
1/146Graph Neural Networks

Graph Neural Networks
Machine Learning on Graphs, Class 2

Fernando Gama

Electrical Engineering and Computer Sciences Department, University of California, Berkeley

Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
February 2nd, 2021

Thanks: D. Owerko, E. Tolstaya, L. Ruiz, Q. Li, T.-K. Hu, A. Prorok, A. G. Marques, Z. Wang, E. Isufi,

G. Leus, J. Bruna, S. Sojoudi and A. Ribeiro



2/146Graph Neural Networks

F. Gama
fgama@berkeley.eduMachine Learning on Graphs

I Graphs are generic models of signal structure that can help to learn in several practical problems

Authorship Attribution

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

[Segarra et al, ’16]

Recommendation Systems

[Ruiz et al ’18]

I In both cases there exists a graph that contains meaningful information about the problem to solve
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F. Gama
fgama@berkeley.eduAuthorship Attribution with Word Adjacency Networks (WANs)

I Nodes represent different function words and edges how often words appear close to each other
⇒ A proxy for the different ways in which different authors use the English language grammar

William Shakespeare
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Christopher Marlowe
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I WAN differences differentiate the writing styles of Marlowe and Shakespeare in, e.g., Henry VI

Segarra, Eisen, Egan, Ribeiro, “Attributing the Authorship of the Henry VI Plays by Word Adjacency”, Shakespeare Quarterly 2016



4/146Graph Neural Networks

F. Gama
fgama@berkeley.eduRecommendation with Collaborative Filtering

I Nodes represent different products and edges their average similarity in ratings
⇒ The graph informs the completion of ratings when some are unknown and are to be predicted

Original (sampled) ratings Reconstructed (predicted) ratings

I Variation energy of reconstructed signal is (much) smaller than variation energy of sampled signal

Ruiz, Gama, Marques, Ribeiro, “Invariance-Preserving Localized Activation Functions for Graph Neural Networks”, TSP 2019.
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F. Gama
fgama@berkeley.eduGraphs in Physical Systems

I Graphs are more than data structures ⇒ They are models of the bulk of our physical infrastructure

Decentralized Control of Autonomous Systems

[Tolstaya et al, ’19]

Wireless Communications Networks

Eisen and Ribeiro, ’19

I The graph is the source of the problem ⇒ Challenge is that goals are global but information is local
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F. Gama
fgama@berkeley.eduNeural Networks and Convolutional Neural Networks

I This answers the Why ⇒ What about the How?

I There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this

I Generic NNs do not scale to large dimensions ⇒ Convolutional Neural Networks (CNNs) do
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F. Gama
fgama@berkeley.eduConvolutional Neural Networks and Graph Neural Networks

I CNNs are made up of layers composing convolutional filter banks with pointwise nonlinearities

Process graphs with graph convolutional NNs Process images with convolutional NNs

I Generalize convolutions to graphs and compose graph filter banks with pointwise nonlinearities

I Stack in layers to create a graph (convolutional) Neural Network (GNN)
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F. Gama
fgama@berkeley.eduTime and Space are Representable by Graphs

I How do we generalize convolutions in time and space to operate on graphs?
⇒ We can describe discrete time and space using graphs that support time or space signals

Description of time with a directed line graph Description of images (space) with a grid graph
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I Line graph represents adjacency of points in time. Grid graph represents adjacency of points in space
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F. Gama
fgama@berkeley.eduConvolutions in Time and Space

I Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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I Filter with coefficients hk ⇒ Output z = h0 S0x +h1 S1x +h2 S2x +h3 S3x + . . . =
∞∑
k=0

hk Skx
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fgama@berkeley.eduArbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals
I Use graphs as generic descriptors of signal structure with signal values associated to nodes and edges

expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are products. Signal values are product ratings. Edges are cosine similarities of past scores
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F. Gama
fgama@berkeley.eduArbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals
I Use graphs as generic descriptors of signal structure with signal values associated to nodes and edges

expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are drones. Signal values are velocities. Edges are sensing and communication ranges
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F. Gama
fgama@berkeley.eduArbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals
I Use graphs as generic descriptors of signal structure with signal values associated to nodes and edges

expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are transceivers. Signal values are QoS requirements. Edges are wireless channels strength
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F. Gama
fgama@berkeley.eduConvolutions on Graphs

I We’ve already seen that convolutions in time and space are polynomials on adjacency matrices

Description of time with a directed line graph Description of images (space) with a grid graph
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I Filter with coefficients hk ⇒ Output z = h0 S0x +h1 S1x +h2 S2x +h3 S3x + . . . =
∞∑
k=0

hk Skx
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F. Gama
fgama@berkeley.eduConvolutions on Graphs

I For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
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I Filter with coefficients hk ⇒ Output z = h0 S0x +h1 S1x +h2 S2x +h3 S3x + . . . =
∞∑
k=0

hk Skx

I Graph convolutions share the locality of conventional convolutions. Recovered as particular case
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F. Gama
fgama@berkeley.eduNeural Networks (NNs)

I A neural network composes a cascade of layers

I Each of which are themselves compositions of

linear maps with pointwise nonlinearities

I Does not scale to large dimensional signals x
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F. Gama
fgama@berkeley.eduConvolutional Neural Networks (CNNs)

I A convolutional NN composes a cascade of layers

I Each of which are themselves compositions of

convolutions with pointwise nonlinearities

I Scales well. The Deep Learning workhorse

I A CNNs are minor variation of convolutional filters

⇒ Just add nonlinearity and compose

⇒ They scale because convolutions scale
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F. Gama
fgama@berkeley.eduWhen we Think of Time Signals as Supported on a Line Graph

I Those convolutions are polynomials on the adjacency

matrix of a line graph
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Just another way of writing CNNs

I But one that lends itself to generalization
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F. Gama
fgama@berkeley.eduGraph Neural Networks (GNNs)

I The graph can be any arbitrary graph

I The polynomial on the matrix representation S

becomes a graph convolutional filter
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Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, TSP 2019
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fgama@berkeley.eduGraph Neural Networks (GNNs)

I A graph NN composes a cascade of layers

I Each of which are themselves compositions of

graph convolutions with pointwise nonlinearities

I A NN with linear maps restricted to convolutions

I Recovers a CNN if S describes a line graph
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Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, TSP 2019
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F. Gama
fgama@berkeley.eduGraph Neural Networks (GNNs)

I There is growing evidence of scalability.

I A GNN is a minor variation of a graph filter

⇒ Just add nonlinearity and compose

I Both are scalable because they leverage the

signal structure codified by the graph
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Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, TSP 2019
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Introduction
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Learning Decentralized Control
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Conclusions
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F. Gama
fgama@berkeley.eduGraphs, Graph Signals and Convolutions

Introduction

Graphs, Graph Signals and Convolutions
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Graph Shift Operators
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Graph Convolutional Filters
Graph Frequency Response of Graph Filters
Memorabilia: Graphs, Graph Signals, Graph
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Graph Neural Networks
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Flocking

Conclusions
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F. Gama
fgama@berkeley.eduNodes, Edges and Weights

I A graph is a triplet G = (V, E,W) of vertices, edges, and weights
⇒ Vertices or nodes are a set of N labels. Typical labels are V = {1, . . . , N} or V = {v1, . . . , vN}
⇒ Edges are ordered pairs of labels (i, j). We interpret (i, j) ∈ E as “i can influence j.”
⇒ Weights wij ∈ R are numbers associated to edges (i, j). “Strength of the influence of i on j.”
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F. Gama
fgama@berkeley.eduDirected Graphs

I Edge (i, j) is represented by an arrow pointing from i into j. Influence of node i on node j
I Edge (i, j) is different from edge (j, i) ⇒ It is possible to have (i, j) ∈ E and (j, i) /∈ E
I If both edges are in the edge set, the weights can be different ⇒ It is possible to have wij 6= wji
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F. Gama
fgama@berkeley.eduUndirected Graphs

I A graph is undirected if both, the edge set and the weight are symmetric
⇒ Edges come in pairs ⇒ We have (i, j) ∈ E if and only if (j, i) ∈ E
⇒ Weights are symmetric ⇒ We must have wij = wji for all (i, j) ∈ E
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F. Gama
fgama@berkeley.eduUndirected Graphs

