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Abstract

We consider the solution of both symmetric and unsymmetric systems of sparse linear equations. A new parallel distributed memory

multifrontal approach is described. To handle numerical pivoting e�ciently, a parallel asynchronous algorithm with dynamic

scheduling of the computing tasks has been developed. We discuss some of the main algorithmic choices and compare both imple-

mentation issues and the performance of the LDLT and LU factorizations. Performance analysis on an IBM SP2 shows the e�ciency

and the potential of the method. The test problems used are from the Rutherford±Boeing collection and from the PARASOL end

users. Ó 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

This work has been performed as a Work Package within the PARASOL Project. PARASOL is an
ESPRIT IV Long Term Research Project (No 20160) for ``An Integrated Environment for Parallel Sparse
Matrix Solvers''. The main goal of this Project, which started on 1 January 1996, is to build and test a
portable library for solving large sparse systems of equations on distributed memory systems. There are
twelve partners in ®ve countries, ®ve of whom are code developers and ®ve end users. The software is
written in Fortran 90 and uses MPI for message passing. There are routines for both direct and iterative
solution of symmetric and unsymmetric systems. The ®nal library will be in the public domain.

The PARASOL 1 Consortium is managed by PALLAS in Germany and consists of
· leading European research organizations with internationally recognized experience and an established

track record in the development of parallel solvers (CERFACS, GMD-SCAI, ONERA, Rutherford Ap-
pleton Laboratory (RAL), University of Bergen);

· industrial code developers who de®ne the requirements for PARASOL, are providing test cases generated
by their ®nite-element packages, and will use the developed software in production mode (Apex Technol-
ogies, Det Norske Veritas (DNV), INPRO, MacNeal-Schwendler (MSC), Poly¯ow);

· two leading European HPC software companies who will exploit the project results and are providing
state-of-the-art programming development tools (GENIAS, PALLAS).
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CERFACS and RAL with the collaboration of ENSEEIHT-IRIT are developing the direct solver based
on a multifrontal approach originally developed by [15,16] and extended to shared memory computers by
[2,3,13] and subsequently to a prototype version using PVM by [18]. The integration of this direct code into
the PARASOL Library and comments on the performance of earlier versions of the code can be found in [4].

We discuss some important aspects of multifrontal methods in Section 2 and describe the main imple-
mentation issues for distributed memory machines in Section 3. We consider a performance analysis of the
algorithm and show the results of some numerical experiments with the code in Section 4 before presenting
some concluding remarks and pointers to future work in Section 5.

Throughout this paper we will show the performance of our algorithms on a set of test problems. These
test problems consist of symmetric and unsymmetric problems from the Harwell±Boeing collection [14], the
forthcoming Rutherford±Boeing Sparse Matrix Collection [17], and problems from the PARASOL end
users and are shown in Table 1. The PARASOL test cases are mainly from large-scale ®nite-element
problems in structural analysis and ¯uid ¯ow. Several cases are from the automotive industry. The
GOODWIN matrix is from a ¯uid ¯ow application, WANG3 is from semiconductor device simulation, and
BCSSTK15 from structural analysis. For symmetric matrices, the number of entries does not include the
entries in the strictly upper triangular part of the matrix.

2. Multifrontal methods

The multifrontal method for the solution of sparse linear equations is a direct method based on the LU
factorization of the matrix. We refer the reader to our earlier papers [2,15,16] for full details of this
technique. In the following, we will consider multifrontal methods that solve the assembled system

Ax � b;

both when A is symmetric and when it is unsymmetric.
In both cases, the structure of the matrix is ®rst analysed to determine an ordering that, in the absence of

any numerical pivoting, will preserve sparsity in the factors. An approximate minimum degree ordering
strategy is used on the symmetrized pattern A� AT, and this analysis phase produces both an ordering and
an assembly tree. The assembly tree is then used to drive the subsequent numerical factorization and so-
lution phases. At each node of the tree, a dense submatrix (called a frontal matrix) is assembled using data
from the original matrix and from the children of the node. Pivots can be chosen from within a submatrix
of the frontal matrix (called the pivot block) and eliminations performed. The rows and columns of the pivot
block are fully summed, meaning that no further contributions to them will come from rows or columns
later in the pivotal sequence. The resulting factors are stored for use in the solution phase, and the Schur
complement (the contribution block) is passed to the parent node for assembly at that node. In the numerical

Table 1

Description of test problems

Problem name Type Order Non-zeros Origin

GOODWIN UNSUNS 7320 324 784 Rutherford±Boeing

BCSSTK15 SYMSYM 3948 60 882 Harwell±Boeing

WANG3 UNSUNS 26 064 177 168 Rutherford±Boeing

INV-EXTRUSION-1 UNSUNS 30 412 1 793 881 PARASOL

MIXING-TANK UNSUNS 29 957 1 995 041 PARASOL

B5TUER SYMSYM 162 610 4 036 144 PARASOL

BBMW7ST 1 SYMSYM 141 347 3 740 507 PARASOL

BMW3 2 SYMSYM 227 362 5 757 996 PARASOL

CRANKSEG 1 SYMSYM 52 804 5 333 507 PARASOL

CRANKSEG 2 SYMSYM 63 838 7 106 348 PARASOL

OILPAN SYMSYM 73 752 1 835 470 PARASOL

QUER SYMSYM 59 122 1 462 811 PARASOL

502 P.R. Amestoy et al. / Comput. Methods Appl. Mech. Engrg. 184 (2000) 501±520



factorization phase, the tree is processed from the leaf nodes to the root (if the matrix is reducible, we have
a forest, and each component tree of the forest will be treated similarly and independently). The subsequent
forward and backward substitutions during the solution phase process the tree from the leaves to the root
and from the root to the leaves, respectively. A crucial aspect of the assembly tree is that it de®nes only a
partial order for the factorization since the only requirement is that a child must complete its elimination
operations before the parent can be fully processed. It is this freedom that enables us to exploit parallelism
in the tree (tree parallelism).

