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Preface

The purpose of this monograph is to provide an overview of mesoscale numer-

ical modeling, beginning with the fundamental physical conservation relations.

An overview of the individual chapters is given in the introduction. This book

is an outgrowth of my article entitled “Mesoscale Numerical Modeling” which

appeared in Volume 23 of Advances in Geophysics.
The philosophy of the book is to start from basic principles as much as possi-

ble when explaining specific subtopics in mesoscale modeling. Where too much

preliminary work is needed, however, references to other published sources are

given so that a reader can obtain the complete derivation (including assump-

tions). Often only an investigator’s recent work is listed; however, once that

source is found it is straightforward to refer to his or her earlier work, if

necessary, by using the published reference list appearing in that paper. An

understanding of the assumptions upon which the mathematical relations used

in mesoscale modeling are developed is essential for fluency in this subject.

To address as wide an audience as possible, basic material is provided for the

beginner as well as a more in-depth treatment for the specialist.

The author wishes to acknowledge the contributions of a widely proficient

group of people who provided suggestions and comments during the prepara-

tion of this book. The reading of all or part of the draft material for this text

was required for a course in mesoscale meteorological modeling taught at the

University of Virginia and at Colorado State University. Among the students in

that course who provided significant suggestions and corrections are Raymond

Arritt, David Bader, Charles Cohen, Omar Lucero, Jeffrey McQueen, Charles

Martin, Jenn-Luen Song, Craig Tremback, James Toth, and George Young. P.

Flatau is acknowledged for acquainting me with several Soviet works of rel-

evance to mesoscale meteorology. Suggestions and aid were also provided by

faculty members in the Atmospheric Science Department at Colorado State Uni-

versity, including Duane E. Stevens, Richard H. Johnson, Wayne H. Schubert,

and Richard Pearson, Jr.
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x Preface

Several chapters were also sent to a number of acknowledged experts in cer-

tain aspects of mesoscale meteorology. These scientists included Andrè Doneaud

(Chapters 1-5, 7, and 8), George Young (Chapter 5), Tzvi Gal-Chen (Chapter 6),

Raymond Arritt (Chapter 7), Richard McNider (Chapter 7), Steven Ackerman

(Chapter 8), Andrew Goorch (Chapter 8), Larry Freeman (Chapter 8), Michael

Fritsch (Chapter 9), William Frank (Chapter 9), Jenn-Luen Song (Chapter 9),

R.D. Farley (Chapter 9), Harold Orville (Chapter 9), Robert Lee (Chapter 10),

Mike McCumber (Chapter 11), Joseph Klemp (Chapter 12), Mordecay Segal

(Chapters 2, 3, 10, 11, and 12), and Robert Kessler (Chapter 12). For their help

in reviewing the material I am deeply grateful.

I would also like to thank the individuals who contributed to the summary

tabulation of models in Appendix B. Although undoubtedly not a comprehensive

list (since not every modeling group responded or could be contacted), it should

provide a perspective of current mesoscale modeling capabilities.

I would also like to acknowledge the inspiration of William R. Cotton and

Joanne Simpson, who facilitated my entry into the field of mesoscale meteorol-

ogy. In teaching the material in this text and in supervising graduate research.

I have sought to adopt their philosophy of providing students with the max-

imum opportunity to perform independent, innovative investigations. I would

also like to give special thanks to Andrè Doneaud and Mordecay Segal, whose

patient, conscientious reading of portions of the manuscript has significantly

strengthened the text. In addition, I would like to express my sincere appreci-

ation to Thomas H. Vonder Haar who provided me with an effective research

environment in which to complete the preparation of this book.

In writing the monograph, I have speculated in topic areas in which there has

been no extensive work in mesoscale meteorology. These speculative discus-

sions, most frequent in the sections on radiative effects, particularly in polluted

air masses, also occur in a number of places in the chapters on parameteriza-

tion, methods of solution, boundary and initial conditions, and model evaluation.

Such speculation is risky, of course, because the extensive scientific investiga-

tion required to validate a particular approach has not yet been accomplished.

Nevertheless, I believe such discussions are required to complete the framework

of the text and perhaps may be useful in providing some direction to future

work. The introduction of this material is successful if it leads to new insight

into the field of mesoscale modeling.

Finally, the writing of a monograph or textbook inevitably results in errors,

for which I must assume final responsibility. It is hoped that they will not

significantly detract from the usefulness of the book and that the reader will

benefit positively from ferreting out mistakes. In any case, I would appreciate

comments from users about errors of any sort, including the neglect of relevant

current work.
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The drafts and final manuscripts were typed by the very capable Ann Gaynor,

Susan Grimstedt, and Sara Rumley. Their contribution in proofreading the mate-

rial to achieve a manuscript with a minimal number of errors cannot be over-

stated. The drafting was completed by Jinte Kelbe, Teresita Arritt, and Judy

Sorbie. Portions of the costs of preparing this monograph were provided by the

Atmospheric Science Section of the National Science Foundation under Grants

ATM 81-00514, ATM 82-42931, and ATM 8304042, and that support is grate-

fully acknowledged.

Finally and most importantly, I would like to acknowledge the support of my

family—Gloria, Tara, and Roger Jr.—in completing this time-consuming and

difficult task.
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Preface to the Second Edition

Mesoscale meteorological modeling has matured greatly since the first edition

was published. From a research tool, mesoscale models are routinely used in

operational numerical weather prediction. These models have also been extended

into longer-term weather studies, such as seasonal weather prediction and even

in climate change studies.

As a result of the proliferation of this atmospheric science modeling tool,

the number of published papers has greatly expanded. While I attempted to

be reasonably comprehensive in listing this work in the first edition, it is now

virtually impossible to be comprehensive today. In fact, with the introduction

of the Internet and electronic library searches, the best way to obtain relevant

research papers is to access through the World Wide Web!

This edition has new material but also deletes sections. The section on the

finite element solution technique in Chapter 10, for example, has been removed

since despite its promise, it remains an approach that is used by only a very

small subset of mesoscale modelers. Problems have been added to the new

addition, based on work in the course Mesoscale Meteorological Modeling (AT

730) which I have taught almost every two years, both at the Department of

Environmental Science at the University of Virginia, and in the Department of

Atmospheric Science at Colorado State University.

One perspective in this text is the introduction of a new perspective in dis-

secting meteorological modeling capabilities. There are two emphases to this

perspective. First, once the models are stripped to their most basic level, what

is their accuracy as a function of wavelength? For the fundamental terms in

the equations, this involves the numerical approximation of the local temporal

derivative, the advection, the pressure gradient force, and the Coriolis term. For

derived terms, this involves the numerical approximations of the vertical and

horizontal subgrid-scale fluxes, and the source/sink terms in the conservation

equations. Secondly, by defining the individual terms in separate levels of detail,

xiii
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it is straightforward to dissect the expressions (parameterizations) and ascertain

how uncertainty (error) propagates throughout the parameterizations to the level

at which their effects are introduced into the conservation equations.

Research work in this book includes studies sponsored by NSF Grant No.

ATM-9910857 and previous NSF grants. The final production stage of the sec-

ond edition has been very ably managed by Technical Typsetting Inc.

There are quite a few colleagues who provided me comments, corrections,

and suggestions with respect to the First and Second Editions. This includes

the extensive and thorough cross-checking of the First Edition by Xingzhen

Zhang, Changxin Yang, Linsheng Chen, and Jifan Chou in their translation into

Chinese. Fredi Boston of the Colorado State University library is thanked for

helping find references for the Second Edition.

These colleagues also include Pinhas Alpert, Ray Arritt, Louis Berkofsky,

Bob Bornstein, Chris Castro, Guy Cautenet, Tom Chase, Linsheng Cheng, Liu

Feng, Mike Flannigan, Zhu Fu-Cheng, Piotr Flatau, Louie Grasso, Mark Had-

field, Bert Holtslag, Hartmut Kapitza, Richard Krasner, Rene Laprise, Alan Lip-

ton, Glen Liston, Guta Mihailovic, Chuck Mollenkamp, Mike Moran, Joseph

Mukabana, Peter Olsson, Bill Physick, Andy Pitman, Jim Purdom, Feng Zhi

Qiang, Nelson Seaman, Moti Segal, Qingqiu Shao, Graeme Stephens, Lou

Steyaert, Roger Stocker, John Strack, Gene Takle, Craig Tremback, Sue Van Den

Heever, Glenn Van Knowe, Pier Luigi Vidale, Tomi Vukićević, Roger Waki-

moto, Bob Walko, Doug Wesley, Xubin Zeng, and Conrad Ziegler.