I A graph is undirected if both, the edge set and the weight are symmetric
⇒ Edges come in pairs ⇒ We have (i, j) ∈ E if and only if (j, i) ∈ E
⇒ Weights are symmetric ⇒ We must have wij = wji for all (i, j) ∈ E
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F. Gama
fgama@berkeley.eduUnweighted Graphs

I A graph is unweighted if it doesn’t have weights.
⇒ We, equivalently, have that all weights are units ⇒ wij = 1 for all (i, j) ∈ E

I Unweighted graphs could be directed or undirected
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F. Gama
fgama@berkeley.eduWeighted Undirected Graphs

I Graphs can be directed or undirected. They can be weighted or unweighted
I For the most part we will work with graphs that are undirected and weighted
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I The adjacency matrix of graph G = (V, E,W) is the sparse matrix A ∈ RN×N with nonzero entries

[A]ij = wji, for all (j, i) ∈ E

I If the graph is undirected, the adjacency matrix is symmetric ⇒ A = AT. As in the example.
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5

w12 = w21

w31 = w13

w24 = w42

w32 = w23 w45 = w54

w53 = w35

A =


0 w21 w31 0 0
w12 0 w32 w42 0
w13 w23 0 0 w53

0 w24 0 0 w54

0 0 w35 w45 0

 .
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I For the particular case in which the graph is unweighted. Weights interpreted as units

[A]ij = 1, for all (j, i) ∈ E

1
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5

1

1

1
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1

A =


0 1 1 0 0
1 0 1 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 0

 .
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I The neighborhood of node i is the set of nodes that influence i ⇒ n(i) := {j : (j, i) ∈ E}
I Degree di of node i is the sum of the weights of its incident edges ⇒ di =

∑
j∈n(i)

wij =
∑

j:(j,i)∈E}
wij

1
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4

5

w24 = w42

w32 = w23 w45 = w54

w53 = w35

1
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3

w12

w13

I Node 1 neighborhood ⇒ n(1) = {2, 3}

I Node 1 degree ⇒ n(1) = w21 + w31
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I The degree matrix is a diagonal matrix D with degrees as diagonal entries ⇒ [D]ii = di

I Write in terms of adjacency matrix as D = diag(A1)
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3
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1

1

1

1 1

1

D =


2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2

 .
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I The Laplacian matrix of a graph with adjacency matrix A is ⇒ L = D−A = diag(A1)−A

I Can also be written explicitly in terms of graph weights [A]ij = wji

⇒ Off diagonal entries ⇒ [L]ij = −[A]ij = −wji
⇒ Diagonal entries ⇒ [L]ii = di =

∑
j∈n(i)

wji

1
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3

4

5

1

1

1

1 1

1

L =


2 −1 −1 0 0
−1 3 −1 −1 0
−1 −1 3 0 −1
0 −1 0 2 −1
0 0 −1 −1 2

 .
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I Normalized adjacency and Laplacian matrices express weights relative to the nodes’ degrees

I Normalized adjacency matrix ⇒ Ā := D−1/2AD−1/2 . It is symmetric if the graph is undirected

I Normalized Laplacian matrix ⇒ L̄ := D−1/2LD−1/2 . It is symmetric if the graph is undirected

I Given definitions of Normalized adjacency and Laplacian ⇒ L̄ := I− Ā
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I The Graph Shift Operator S is a stand in for any of the matrix representations of the graph

Adjacency Matrix

S = A

Laplacian Matrix

S = L

Normalized Adjacency

S = Ā

Normalized Laplacian

S = L̄

I If the graph is undirected, the shift operator S is symmetric ⇒ S = ST

I The specific choice matters in practice but most of the results and analysis hold for any choice of S
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I Consider a given graph G with N nodes and shift operator S

I A graph signal is a vector x ∈ RN in which component xi is associated with node i
I To emphasize that the graph is intrinsic to the signal we may write the signal as a pair ⇒ (S,x)
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I The graph is an expectation of proximity or similarity between components of the signal x
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I Multiplication by the graph shift operator implements diffusion of the signal over the graph

I Diffused signal y = Sx has components ⇒ yi =
∑
j∈n(i)

wjixj

⇒ Codifies a local operation where components are mixed with components of neighboring nodes.
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I The shift operator can be composed to produce the diffusion sequence defined recursively as

x(k+1) = Sx(k), with x(0) = x

I Alternatively, unroll the recursion to write ⇒ x(k) = Skx

x(0) = x = S0x x(1) = Sx(0) = S1x x(2) = Sx(1) = S2x x(3) = Sx(2) = S3x

I The kth element of the diffusion sequence x(k) diffuses information to k-hop neighborhoods
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I Given graph shift operator S and coefficients hk, a graph filter is a polynomial (series) on S

H(S) =
∞∑
k=0

hkS
k

I The result of applying the filter H(S) to the signal x is the signal

y = H(S)x =
∞∑
k=0

hkS
kx

I We say that y = h ∗S x is the graph convolution of the filter h = {hk}∞k=0 with the signal x



38/146Graph Neural Networks

F. Gama
fgama@berkeley.eduFrom Local to Global Information

I Graph convolutions aggregate information growing from local to global neighborhoods
⇒ Same as regular convolutions in time and space

Graph Filter on a Graph Same Graph Filter on Another Graph
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4
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I Filter with coefficients h = {hk}∞k=0 ⇒ z = h0S0 x +h1S1 x +h2S2 x +h3S3 x + . . . =
∞∑
k=0

hkS
k x

I The output of a graph depends on the filter coefficients h and the graph shift operator S
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I A graph convolution is a weighted linear combination of the elements of the diffusion sequence
I We can represent the graph convolution with a structure reminiscent of a shift register

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

y = h ∗S x

h0S0x h1S1x h2S2x h3S3x
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I Convolutional filters process signals in time by leveraging the time shift operator

x0

x1

x2 x3

xn

x−1
x0

x1

x2

xn−1 = shift(xn)

x−2

x−1
x0

x1

xn−2 = shift2(xn)

x−3 x−2

x−1
x0

xn−3 = shift3(xn)

z−1 z−1 z−1

+ + + +

xn xn−1 xn−2 xn−3

h0 h1 h2 h3

yn

h0xn h1xn−1 h2xn−2 h3xn−3

I The time convolution is a linear combination of time shifted inputs ⇒ yn =

K−1∑
k=0

hkxn−k
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I Time signals are representable as graph signals supported on a line graph S ⇒ The pair (S,x)

x0

x1

x2 x3

0 1 2 3

x

x−1
x0

x1

x2

0 1 2 3

Sx

x−2

x−1
x0

x1

0 1 2 3

S2x

x−3 x−2

x−1
x0

0 1 2 3

S3x

I Time shift is reinterpreted as multiplication by the adjacency matrix S of the line graph

S3x = S(S2x) =


: : :

·· 0 0 0 ··
·· 1 0 0 ··
·· 0 1 0 ··
·· 0 0 1 ··

: : :




:
x−2
x1
x0
x1
:

 =


:

x−3
x−2
x−1
x0

:


I Components of the shift sequence are powers of the adjacency matrix applied to the original signal
⇒ We can rewrite convolutional filters as polynomials on S
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I The convolution operation is a linear combination of shifted versions of the input signal
I But we now know that time shifts are multiplications with the adjacency matrix S of line graph

x0

x1

x2 x3

0 1 2 3

x−1
x0

x1

x2

0 1 2 3

x−2

x−1
x0

x1

0 1 2 3

x−3 x−2

x−1
x0

0 1 2 3

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

y = h ∗S x

h0S0x h1S1x h2S2x h3S3x

I Time convolution is a polynomial on adjacency matrix of line graph ⇒ y = h ∗ x =

K−1∑
k=0

hkS
kx
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I If we let S be the shift operator of an arbitrary graph we recover the graph convolution
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I Graph filters admit a pointwise representation in a graph frequency domain
⇒ A property they share with time convolutional filters

I Assume the graph shift operator is normal. E.g., because the graph is undirected ⇒ S = VΛVH