In the unsymmetric case, threshold pivoting is used to maintain numerical stability so that it is possible
that the pivots selected at the analysis phase are unsuitable. In the numerical factorization phase, we are at
liberty to choose pivots from anywhere within the pivot block (including o�-diagonal pivots) but it still may
be impossible to eliminate all variables from this block. The result is that the Schur complement that is
passed to the parent node may be larger than anticipated by the analysis phase and so our data structures
may be di�erent from those forecast by the analysis. This implies that we need to allow dynamic scheduling
during numerical factorization. In the symmetric positive-de®nite case only static scheduling is required.
However, in this present work, we will use dynamic scheduling for symmetric systems because we want to use
our code to solve problems that are not positive de®nite and it provides more ¯exibility for load balancing.

In both the unsymmetric and symmetric cases, data is ®rst assembled at a node combining the Schur
complements from the children with data from the original matrix. The original matrix data comprises rows
and columns corresponding to variables that the analysis forecasts should be eliminated at this node. This
data is usually supplied in so-called arrowhead format, with the matrix ordered according to the permu-
tation from the analysis phase and row 1 preceding column 1 followed by row 2 (from the diagonal) and
column 2 and so on, where the columns are not supplied in the symmetric case, because they are identical to
the rows. This data and the contribution blocks from the children are assembled (or summed) into a frontal
matrix using indirect addressing (sometimes called an extended add operation).

Eliminations are then performed on the assembled frontal matrix. A right-looking factorization can be
used and is blocked [12] so that use can be made of dense matrix kernels (Level 3 BLAS, [10,11]) and cache
e�ects can be reduced. This can be done by eliminating a ®xed number of pivots (nb, say). When numerical
pivoting is required, the fully summed rows must be updated during these eliminations but the major part of
the frontal matrix is not updated until the computations on the fully summed rows are completed whence the
remaining rows can be updated using Level 3 BLAS kernels. It is possible either to use parallel versions of the
Level 3 BLAS or to update the rows in independent strips. This gives rise to so-called node parallelism.

A version of the multifrontal code for shared memory computers was developed by [2] and was included
in Release 12 of the Harwell Subroutine Library [21] as code MA41. This was the basis for Version 1.0 of
MUMPS that was released in May 1997.

3. Description of the main implementation issues

The current version of MUMPS (``MUltifrontal Massively Parallel Solver'') solves the linear system of
equations Ax � b, where A is either unsymmetric or symmetric positive de®nite. Main features include the
solution of the transposed system, error analysis, iterative re®nement, scaling of the original matrix, and the
possibility for the user to input a given ordering.

In the current version of MUMPS (Version 2.1.3), both tree and node parallelism are exploited, and we
distribute the pool of work among the processors, but our model still requires an identi®ed host node to
perform the analysis phase, distribute the incoming matrix, collect the solution, and generally oversee the
computation. All routines called by the user for the di�erent steps are Single Program Multiple Data
(SPMD), and the distinction between the host and the other processors is made by the MUMPS code. The
code is organized with a designated host node and other processors as follows (notice that the following
steps are easily implemented within the controlling strategy of the PARASOL Library):

(i) Analysis. The host performs an approximate minimum degree algorithm based on the symmetrized
pattern A� AT, and carries out symbolic factorization. A mapping of the multifrontal tree is then com-
puted, and symbolic information is transferred from the host to the other processors. Using this infor-
mation, the processors estimate the memory necessary for factorization and solution.
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(ii) Factorization. The host sends appropriate entries of the original matrix to the other processors that
are responsible for the numerical factorization. The numerical factorization on each frontal matrix is
conducted by a master processor (determined by the analysis phase) and one or more slave processors
(determined dynamically) as discussed later in this section. Each processor allocates an array for contri-
bution blocks and factors; the factors must be kept for the solution phase.
(iii) Solution. The right-hand side is broadcast from the host to the other processors. These processors
compute the solution using the (distributed) factors computed during step 2, and the solution is assem-
bled on the host.
We discuss, in the following subsections, implementation issues in a distributed environment and will

focus on the description of the factorization phase since it is the most complicated and time consuming
phase.

We ®rst introduce common features of the unsymmetric and symmetric codes. We describe the static
mapping strategy. We present the three types of parallelism exploited during the factorization and solve
phases and focus on the description of the factorization phase. Parallel implementation issues are then
presented. Finally, we describe the main di�erences between the LU and the LDLT factorizations.

For both the symmetric and the unsymmetric algorithms used in the code, we have chosen a fully
asynchronous approach with dynamic scheduling of the computational tasks. Asynchronous communi-
cation was chosen to enable overlapping between communication and computation. Dynamic scheduling
was initially used to accommodate numerical pivoting in the factorization. The other important reason for
this choice is that, with dynamic scheduling, the algorithm has the potential to adapt itself at execution
time, and can remap work and data to a more appropriate processor. In fact, we combine the main
features of static and dynamic approaches. We use the estimation done during analysis to map some of
the main computational tasks; the other tasks are dynamically scheduled at execution time. The main data
structures (original matrix and matrix of the factors) are similarly partially mapped according to the
analysis phase. Part of the initial matrix is replicated to enable rapid task migration without data
redistribution.

3.1. Mapping

A mapping of the assembly tree to the processors is performed statically as part of the analysis phase.
The main objectives of this phase are to control the communication costs, and to balance the memory used
and the computation done by each processor. The computational cost will be approximated by the number
of ¯oating-point operations, and only the matrix of the factors will be taken into account when balancing
the memory used by the processors.

In this section, we describe the algorithms used to map the assembly tree onto the processors and show
how we have combined memory and work balancing criteria.

The tree is processed from the bottom to the top, level by level (see Fig. 1). Level L0 is determined using
the Algorithm 1 [20] and is illustrated in Fig. 2. Then for i > 0, a node belongs to Li if all its children belong
to Lj, j6 iÿ 1. First, nodes of level L0 (and associated subtrees) are mapped. This ®rst step is designed to
balance the work in the subtrees and to reduce communication since all nodes in a subtree are mapped onto
the same processor. Normally to get a good load balance it is necessary to have many more nodes in level L0

than there are processors. Thus L0 depends on the number of processors and a higher number of processors
will lead to smaller subtrees.

