$$

- In SARSA, given s, a, π

$$
\begin{aligned}
F\left(q_{t}\right) & =\mathbb{E}\left[R_{t}+\gamma q_{t}\left(S_{t+1}, A_{t+1}\right)\right] \\
& =\mathbb{E}\left[R_{t}+\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)+\gamma q_{t}\left(S_{t+1}, A_{t+1}\right)-\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)\right] \\
& =F^{Q}\left(q_{t}\right)+C_{t}
\end{aligned}
$$

with $C_{t}=\mathbb{E}\left[\gamma q_{t}\left(S_{t+1}, A_{t+1}\right)-\gamma \max _{a^{\prime}} q_{t}\left(S_{t+1}, a^{\prime}\right)\right]$

- Then,

$$
\begin{aligned}
\left\|F\left(q_{t}\right)-q_{\star}\right\|=\left\|F^{Q}\left(q_{t}\right)+C_{t}-q_{\star}\right\| & \leq\left\|F^{Q}\left(q_{t}\right)-q_{\star}\right\|+\left\|C_{t}\right\| \\
& \leq \gamma\left\|q_{t}-q_{\star}\right\|+\left\|C_{t}\right\|
\end{aligned}
$$

- Finally, because the behaviour policy π used in SARSA tends to the greedy policy (GLIE assumption), we have that $\left\|C_{t}\right\| \rightarrow 0$.
- Off-Policy gives us the optimal solution if the system is an MDP
- On-Policy is more robust to modeling error
- Off-Policy might lead to high variance estimates due to maximization
- Variance is easier to reduce the variance of the estimate On-Policy
- Consider the following MDP

- Always start on $\mathrm{A} \Rightarrow q(\mathrm{~A}$, right $)=0$
- The estimate of $q(\mathrm{~A}$, left $)$ may be positive if we received positive rewards
- But from the MDP is clear that the optimal action is choosing right
- With $0.1=\epsilon$-greedy left should be selected only 5% of the time

Maximization bias of Q-learning

- With $\epsilon=0.1$ left should be selected only 5% of the time

- The selection of the maximum bias the policy to choose the action left
- What is this double Q-learning that gets rid of this bias?
\Rightarrow It keeps two estimates of Q and with probability 0.5 updates $q_{1}\left(S_{t}, A_{t}\right)=q_{1}\left(S_{t}, A_{t}\right)+\alpha\left(R_{t+1}+\gamma q_{2}\left(S_{t+1}, \operatorname{argmax} q_{1}\left(S_{t+1}, a\right)\right)-q_{1}\left(S_{t}, A_{t}\right)\right)$
a
- As we did before define the n-step return as

$$
G_{t: t+n}=R_{t+1}+\gamma R_{t+2}+\ldots+\gamma^{n-1} R_{t+n} \gamma^{n}+q_{t+n-1}\left(S_{t+n}, A_{t+n}\right)
$$

- Then it is easy to extend SARSA to n step by updating

$$
q_{t+n}\left(S_{t}, A_{t}\right)=q_{t+n-1}\left(S_{t}, A_{t}\right)+\alpha\left(G_{t: t+n}-q_{t+n-1}\left(S_{t}, A_{t}\right)\right)
$$

- It converges because the update is based on the n-step Bellman equation
\Rightarrow It is an assymptotic contraction

n-step SARSA

BPenn

Input: Policy π to be ϵ-greedy, step-size α, positive integer n
Initialize: $q(s, a)=0$ for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$
for episode $k=0,1,2, \ldots$ do

```
Initialize and store \(S_{0} \neq\) terminal and \(A_{0} \sim \pi\left(\cdot \mid S_{0}\right), T=\infty\) for each
```

step of the episode $t=0,1, \ldots, T$ do
if $t<T$ then
Take action A_{t}, observe R_{t+1} and state S_{t+1}
if S_{t+1} is terminal then
$T=t+1$
end
else
Select and store action $A_{t+1} \sim \pi\left(\cdot \mid S_{t+1}\right)$
end
$\tau=t-n+1 \quad \triangleright$ (time whose state's estimate is being updated)
end
if $\tau \geq 0$ then
$G=\sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i} \quad \triangleright$ (Compute return)
$q\left(S_{\tau}, A_{\tau}\right)=$ $q\left(S_{\tau}, A_{\tau}\right)+\alpha\left[G+\gamma^{n} q\left(S_{\tau+n}, A_{\tau+n}\right) \mathbb{1}(\tau+n<T)-q\left(S_{\tau}, A_{\tau}\right)\right]$
end
end

- All transitions have reward zero except reaching the goal
- Initialization is $q(s, a)=0$ for all s, a

Path taken

Action values increased by one-step Sarsa

Action values increased by 10 -step Sarsa

- n-step SARSA can update more entries of the q function

$$
q\left(S_{\tau}, A_{\tau}\right)=q\left(S_{\tau}, A_{\tau}\right)+\alpha\left[G_{\tau: \tau+n}+\gamma^{n} q\left(S_{\tau+n}, A_{\tau+n}\right)-q\left(S_{\tau}, A_{\tau}\right)\right]
$$

[^0]: ${ }^{1}$ T. Jaakkola, M. I. Jordan, S. P. Singh "On the convergence of Stochastic Iterative Dynamic Programming Algorithms" Neural Computations,, vol. 6, no. 6, pp. 1185-1201, Nov. 1994.