I The Graph Fourier transform (GFT) of graph signal x is the signal x̃ = VHx

I The inverse Graph Fourier transform (iGFT) of GFT x̃ is the graph signal x = Vx̃

I We say that the GFT x̃ is a representation of x in the graph frequency domain
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I Recall definition of graph convolutions as polynomials on the shift operator ⇒ y =
∞∑
k=0

hkS
kx

I Spectral decomposition of shift operator implies Sk = VΛkVH. Therefore ⇒ y =
∞∑
k=0

hkVΛkVHx

I Multiply on the left by VH. Output GFT VHy = ỹ. Input GFT VHx = x̃. Cancel out VHV

VHy = VH
∞∑
k=0

hkVΛkVHx ⇒ ỹ =

( ∞∑
k=0

hkΛ
k

)
x̃

I The GFTs of the input and output signals are related by a diagonal matrix. Λ is diagonal
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I Graph convolutions represented in the graph frequency (spectral) domain ⇒ ỹ =

( ∞∑
k=0

hkΛ
k

)
x̃

I Graph convolutions are pointwise in the GFT domain ⇒ ỹi =

( ∞∑
k=0

hkλ
k
i

)
x̃i

Definition
Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k

I Defined so that we can write ⇒ ỹi = h̃(λi)x̃i
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Definition
Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k

I The frequency response is the same polynomial that defines the graph filter but on scalar variable λ

I Frequency response is independent of the graph. It is completely determined by the filter coefficients

I The role of the graph is to determine the eigenvalues on which the response is instantiated
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I Given coefficients h = {hk}∞k=1 the graph filter frequency response is determined h̃(λ) =
∞∑
k=0

hkλ
k

I For a specific graph, the response is instantiated on its specific eigenvalues λi
I For a different graph, the response is instantiated different eigenvalues λ̂i

λ1 λ̂1 λi λ̂i λn λ̂n
λ

h̃(λ)

I Key to graph perturbations analyses ⇒ Instrumental in explaining good performance of GNNs
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I For a given graph G, a graph shift operator S ∈ RN×N is a matrix representation of a graph
I A graph signal x ∈ RN is a vector with component xi associated to node i
I If we write S = VΛVH, the graph Fourier transform (GFT) of signal x is x̃ = VHx
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I Graph filter with coefficients h = {hk}∞k=1 is a polynomial on shift operator ⇒ H(S) =
∞∑
k=0

hkS
k

I A graph convolution is the output of a graph filter ⇒ y = h ∗S x = H(S)x =
∞∑
k=0

hkS
kx

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

y = h ∗S x

h0S0x h1S1x h2S2x h3S3x
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I Graph frequency response of a graph filter is polynomial on scalar variable ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

I The GFT domain input-output relationship of a graph filter is pointwise ⇒ ỹi = h̃(λi)x̃i

I Response depends on filter only. It’s the same for all graphs. Graph instantiates specific eigenvalues

λ1 λ̂1 λi λ̂i λn λ̂n
λ

h̃(λ)
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Introduction

Graphs, Graph Signals and Convolutions

Graph Neural Networks
Neural Networks vs. Graph Neural Networks

Multiple Features and Pooling

Recommendation Systems

Authorship Attribution

Permutation Equivariance

Absolute Perturbations

Relative Perturbations

Stability Insights

Learning Decentralized Control

Flocking

Conclusions
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I In this short course, machine learning ≡ empirical risk minimization (ERM).
I In ERM we are given:
⇒ A training set T containing observation pairs (x,y) ∈ T . Assume equal dimension x,y,∈ RN .
⇒ A loss function J(y, ŷ) to evaluate the similarity between y and an estimate ŷ

⇒ A function class Φ

I Learning means finding function Φ? ∈ Φ that minimizes loss J
(

Φ(x),y
)
averaged over training set

Φ? = arg min
Φ∈Φ

∑
(x,y)∈T

J
(

Φ(x),y
)

I We use Φ?(x) to estimate outputs ŷ = Φ?(x) when inputs x are observed but outputs y are unknown
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I In ERM, the function class Φ is the degree of freedom available to the system’s designer

Φ? = arg min
Φ∈Φ

∑
(x,y)∈T

J
(
Φ(x),y

)
I Designing a Machine Learning algorithm ≡ finding the right function class Φ

I Since we are interested in graph signals, graph convolutional filters look like a good starting point

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet



55/146Graph Neural Networks

F. Gama
fgama@berkeley.eduLearning with a Convolutional Graph Filter

I Assume the input signals x are graph signals supported on a common graph with shift operator S

I Choose function class as graph filters of order K supported on S ⇒ Φ(x) = Φ(x; S,h) =

K−1∑
k=0

hkS
kx

x
z =

K−1∑
k=0

hk S
k
x

z = Φ(x;S,h)

I Learn ERM solution restricted to graph filter class ⇒ h? = arg min
h

∑
(x,y)∈T

J
(

Φ(x; S,h),y
)

⇒ Optimization is over filter coefficients h with the graph shift operator S given
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I Graph filters have limited expressive power because they can only learn linear maps

I An alternative choice for Φ is the set of graph perceptrons ⇒ Φ(x) = Φ(x; S,h) = σ

[K−1∑
k=0

hkS
kx

]

Perceptron

x
z =

K−1∑
k=0

hkS
k
x σ

[
z
]z

Φ(x;S,h)

I Optimal regressor restricted to perceptron class ⇒ h? = arg min
h

∑
(x,y)∈T

J
(

Φ(x; S,h),y
)

⇒ Perceptron allows learning of nonlinear maps ⇒ More expressive. Larger Representable Class
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I We increase expressivity further with a GNN

I Layer a few graph perceptrons (3 in the figure)

⇒ Feed the input signal x to Layer 1

⇒ Connect output of Layer 1 to input of Layer 2

⇒ And output of Layer 2 to input of Layer 3

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized on filter tensor H = [h1,h2,h3]
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Layer 3

x
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h1k S
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]z1
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h2k S
k

x1 x2 = σ
[
z2
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K−1∑
k=0

h3k S
k

x2 x3 = σ
[
z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;S,H)
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I Learn Optimal GNN tensor H? = (h?1,h
?
2,h

?
3) as

H? = arg min
H

∑
(x,y)∈T

`
(

Φ(x; S,H),y
)

I Optimization is over tensor only. Graph S is given

⇒ Prior information given to the GNN
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I GNNs are minor variations of graph filters

I Only difference is adding pointwise nonlinearities

⇒ Signal entries are processed individually

⇒ There is no mixing of components

I GNNs do work (much) better than graph filters

⇒ Which is surprising and deserves explanation

⇒ Which we will attempt with stability analyses
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I GNN Output depends on the graph S.

I We can think of S as a parameter

⇒ Encoding prior information. As we’ve done so far

I Or, we can reinterpret S as an input

⇒ Enabling transference across graphs

⇒ A trained GNN is just a filter tensor H?
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I There is no difference between CNNs and GNNs

I To recover a CNN just particularize the shift operator
the adjacency matrix of the line graph

S =


: : :

·· 0 0 0 ··
·· 1 0 0 ··
·· 0 1 0 ··
·· 0 0 1 ··

: : :
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I We chose graph filters and graph neural networks (GNNs) because of our interest in graph signals
I We argued this is a good idea because they are generalizations of convolutional filters and CNNs
I We can explore this better if we go back to the road not taken ⇒ Fully connected neural networks
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I Instead of graph filters, we choose arbitrary linear functions ⇒ Φ(x) = Φ(x; H) = H x

x
z = Hx

z = Φ(x;H)

I Optimal regressor is ERM solution restricted to linear class ⇒ H? = arg min
H

∑
(x,y)∈T

J
(

Φ(x; H),y
)
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I We increase expressive power with the introduction of a perceptrons ⇒ Φ(x) = Φ(x; H) = σ
[
Hx

]

Perceptron

x
z = Hx σ

[
z
]z

Φ(x;H)

I Optimal regressor restricted to perceptron class ⇒ H? = arg min
H

∑
(x,y)∈T

J
(

Φ(x; H),y
)
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I Further increase expressivity with a NN

I Layer a few graph perceptrons (3 in the figure)