I particularly thank Ytzhaq Mahrer, Roni Avissar, Bill Cotton, and Joanne

Simpson who have always provided encouragement in the field of mesoscale

meteorology and whose counsel and advice I value so much.

I want to acknowledge Dallas Staley who performed an exceptional, outstand-

ing job in typing and editing the text. Her very significant contribution was

essential to the completion of the book, and I am very fortunate to have her

work with me on this.

Finally, as with the First Edition, my family has been very supportive. I want

to dedicate this book to them—Gloria, Roger Jr., Tara, Julie, Richard, Harrison,

Megan, and Jacob!



Foreword

While synoptic meteorology and micrometeorology have enjoyed steady

progress over the past decades, mesoscale meteorology started to blossom only

since the 1970’s. Easier access to supercomputers and the subsequent revolution

in computing resource availability created by the introduction of workstations

and, more recently, PC clusters, has allowed the simulation of nonhydrostatic,

three-dimensional atmospheric numerical models over scales of thousands of

kilometers which has greatly contributed to the rapid evolution of this field.

Roger A. Pielke, Sr. is closely associated with the field of mesoscale meteo-

rology, and he has been a key figure in its development. During his career, Pro-

fessor Pielke worked as a Research Meteorologist for the NOAA’s Experimental

Meteorology Lab in Miami, and as faculty member in the Department of Envi-

ronmental Sciences at the University of Virginia and the Department of Atmo-

spheric Science at Colorado State University. The three-dimensional mesoscale

numerical model that he developed during his graduate studies was truly pio-

neering and an inspiration in the field. This model has subsequently evolved

into one of the state-of-the-art mesoscale numerical models. This was recog-

nized by the American Meteorological Society, which awarded him the Leroy

Mesinger Award in 1977 for “fundamental contributions to mesoscale meteo-

rology through numerical modeling of the sea breeze and interaction among the

mountains, oceans, boundary layer, and the free atmosphere.” His association

with ecologists and hydrologists, which started at the University of Virginia, has

matured into a solid cooperation at Colorado State University. This collabora-

tion has given him the broad knowledge needed to propel the discipline forward.

Indeed, it is now quite obvious the atmosphere is significantly affected by many

hydrological and ecological processes occurring near the ground surface. Pro-

fessor Pielke has pioneered the introduction of these processes in atmospheric

models.

Having been at the forefront of the research in mesoscale numerical modeling

for the past thirty years, and having served as Chief Editors for the Monthly

xv
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Weather Review and the Journal of the Atmospheric Sciences, Professor Pielke
was in a unique position to write a thorough text on this topic. This is clearly

demonstrated by the more than 2000 references included in this book.

This book will prove beneficial for teaching purposes and reflects the expe-

rience and knowledge gained by Professor Pielke in teaching the course of

Mesoscale Meteorological Modeling at the University of Virginia and Colorado

State University. Students with a solid background in fluid dynamics and numer-

ical methods can cover the material in one semester. The list of additional

reading material provided at the end of each chapter provides students with

background material on the topics covered in the chapter, while the problems

will help students retain the key points made in the text. I trust that meteorol-

ogy teachers and students alike will find this book very useful, enjoyable, and

a “must have” reference manual for their personal shelves.

Roni Avissar

Gardner Professor and Chair

Department of Civil and

Environmental Engineering

Duke University



Chapter 1

Introduction

To utilize mesoscale dynamical simulations of the atmosphere effectively, it is

necessary to understand the basic physical and mathematical foundations of the

models and to have an appreciation of how the particular atmospheric system of

interest works. This text provides such an overview of the field and should be

of use to the practitioner as well as to the researcher of mesoscale phenomena.

Because the book starts from fundamental concepts, it should be possible to use

the text to evaluate the scientific basis of any simulation model that has been or

will be developed.

Mesoscale can be descriptively defined as having a temporal and a horizontal

spatial scale smaller than the conventional rawinsonde network, but significantly

larger than individual cumulus clouds. This implies that the horizontal scale is

on the order of a few kilometers to several hundred kilometers or so. For the

purposes of this book, the focus is on mesoscale atmospheric modeling for sim-

ulated time scales of a few hours to 24 hours or so. The vertical scale extends

from tens of meters to the depth of the troposphere. Clearly, this is a somewhat

arbitrary limit; however, the smaller spatial scale corresponds to atmospheric

features that for weather forecasting purposes can be described only statisti-

cally, whereas the longer limit corresponds to the smallest features that we can

generally distinguish on a synoptic weather map. Mesoscale can also be defined

as those atmospheric systems that have a horizontal extent large enough for

the hydrostatic approximation to the vertical pressure distribution to be valid,

yet small enough for the geostrophic and gradient winds to be inappropriate

as approximations to the actual wind circulation above the planetary boundary

layer. This scale of interest, then, along with computer and cost limitations,

defines the domain and grid sizes of mesoscale models. In this text, exam-

ples of specific circulations will be presented, illustrating scales of mesoscale

circulations.

In this text, the outline of material is as follows. In Chapters 2 and 3 the

fundamental conservation relations are introduced and appropriate simplifica-

1



2 1 Introduction

tions given. In Chapter 4 the equations are averaged to conform to a mesoscale

model grid mesh. In Chapter 5 types of models are discussed and their advan-

tages and disadvantages to properly simulate mesoscale phenomena presented.

The transformation of the equations to a generalized coordinate representation

is given in Chapter 6, and the parameterizations in a mesoscale model of the

planetary boundary layer, electromagnetic radiation, and moist thermodynamics

are introduced in Chapters 7–9. Methods of solution are illustrated in Chap-

ter 10, and boundary and initial conditions and grid structure are discussed in

Chapter 11. The procedure for evaluating models is given in Chapter 12. Exam-

ples of mesoscale simulations of particular mesoscale phenomena are provided

in Chapter 13. Finally, a summary of several current state-of-the-art mesoscale

models is given in Appendix B.



Chapter 2

Basic Set of Equations

The foundation for any model is a set of conservation principles. For

mesoscale atmospheric models, these principles are

1. conservation of mass,

2. conservation of heat,

3. conservation of motion,

4. conservation of water, and

5. conservation of other gaseous and aerosol materials.

These principles form a coupled set of relations that must be satisfied simulta-

neously and that include sources and sinks in the individual expressions.

The corresponding mathematical representations of these principles for atmo-

spheric applications are developed as follows.

2.1 Conservation of Mass

In the earth’s atmosphere, mass is assumed to have neither sinks nor sources.1

Stated another way, this concept requires that the mass into and out of an

infinitesimal box must be equal to the change of mass in the box. Such a volume

is sketched in Figure 2-1, where �u�1 �y �z is the mass flux into the left side

and �u�2 �y �z the mass flux out of the right side. The symbols �x, �y, and
�z represent the perpendicular sides of the box, � represents the density, and u
represents the velocity component normal to the �z �y plane.

If the size of the box is sufficiently small, then the change in mass flux across

the box can be written as

��u�1−�u�2��y�z =
[
�u�1−�u�1−

��u

�x

∣∣∣
1
�x− 1

2

�2�u

�x2

∣∣∣∣
1

��x�2−···
]
�y�z

= �M

�t
	

3



4 2 Basic Set of Equations

Fig. 2-1. A schematic of the volume used to derive the conservation of mass relation.

where �u�2 has been written in terms of a one-dimensional Taylor series expan-

sion and �M/�t is the rate of increase or decrease of mass in the box. Neglecting

terms in the series of order ��x�2 and higher, this expression can be rewritten as

−��u

�x

∣∣∣∣
1

�x �y �z � �M

�t
	

and since the mass M is equal to �V (where V = �x �y �z is the volume of the

box), this expression can be rewritten as

−��u

�x

∣∣∣∣
1

�x �y �z � V
��

�t
	

assuming the volume is constant with time.