Algorithm 1. Construction and mapping of the initial level L0

Let L0  Roots of the assembly tree
Repeat

Find the node q in L0 whose subtree has largest computational cost
Set L0  �L0 n fqg�[ children of q (See Fig. 2)
Cyclic mapping of the nodes of L0 onto the processors
Estimate the load unbalance

Until load unbalance < threshold
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The mapping of higher levels in the tree takes into account only memory balancing issues. For each
processor, the memory load (total size of its factors) is ®rst computed for the nodes at level L0. For each
level Li, i > 0, each unmapped node of Li is mapped to the processor with the smallest memory load and its
memory load is revised.

The mapping is then used to explicitly distribute the permuted initial matrix onto the processors and to
estimate the amount of work and memory required on each processor.

3.2. Sources of parallelism

We consider the condensed assembly tree of Fig. 3, where the leaves are L0 subtrees of the assembly tree.
There will be in general more leaf subtrees than processors, and therefore we can expect a good overall

load balance of the computation at the bottom of the tree. However, if we only exploit the tree parallelism,
the speed-up is very disappointing. The actual speed-up from this parallelism depends on the problem but is
typically only two to four irrespective of the number of processors. This poor performance is caused by the
fact that the tree parallelism decreases while going towards the root of the tree. Moreover, it has been
observed (see for example [3]) that often more than 75% of the computations are performed in the top three
levels of the assembly tree. It is thus necessary to obtain further parallelism within the large nodes near the
root of the tree. The additional parallelism will be based on parallel versions of the blocked algorithms used
during the factorization of the frontal matrices.

Nodes of the tree processed by only one processor will be referred to as nodes of type 1 and the par-
allelism of the assembly tree will be referred to as type 1 parallelism. Further parallelism is obtained by
doing a 1D block partitioning of the rows of the frontal matrix for nodes with a large contribution block.
Such nodes will be referred to as nodes of type 2 and the corresponding parallelism as type 2 parallelism.
Finally, if the root node is large enough, then 2D block cyclic partitioning of the frontal matrix is

Fig. 1. Decomposition of the assembly tree into levels.

Fig. 2. One step in the construction of the ®rst level L0.
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performed. The parallel root node will be referred to as a node of type 3 and the corresponding parallelism
as type 3 parallelism.

3.2.1. Description of type 2 parallelism
If a node is of type 2, one processor (called the master of the node) holds all the fully summed rows and

performs the pivoting and the factorization on this block while other processors (so-called slaves) perform
the updates on the contribution rows (see Fig. 4).

Macro-pipelining based on a blocked factorization of the fully summed rows is used to overlap com-
munication with computation. The e�ciency of the algorithm thus depends on both the block size used to
factor the fully summed rows and on the number of rows allocated to a slave process. During the analysis
phase, based on the structure of the assembly tree, a node is determined to be of type 2 if its frontal matrix is
su�ciently large. In terms of memory, the mapping algorithm assumes that the master processor holds the
fully summed rows and that any other processors might be selected as slave processes. As a consequence,
part of the initial matrix is duplicated onto all the processors to enable e�cient dynamic scheduling of
computational tasks. At execution time, the master then ®rst receives symbolic information describing the
structure of the contribution blocks sent by its children. Based on this information, the master determines
the exact structure of its frontal matrix and decides which slave processors will participate in the factor-
ization of the node.

Fig. 4. Type 2 nodes: partitioning of frontal matrix.

Fig. 3. Distribution of the computations of a multifrontal assembly tree.
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Further details on the implementation of type 2 nodes depends on whether the initial matrix is symmetric
or not and will be given in Section 3.4.3.

3.2.2. Description of type 3 parallelism
In order to have good scalability, we perform a 2D block cyclic distribution of the root node. We use

ScaLAPACK [6] or the vendor equivalent implementation (PDGETRF for unsymmetric matrices and
PDPOTRF for symmetric matrices).

Currently, a maximum of one root node, chosen during the analysis, is processed in parallel. This node is
of type 3. The node chosen will be the largest root provided its size is larger than a computer dependent
parameter. One processor, the so-called master of the root, holds all indices describing the frontal matrix.

We de®ne the root node as determined by the analysis phase, the estimated root node. Before factor-
ization, the estimated root node frontal matrix is statically mapped onto a 2D grid of processors. We use a
static distribution and mapping for those variables known by the analysis to be in the root node so that, for
an entry in the estimated root node, we know where to send it and assemble it using functions involving
integer divisions, moduli, etc.

In the factorization phase, the original matrix entries and the part of the contribution blocks from the
children corresponding to the estimated root can be assembled as soon as they are available. The master of
the root node then collects the index information for all the uneliminated variables of its children and builds
the structure of the frontal matrix. This symbolic information is broadcast to all participating processors.
The contributions corresponding to uneliminated variables can then be sent by the children to the ap-
propriate processors in the 2D grid for assembly, or directly assembled locally if the destination is the same
processor. Note that, because of the requirements of ScaLAPACK, local copying of the root node is re-
quired since the leading dimension will change.

3.2.3. Impact of parallelism on memory and work balance
We show, in Table 2, the distribution of both the input matrix and the LU factors during the factor-

ization of matrix CRANKSEG 1 on ®ve working processors. The matrix is considered unsymmetric and
has 10:6� 106 non-zeros with 80:6� 106 non-zeros in the LU factors. We see, in Table 2, how well the
mapping algorithm balances the storage of the LU factors between the processors. Concerning the original
matrix, we observe that the extra space due to duplication for type 2 node parallelization only represents
around 10% of the size of the original matrix. Finally we see that, even if the algorithm does not aim to
balance the work near the top of the tree, balancing the memory used for the factors also leads to a good
balance for the ¯oating-point operations.