⇒ Feed the input signal x to Layer 1

⇒ Connect output of Layer 1 to input of Layer 2

⇒ And output of Layer 2 to input of Layer 3

I Last layer output is the NN output ⇒ Φ(x;H)

⇒ Parametrized on tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x

z1 = H1 x x1 = σ
[
z1

]z1

z2 = H2 x1 x2 = σ
[
z2

]z2

z3 = H3 x2 x3 = σ
[
z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)
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I Since the GNN is a particular case of a fully connected NN, the latter attains a smaller cost

min
H

∑
(x,y)∈T

J
(

Φ(x;H),y
)
≤ min

H

∑
(x,y)∈T

J
(

Φ(x; S,H),y
)

I The fully connected NN does better. But this holds for the training set
I In practice, the GNN does better because it generalizes better to unseen signals
⇒ Because it exploits internal symmetries of graph signals codified in the graph shift operator
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I Suppose the graph represents a recommendation system where we want to fill empty ratings
I We observe ratings with the structure in the left. But we do not observe examples like the other two
I From examples like the one in the left, the NN learns how to fill the middle signal but not the right

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12



68/146Graph Neural Networks

F. Gama
fgama@berkeley.eduGeneralization with a Graph Neural Network

I Suppose the graph represents a recommendation system where we want to fill empty ratings
I We observe ratings with the structure in the left. But we do not observe examples like the other two
I The GNN still learns how to fill the middle signal. But it also learns how to fill the right signal
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I This will be formalized later as the permutation equivariance of graph neural networks
I It is analogous to the shift equivariance of convolutional neural networks. Which is a particular case
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I Graph signal ⇒ Single scalar associated to each node ⇒ x : nodes→ R
I Extend descriptive power ⇒ Assign a vector to each node
⇒ X : nodes→ R2 ⇒ X : nodes→ R3 ⇒ X : nodes→ RF

I Multiple feature graph signal ⇒ Matrix X of size N (nodes)× F (features)
⇒ Row i collects all features at node i ⇒ Local information at node i
⇒ Column f represents feature f at all nodes ⇒ xf is a graph signal
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Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019.
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I Convolution ⇒ Linear operation, local information, distributed implementation

Y =

K−1∑
k=0

SkXHk

I Multiplication by S on the left ⇒ Shifts each graph signal feature Sxf

I Multiplication by H on the right ⇒ Linear combination of features at each node (No exchanges)

I The convolution is now equivalent to the application of a bank of graph filters
I For each feature xf we apply the (f, g) filter to obtain xfg ⇒ Linear, local, distributed

x
fg

=

K−1∑
k=0

S
k
x
f
h
fg
k

⇒ There are G filters applied to each input xf ⇒ There a total of F ×G filters (size of Hk)

I Aggregate the output of each gth filter across all F features ⇒ y
g
=

F∑
f=1

x
fg ⇒ Y = [y1, . . . ,yG]

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019
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I Single feature graph neural networks ⇒ Φ(x; S,H) = xL

x` = σ
[K`−1∑
k=0

Skx`−1h`k

]
x` graph signal at layer ` ⇒ Size N × 1

h`k kth filter tap at layer ` ⇒ Size 1× 1 ⇒ Learn
∑
`K` filter taps H = {h`k}

S shift operator (given by the problem) ⇒ Size N ×N

I Hyperparameters (design choices) ⇒ Affect the number of learnable parameters
⇒ L: number of layers
⇒ K`: number of filter taps on each layer

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019
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I Multi feature graph neural networks ⇒ Φ(x; S,H) = XL

X` = σ
[K`−1∑
k=0

SkX`−1H`k

]
X` graph signal at layer ` ⇒ Size N × F`
H`k kth filter tap at layer ` ⇒ Size F`−1 × F` ⇒ Learn

∑
`K`F`F`−1 filter taps H = {H`k}

S shift operator (given by the problem) ⇒ Size N ×N

I Hyperparameters (design choices) ⇒ Affect the number of learnable parameters
⇒ L: number of layers
⇒ K`: number of filter taps on each layer
⇒ F`: number of features on each layer

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019
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I Increasing number of features in each layer ⇒ Increasing dimension of the signals
⇒ Increasing computational cost of the convolution operation

I Pooling P ⇒ Construct regional summaries of information at each layer

X` = P`

σ[
K`−1∑
k=0

S
k
X`−1H`k

]
⇒ Keep only some summaries ⇒ X` of size N` × F` with N` ≤ N`−1 ≤ N

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019

Ruiz, Gama, Marques, Ribeiro, “Invariance-Preserving Localized Activation Functions for Graph Neural Networks”, IEEE TSP 2020
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I Pooling ⇒ Local summarizing function followed by downsampling

z` = P`

{
z`−1

}
= C`ρ

[
z`−1;S

]
⇒ ρ[·; S] summarizing function ⇒ Example [ρ[z; S]]i = max{[z]i, [Sz]i, . . . , [S

K−1z]i}
⇒ C` binary N` ×N`−1 selection matrix ⇒ [C`]ij ∈ {0, 1}, C1 = 1, CT1 � 1
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Ruiz, Gama, Marques, Ribeiro, “Invariance-Preserving Localized Activation Functions for Graph Neural Networks”, IEEE TSP 2020
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I Graph convolution ⇒ Shift operator respects the size of the graph N ×N

C`−1Y` =

K−1∑
k=0

C`−1SkCT
`−1X`−1 H`k

I After pooling (sampling) the dimension of the signal X`−1 has been reduced N`−1 ≤ N
⇒ Dimension mismatch between S of size N ×N and X`−1 of size N`−1×F`−1

I Zero padding ⇒ Use sampling matrix C`−1 to adapt dimensions
⇒ CT

`−1X`−1 has size N×F`−1 where unsampled nodes have now a zero value
I Output Y` has dimension N ⇒ Needs to be downsampled to have size N`−1 (same as X`)

⇒ C`−1Y`−1 samples the output at the same nodes as X`−1 ⇒ C`−1Y`−1 has size N`−1 × F`

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019
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I Pooling ⇒ Reduce computational complexity of the convolution operation

C`−1Y` =

K−1∑
k=0

S
(k)
`−1 X`−1 H`k

I Centralized computation ⇒ S
(k)
`−1 = C`−1SkCT

`−1 reduced kth shift operator ⇒ Size N`−1 ×N`−1

⇒ Operations are now on dimensions N`−1 ≤ N ⇒ Matrix S
(k)
`−1 is computed before training

I Decentralized computation ⇒ CT
`−1X`−1 is a graph signal with zeros in unsampled nodes

⇒ Multiplication of shift operator and graph signal Sk(CT
`−1X) ⇒ Local and distributed

I Pooling that reduces computational cost and respects the topology of the graph

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019
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I Items within a collection are being rated by a pool of users
⇒ Some pairs of items have been rated by multiple users
⇒ Likelihood of two items getting similar ratings
⇒ Estimate the Pearson correlation between items
⇒ Items are nodes and rating similarities are edges

I A user rates some of the items ⇒ Graph signal
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We want to know what rating the user would give to a target item

Huang, Marques, Ribeiro, “Rating Prediction via Graph Signal Processing”, IEEE TSP 2018



80/146Graph Neural Networks

F. Gama
fgama@berkeley.eduRecommendation Systems: Modeling in Graph Signal Processing

I We want to know what rating xt the user would give to a target item t ⇒ Estimate [x]t = xt

⇒ Based on the ratings the user has given to some of the items ⇒ Graph signal x

⇒ Leveraging the rating similarities between items ⇒ Graph structure S

I Entry [x]i = 0 if item i has not been rated. [S]ij Pearson correlation (k-NN sparsification)

I Train GNN Φ(x; S,H) to map between ratings x of user and estimated rating xt of item t

⇒ Select number of layers L, number of features F`, number of filter taps K`
⇒ Last layer has KL = 1 and FL = 1 ⇒ Extract resulting value [xL]t = xt at node t

Gama, Isufi, Leus, Ribeiro, “Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural Networks”, IEEE SPM 2020
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I MovieLens-100k ⇒ 100, 000 ratings given by 943 users to 1, 582 movies (Ratings go from 1 to 5)
⇒ Each movie is a node in the graph ⇒ 1, 582 nodes ⇒ graphType = ’movie’