If the mass flux through the sides �x �y and �x �z is considered in a similar

fashion, then the complete equation for mass flux in the box can be written as

− �

�x
�u

∣∣∣∣
1

�x �y �z− �

�y
�v

∣∣∣∣
1

�x �y �z− �

�z
�w

∣∣∣∣
1

�x �y �z � V
��

�t
	

and, dividing by volume, the resulting equation is

−��u

�x

∣∣∣∣
1

− ��v

�y

∣∣∣∣
1

− ��w

�z

∣∣∣∣
1

� ��

�t



If the time and spatial increments are taken to zero in the limit, then

lim
�x→0	�y→0
�z→0	�t→0

(
−��u

�x

∣∣∣∣
1

− ��v

�y

∣∣∣∣
1

− ��w

�z

∣∣∣∣
1

)
= lim

�x→0	�y→0
�z→0	�t→0

��

�t
	

since the remainder of the terms in the Taylor series expansion contain �x	 �y	
or �z. Written in an equivalent fashion,

−
[
�

�x
�u+ �

�y
�v + �

�z
�w

]
= ��

�t
	 (2-1)

where the subscript 1 has been dropped because the volume of the box has

gone to 0 in the limit. Equation (2-1) is the mathematical statement of the



2.2 Conservation of Heat 5

conservation of mass. It is also called the continuity equation. In vector notation,

it is written as

−�� · � �V � = ��/�t
 (2-2)

2.2 Conservation of Heat

The atmosphere on the mesoscale behaves very much like an ideal gas and

is considered to be in local thermodynamic equilibrium.2 The first law of ther-

modynamics for the atmosphere states that differential changes in heat content,

dQ, are equal to the sum of differential work performed by an object, dW , and

differential increases in internal energy, dI . Expressed more formally, the first

law of thermodynamics states that

dQ = dW + dI
 (2-3)

If we represent the region over which Eq. (2-3) applies as a box (Figure 2-2),

with volume �x �y �z, then an incremental increase in the x direction, caused

by a force F , can be expressed as

dW = F dx	

and since force can be expressed as a pressure P exerted over an area �y �z,

dW = p �y �z �x
 (2-4)

The term �y �z �x represents a change in volume dV, so that Eq. (2-4) can be

rewritten as

dW = p dV	

Fig. 2-2. A schematic of the change in size of a volume of gas resulting from a force
F exerted over the surface �z �y.



6 2 Basic Set of Equations

For a unit mass of material, it is convenient to rewrite the expression as

dw = p d�	 (2-5)

where � is the specific volume (i.e., volume per unit mass). In an ideal gas,

which the atmosphere closely approximates, as discussed later, the pressure in

Eq. (2-5) is exerted uniformly on all sides of the gas volume.

The expression for work in Eq. (2-3) could also have included external work

performed by such processes as chemical reactions, phase changes, or electro-

magnetism; however, these effects are not included in this derivation of work.

The ideal gas law, referred to previously, was derived from observations of the

behavior of gases at different pressures, temperatures, and volumes. Investigators

in the seventeenth and eighteenth centuries found that for a given gas, pressure

times volume equals a constant at any fixed temperature (Boyle’s law) and that

pressure divided by temperature equals a constant at any fixed volume (Charles’s

law). These two relations can be stated more precisely as

p� = F1�T � (2-6)

and

p/T = F2���	 (2-7)

where a unit mass of gas is assumed. If Eq. (2-6) is divided by T and Eq. (2-7)

is multiplied by �, then

p�/T = �1/T �F1�T � = �F2���
 (2-8)

Since the two right-side expressions are functions of two different variables,

the entire expression must be equal to a constant, conventionally denoted as R.
Thus Eq. (2-8) is written as

p�/T = R	 (2-9)

where R has been found to be a function of the chemical composition of the

gas. The extent to which actual gases obey Eq. (2-9) specifies how closely they

approximate an ideal gas.

The value of the gas constant R for different gases is determined using

Avogadro’s hypothesis that at a given temperature and pressure, gases contain-

ing the same number of molecules occupy the same volume. From experimental

work, for example, it has been shown that at a pressure of 1 atm (P0 = 1014 mb)

and a temperature of T0 = 273 K, 22.4 kL of a gas (V0) will have a mass in

kilograms equal to the molecular weight of the gas . This quantity of gas is

defined as 1 kmol.
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Using this information, the ideal gas law [Eq. (2-9)], and the definition �0 =
V0/, we have

P0V0/T0 = R	

or, by definition,

P0V0/T0 = R = R∗/ �so that P0V0/T0 = R∗�	 (2-10)

where R∗ is called the universal gas constant and  has units of kg/kmole. From

experiments, R∗ = 8
314472× 103 J K−1 kmol−1 (Mohr and Taylor 2000). Since

Eq. (2-10) is valid for any combination of pressure, temperature, and volume,

p�/T = R = R∗/
 (2-11)

In the atmosphere, the apparent molecular weight of air, atm, is determined by

the fractional contribution by mass of each component gas (Table 2-1) from the

equation

atm =
N∑
i=1

mi

/ N∑
i=1

�mi/i�	

where mi is the fractional contribution by mass of the N individual gases in the

atmosphere (
∑N

i=1 mi = 1) and i represents their respective molecular weights.3

For the gaseous components in Table 2-1, excluding water vapor,

dry atm = 0
7551+ 0
2314+ 0
0128

�0
7551/28
016�+ �0
2314/32
00�+ �0
0128/39
94�
= 28
98	

so that the dry gas constant of the atmosphere, Rd, is

Rd = R∗/28
98 = 287 J K−1 kg−1


When water vapor is included, the apparent molecular weight can be written as

atm = 1
/(1− q

28
98
+ q

18
02

)
	

TABLE 2-1

Molecular Weight and Fractional Contribution by Mass of Major Gaseous
Components of the Atmosphere

Gas Molecular weight Fractional contribution by mass

N2 28.016 0.7551

O2 32.00 0.2314

Ar 39.94 0.0128

H2O 18.02 Variable

From Wallace and Hobbs 1977.
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where q is the specific humidity or ratio of the mass of water vapor M to the

mass of dry air Md. Expanding this relation,

atm = 1

�1/28
98��1− q + �28
98/18
02�q�

= 28
98

1− q + �28
98/18
02�q

= 28
98

1+ q��28
98/18
02�− 1�

= 28
98

1+ 0
61q
	

and inserting atm into Eq. (2-11) gives

p� = Rd�1+ 0
61q�T 
 (2-12)

This form of the ideal gas law includes the contribution of water vapor and is

often written as

p� = RdTV	 (2-13)

where TV is called the virtual temperature, or the temperature required in a

dry atmosphere to have the same value of p� as in an atmosphere with a

specific humidity q of water vapor. For typical atmospheric conditions (e.g.,

q = 0
006 kg/kg), the difference between the virtual and actual temperatures

is about 1�C. Since TV ≤ T , air at the same pressure and temperature is less

dense when water vapor is present than when it is not. The virtual temperature

is generally used by convention in preference to recomputing the gas constant

R = Rd�1+ 0
61q�.
To complete the derivation of the first law of thermodynamics for an ideal

gas, it is useful to introduce the concept of exact differentials. If a function F
exists such that

F = F �x	 y�	

where x and y are two independent variables,4 then

dF = ��F /�x�dx + ��F /�y�dy = M dx + N dy

by the chain rule of calculus. If

�M/�y = �N/�x	

then

�2F /�x �y = �2F /�y �x	 (2-14)
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and F is an exact differential. Stated more physically, if Eq. (2-14) is valid,

then the path over which the function is evaluated (e.g., �/�x first, then �/�y,
as contrasted with �/�y first, then �/�x) is unimportant. If the left and right

sides of Eq. (2-14) are not equal however, then dF is an inexact differential,

and different paths of computing it will give different answers.

To ascertain whether the change in work given by Eq. (2-5) is an exact

differential or not, it is useful to rewrite the expression as

dw = d�p��− �dp	

using the product rule of differentiation [d�p�� = p d� + �dp]. Thus by the

gas law [Eq. (2-13)],

dw = RddTV − �dp


To check for exactness, let M = Rd and N = −�; then

�M/�p = �Rd/�p = 0 and �N/�TV = ��−��/�TV = −Rd/p


Therefore, dw is not an exact differential. The path in which work is performed

is important in determining its value.