3.3. Parallel implementation issues

To enable automatic overlapping between computation and communication, we have chosen to use fully
asynchronous communications. For ¯exibility and e�ciency, explicit bu�ering in the user space has been
implemented. We have developed a Fortran 90 module to send asynchronous messages, based on imme-
diate sends. We de®ne a send bu�er for each processor based on information from the analysis phase. When
we try to send contribution blocks, factorized blocks, . . . we ®rst check to see if there is room in the send
bu�er. Our module provides an equivalent of MPI BSEND [9] with the advantage that messages are

Table 2

Study of memory and work balancing on matrix CRANKSEG 1 using ®ve working processors (that is, we exclude the host processor)

and all levels of parallelism of the method. All sizes are in number of 64-bit reals per processor

Processor number 1 2 3 4 5

Original matrix ��103� 1920 2904 2475 2571 2059

LU factors ��103� 15 927 15 982 15 993 16 149 16 117

Flop count ��109� 18.2 21.5 18.6 22.6 19.5

P.R. Amestoy et al. / Comput. Methods Appl. Mech. Engrg. 184 (2000) 501±520 507



directly packed in the bu�er and problems occurring when the bu�er is full are overcome. Note that
messages are never sent when the destination is identical to the source; in that case the associated action is
performed directly locally, instead of the send.

An estimation of the minimum size of the send and receive bu�ers is computed by each processor prior
to factorization. This estimation is based on the static mapping of the assembly tree and takes into account
the three types of parallelism used during the factorization. Note that, because type 2 parallelism involves a
distribution of the contribution rows (see Fig. 4), it will signi®cantly reduce the size of the contributions
sent to processors, and thus of the bu�ers, as shown in Fig. 5. Bu�ers are allocated on each processor at the
beginning of the factorization.

Moreover, if there is not enough space to put the message in the bu�er, the procedure requesting the send
returns with an error code. In such cases, to avoid deadlock, the corresponding processor will try to receive
messages until space becomes available in its local send bu�er. Let us take a simple illustrative example.
Processor A has ®lled-up its bu�er doing an asynchronous send of a large message to processor B. Pro-
cessor B has done the same to processor A. The next messages sent by both processors A and B will then be
blocked until the other processor has received the ®rst message. More complicated situations involving
more processors can occur, but in all cases the key issue for avoiding deadlock is that each processor tries
not to be the blocking processor.

MPI only guarantees that messages are non-overtaking, that is if a processor sends two messages to the
same destination, then the receiver will receive them in the same order. For synchronous algorithms the
non-overtaking property is often enough to ensure that messages are received in the correct order. With a
fully asynchronous algorithm, based on dynamic scheduling of the computational tasks, it can happen that
messages arrive ``too early''. In this case, it is crucial to be sure that the ``missing'' messages have already
been sent so that blocking receives can be performed to process all messages that should have already been
processed at this stage of the computation. As a consequence, the order used for sending messages is
important. The impact on the algorithm design will be illustrated in Sections 3.4.1 and 3.4.3 during the
detailed description of type 2 parallelism for LDLT factorization.

A pool of tasks is used to implement dynamic scheduling. All tasks ready to be activated on a given
processor are stored in the pool of tasks local to the processor. Each processor then executes the following
algorithm.

Algorithm 2.

while (all nodes not processed)
if local pool empty then

Fig. 5. Impact of type 2 parallelism on the size (in number of 64-bit reals) of the send bu�er. Test matrix is WANG3.
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blocking wait for a message; process the message
elseif message available then

receive and process message
else

extract work from the pool, and process it
endif

end while

Note that priority is given to message reception. The main reasons for this choice are ®rst that the
message received might be a source of additional work and parallelism and second that the sending pro-
cessor might be blocked because its send bu�er is full.

3.4. LU vs. LDLT approaches

In this section, we describe the main di�erences between the symmetric and the unsymmetric algorithms.
The symmetric code currently solves symmetric positive-de®nite systems, but it has been designed so that
future developments like fully distributed LDLT factorization with numerical pivoting and the detection of
the null spaces, remain possible.

Taking into account the symmetry of the input matrix leads to a reduction in both the memory re-
quirements (smaller input matrix, matrix of factors and frontal matrices) and the computational cost. Only
the lower part of the original matrix is accessed and the LDLT factorization is computed. Even if a sig-
ni®cant part of the implementation issues are shared by the LU and LDLT factorizations, taking into ac-
count the symmetry implies major modi®cations in the assembly process, in the blocked factorization of
nodes of types 1 and 2, and in types 2 and 3 parallel algorithms.

Taking into account the symmetry for a node of type 3 was rather straightforward because our im-
plementation is based on the use of ScaLAPACK [6] routines (PDGETRF for the LU factorization and
PDPOTRF for the LLT factorization). Note that a parallel version of the LDLT factorization for dense
matrices does not exist in ScaLAPACK and that this issue will have to be addressed in a future release of
the code that includes numerical pivoting for symmetric matrices.

3.4.1. Assembly process
An estimation of the frontal matrix structure (size, number of fully summed variables) is computed

during the analysis phase. The ®nal structure and the list of indices in the front is however only computed
during the assembly process of the factorization phase. The list of indices of a front is the result of a merge
of the index lists of the contribution blocks of the children with the list of indices in the arrowheads as-
sociated with all the fully summed variables of the front. Once the index list of the front is computed, the
assembly of numerical values can be performed e�ciently.

Let inode be a node of type 2. The master of inode de®nes the partition of rows of the frontal matrix into
blocks, and chooses a set of slave processors that will participate in the parallel assembly and factorization
of inode. It sends a message (identi®ed by the tag DESC STRIP) describing the work to be done on each
slave processor. It also sends a message (with tag MAPROW) to all type 1 nodes and slave processors of
type 2 nodes for the children of inode, giving them information on where to send their contribution blocks
for the assembly process.

As already mentioned in Section 3.3, the order in which messages are sent is important. For example, a
slave of inode may receive a contribution block before receiving the message of tag DESC STRIP from its
master. To allow this slave processor to safely perform a blocking receive on the missing DESC STRIP
message, we must ensure that the master of the node has sent DESC STRIP before sending MAPROW.
Otherwise we cannot guarantee that DESC STRIP will actually be sent (for example, the send buffer might
be full).