I Target movie is Star Wars (labelID = [50]) ⇒ 583 users have rated the movie ⇒ Graph signals
⇒ The actual rating of the target movie xt is extracted as a label y = xt ⇒ Dataset {(x, y)}

I Use ratioTrain = 0.9 for training set and further split ratioValid = 0.1 for validation
I Build graph from data ⇒ Edges are Pearson correlation ⇒ kNN = 10 nearest neighbors�

1 import Utils.dataTools as dataTools
2 # Load the data
3 data = dataTools.MovieLens(graphType, # ’user’ or ’movie’
4 labelID, # ID of target node to estimate
5 ratioTrain, # ratio of training samples
6 ratioValid, # ratio of validation samples (out of training samples)
7 dataDir,
8 # Graph building options
9 keepIsolatedNodes, # If True keeps isolated nodes

10 forceUndirected, # If True creates an undirected graph
11 forceConnected, # If True keeps the largest connected component
12 kNN) # Number of nearest neighbors� �

https://github.com/alelab-upenn/graph-neural-networks

https://github.com/alelab-upenn/graph-neural-networks
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I Set the architecture parameters ⇒ L = 2, F1 = 64, F2 = 32, K1 = K2 = K = 5, ReLU nonlinearity�
F1 = 64; F2 = 32; K = 5; nonlinearity = nn.ReLU� �

I Get the shift operator S obtained from the dataset ⇒ Normalize it�
S = data.getGraph()
S = S/np.max(np.real(np.linalg.eigvals(S)))� �

I Create the architecture ⇒ Use module architectures.py provided�
1 import Modules.architectures as archit
2 Phi = archit.LocalGNN(# Graph filtering features (a list element per layer)
3 [1, F1, F2], # 1 is the number of input features at the first layer
4 # Graph filtering taps (a list element per layer)
5 [K, K], # Same number of filter taps in each layer
6 True, # If True include bias vector
7 # Nonlinear function
8 nonlinearity,
9 # Pooling definition (not used)
10 [S.shape[0],S.shape[0]], gml.NoPool, [1,1],
11 # Local readout layer (maps F2 into this given number of output features)
12 [1], # Needs to be a scalar because it represents the estimated rating
13 # Graph shift operator
14 S)� �

https://github.com/alelab-upenn/graph-neural-networks

https://github.com/alelab-upenn/graph-neural-networks
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I model.py contains the Model class that binds together all elements of a ML model�
1 import Modules.model as model
2 modelGNN = model.Model(Phi, # Architecture
3 nn.SmoothL1Loss(), # Loss function
4 optim.Adam(Phi.parameters(), lr = 0.005), # Optimizer
5 training.TrainerSingleNode, # Trainer
6 evaluation.evaluateSingleNode, # Evaluator
7 ’cpu’, # Device (either ’cpu’ or ’cuda’)
8 ’LocalGNN’, # Name of the architecture
9 saveDir) # Directory where to save the run� �
I The model class has a method that trains the architecture ⇒ nEpochs = 40, batchSize = 5�

modelGNN.train(data, nEpochs, batchSize)� �
https://github.com/alelab-upenn/graph-neural-networks

https://github.com/alelab-upenn/graph-neural-networks
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I The Model class has a method for evaluation as well�
evalVars = modelGNN.evaluate(data)� �

I evalVars is a dictionary containing the RMSE achieved by the model
⇒ ’costBest’ gives the RMSE (cost) for the parameters that got the lowest validation error
⇒ ’costLast’ gives the RMSE (cost) for the parameters at the last training step
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I Function words are those that don’t carry meaning
I Their use depends on the language’s grammar

I Different authors use slightly different grammar
I Capture with a word adjacency network (WAN)
⇒ How often pairs of words appear together
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Segarra, Eisen, Ribeiro, “Authorship Attribution through Function Word Adjacency Networks”, IEEE TSP 2015
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I Shakespeare’s and Marlowe’s WANs are sufficiently different to ascertain their collaboration on Henry VI
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Segarra, Eisen, Egan, Ribeiro, “Attributing the Authorship of the Henry VI Plays by Word Adjacency”, Shakespeare Quarterly 2016



88/146Graph Neural Networks

F. Gama
fgama@berkeley.eduAuthorship Attribution as Graph Signal Processing

I Build WANs that accurately reflect an author’s signature requires long texts
⇒ Attributing short texts becomes challenging even if we have an existing accurate WAN

I The WAN establishes a graph structure S ⇒ Nodes are words, edges are co-occurrence
I Graph signal x defined on the nodes ⇒ Word count of a text ⇒ Histogram of function words

I Use GNNs to classify the authorship of a short text
⇒ Leverage a given, accurate WAN S and the word histogram x of the short text

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019
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I Corpus of texts written by Jane Austen and Edgar Allan Poe ⇒ Build WAN S

I Pickup pages (1K words) written by J. Austen or E. A. Poe from a pool of 22 contemporaries
⇒ Compute word count of function words on each page ⇒ Graph signals x

I Compare GNNs with different values of K, compare with a linear graph filter

Linear Filter GCNNK=2 GCNNK=3 GCNNK=4 GCNNK=5

Models
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C
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ti

on
E

rr
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6.92 5.13 6.41 6.67 5.64

Jane Austen

Linear Filter GCNNK=2 GCNNK=3 GCNNK=4 GCNNK=5
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13.33 10.95 10.95 13.81 12.86

Edgar Allan Poe

Ruiz, Gama, Marques, Ribeiro, “Invariance-Preserving Localized Activation Functions for Graph Neural Networks ”, IEEE TSP 2020
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I Time convolutions are intuitive. Graph convolutions not so much.
⇒ Local information, efficient implementation (distributed)

I When intuition fails we need to resort to first principles ⇒ What do we know about CNNs?
I CNNs also exploit the local information and have an efficient implementation
⇒ Translation equivariance and stability [Mallat ’12] ⇒ Explain remarkable performance

I Permutation equivariance ⇒ Exploit internal symmetries of the graph

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I A permutation P is a binary matrix that satisfies

{P ∈ {0, 1}N×N : P1 = 1,PT1 = 1}

I Permuting a vector PTx reorders the entries of the vector
I Permuting a matrix PTSP reorders the entries of the matrix
I The reordering is correspondent with the linear operation (PTSP)(PTx) = PT(Sx)

I A permutation amounts to a relabeling of the nodes of the graph
I Choosing a shift operator S to describe a graph forces a labeling of the nodes
⇒ This labeling is required for operations. But is arbitrary

I We want signal processing algorithms that are independent of arbitrary labelings

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I Consider the graph convolution operator H(S)x =
∞∑
k=0

hk Sk x

I Depends on filter parameters h = {hk}∞k=0 and shift operator S; applied to the input signal x

Theorem (Gama, Bruna, Ribeiro)
Graph convolutions are equivariant to permutations. For graphs with permuted shift
operators Ŝ = PTSP and permuted graph signals x̂ = PTx it holds

H(Ŝ)x̂ = PTH(S)x

Proof ⇒ H(Ŝ)x̂ =
∞∑
k=0

hk Ŝkx̂ =
∞∑
k=0

hk (PTSP)kPTx = PT

( ∞∑
k=0

hk Skx

)
= PTH(S)x

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I GNN is a cascade of layers
⇒ Graph filters and pointwise nonlinearities

I A pointwise operation does not mix node values
⇒ Independent of the graph

I GNN retains permutation equivariance

Layer 1

Layer 2

Layer 3

x

z1 =
∞∑

k=0

h1kS
k
x x1 = σ

[
z1

]z1

z2 =
∞∑

k=0

h2kS
k
x1 x2 = σ

[
z2

]z2

z3 =

∞∑
k=0

h3kS
k
x2 x3 = σ

[
z3

]z3

x1
x1

x2
x2

x3 = Φ(x;S,H)

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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Theorem (Gama, Bruna, Ribeiro)
GNNs are equivariant to permutations. For graphs with permuted shift operators Ŝ = PTSP and permuted
graph signals x̂ = PTx it holds

Φ(x̂; Ŝ,H) = PTΦ(x; S,H)

where Φ(x̂; Ŝ,H) is the output of processing x̂ on Ŝ with GNN H and Φ(x; S,H) is the output of
processing x on S with the same GNN H.