The internal energy I in Eq. (2-3), expressed for a unit mass of material, can

be written as

e = e�TV	 ��	 (2-15)

where, as a result of the ideal gas law, the virtual temperature TV and the specific

volume � can be used to determine the internal energy of the material. From

the chain rule of calculus,

de = ��e/�TV�dTV + ��e/���d�	

but from experiments with gases that closely follow the ideal gas law

[Eq. (2-13)], internal energy changes only when temperature changes (i.e.,

�e/�� = 0). And if we define heat per unit mass from Eq. (2-3) as h, then

dh = dw + de = p d�+ ��e/�TV�dTV

and

�h/�TV = �e/�TV = C�	

where C� is defined as the specific heat at constant volume.

Experiments have shown C� to be only a slowly varying function of temper-

ature. Thus the internal energy relationship for an ideal gas is expressed as

de = C�dTV


Since M = �e/�TV = C� and N = �e/�� = 0, it is obvious that �M/�� =
�N/�T = 0, so that internal energy for an ideal gas is an exact differential.
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Our first law of thermodynamics [Eq. (2-3)] can now be written as

d⁄h = de + d⁄w = C�dTV + p d�	 (2-16)

where the diagonal slash through the two terms indicates that they are inexact

differentials (d⁄h is inexact because the sum of an exact and an inexact differ-

ential must be inexact). It is not convenient to work with this form of the first

law, however, because the path taken to go from one set of temperature and

pressure, for example, to a different set will affect the amount of heat lost or

gained and the amount of work performed.

To eliminate this dependency on path, Eq. (2-16) can be made an exact dif-

ferential by dividing by temperature TV and using the ideal gas law [Eq. (2-13)]

so that

d⁄h/TV = C��dTV/TV�+ �Rd/��d�
 (2-17)

Since M = C�/TV and N = Rd/�, we have �M/�� = 0 and �N/�TV = 0, so

that

d⁄h/TV = ds

is an exact differential, where s is defined as entropy.
Unfortunately, Eq. (2-17) is not in a convenient form for use by meteorolo-

gists because temperature and pressure are measured and specific volume is not.

To generate a more useful form of Eq. (2-17), we differentiate the ideal gas law

[Eq. (2-13)] logarithmically so that

�1/��d� = �1/TV�dTV − �1/p�dp	

and substituting into Eq. (2-17) yields

ds = d⁄h/TV = �C�dTV/TV�+ �RddTV/TV�− �Rd/p�dp

or

ds = d⁄h/TV = �C� + Rd��dTV/TV�− �Rd/p�dp
 (2-18)

Since

d⁄h = �C� + Rd�dTV − �dp	

we have

�h/�TV = C� + Rd = Cp	

where Cp is defined as the specific heat at constant pressure. Therefore,

Eq. (2-18) is written as

ds = Cp�dTV/TV�− �Rd/p�dp
 (2-19)
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For an ideal monotomic gas, the ratio of Cp � C� � Rd is 5 � 3 � 2, whereas
for a diatomic gas (such as the atmosphere closely approximates) the ratio of

Cp � C� � Rd is 7 � 5 � 2.
For the situation when no heat is gained or lost (e.g., ds = 0),

dTV/TV = �Rd/Cp�dp/p	

which can be rewritten as

d ln TV = �Rd/Cp�d ln p
 (2-20)

If a parcel of air moves between two points with temperatures and pressures

given by �TV1
	 P1� and �TV2

	 P2�, then integrating Eq. (2-20) gives∫ TV2
TV1

d ln TV = �Rd/Cp�
∫ P2
P1

d ln P = ln�TV2
/TV1

� = �Rd/Cp� ln�P2/P1�


Taking antilogs yields

TV2
/TV1

= �P2/P1�
Rd/Cp	

which is customarily called Poisson’s equation. If we set P2 = 1000 mb and TV2

is defined as the potential temperature �, then

� = TV�1000/p�
Rd/Cp	 (2-21)

where p is in millibars.

To determine the relationship between the potential temperature � and the

entropy s, logarithmically differentiate Eq. (2-21) and multiply by Cp, which

yields

�Cp/��d� = �Cp/TV�dTV − �Rd/p�dp	

which is identical to Eq. (2-19), so that

�Cp/��d� = ds = d⁄h/TV
 (2-22)

Thus a change in potential temperature is equivalent to a change in entropy.

If the change in potential temperature is observed following a parcel, then

Eq. (2-22) can be written as

Cp

�

d�

dt
= ds

dt
= 1

TV

d⁄h

dt
= S�

Cp

�
	 (2-23)
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where S� represents the sources and sinks of heat as expressed by changes in

potential temperature. The contributors to S� include the sum of the following

processes:

S� =
[+ freezing

− melting

]
+
[+ condensation

− evaporation

]
+
[+ deposition (vapor to solid)

− sublimation (solid to vapor)

]
+
[+ exothermic chemical reactions

− endothermic chemical reactions

]
+
[+ net radiative flux convergence

− net radiative flux divergence

]
+
[
dissipation of kinetic energy

by molecular motions

]

 (2-24)

The precise evaluation of these terms can be complicated, and further discus-

sion of them is deferred to later chapters. In Eq. (2-23), the transfer of heat by

molecular processes is not included. The neglect of molecular transfers of heat,

or other properties of the air, on the mesoscale is justified by the relative con-

tributions to such exchanges through the motion of the fluid, as contrasted with

molecular diffusion. This neglect is discussed further in Section 2.3.2 of this

chapter, as well as in Section 3.3.2 of Chapter 3 and Section 5.1 of Chapter 5.

The term d�/dt denotes changes of potential temperature following a parcel,

with the operator d/dt often called the Lagrangian derivative. Since � is a

function of the three coordinate directions x	 y	 and z of a parcel at a given

time t [i.e., � = ��x�t�	 y�t�	 z�t�	 t�], then, by the chain rule of calculus,

d�

dt
= ��

�t
+ ��

�x

dx

dt
+ ��

�y

dy

dt
+ ��

�z

dz

dt
= S�

or

��

�t
= −u

��

�x
− v

��

�y
− w

��

�z
+ S� = − �V · �� + S�	 (2-25)

where ��/�t represents local changes in potential temperature and the operation

�/�t is called the Eulerian derivative. This equation is a standard form of the

conservation of heat relation (often called the potential temperature equation)

used in mesoscale models.

It should be noted, however, that since d⁄h/dt = �CpTV/��d�/dt, the poten-

tial temperature equation is proportional to, but not equal to, changes in heat

content. The proportionality term is given by CpTV/�. The conservation of heat

relation is represented by a potential temperature equation rather than by d⁄h/dt,
because, as pointed out earlier, the latter form is an inexact differential and

thus depends on the path taken to accomplish a change. However, d�/dt is

independent of path.
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2.3 Conservation of Motion

The conservation of motion is expressed by Newton’s second law, which

states that a force exerted on an object causes an acceleration, as given by

�F = M �a	
where �F and �a are the force and acceleration vectors, respectively, and M is

the mass of the object. In atmospheric science it is conventional to work with

force normalized by mass, so this expression can be written as

�F /M = �f = �a
 (2-26)

Since acceleration represents the change of velocity with time following an

object, �a can be written as

�a = dn
�Vn/dt	 (2-27)

where the subscript n refers to a nonaccelerating coordinate system. However,

because atmospheric motions are referenced to a rotating earth, the acceleration

must be expressed in a different form.

If the earth is rotating with constant angular velocity ��, then the velocity �Vn

of an object or parcel of air may be written as the sum of the velocity relative

to the earth and the velocity resulting from rotation. Expressed mathematically,5

�Vn = �V + ��× �R	 (2-28)

where �R represents the position vector of the parcel as measured from the origin

of the earth’s center, as shown in Figure 2-3. The time differential operator can

be similarly described by the sum of a derivative relative to the earth’s surface

and changes resulting from the rotation rate of the planet, as given by

dn

dt
= d

dt
+ ��× 
 (2-29)

Substituting Eqs. (2-29) and (2-28) into Eq. (2-27) yields

�a =
(
d

dt
+ ��×
)
�Vn =

d �Vn

dt
+ ��× �Vn =

d

dt
� �V + ��× �R�+ ��× � �V + ��× �R�


Simplifying and rearranging results in

�a = �d �V /dt�+ 2� ��× �V �+ ��× � ��× �R�	 (2-30)

where the relation �V = d �R/dt has been used.