The main di�erence between the symmetric and the unsymmetric case is due to the fact that a global
ordering of the indices in the frontal matrices is necessary for e�ciency in the symmetric case to guarantee
that all lower triangular entries in a contribution row of a child belong to the corresponding row in the
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parent. We use the global ordering obtained during analysis, that is, the order in which variables would be
eliminated if no numerical pivoting occurs.

Moreover, it is quite easy to perform a merge of sorted lists e�ciently. If we assume that the list of
indices of the contribution block of each child is sorted then the sorted merge algorithm will be e�cient if
the indices associated with the arrowheads are also sorted. Unfortunately, sorting all the arrowheads can be
costly. Furthermore, the number of fully summed variables (or number of arrowheads) in a front might be
quite large and the e�ciency of the merging algorithm might be a�ected by the large number of sorted lists
to merge. Based on experimental results, we have observed that it is enough to sort only the arrowhead
associated with the ®rst fully summed variable of each frontal matrix. The assembly process for the list of
indices of the node is thus described in Algorithm 3.

Algorithm 3. Assembly of indices in a parent node

Step 1: Sorted merge of the sorted lists of the indices of the children and of the ®rst arrowhead.
Step 2: Build and sort variables belonging only to the other arrowheads (and not found at step 1).
Step 3: Merge the sorted list built at step 2 with the sorted list obtained at step 1.

The key issue for e�ciency of Algorithm 3 is the fact that only a small number of variables are found at
step 2. This has been experimentally validated. For example, on matrix WANG3, the average number of
indices found at step 2 was 0.3. The numerical assembly can then be performed, row by row.

3.4.2. Factorization of type 1 nodes
Blocked algorithms are used during the factorization of type 1 nodes, and for both the LU and the LDLT

factorization algorithms, we want to keep the possibility of postponing the elimination of fully summed
variables. Note that classical blocked algorithms for the LU and LLT factorizations of full matrices [5] are
quite ef®cient, but it is not the case for the LDLT factorization.

We will brie¯y compare kernels involved in the blocked algorithms. We then show how we have ex-
ploited the frontal matrix structure to design an e�cient blocked algorithm for the LDLT factorization.

Let us suppose that the frontal matrix has the structure of Fig. 6, where A is the block of fully summed
variables available for elimination. Note that, in the code, the frontal matrix is stored by rows.

During LU factorization, a right-looking blocked algorithm [2,7,12] is used to compute the LU factor
associated with the block of fully summed rows (matrices A and C). The Level 3 BLAS kernel DTRSM is
used to compute the off-diagonal block of L (overwriting matrix B). Updating the matrix E is then a simple
call to the Level 3 BLAS kernel, DGEMM.

During LDLT factorization, a right-looking blocked algorithm (see Chapter 5 of [12]) is ®rst used to
factor the block column of the fully summed variables. Let Loff be the o� diagonal block of L stored in place
of the matrix B and DA be the diagonal matrix associated with the LDLT factorization of the matrix A. The
updating operation of the matrix E is then of the form E E ÿ LoffDALT

off , where only the lower triangular
part of E needs to be computed. No Level 3 BLAS kernel is available to perform this type of operation
which corresponds to a generalized DSYRK kernel.

Fig. 6. Structure of a type 1 node.
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Note that, when we know that no pivoting will occur (symmetric positive de®nite matrices), Loff is
computed in one step using the Level 3 BLAS kernel DTRSM. Otherwise, the trailing part of Loff has to be
updated after each step of the blocked factorization, to allow for a stability test for choosing the pivot.

To update the matrix E, we have applied the ideas used by [8] to design ef®cient and portable Level 3
BLAS kernels. Blocking of the updating is done in the following way. At each step, a block of columns of E
(Ek in Fig. 7) is updated. In our ®rst implementation of the algorithm, we stored the scaled matrix DALT

off in
matrix C, used here as workspace. Because of cache locality issues, the Mega¯op rate was still much lower
than that of the LU or Cholesky factorizations. In the current version of the algorithm, we compute the
block of columns of DALT

off (Ck in Fig. 7) only when it will be used to update Ek. Furthermore, to increase
cache locality, the same working area is used to store all Ck matrices. This was possible because Ck matrices
are never reused in the algorithm. Finally, the Level 3 BLAS kernel DGEMM is used to update the
rectangular matrix Ek. This implies more operations but is more ef®cient on the IBM SP2 than the updates
of the shaded trapezoidal submatrix of Ek using a combination of DGEMV and DGEMM kernels. Our
®nal blocked algorithm is summarized in Algorithm 4.

Algorithm 4. LDLT factorization of type 1 nodes

Blocked factorization of the fully summed columns
do k � 1, nb blocks

(Compute Ck (block of columns of DALT
off )

Ek  Ek ÿ LkCk

end do

3.4.3. Parallel factorization of type 2 nodes
The di�erences between the symmetric and the unsymmetric case come from a modi®cation of both the

frontal matrix structure and the parallel algorithm. The modi®cation of the matrix structure is illustrated in
Fig. 8. In both algorithms, the master processor is in charge of all the fully summed rows and the blocked
algorithms used to factor the block of fully summed rows are the ones described in the previous subsection.

In the unsymmetric case, at each block step, the master processor sends the factorized block of rows to
its slave processors and then updates its trailing submatrix. The behaviour of the algorithm is illustrated in
Fig. 9, where program activity is represented in black, inactivity in grey, and messages by lines between
processes. The ®gure is a trace record generated by the VAMPIR [23] package from PALLAS. We see that,
on this example, the master processor is relatively more loaded than the slaves.

In the symmetric case, a di�erent parallel algorithm has been implemented. The master of the node
performs a blocked factorization of only the diagonal block of fully summed rows. At each block step, its
part of the factored block of columns is broadcast to all slaves ((1) in Fig. 8). Each slave can then use this
information to compute its part of the block column of L and to update part of the trailing matrix. Each
slave, apart from the last one, then broadcasts its just computed part of the block of column of L to the
following slaves (illustrated by messages (2) and (3) in Fig. 8). Note that, to process messages (2) or (3) at

Fig. 7. Blocks used for updates of the contribution part of a type 1 node.