I Signal Processing with Graph Neural Networks is independent of labeling

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I Invariance to node relabelings allows GNNs to exploit internal symmetries of graph signals
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I Although different, both signals are permutations of one other
⇒ Permutation equivariance ⇒ The GNN can learn about the right one from seeing the left one

I Permutation Equivariance is not a good idea in all problems ⇒ Edge-Variant GNNs

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.

Isufi, Gama, Ribeiro, “EdgeNets: Edge Varying Graph Neural Networks”, arxiv:2001.07620, 2020.

arxiv:2001.07620
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I Consider a graph with a shift operator S and another graph with a shift operator Ŝ (same size N)
I Consider a set of filter taps {hk} and filters H(S) and H(Ŝ) with the same filter taps
I We want to characterize how different are H(S) and H(Ŝ)

I We know that when Ŝ = PTSP, then H(Ŝ) = PTH(S) for all permutations P ∈ P
⇒ We want a distance between operators H(S) and H(Ŝ) that is modulo permutations

‖H(S)−H(Ŝ)‖P = min
P∈P
‖H(PTSP)−H(Ŝ)‖

⇒ Indeed, if Ŝ = PTSP then ‖H(S)−H(Ŝ)‖P = 0 confirming permutation equivariance

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.



99/146Graph Neural Networks

F. Gama
fgama@berkeley.eduAbsolute Perturbations

I We can measure distances between graph filters modulo permutations ⇒ ‖H(S)−H(Ŝ)‖P
I We want to characterize this as a function of some distance between S and Ŝ (same filter taps)
⇒ We want to know how changing the graph support affects the output of a filter

I Measure the distance between S and Ŝ ⇒ Set of absolute error matrices modulo permutations

E(S, Ŝ) = {E ∈ RN×N : PTŜP = S + E , P ∈ P}

⇒ Define absolute perturbation distance as d(S, Ŝ) = minE∈E(S,Ŝ) ‖E‖ ≤ ‖Ŝ− S‖

I The effect of the shift operator on the output of a graph filter ⇒ Graph frequency domain

ỹi = h̃(λi)x̃i

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I The frequency response h̃(λ) of the filter H satisfies |h′(λ)| ≤ C

λ

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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Theorem (Gama, Bruna, Ribeiro)
Graph convolutions are stable to absolute perturbations. Given two graphs with shift operators S and Ŝ
respectively such that their absolute distances are d(S, Ŝ) ≤ ε, then Lipschitz filters with constant C satisfy

‖H(S)−H(Ŝ)‖P ≤ C (1 + δ
√
N) ε + O(ε2)

where δ = (‖U−V‖2 + 1)2 − 1 ≤ 8 is the eigenvector misalignment constant between the eigenvectors V
of S and the eigenvectors U of the error matrix E.

I The difference in the output is bounded linearly by the distance between the shift operators
I The bound depends on the filter and on the perturbation model
I The bound is universal for all graphs with the same number of nodes N

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I The theorem is true, and it holds for all graphs. But is not very useful
⇒ The absolute perturbation model is too arbitrary ⇒ Fails to measure structural graph change

I Absolute perturbations link Ŝ with S through PTŜP = S + E ⇒ Error matrix E can be arbitrary

PT

 Ŝ

P =

 S

+

 E



⇒ We can alter the graph topology arbitrarily without changing the value of ‖E‖

I We need a better perturbation model ⇒ One that takes into account the graph being perturbed

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I We measure distances between graph filters modulo permutations

‖H(S)−H(Ŝ)‖P = min
P∈P
‖H(PTSP)−H(Ŝ)‖

I We want to know how changing the graph support affects the output of a filter

I Measure the distance between S and Ŝ ⇒ Set of relative error matrices modulo permutations

E(S, Ŝ) = {E ∈ RN×N : PTŜP = S + ETS + SE , P ∈ P}

⇒ Define relative perturbation distance as d(S, Ŝ) = min
E∈E(S,Ŝ)

‖E‖ ≤
‖Ŝ− S‖
‖S‖

I The effect of the shift operator on the output of a graph filter ⇒ Graph frequency domain

ỹi = h̃(λi)x̃i

Gama, Bruna, Ribeiro “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I The frequency response h(λ) of the filter H satisfies |λh′(λ)| ≤ C

λ1 = 0 λ2 λ3 λ4

I Integral Lipschitz filters have to be wide for large λ
I But they can be arbitrarily thin for low λ

Gama, Bruna, Ribeiro “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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Theorem (Gama, Bruna, Ribeiro)
Graph convolutions are stable to relative perturbations. Given two graphs with shift operators S and Ŝ
respectively such that their relative distances are d(S, Ŝ) ≤ ε, then integral Lipschitz filters with constant C
satisfy

‖H(S)−H(Ŝ)‖P ≤ 2C (1 + δ
√
N) ε + O(ε2)

where δ = (‖U−V‖2 + 1)2 − 1 ≤ 8 is the eigenvector misalignment constant between the eigenvectors V
of S and the eigenvectors U of the error matrix E.

I The difference in the output is bounded linearly by the distance between the shift operators
I The bound depends on the filter and on the perturbation model
I The bound is universal for all graphs with the same number of nodes N

Gama, Bruna, Ribeiro “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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Theorem (Gama, Bruna, Ribeiro)
Graph neural networks are stable to relative perturbations. Let S and Ŝ be the corresponding shift
operators of two graphs such that their relative distances are d(S, Ŝ) ≤ ε. Let Φ(·; S,H) be a GNN with L
layers and F features per layer and with integral Lipschiz filters with constant C. Then, it holds that

‖Φ(·; S,H)− Φ(·; Ŝ,H)‖P ≤ 2C (1 + δ
√
N) LFL−1 ε + O(ε2)

where δ = (‖U−V‖2 + 1)2 − 1 ≤ 8 is the eigenvector misalignment constant between the eigenvectors V
of S and the eigenvectors U of the error matrix E.

I The difference in the output is bounded linearly by the distance between the shift operators
I The bound depends on the filter, the architecture design and on the perturbation model
I The bound is universal for all graphs with the same number of nodes N

Gama, Bruna, Ribeiro “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I Permutation equivariance and stability are properties of both graph convolutions and GNNs

I Why choose GNNs over graph convolutions?
⇒ Q1: What is good about pointwise nonlinearities?
⇒ Q2: What is wrong with linear graph convolutions?

I A2: They can be unstable to perturbations of the graph if we push their discriminative power

I A1: They make GNNs stable to perturbations while retaining discriminability

I These questions can be answered with an analysis in the spectral domain

ỹi = h̃(λi)x̃i

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I The GNN stability theorem is elementary to prove for an edge dilation ⇒ Ŝ = (1 + ε)S

I An edge dilation just produces a spectrum dilation ⇒ λ̂i = (1 + ε)λi, E = (ε/2)I

λ̂1
λ1 λ̂i

λi λ̂N
λN

I Small deformations may result in large filter variations for large λ if filter is not integral Lipschitz
Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I The GNN stability theorem is elementary to prove for an edge dilation ⇒ Ŝ = (1 + ε)S

I An edge dilation just produces a spectrum dilation ⇒ λ̂i = (1 + ε)λi, E = (ε/2)I

λ̂1
λ1 λ̂i

λi λ̂N
λN

I Integral Lipschitz is always stable ⇒ Eigenvalue does not move or filter does not move
Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I Q2: What is wrong with linear graph convolutions?
I Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

λN−1 λN

I Limits their value in machine learning problems where features at large eigenvalues are important

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I Q2: What is wrong with linear graph convolutions?
I Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

λ̂N−1
λN−1 λ̂N

λN

I Limits their value in machine learning problems where features at large eigenvalues are important

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I Q1: What is good about pointwise nonlinearities?
I Preserve permutation equivariance while generating low graph frequency components
⇒ Which we can discriminate with stable filters

λ̂1
λ1 λ̂i

λi λ̂N
λN

Spectrum of rectified
graph signal

xrelu = max(x, 0)

I The nonlinearity demodulates. It creates low frequency content that is stable
Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I Q1: What is good about pointwise nonlinearities?
I Preserve permutation equivariance while generating low graph frequency components
⇒ Which we can discriminate with stable filters

GNNs are stable and selective information processing architectures

I The nonlinearity demodulates. It creates low frequency content that is stable
Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I We want the team to coordinate on their individual velocities without colliding with each other

I This is a very easy problem to solve if we allow for centralized coordination ⇒ ui =
∑N
i=1 vi

I But it is very difficult to solve if we do do not allow for centralized coordination ⇒ ui = . . .