The first term on the right side of Eq. (2-30) is the acceleration as viewed

from the rotating earth. The second term, the Coriolis acceleration, operates
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Fig. 2-3. The components of the angular velocity of the earth �� as a function of lati-
tude �. For the earth, � ��� = � = 2�/24 h.

only when there is motion, and the last term, the centripetal acceleration, acts
on a parcel at all times.

After describing acceleration relative to the earth, we need to specify the

forces that cause changes in motion. In performing this analysis, it is conve-

nient to consider forces as acting externally and internally to a parcel. Exter-

nal forces include those resulting from pressure gradients, gravity, and so on,

and are independent of motion; internal forces are caused by fluid interactions

with itself involving frictional dissipation by molecules. This concept of exter-

nal and internal forces is related to our idea of a parcel that, although assumed

to be “infinitesimally” small so that we can apply the concepts of differential

calculus, is still presumed to be large relative to individual molecules. In other

words, this parcel must be sufficiently large so that only the statistical proper-

ties of molecules are important (and are expressed in terms of such so-called

macroscopic quantities as pressure and temperature).

2.3.1 External Forces

The pressure gradient force can be derived in a similar fashion to that used

for the continuity-of-mass equation (Section 2.1). The pressure difference across

a box, depicted in Figure 2-4, can be expanded in a one-dimensional series and

expressed as

P2 − P1 =
�p

�x

∣∣∣∣
1

�x + 1

2

�2p

�x2

∣∣∣∣
1

��x�2 + · · · + O���x�3�
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Fig. 2-4. A schematic of a volume with pressure (P1 and P2) on two opposing sides.

Since pressure is force per unit area and is directed toward lower pressure, the

force per unit mass in the x direction fPGFx required in Eq. (2-26) can be written

as

fPGFx = − �P2 − P1�A

M
= −�p

�x

∣∣∣∣
1

�xA

M
− 1

2

�2p

�x2

∣∣∣∣
1

��x�2A

M
+ · · · 	 (2-31)

where

A = �y �z and M = �V = � �x �y �z


Substituting A and M into Eq. (2-31) yields

fPGFx = −1

�

�p

�x

∣∣∣∣
1

− 1

2�

�2p

�x2

∣∣∣∣
1

�x − · · · 	
and if we require �x to become very small,

fPGFx = lim
�x→0

[
− 1

�

�p

�x

∣∣∣∣
1

− 1

2�

�2p

�x2

∣∣∣∣
1

�x − · · ·
]
= −1

�

�p

�x



An equivalent derivation in the y and z directions6 results in a pressure gradient

force given by

�fPGF = −1

�

[
�p

�x
�i + �p

�y
�j + �p

�z
�k
]
= −1

�
�p	

where �i	 �j , and �k are the unit vectors in the three spatial directions.

Gravity is another external force. If the gravitational force between the earth

and an air parcel is defined as �G, it is customary to include the centripetal

acceleration, given in Eq. (2-30), in the definition of a modified gravitational
force. The force �G is directed toward the center of the earth with a magnitude

proportional to the mass of the earth and inversely proportional to the square of

the distance of a parcel from the center of the earth. Subtracting the centripetal

acceleration from �G produces the modified gravity, given as

−g�k = �G− ��× � ��× �R�




16 2 Basic Set of Equations

In its application to atmospheric flows, variations of g because of height

above the ground or location on the earth’s surface are sometimes considered;

however, for mesoscale circulations these small variations in the troposphere

are customarily ignored, and the modified gravity is treated as a constant

(g = 9
80665 m s−2; Mohr and Taylor 2000).

Other external forces, such as electromagnetism, could be included, but for

mesoscale circulations within the troposphere only gravity and the pressure gra-

dient are typically included as external forces.

2.3.2 Internal Forces

Internal forces are required to account for the dissipation of momentum

by molecular motions. Defined in terms of postulates, the effects of these

forces on the momentum are expressed in terms of the viscosity of the gas (or

liquid) and the deformation of the momentum field. In the atmosphere, on the

mesoscale, the viscosity is sufficiently small and the velocities are sufficiently

great that the influence of the internal forces is ignored. We demonstrate the rea-

sons for the neglect of these forces more quantitatively in Sections 3.3.2 and 5.1.

The conservation-of-motion relation, Eq. (2-26), can now be written as

d �V /dt = −�1/���p − g�k − 2 ��× �V 	 (2-32)

where the last term on the right side, although only an apparent force arising

because of the coordinate frame of reference, is referred to as the Coriolis force.
Since

�V = �V �x�t�	 y�t�	 z�t�	 t�
(i.e., the velocity is a function of time and the spatial location at a given time),

by the chain rule of calculus,

d �V
dt

= � �V
�x

dx

dt
+ � �V

�y

dy

dt
+ � �V

�z

dz

dt
+ � �V

�t

or

d �V
dt

= �V · � �V + � �V
�t




Therefore, Eq. (2-32) can be rewritten as

� �V
�t

= − �V · � �V − 1

�
�p − g�k − 2 ��× �V 	 (2-33)

which is a standard form of the conservation of momentum, often called the

equation of motion.



2.5 Conservation of Water 17

2.4 Conservation of Water

Water can occur in three forms: solid, liquid, and vapor. To write a conserva-

tion law for this substance, we thus need to keep track of the changes of phase

of water and to follow its movement through the atmosphere.

The conservation law for water can be written as

dqn/dt = Sqn	 n = 1	 2	 3	 (2-34)

where q1	 q2, and q3 are defined as the ratio of the mass of the solid, liquid,

and vapor forms of water, respectively, to the mass of air in the same volume.

The source-sink term Sqn refers to the processes whereby water undergoes phase

changes, as well as to water generated or lost in chemical reactions. For most

mesoscale applications, chemical changes in water mass can be neglected and

the terms can be expressed as contributions owing to the following processes:

Sq1 =
[+ freezing

− melting

]
+
[+ deposition (vapor to solid)

− sublimation (solid to vapor)

]
+
[+ fallout from above

− fallout to below

]
Sq2 =
[+ melting

− freezing

]
+
[+ condensation

− evaporation

]
+
[+ fallout from above

− fallout to below

]
Sq3 =
[+ evaporation

− condensation

]
+
[+ sublimation (solid to vapor)

− deposition (vapor to solid)

]



The manner in which these terms are expressed mathematically can be very

involved. In cumulus cloud models, for example, the condensation of water

onto aerosols and their subsequent development into hydrometeors that fall to

the ground are accounted for by categorizing cloud droplets into a spectrum

of interacting size classes. Incorporation of the ice phase creates an even more

complex set of interactions.

By contrast, the simplest representation of these sources and sinks of water

is to prohibit relative humidities above 100%7 and liquid or solid water below

100%. Excess water vapor over 100% is immediately condensed (or deposited)

and falls out as rain or snow. As it falls through an unsaturated environment,

water evaporates (or sublimates) to the water vapor phase, thereby elevating the

relative humidity.

Using the chain rule, Eq. (2-34) can be written in terms of the local time rate

of change as

�qn/�t = − �V · �qn + Sqn	 n = 1	 2	 3
 (2-35)

Further discussion regarding the source-sink term Sqn is given in Chapter 9.



18 2 Basic Set of Equations

2.5 Conservation of Other Gaseous
and Aerosol Materials

Conservation relations of the form given by Eq. (2-34) can be written for any

gaseous or aerosol material in the atmosphere, expressed mathematically as

d�m/dt = S�m	 m = 1	 2	 3	 � � � 	M	 (2-36)

where �m refers to any chemical species except water [which is explained by

Eq. (2-35)] and is expressed as the mass of the substance to the mass of air in

the same volume. Examples of important occasional constituents in the atmo-

sphere include carbon dioxide, methane, sulfur dioxide, �SO2� sulfates, nitrates,
ozone, and the herbicide 2-4-5-T. The source-sink term S�m can be written to

include changes of state (analogous to that performed for water) as well as

chemical transformations, precipitation, and sedimentation.8 In the atmosphere,

for instance, it is well known that SO2 will convert to sulfate within several

days after release. In general, the mathematical representation of this source-sink

term can be very complex.