P.R. Amestoy et al. / Comput. Methods Appl. Mech. Engrg. 184 (2000) 501±520 511



step k of the blocked factorization, the corresponding message (1) at step k must have been received and
processed.

We have chosen a fully asynchronous approach to implement the algorithm. Messages (1) and (2) might
thus arrive in any order. The only property that MPI guarantees is that messages of type (1) will be received
in the correct order because they come from the same source processor. When a message (2) at step k arrives
too early, we have then to force the reception of all the pending messages of type (1) for steps smaller than
or equal to k. This induces a necessary property in the broadcast process of messages (1): if at step k,
message (1) is sent to slave 1, we must be sure that it will also be sent to other slaves. In our implementation
of the broadcast, we ®rst check availability of memory in the send buffer (with no duplication of data to be
sent) before starting effective send operations. Thus, if the asynchronous broadcast starts, it will complete.

Similarly to the unsymmetric case, our ®rst implementation of the algorithm is based on constant row
block size. We can clearly observe from the corresponding execution trace in Fig. 10 that the later slaves
have much more work to perform than the others. To balance work between slaves, later slaves should hold
less rows. This has been implemented using a heuristic that aims at balancing the total number of ¯oating-
point operations involved in the type 2 node factorization on each slave. As a consequence, the number of
rows treated varies from slave to slave. The corresponding execution trace is shown in Fig. 11. We can
observe that work on the slaves is much better balanced and both the di�erence between the termination
times of the slaves and the elapsed time for factorization are reduced.

Fig. 9. VAMPIR trace of an isolated type 2 unsymmetric factorization (Master is Process 1).

Fig. 8. Structure of a type 2 node.
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However, the comparison of Figs. 9 and 11 shows that ®rst, the number of messages involved in the
symmetric algorithm is much larger than in the unsymmetric case; secondly, the master processor performs
relatively less work than in the parallel algorithm for unsymmetric matrices.

4. Performance

The results presented in this section have been obtained on a 34 processor IBM SP2 located at GMD
(Bonn, Germany). Each node of this computer is a 66 MHz processor with 128 MB of physical memory and
512 MB of virtual memory. An approximate Minimum Degree (AMD) ordering [1] has been used to
permute the initial matrix and all timings are given in seconds.

4.1. The theoretical speed-up of the methods

The maximum theoretical speed-up obtained for each type of parallelism is indicated in Tables 3 and 4.
In these tables, we use a few typical matrices from our set of test problems. We do not take into account
communication time and the number of processors available is assumed in®nite. No account is taken of
changes to the tree because of numerical pivoting. We compute the maximum theoretical speed-up by

Fig. 11. VAMPIR trace of an isolated type 2 symmetric factorization; variable row block sizes (Master is Process 1).

Fig. 10. VAMPIR trace of an isolated type 2 symmetric factorization; constant row block sizes (Master is Process 1).
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dividing the total number of ¯ops during factorization by the number of ¯ops on the longest path of the
tree; for type 2 nodes, we suppose that the update on the slave nodes can be done for free. A node is
considered to be of type 2 only if its contribution block is of size at least 200.

We also show speed-ups for the tree without the root in order to show the true gains from type 2
parallelism. This is masked in the results for the complete tree because of the amount of work performed at
the root.

As mentioned in Section 3.2, we notice that the parallelism arising from the tree is very limited. This can
be improved by using some other reordering techniques, for example combining nested dissection and
minimum degree. We are experimenting with such reorderings and plan to incorporate some code for this,
developed from the RALPAR partitioning package [19], within the matrix structure analysis phase. This is
also the topic of a collaboration with Roman and Pellegrini (LaBRI, Bordeaux) and will not be addressed
further in this paper. However, we see that a signi®cant speed-up increase is provided by parallelism of
types 2 and 3. Note that our model is very simple and therefore optimistic. It is also interesting to notice
that type 2 parallelism is better in the symmetric case than in the unsymmetric case. This is due to the fact
that, in the symmetric case, the master process is only in charge of the diagonal block of fully summed
variables, whereas in the unsymmetric case the master also computes the o�-diagonal block (block of U
factors) of the frontal matrix.

4.2. Actual performance

We report, in Tables 5 and 6, some statistics on various test problems: the size of the factors (both
estimated and actual for unsymmetric test problems because of numerical pivoting), the number of ¯oating-
point operations for elimination, the size of the root node, and the time for the analysis on the matrix
structure.

For some of the symmetric problems, we also give statistics on the corresponding unsymmetrized
problem, as this will allow us to compare the behaviour of the symmetric and unsymmetric codes.

We now report on numerical experiments on types 1, 2 and 3 parallelism on the test problem WANG3,
and on two instances of the problem QUERUER; one symmetric and the other unsymmetric.

For the test problem WANG3 (Table 7), timings obtained on 1 and 2 working processors are not sig-
ni®cant nor accurate because of memory paging when using the virtual memory. For larger numbers of
processors, distribution of memory suppresses this e�ect. We estimate the uniprocessor time without

Table 3

Estimated speed-ups for the unsymmetric solver

Matrix Complete tree Tree without root

Type 1 Type 1+2 Type 1+2+3 Type 1 Type 1+2

BCSSTK15 1.98 4.58 10.0 2.35 11.1

WANG3 1.38 3.08 13.8 1.60 11.9

QUER 3.16 7.70 24.5 4.08 25.9

Table 4

Estimated speed-ups for the symmetric solver

Matrix Complete tree Tree without root

Type 1 Type 1+2 Type 1+2+3 Type 1 Type 1+2

BCSSTK15 1.98 5.61 16.7 2.35 22.6

WANd3 1.38 3.67 46.9 1.60 68.1

QUER 3.16 9.68 69.5 4.09 105.6
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memory paging from the CPU time as 71.0 s, so speed-up should be compared to that. Comparing these
results with the theoretical study of Table 3, we observe that the theoretical speed-up gives a good esti-
mation of the actual speed-up for types 1 and 2 parallelism. It shows the good overlapping of communi-
cation with computation since the estimated speed-up did not take into account the communication time.
For type 3 parallelism, the estimated speed-up is quite optimistic.