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with GNNs”, CoRL 2019.
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I The challenge in designing behaviors for distributed systems is the partial information structure

xi(t) xj(t− 1) for j ∈ N 1
i

xj(t− 2) for j ∈ N 2
i xj(t− 3) for j ∈ N 3

i

I Node i has access to its own local information at time t ⇒ xi(t)

I And the information of its 1-hop neighbors at time t− 1 ⇒ xj(t− 1) for all j ∈ N 1
i

I And the information of its 2-hop neighbors at time t− 2 ⇒ xj(t− 2) for all j ∈ N 2
i

I And the information of its 3-hop neighbors at time t− 3 ⇒ xj(t− 3) for all j ∈ N 3
i

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with GNNs”, CoRL 2019.
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I Optimal centralized actions act directly on all states π∗(x(t)) and can be readily computed

I Distributed actions can only depend on information history ⇒ Xi(t) =

K−1⋃
k=0

{
xj(t− k) : j ∈ N ki

}
⇒ Optimal distributed actions π∗(Xi(t)) are famously difficult to find [Witsenhausen ’68]

⇒ When optimal solutions are out of reach we resort to heuristics ⇒ data driven heuristics

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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I Parametrize π(Xi(t)) with a graph neural network π(Xi(t),H)

⇒ Adopt learning architecture that naturally processes distributed partial information Xi(t)

I Train π(Xi(t),H) by using imitation learning

I Optimal centralized policy π∗(x(t)) can be computed during training time
I Find the parameters H that make π(Xi(t),H) closer to π∗(x(t))

H∗ = arg min
H

Eπ∗
[
J
(
π
(
Xi(t),H

)
,π∗(x(t))

)]
I Centralized policy required at train time but not at test time

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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I GNN policies π(Xi(t),H) = Φ(x(t); S(t),H) respect the partial information structure Xi(t)

⇒ Graph filters H(Xi(t)) =
∑K−1
k=0 hk S(t) · · ·S(t− (k − 1))x(t− k)

I Permutation equivariance
⇒ If two agents observe the same input
⇒ Their k-hop neighbors observe the same inputs
⇒ And the local neighborhood structures of the graph are the same

I Then the output of the control policy is the same at both nodes

I Stability ⇒ If graphs are similar, GNN outputs will be similar

I These properties are a necessity for offline training

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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I If we want to train offline and execute online we can’t assume the graph is the same

I Train offline on a graph like this I And execute online on a graph like this

I Graph convolutions ⇒ Learn parameters H ⇒ Run on any S: H(S) =
∑K−1
k=0 hk Sk

I Permutation equivariance ⇒ Exploit symmetries, reuse data
I Stability ⇒ Similar graphs yield similar outputs

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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I Team of N agents with positions ri(t), velocities vi(t) and acceleration ui(t)

I System dynamics ⇒ Constant acceleration during each interval Ts{
ri(t+ 1) = ui(t)T

2
s /2 + vi(t)Ts + ri(t)

vi(t+ 1) = ui(t)Ts + vi(t)

I Control acceleration ui(t) ⇒ Design sequence of acceleration values {ui(t)}
I Proof of concept ⇒ More realistic scenarios are available [Tolstaya et al ’19, Hu et al ’20, Li et al ’20]

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with GNNs”, CoRL 2019.

Li, Gama, Ribeiro, Prorok, “Graph Neural Networks for Decentralized Multi-Robot Path Planning”, IRoS 2020.

Hu, Gama, Wang, Ribeiro, Sadler “VGAI: A Vision-Based Decentralized Controller Learning Framework for Robot Swarms”, arxiv.org/abs/2002.02308

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2002.02308
arxiv.org/abs/2012.14906
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I Coordinate the velocities vi(t) of all agents to be the same while avoiding collisions
I Measure the cost by computing the velocity variance of the team for the entire trajectory

J
[
{vi(t)}

]
=

1

N

∑
t

N∑
i=1

‖vi(t) − v̄j(t)‖2 , v̄j =
1

N

N∑
j=1

vj(t)

I Control accelerations ui(t) such that min
ui(t) , t≥0

J
[
{vi(t)}

]
⇒ Velocity vi(t+ 1) = ui(t)Ts + vi(t)

t = 0s t = 1s t = 2s

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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I Decentralized setting ⇒ Agents can only communicate if ‖ri(t)− rj(t)‖ ≤ R
I Communication graph S(t) ⇒ Edge [S(t)]ij if agents can communicate
I Use GNNs that respect the communicaton graph ⇒ Local and distributed operations

U(Xi(t),H) = Φ(X(t); S(t),H) , H(Xi(t)) =

K−1∑
k=0

hk S(t) · · ·S(t− (k − 1))x(t− k)

t = 0s t = 1s t = 2s

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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I Train GNN Φ(X(t); S(t),H) by using imitation learning ⇒ Find H that make Φ closer to U?

H? = arg min
H

EU?

[
‖Φ(X(t); S(t),H)−U?‖

]

I The optimal centralized solution U? that avoids collisions is given by

u?i (t) = −
N∑
j=1

(
vi(t)− vj(t)

)
−

N∑
j=1

∇ri(t)
P (ri(t), rj(t))︸ ︷︷ ︸

collision avoidance

I The state xi(t) for each agent is set to ∇ri(t)
P (ri(t), rj(t)) ⇒ Local to each agent

I Centralized controller U? is required at train time but not at testing time

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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I 50 Agents.
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Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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I Train on 50 agents. Test on 100 agents.

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906
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I GNNs learn controllers to drive a team of agents to fly at the same velocity while avoiding collisions
⇒ Control actions taken by each agent based only on outdated neighboring information

I Transfer ⇒ The communication network changes from time to time ⇒ GNNs work
I Scale ⇒ Learn to control teams of increasing number of agents ⇒ GNNs work
I Transfer at scale ⇒ Train on a small team, test on a big team ⇒ GNNs work

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with GNNs”, CoRL 2019.

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906


129/146Graph Neural Networks

F. Gama
fgama@berkeley.eduConclusions

Introduction

Graphs, Graph Signals and Convolutions

Graph Neural Networks

Multiple Features and Pooling

Recommendation Systems

Authorship Attribution

Permutation Equivariance

Absolute Perturbations

Relative Perturbations

Stability Insights

Learning Decentralized Control

Flocking

Conclusions



130/146Graph Neural Networks

F. Gama
fgama@berkeley.eduQuiz

What?

Why?

⇒

⇒

Machine learning on graphs

Generic models of signal structure.

Models of physical infrastructure

How?

Does this work?

Should this work?