Using the chain rule, Eq. (2-36) can be written as

��m/�t = − �V · ��m + S�m	 m = 1	 2	 � � � 	M
 (2-37)

As more researchers begin to realize the serious impact of air pollution on

our health and economic well-being and of trace gases and aerosols within the

Earth’s climate system, they are including this conservation relation in their

mesoscale models.

2.6 Summary

Equations (2-2), (2-25), (2-33), (2-35), and (2-37) are listed together as

��/�t = −�� · � �V �	 (2-38)

��/�t = − �V · �� + S�	 (2-39)

� �V /�t = − �V · � �V − 1/��p − g�k − 2 ��× �V 
 (2-40)

�qn/�t = − �V · �qn + Sqn	 n = 1	 2	 3	 (2-41)

and

��m/�t = − �V · ��m + S�m	 m = 1	 2	 � � � 	M
 (2-42)

When we use these equations in the remainder of the text, it is convenient to

adopt the formalism of tensor notation. This makes the equations much easier
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to handle, providing that the following simple rules are used:

1. Repeated indices are summed (e.g., in a three-dimensional space, aii =
a11 + a22 + a33).

2. Single indices in a term are called free indexes and refer to the order of

a tensor, e.g., ai is a tensor of order one (a vector), aij is a tensor of order two

(a matrix), and a is a tensor of order zero (a scalar). The maximum value that

a free index can attain depends on the spatial dimensions of the system (i = 3

for the atmosphere).

3. Only tensors of the same order can be added.

4. Multiplication of tensors can be performed as for scalars (because they

are commutative with respect to addition and multiplication, a definite advantage

as compared to vectors).

5. Parameters are defined to simplify the writing of the gravitational and

Coriolis accelerations; i.e.,

�ij =
⎡⎣1 0 0

0 1 0

0 0 1

⎤⎦ =
{
1 for i = j

0 for i 	= j	

where i refers to the row and j refers to the column, and

�i	 j	 k =

j︷ ︸︸ ︷⎡⎣0 0 0

0 0 1

0 −1 0

⎤⎦⎡⎣0 0 −1

0 0 0

1 0 0

⎤⎦⎡⎣ 0 1 0

−1 0 0

0 0 0

⎤⎦
︸ ︷︷ ︸

k

⎫⎬⎭ i	
where the following device has been used: for 0, i = j	 i = k, or j = k; for 1,
even permutations of i	 j , and k; and for −1, odd permutations of i	 j , and k.

Using this notational device, along with the requirement that the independent

spatial variables x1 = �x	 y	 z� are perpendicular to each other at all locations.

Equations (2-38)–(2-42) can be rewritten as

��

�t
= −��uj

�xj
	 (2-43)

��

�t
= −uj

��

�xj
+ S�	 (2-44)

�ui

�t
= −uj

�ui

�xj
− 1

�

�p

�xi
− g�i3 − 2�ijk�juk	 (2-45)

�qn
�t

= −uj

�qn
�xj

+ Sqn	 n = 1	 2	 3 (2-46)

and
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��m

�t
= uj

��m

�xj
+ S�m	 m = 1	 2	 � � � 	M
 (2-47)

The definition of potential temperature, given by Eq. (2-21), is

� = TV�1000/p(in mb)�Rd/Cp	 (2-48)

and the ideal gas law [Eq. (2-13)] can be written as

p = �RdTV	 (2-49)

where density � is the inverse of specific volume. The virtual temperature is

given by

TV = T �1+ 0
61q3�	 (2-50)

from Eqs. (2-12) and (2-13).

Equations (2-43)–(2-50) represent a simultaneous set of 11 + M non-

linear partial differential equations in the 11 + M dependent variables

��	 �	 T 	 TV	 p	 ui	 qn	 and �m� that must be solved if mesoscale circulations

are to be studied quantitatively, The independent variables are time t and the

three-space coordinates x1 = x	 x2 = y	 and x3 = z. The remainder of the text

discusses methods of simplification and solution for these fundamental physical

relations. In working with mesoscale models and their results, investigators

must always determine the extent to which the equations used in specific
simulations correspond to these fundamental basic principles.

Notes to Chapter 2

1. Gases and aerosols that move into or out of the earth’s land and water bodies and those that

are lost to space are presumed to have an inconsequential effect on the mass present.

2. Coulson (1975:10) and Kondratyev (1969:23, 24) discuss thermodynamic equilibrium. To be

in equilibrium, the intensity of radiation cannot be dependent on direction (i.e., radiation must

be isotropic), and temperature cannot depend on the frequency and direction of electromagnetic

radiation, i.e., the Stefan–Boltzman law (8.8) must apply. In other words, temperature must be

controlled by molecular collisions rather than by interaction of the molecules with the radiation

field. At levels below 50 km or so in the earth’s atmosphere, the density of air is sufficiently great

so that over short distances, molecular collisions dominate and a state of local equilibrium occurs.

3. The form of atm is derived using Dalton’s law of partial pressures; Dalton’s law is p =∑N
i=1 pi , when pi represents the pressure contribution of the individual gases that make up the gas

mixture (see, e.g., Haltiner and Martin 1957:10).

4. For an ideal gas, the independent variables are any two of temperature, pressure, and specific

volume. Given two of these variables, the gas law determines the third. These variables are also

referred to as state variables.
5. The symbol × is used to indicate a vector cross-product.
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6. More appropriately, a three-dimensional Taylor series expansion should be applied for each

component of the pressure difference (and also in deriving the conservation-of-mass equation in

Section 2.1) which results in cross-derivative terms. However, in the limit, as the horizontal distance

approaches zero, the result is the same differential relationship.

7. Relative humidity is defined with respect to water or ice, depending on the temperature and

the availability of ice nuclei.

8. Sedimentation refers to the fallout of material that has undergone no phase change and has not

been produced as the result of a chemical reaction; precipitation, in contrast, is a fallout of material

that has been produced as the result of a phase change or chemical reaction.

Additional Readings

Several useful texts are available to provide additional in-depth information on the material in

this chapter, including the following:

Bohren, C. F., and B. A. Albrecht. 1998. “Atmospheric Thermodynamics.” Oxford University Press,

New York, 402 pp.

Dutton, J. A. 1976. “The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion.”

McGraw-Hill, New York, 579 pp. (New editions, corrected in large, were published in 1986

and 1995.)

An excellent book that examines the equations of motion in considerable detail. Dutton’s

book is a necessity for those who wish to probe deeper into the fundamental set of meteo-

rological equations.

Iribarne, J. V. and W. L. Godson. 1973. “Atmospheric Thermodynamics.” D. Reidel Publishing,

Boston, 222 pp.

This text provides a comprehensive review of the principles of thermodynamics and their

applications to atmospheric problems.

Gutman, L. N. 1972. “Introduction to the Nonlinear Theory of Mesoscale Meteorological Processes,”

Keter Press, Jerusalem, Israel, 224 pp.

This book discusses aspects of meteorological processes on the mesoscale, including a pre-

sentation of the basic equations. As such, it represents the first attempt to provide a text on

mesoscale meteorology.



Chapter 3

Simplification of the Basic Equations

Equations (2-43)–(2-47) can be simplified for specific mesoscale meteorolog-

ical simulations. By mathematical operations, some of these relations can also

be changed in form. In this chapter, commonly made assumptions are reviewed

and the resultant equations presented. In all cases, Eqs. (2-43)–(2-47) are altered

in form or simplified, or both, to permit their solution in an easier, more eco-

nomical fashion.

The method of scale analysis1 is often used to determine the relative impor-

tance of the individual terms in the conservation relations. This technique

involves estimation of their order of magnitude using representative values of

the dependent variables and constants that make up these terms. Scale analysis

can be applied either to individual terms in the fundamental conservation

equations, as applied in this chapter, or to analytic solutions of a coupled set

of the conservation equations, as discussed in Section 5.2.2 in Chapter 5. The

most rigorous analysis procedure is, of course, to evaluate specific solutions of

the conservation equations with and without particular terms to establish their

importance. An example of such an analysis, for the hydrostatic assumption in

sea breeze simulations, is described in Section 5.2.3.