The same data are given in Tables 8 and 9, for the test problem QUER treated as symmetric, and
unsymmetric (respectively). The estimated uniprocessor CPU times (64.9 and 41.1 for the unsymmetric and

Table 6

Statistics for symmetric test problems (ordering based on AMD)

Matrix Non-zeros in factors (�106) Flops (�109) Size of root Time for analysis

SYMMETRIC CODE

B5TUER 30 13.2 1435 16.2

BMW3 2 59 44.9 2495 18.7

BBMW7ST 1 31 15.4 1560 9.8

CRANKSEG 1 48 50.2 2161 10.8

CRANKSEG 2 73 101.9 3127 14.5

OILPAN 12 3.8 819 4.5

QUER 12 4.0 1043 3.0

UNSYMMETRIC CODE

BBMW5TUER 52 26.4 1435 25.4

BBMW7ST 1 54 30.7 1560 19.8

CRANKSEG 1 80 100.4 2161 34.9

OILPAN 20 7.6 819 7.1

QUER 20 8.0 1043 5.5

Table 7

In¯uence of the types of parallelism for WANG3. Estimated sequential CPU time is 71.0 s

Working processors Time for factorization (s)

Type 1 Type 1 + 2 Type 1 + 2 + 3

1 206.6 142.4 216.4

2 105.6 81.0 96.5

4 51.1 40.0 24.6

8 46.0 28.6 19.5

12 49.2 28.1 18.8

16 47.4 29.2 17.3

24 46.7 29.7 16.7

32 45.6 27.2 16.6

Table 5

Statistics for unsymmetric test problems (ordering based on AMD)

Matrix Non-zeros in factors (�106) Flops (�109) Size of root Time for

analysis

Estim. Actual Estim. Actual

WAND3 11.5 11.5 10.5 10.5 1601 7.3

INV-EXTRUSION-1 30.3 31.2 34.3 35.8 1913 5.2

MIXING-TANK 38.5 39.1 64.1 64.4 2985 5.6
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the symmetric codes, respectively) show that the uniprocessor Mega¯op rate of the symmetric code (97
M¯ops) is not too far from the uniprocessor Mega¯op rate of the unsymmetric code (122 M¯ops). Again,
we observe that types 2 and 3 parallelism provide a signi®cant increase in performance, and that paging has
occurred for small numbers of processors. The higher speed-ups obtained on matrix QUER, treated as
unsymmetric, with type 2 parallelism (5.0) compared with matrix WANG3 (2.6) re¯ect the di�erence in the
estimated speed-up shown in Table 3. However, we do not bene®t from the larger theoretical speed-up of
type 2 parallelism on symmetric matrices compared with unsymmetric matrices (theoretical speed-up of
9.68 compared to 7.70). The e�ective maximum speed-up obtained with the symmetric and the unsymmetric
codes are in fact comparable being 4.7 and 5.0, respectively. This can be explained by the fact that, as
already illustrated in Figs. 9 and 11, although the master is in charge of relatively less work in the symmetric
case, the parallelism of type 2 involves an increase in the communication ¯ow and more irregularity of the
distribution is required to correctly balance work on the slaves. Our present modi®cation, illustrated in
Fig. 11, redistributes the block rows so that the number of ¯ops performed by each slave is balanced but
does not take into account the greater communication with later slaves.

We see, however, that parallelism of type 3 for symmetric matrices provides relatively larger speed-up
increases than for unsymmetric matrices. As a result, on 32 processors, the factorization time of the
symmetric code is almost half that of the unsymmetric code. The Mega¯op rate for the symmetric and the
unsymmetric factorizations is thus comparable (around 750 M¯ops).

More results on all the large symmetric problems of our set are reported in Table 10. Results with the
unsymmetric code are shown in Table 11. Some of the symmetric matrices could not be processed with the
unsymmetric code because of the increase in memory requirements.

In these two tables, the time for distribution is the time for distributing the permuted initial matrix from
the host processor onto the other processors; then the times for factorization and for solve are reported for

Table 9

In¯uence of the type of parallelism for QUER, treated as symmetric. Estimated sequential CPU time without paging is 41.1 s

Working processors Time for factorization (s)

Type 1 Type 1 + 2 Type 1 + 2 + 3

1 133.5 141.7 150.4

2 31.3 22.6 21.0

4 18.3 15.7 12.9

8 14.4 12.7 9.3

16 12.7 10.5 6.4

24 12.5 8.7 6.6

32 12.1 8.7 5.8

Table 8

In¯uence of the type of parallelism for QUER, treated as unsymmetric. Estimated sequential CPU time without paging is 64.9 s

Working processors Time for factorization

Type 1 Type 1 + 2 Type 1 + 2 + 3

1 284.1 275.3 299.2

2 113.1 108.0 109.1

4 27.0 22.7 19.1

8 20.7 19.4 15.2

16 18.5 14.8 11.5

24 18.2 12.8 10.1

32 17.6 13.0 10.5
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various numbers of working processors. The analysis is sequential and so the time, reported in Tables 5 and
6, is independent of the number of processors. The distribution of the initial matrix is relatively time
consuming, because the same processor is in charge of sending pieces of the input matrix to all other
processors and the communication network quickly gets saturated. Furthermore, if the initial matrix is
large, paging can occur at this step, for example for CRANKSEG 1 or BBMW7ST 1 when treated as
unsymmetric. Using an initially distributed matrix on entry could lead to a better redistribution time and
could avoid paging problems during this phase, especially in the case where the initial matrix does not ®t in
the physical memory of the host processor, but this would also require a more complicated interface to
enable the user to provide a distributed matrix.

For the symmetric matrices appearing in both Tables 10 and 11, we can compare the performance of the
symmetric and unsymmetric codes. We see that, even if the most important phases (assembly, factorization
of types 1 and 2 nodes) of the LDLT factorization are intrinsically more complicated than during LU
factorization, the LDLT gets full bene®t from the symmetry and is usually almost twice as fast as the LU
factorization. This was not the case in an earlier version of the symmetric code and much effort has been
spent on optimizing low-level kernels for symmetric matrix calculations.