⇒

⇒

⇒

Graph Neural Networks

Yes: Examples

Yes: Equivariance and Stability
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I We saw several systems (and there are many more) that can be modeled with graph signals
I Use graphs as generic descriptors of signal structure with signal values associated to nodes and edges

expressing expected similarity between signal components
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I Nodes are words. Signal values are word frequencies. Edges are word co-occurrence frequencies
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I We saw several systems (and there are many more) that can be modeled with graph signals
I Use graphs as generic descriptors of signal structure with signal values associated to nodes and edges

expressing expected similarity between signal components
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I Nodes are products. Signal values are product ratings. Edges are cosine similarities of past scores
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I We saw several systems (and there are many more) that can be modeled with graph signals
I Use graphs as generic descriptors of signal structure with signal values associated to nodes and edges

expressing expected similarity between signal components
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I Nodes are drones. Signal values are velocities. Edges are sensing and communication ranges
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I We saw several systems (and there are many more) that can be modeled with graph signals
I Use graphs as generic descriptors of signal structure with signal values associated to nodes and edges

expressing expected similarity between signal components
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I Nodes are transceivers. Signal values are QoS requirements. Edges are wireless channels strength
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I Graph filter on shift operator S with coefficients hk is a polynomial on S ⇒ H(S) =
∞∑
k=0

hkS
k

I A graph convolution is the result of applying a graph filter ⇒ z = h ∗S x = H(S)x
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I Shares/Inherits locality of time convolutions ⇒ z = h0S0 x +h1S1 x +h2S2 x + . . . =
∞∑
k=0

hkS
k x

I The output of a graph filter depends on the filter coefficients h and the graph shift operator S
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I A graph perceptron is the compositions of a

graph filter with a pointwise nonlinearity

I Layer a few graph perceptrons (3 in the figure)

⇒ Feed the input signal x to Layer 1

⇒ Connect output of Layer 1 to input of Layer 2

⇒ And output of Layer 2 to input of Layer 3

I Last layer output is the GNN output ⇒ Φ(x; S,H)

Layer 1

Layer 2

Layer 3

x

z1 =

K−1∑
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h1k S
k

x x1 = σ
[
z1

]z1

z2 =

K−1∑
k=0

h2k S
k

x1 x2 = σ
[
z2

]z2

z3 =

K−1∑
k=0

h3k S
k

x2 x3 = σ
[
z3

]z3

x1

x1

x1
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x2

x2

x3 = Φ(x;S,H)

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019.
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I A GNN is a minor variation of a graph filter

⇒ Pointwise nonlinearities and compositions

I GNNs can be transferred across different graphs

⇒ Graph S reinterpreted as an input

I Convolutional (C)NNs are a particular case

⇒ When S is adjacency of a line graph
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Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019.
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I Basic architecture ⇒ A lot more goes on in practice

⇒ Multiple features.

⇒ Pooling.

I Including many other things we did not cover

⇒ Local Nonlinear Activation.

⇒ Edge Varying Graph Filters.

⇒ Recurrent GNNs and Gating
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Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP 2019.
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I GNNs fill ratings with state of the art accuracy ⇒ Exploit similarities between past ratings
I Leveraging structure is necessary for scalable learning. There’s no such thing as model free learning

Ruiz, Gama, Ribeiro, “Invariance-Preserving Localized Activation Functions for Graph Neural Networks”, IEEE TSP 2019.
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I Graphs are also intrinsic to physical systems ⇒ Where they are the source of the problem
⇒ GNNs can be implemented in a distributed manner ⇒ Flock as well as centralized controller

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks”, CoRL 2019.
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I GNNs have great potential for data-driven (simulation driven) optimization in DCIS
⇒ Because they leverage underlying graphs and can be implemented in a distributed manner
⇒ Formation control ⇒ Maintain formation without colliding and tolerating wind disturbances

Khan, Tolstaya, Ribeiro, Kumar, “Graph Policy Gradients for Large Scale Robot Control, arxiv.org/abs/1907.03822

arxiv.org/abs/1907.03822
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I GNNs have great potential for data-driven (simulation driven) optimization in DCIS
⇒ Because they leverage underlying graphs and can be implemented in a distributed manner
⇒ Flocking with visual inputs ⇒ Use a CNN to produce features that feed a GNN

Hu, Gama, Wang, Ribeiro, Sadler, “VGAI: A Vision-Based Decentralized Controller Learning Framework for Robot Swarms, arxiv.org/abs/2002.02308

arxiv.org/abs/2002.02308
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I GNNs have great potential for data-driven (simulation driven) optimization in DCIS
⇒ Because they leverage underlying graphs and can be implemented in a distributed manner
⇒ Multi Robot Navigation ⇒ n robots have to reach n goals in cluttered environment

Li, Gama, Ribeiro, Prorok, “Graph Neural Networks for Decentralized Multi-Robot Path Planning”, IRoS 2020.
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I GNNs have great potential for data-driven (simulation driven) optimization in decentralized systems
⇒ Because they leverage underlying graphs and can be implemented in a distributed manner
⇒ Wireless Networks ⇒ Allocate resources over time varying channels

Eisen, Ribeiro, “Optimal Wireless Resource Allocation with Random Edge Graph Neural Networks”, IEEE TSP 2020.
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I GNNs have great potential for data-driven (simulation driven) optimization in decentralized systems
⇒ Because they leverage underlying graphs and can be implemented in a distributed manner
⇒ Power Distribution Grids ⇒ (Approximate) Decentralized solution of optimal power flow (OPF)

Owerko, Gama, Ribeiro, “Optimal Power Flow Using Graph Neural Networks”, IEEE ICASSP 2020.
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I GNNs are equivariant to permutations.
⇒ Signal Processing with Graph Neural Networks is independent of labeling

Theorem (Gama, Bruna, Ribeiro)

We are given graph signal (S,x) and apermuted graph signal (Ŝ, x̂) with Ŝ = PTSP and x̂ = PTx.

We run the same GNN tensor H on both producing outputs Φ(x; S,H) and Φ(x̂; Ŝ,H).

The outputs are related by the respective permutation

Φ(x̂; Ŝ,H) = PT Φ(x; S,H)

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I Permutation equivariance explains the ability of GNNS to leverage signal structure for generalization
⇒ Neural Networks, fully connected or graph, generalize from the left to the middle
⇒ Graph Neural Networks generalize from the left to the right
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I GNNs can be made uniformly Lipschitz stable with respect to relative perturbations of graphs

Theorem (Gama, Bruna, Ribeiro)

Let S and Ŝ be shift operators of graphs with relative distance d(S, Ŝ) ≤ ε. Let Φ(·; S,H) be a GNN with L

layers and F features per layer and with integral Lipschiz filters with constant C. Then,

∥∥∥Φ(·; S,H)− Φ(·; Ŝ,H)
∥∥∥
P
≤ 2C (1 + δ

√
N) LFL−1 ε + O(ε2)

where δ = (‖U−V‖2 + 1)2 − 1 ≤ 8 is the eigenvector misalignment constant between the eigenvectors V

of the graphS and the eigenvectors U of the error matrix E.

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, IEEE TSP 2020.
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I Given coefficients h = {hk}∞k=1 the graph filter frequency response is determined h̃(λ) =
∞∑
k=0

hkλ
k

I For a given graph S, the response is instantiated on its specific eigenvalues λi
I For a dilated graph S = (1 + ε)S, the response is instantiated at dilated eigenvalues λ̂i = (1 + ε)λi

I Can’t have universal Lipschitz constant ⇒ arbitrarily large eigenvalues can move arbitrarily much

λ̂1
λ1 λ̂i

λi λ̂N
λN
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I Integral Lipschitz graph filters are ⇒ (i) Arbitrarily sharp at eigenvalues λ→ 0

Integral Lipschitz graph filters are ⇒ (ii) Flat at eigenvalues λ→∞
I They are uniformly Lipschitz stable ⇒ (i) For λ→ 0 eigenvalue change bounded

They are uniformly Lipschitz stable ⇒ (ii) For λ→∞ filter change bounded.

λ̂1
λ1 λ̂i

λi λ̂N
λN



145/146Graph Neural Networks

F. Gama
fgama@berkeley.eduShould this work? Stability to Perturbations of the Graph

I Integral Lipschitz filters are stable, but they can’t discriminate high frequency graph signals
I Pointwise nonlinearities are low-pass demodulators that generate low frequency components
⇒ That can separated by stable filters at the next layer

λ̂1
λ1 λ̂i

λi λ̂N
λN



146/146Graph Neural Networks

F. Gama
fgama@berkeley.eduQuiz

What?
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⇒

⇒

⇒

Machine learning on graphs

Generic models of signal structure. Models of physical infrastructure

Graph Signals. Graph Convolutions. Graph Neural Networks.

Does this work?

Should this work?

⇒

⇒

Recommendation systems. Distributed collaborative intelligent systems

Large scale physical infrastructure

Permutation equivariance. Stability to graph perturbations.

Which graph filters can’t be if we push their discriminative power.
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