In this chapter, the use of scale analysis is illustrated. Discussions by inves-

tigators such as Thunis and Bornstein (1996) provide additional descriptions of

using scale analysis to investigate scales of motion on the mesoscale.

3.1 Conservation of Mass

In Chapter 2, the mass-conservation relation was given by Eq. (2-43). To

determine appropriate and consistent approximate forms of this equation, por-

tions of the scale analysis of this equation by Dutton and Fichtl (1969) are used

in the following discussion.

22
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Using the relationship between density and specific volume given by

� = 1/�	

Eq. (2-43) can be rewritten as

��

�t
= −uj

��

�xj
+ �

�uj

�xj

 (3-1)

If it is assumed that

� = �0 + �′	

where �0 is defined as a synoptic-scale reference specific volume and �′ is the
mesoscale perturbation from this value,2 then Eq. (3-1) can be rewritten as

���0 + �′�
�t

= −uj

�

�xj
��0 + �′�+ ��0 + �′�

�uj

�xj

 (3-2)

To simplify the scale analysis of this equation, it is assumed that∣∣∣∣��0

�t

∣∣∣∣�
∣∣∣∣��′

�t

∣∣∣∣�
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�x
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∣∣∣∣��0
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∣∣∣∣	 (3-3)

so that Eq. (3-2) becomes

��′

�t
= −u

��′

�x
− v

��′

�y
− w

��′

�z
− w

��0

�z

+ �0

(
1+ �′
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)(
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)

 (3-4)

For mesoscale atmospheric circulations, adoption of the assumptions given in

Eq. (3-3) requires that the synoptic state change much more slowly than the

mesoscale system and that the horizontal synoptic gradients be much lower than

the mesoscale gradients.

It is also assumed that

��′/�0� � 1	

so that Eq. (3-4) reduces to

��′

�t
= −u

��′

�x
− v

��′

�y
− w

��′

�z
− w

��0

�z
+ �0

(
�u

�x
+ �v

�y
+ �w

�z

)

 (3-5)

This requirement for the ratio of the mesoscale perturbation specific volume to

the synoptic-scale reference value is reasonable when realistic values of tem-

perature and pressure are inserted into the ideal gas law [Eq. (2-13)].

For example, a representative climatological value of �0 at sea level is

0.80 m3 kg−1. Since � = RdTV/p, upper and lower bounds on specific volume
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can be estimated for realistic mesoscale situations using the highest temper-

ature and lowest pressure and the lowest temperature and highest pressure

likely to occur at a given location over a reasonably short time period (say

12–24 hours). If

TV = 40�C	 p = 990 mb

and

TV = 20�C	 p = 1030 mb	

then � = 0
91 m3 kg−1 and � = 0
82 m3 kg−1 for the two cases, so that ��′�/�0

is at most around ±5%.

The method of scale analysis is used to estimate the magnitude of the remain-

ing terms in Eq. (3-5), so that∣∣∣∣��′

�t

∣∣∣∣ ∼ �′

t�
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�w

�z

∣∣∣∣ ∼ �0

W

Lz

	

where t−1
� represents the characteristic frequency of variations in specific volume

on the mesoscale; U	 V 	 and W are representative values of the components of

velocity; Lx	 Ly , and Lz are the spatial scales of the mesoscale disturbance; and

H�, the density-scaled height of the atmosphere, is defined as

H−1
� = 1

�0

��0

�z



In the earth’s troposphere, H� is approximately 8 km, as illustrated schematically

in Figure 3-1.

3.1.1 Deep Continuity Equation

To examine the necessity for retaining individual terms in Eq. (3-5), it is

customary to examine their ratio relative to one of the terms that is expected

to remain. In the first case that we examine, the terms are divided by the order
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Fig. 3-1. Schematic illustration contrasting deep and shallow atmospheric circula-
tions. The depth Lz corresponds to the vertical extent of the circulation. In the earth’s
atmosphere, H� = 8 km.

of magnitude estimate for w ��0/�z, resulting in∣∣∣∣��′
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Since ��′/�0� � 1, the terms u ��′/�x	 v ��′/�y, and w ��′/�z are much

less than �0 �u/�x	 �0 �v/�y, and �0 �w/�z and can be neglected in Eq. (3-5),

provided that

(i) Lz ∼ H�	 (ii)
U

W

H�

Lx

∼ 1	 (iii)
V

W

H�

Ly

∼ 1	

and (iv)
H�

t�W
∼ 1
 (3-7)
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Then Eq. (3-5) can be written as

w
��0

�z
− �0

(
�u

�x
+ �v

�y
+ �w

�z

)
= 0
 (3-8)

Since Lz is approximately equal to H�, conditions (ii) and (iii) in Eq. (3-7)

require that

U/Lx ∼ W/Lz and V /Ly ∼ W/Lz
 (3-9)

If, therefore, Lx is one or two orders of magnitude larger than Lz, then the

vertical velocity W is expected to be one or two orders of magnitude less

than U and V (e.g., for Lx ∼ 80 km and Lz ∼ 8 km, W ∼ 0
1U ). This rela-

tion between velocities and the horizontal and vertical scales of atmospheric

circulations results from the condition that ��′/�0� � 1. Because of this con-

straint, velocities in a longer, horizontal leg of an atmospheric circulation must

be proportionately stronger to preserve mass continuity without creating large

fluctuations in specific volume.

The last requirement remaining to be justified in Eq. (3-7) is condition (iv).

The scaled variable t� represents a time period in which significant variations

in specific volume occur on the mesoscale and can be approximated by

t� ∼ L/C	 (3-10)

where L is the wavelength over which variations occur and C is the rate of

movement of these variations. If the changes are caused by advection, then

U	 V , or W is used to represent C, whereas if wave propagation is dominant,

then a characteristic group velocity Cg is used. The wavelength L is estimated

as Lx and Ly for horizontal motion and Lz for vertical motion. When changes in

specific volume are assumed to be primarily caused by advection or when the

wave group velocity has approximately the same speed as the wind velocity,3

we have

t�W ∼ LW/C ∼
{
LxW/U ∼ LyW/V ∼ H�

LzW/W ∼ Lz ∼ H�

	

where conditions (i)–(iii) in Eq. (3-7) have been used. Therefore,∣∣∣∣��′

�t

∣∣∣∣/
∣∣∣∣w ��0

�z

∣∣∣∣ ∼
∣∣∣∣�′

�0

∣∣∣∣	
so that local variations in density can be neglected in the conservation-of-mass

relation if ��′/�0� � 1.

Finally, if Ly � Lx, then mesoscale variations in the x direction are expected

to be dominant and the y derivatives in Eq. (3-8) can be ignored. In this case
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the equation reduces to the two-dimensional form given by

w
��0

�z
− �0

(
�u

�x
+ �w

�z

)
= 0


Equation (3-8) is customarily written to include the terms u ��0/�x and

v ��0/�y and is given by

�

�xj
��−1

0 uj� = 0

or, returning to the use of density instead of specific volume, by

�

�xj
��0uj� = 0	 (3-11)

where �0 = 1/�0.

Dutton and Fichtl (1969) call this relation the deep convection continuity
equation, because the vertical depth of the circulation is on the same order

as the density scale depth. As originally shown by Ogura and Phillips (1962),

and discussed by Lipps and Hemler (1982), and as will be shown in Section

5.2.2, the use of this form of the conservation-of-mass relation eliminates sound

waves as a possible solution, which led Ogura and Phillips to refer to Eq. (3-

11) as the anelastic, or soundproof, assumption. Because such waves are of no

direct interest in most applications of mesoscale meteorology, this equation is

often used to represent mass conservation in mesoscale models in lieu of the

more complete prognostic conservation-of-mass equation given by Eq. (3-1).

Moreover, as discussed in Section 10.4 in Chapter 10, the elimination of sound

waves permits more economical use of certain numerical solution techniques,

because their computational stability is dependent on having a time step less

than or equal to the time that it takes for a wave to travel between grid points.

Sound waves are the fastest nonelectromagnetic waveform in the atmosphere.