Table 10

Results for the symmetric version of the code

Matrix Working processors Time for distribution Time for factorization Time for solve

B5TUER 4 12.0 151.05 122.67

B5TUER 8 12.6 31.18 2.16

B5TUER 16 13.9 17.81 1.92

B5TUER 24 17.4 14.71 1.59

B5TUER 32 18.4 12.46 2.16

BBMW7ST 1 5 17.7 258.05 193.88

BBMW7ST 1 8 13.6 47.40 27.32

BBMW7ST 1 16 12.4 19.51 2.02

BBMW7ST 1 24 15.4 17.85 1.99

BBMW7ST 1 32 30.3 15.21 1.42

OILPAN 2 6.3 40.75 19.3

OILPAN 4 6.4 13.61 0.96

OILPAN 8 7.3 8.96 0.92

OILPAN 16 7.3 7.18 0.77

OILPAN 24 6.8 6.46 0.73

OILPAN 32 7.4 6.06 0.72

QUER 1 4.5 150.41 142.58

QUER 2 4.5 21.00 0.93

QUER 4 4.4 12.97 0.76

QUER 8 4.5 9.27 0.73

QUER 16 4.8 6.41 0.59

QUER 24 5.1 6.63 0.64

QUER 32 5.4 5.85 0.54

BMW3 2 8 129.8 369.52 237.74

BMW3 2 16 124.6 125.50 47.98

BMW3 2 24 145.2 45.17 5.60

BMW3 2 32 134.5 32.87 6.82

CRANKSEG 1 8 77.0 480.22 170.51

CRANKSEG 1 16 90.1 252.11 24.37

CRANKSEG 1 24 96.8 65.53 2.32

CRANKSEG 1 32 125.4 59.68 2.92

CRANKSEG 2 16 159.4 1045.34 90.33

CRANKSEG 2 24 249.7 457.26 39.39

CRANKSEG 2 32 222.6 139.66 11.13
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On large matrices and on a small number of processors, the problem of page swapping can have a
somewhat extreme in¯uence on the time for solution. This is due to the fact that computational time is
dominated by memory access time due to page swapping. Therefore, accessing the relatively large matrix of
the factors twice, as is done in the solve phase, is more critical than the number of actual ¯oating-point
operations.

Generally, we observe that our distributed memory approaches correctly exploit the memory available
leading to superlinear speed-ups. They also exploit well the parallelism of the assembly tree and, even if
additional tuning might still be done on type 2 parallelism, the overall speed-up of the codes is satisfactory.
Finally one of the main properties of our parallel LDLT factorization is that its Mega¯op rate is comparable
to that of the parallel LU factorization.

Table 11

Results for the unsymmetric version of the code (symmetric matrices are expanded)

Matrix Working processors Time for distribution Time for factorization Time for solve

B5TUER 8 164.2 111.45 58.9

B5TUER 16 181.2 29.35 3.77

B5TUER 24 177.7 26.72 3.15

B5TUER 32 168.0 26.40 2.67

WANG3 1 0.6 216.44 133.03

WANG3 2 0.7 96.54 36.09

WANG3 4 0.6 24.58 0.70

WANG3 8 0.6 19.47 0.77

WANG3 12 0.6 18.99 0.67

WANG3 16 0.6 17.35 0.70

WANG3 24 0.6 16.68 1.04

WANG3 32 0.7 16.62 0.78

INV-EXTRUSION-1 4 5.79 546.42 123.71

INV-EXTRUSION-1 8 6.27 131.26 17.25

INV-EXTRUSION-1 16 6.8 54.6 1.17

INV-EXTRUSION-1 24 8.2 54.9 1.40

INV-EXTRUSION-1 32 9.6 55.6 1.39

BBMW7ST 1 8 209.9 163.07 106.99

BBMW7ST 1 16 195.5 37.96 3.60

BBMW7ST 1 24 177.0 35.13 3.50

BBMW7ST 1 32 202.1 33.99 3.72

MIXING-TANK 8 7.0 321.07 87.32

MIXING-TANK 16 8.0 68.61 1.73

MIXING-TANK 24 9.6 61.36 1.25

MIXING-TANK 32 11.6 60.87 1.23

OILPAN 2 10.4 119.69 157.60

OILPAN 4 11.0 21.11 0.74

OILPAN 8 10.8 15.35 0.72

OILPAN 16 11.1 12.54 0.68

OILPAN 24 12.6 11.63 0.72

OILPAN 32 13.0 11.55 0.79

QUER 1 8.5 299.19 340.16

QUER 2 13.7 109.09 97.35

QUER 4 8.5 19.11 0.79

QUER 8 8.9 15.23 0.60

QUER 16 14.6 11.54 0.57

QUER 24 9.2 10.13 0.73

QUER 32 14.2 10.50 1.33

CRANKSEG 1 32 333.8 168.07 9.83
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5. Conclusions and perspectives

From the results of Section 4, we can conclude that the current version of our MUMPS code does
parallelize well and produces comparable speed-ups to shared memory variants, at least on a small number
of processors. It is di�cult to fully assess the scalability because of memory e�ects on small numbers of
processors and insu�ciently large problems for many processors. Certainly the Achilles heel for the code, as
for all direct methods, is that of storage, somewhat exacerbated for the current code because of the need to
estimate storage requirements in advance. This is one aspect on which we plan to work further. Certainly
we plan to test the code on the ORIGIN 2000 computer in Bergen that has a far larger memory that should
mitigate against paging e�ects.

We are currently studying other orderings including the use of dissection algorithms and their combi-
nation with minimum degree. Not only should this help the parallelism but often the overall number of
¯oating-point operations is reduced.

We also plan to investigate further the dynamic scheduling of tasks from type 2 nodes based on estimates
of the load on each processor.

Our current symmetric code has been developed from a code for unsymmetric matrices and has retained
the capability of postponing eliminations for numerical reasons. This functionality can help in detecting
rank and in developing an algorithm for null-space detection and determination of the null-space basis
which will be needed by our code when used within PARASOL as a local solver within the domain de-
composition codes, for example when using the Neumann±Neumann algorithm as described by [22].
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