3.1.2 Shallow Continuity Equation

A more restrictive mass-conservation relation is derived by dividing the scaled

terms in Eq. (3-6) by the scaled form of �0 �w/�z, resulting in∣∣∣∣��′
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and ∣∣∣∣�0
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As in the previous analysis, since ��′/�0� � 1	 u ��′/�x	 v ��′/�y, and

w ��′/�z can be neglected in Eq. (3-5), provided that

Lz/Wt� ∼ 1 and Lz/H� � 1
 (3-12)

Then Eq. (3-5) can be written as

�0

(
�u

�x
+ �v

�y
+ �w

�z

)
= 0
 (3-13)

The first condition in Eq. (3-12) is easier to satisfy than the equivalent require-

ment in Eq. (3-7), because Lz � H�. This requirement implies that the neglect

of specific volume variations in Eq. (3-13) is even less important than it is in

Eq. (3-11). The second condition in Eq. (3-12) requires that the depth of the

circulation be much less than the scale depth of the atmosphere. For this reason,

Dutton and Fichtl (1969) refer to Eq. (3-13) as the shallow convection continuity
equation. Written in tensor form, Eq. (3-13) is given by

�uj/�xj = 0	 (3-14)

and this relation is often referred to as the incompressibility assumption. This
expression not only removes soundwaves, but also ignores spatial variations in

density. For the case of a homogeneous (constant density) fluid, this would be

the exact form of the conservation-of-mass equation.

Many mesoscale models use this expression to represent the conservation of

mass. There is a certain irony in its use, of course, because although air closely

follows the ideal gas law, it is also accurately approximated by the incompress-

ible form of the conservation-of-mass equation when the atmospheric circula-

tions have a limited vertical extent. This apparent discrepancy is explained by

realizing that air movement generally is not physically constrained. For exam-

ple, when air moves into one side of a parcel, either the density can increase by

compression or an equivalent mass of air can move out of the other side of the

parcel. As long as the atmospheric parcel is not restricted to a fixed volume, the

creation of a pressure gradient between the two sides of the parcel as a result

of the different velocities will force the air out of one side so that mass conser-

vation is closely approximated by the incompressible relation [Eq. (3-14)].

In mesoscale models, either the prognostic equation (time-dependent equa-

tion) for density [Eq. (2-43)] or the diagnostic equation (no time-tendency term)

[Eq. (3-11) or (3-14)] can be used to represent mass conservation.
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3.2 Conservation of Heat

In mesoscale meteorology, an equivalent, rather exhaustive scale analysis of

the conservation-of-heat relation [Eq. (2-44)] is not generally made. This is

because of the complex mathematical form of the source-sink term S�. In con-

trast, the conservation-of-mass relation has no such source-sink term, so the

analysis is relatively simple.

Equation (2-44) is modified by making simplifying assumptions regarding the

form of S�. The development of simplified mathematical representations for any

of the source-sink terms is one type of parameterization. The most stringent

assumption for the conservation of potential temperature relation is to require

that all motions be adiabatic, so S� = 0 and Eq. (2-44) reduces to

��/�t = −uj ��/�xj	 (3-15)

or, equivalently,

d�/dt = 0


It is valid to use this assumption in representing mesoscale atmospheric systems

provided that ∣∣S�∣∣� ∣∣∣∣���t
∣∣∣∣�
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∣∣∣∣�
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∣∣∣∣�
∣∣∣∣w ��

�z

∣∣∣∣

This condition is most closely fulfilled when the following are met:

1. the atmosphere is dry, with no phase changes of water occurring,

2. comparatively short time periods are involved, so that radiational heating

or cooling of the air is relatively small,

3. heating or cooling of the lowest levels of the atmosphere by the bottom

surface is of comparatively small magnitude.

More specific examples of when S� must be retained in Eq. (2-44) and how this

term can be parameterized are discussed in Chapters 8 and 9.

3.3 Conservation of Motion

A wide range of assumptions have been used to either simplify or alter the

form of the conservation-of-motion equation [Eq. (2-45)]. In performing scale

analysis on this equation, it is convenient to decompose the equation into its ver-

tical and horizontal components, since the gravitational acceleration is included

only in the equation for vertical acceleration.
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3.3.1 Vertical Equation of Motion

The vertical component of Eq. (2-45) can be written as

�w

�t
+ u

�w

�x
+ v

�w

�y
+ w

�w

�z
= −1

�

�p

�z
− g + 2�u cos� (3-16)

or, equivalently,

dw

dt
= −�

�p

�z
− g + 2�u cos�
 (3-17)

As in Section 3.1, these terms can be estimated by the method-of-scale analysis.
The terms on the left side of Eq. (3-16) can be estimated as∣∣∣∣�w�t
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where tw is a time scale related to the period required for significant changes

in vertical velocity to occur. A similar definition was given in Section 3.1 for

t�. As before, W and U are the characteristic vertical and horizontal velocities

that, if ��′/�0� � 1, permit the use of Eq. (3-9) to relate the magnitudes of the

two velocities. (Here V and Ly are assumed to have the same magnitudes as U
and Lx.) Using the same justification for the vertical velocity time scale tw as

was used for t�, we have

tw ∼ Lx/U	

so that the four terms on the left side of Eq. (3-16) and, therefore, the total

vertical acceleration given on the left side of [Eq. (3-17)] have the scale of∣∣∣∣�w�t
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∣∣∣∣u �w

�x

∣∣∣∣�
∣∣∣∣v �w

�y

∣∣∣∣�
∣∣∣∣w �w

�z

∣∣∣∣�
∣∣∣∣dwdt
∣∣∣∣ ∼ UW

Lx

= U 2Lz

L2
x




To estimate the vertical pressure gradient term in Eq. (3-17), it is convenient

to use the ideal gas law [Eq. (2-13)], yielding

�
�p

�z
= Rd

�T

�z
− RT

�

��

�z
	

where, for convenience, the subscripts d and V have been deleted from R and T .
To simplify the scale analysis, we assume that the atmosphere is isothermal

��T /�z = 0� and that

1

�

��

�z
� 1

�0

��0

�z
= H−1

� 	

so that ∣∣∣∣� �p

�z

∣∣∣∣ ∼ RdT /H�


The two remaining terms are given as �g� and �2�u cos�� ∼ 2�U .
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The significance of the individual terms in Eq. (3-17) in relation to, for exam-

ple, the vertical pressure gradient term can then be estimated using these scale

estimates. The ratio of the orders of magnitude of the vertical acceleration to

the vertical pressure gradient is given by∣∣∣∣dwdt
∣∣∣∣/
∣∣∣∣� �p

�z

∣∣∣∣ ∼ H�Lz

L2
x

U 2

RT
= Rw
 (3-18)

For the case where Eq. (3-8) is used as the continuity equation, Lz ∼ H�, so

that ∣∣∣∣dwdt
∣∣∣∣/
∣∣∣∣� �p

�z

∣∣∣∣ ∼ H 2
�

L2
x

U 2
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 (3-19)

The scale analysis ratio given by Eq. (3-19) implies that the vertical accel-

erations become more important as the horizontal velocity increases and less

important with higher temperatures and longer horizontal wavelengths.

Thus, according to this scale analysis, for us to neglect the vertical accel-

eration term in Eq. (3-17), Rw must be much less than unity. Unfortunately,

however, this analysis is not complete, because we have shown only that the

magnitude of the gravitational and pressure gradient accelerations are sepa-

rately much larger than the vertical acceleration. Of more significance is the

magnitude of the difference between these two terms. To better examine this

relationship, we can conveniently define a large-scale averaged atmosphere that

has an exact balance between the gravitational and pressure gradient terms. This

can be defined as

�p0/�z = −�0g	

where the 0 subscript is used to indicate a large-scale average. [Such an average

could be defined as given by Eq. (4-12).] If any dependent variable is defined

to be equal to such an average value plus a deviation from that average (i.e.,

� = �0 + �̂, where � is any one of the dependent variables), then Eq. (3-17)

can also be written as

dw

dt
= −�0

�p̂

�z
+ g

�̂

�0

+ 2�u cos�	 (3-20)

where ��̂�/�0 � 1 has been assumed. In Eq. (3-20), the first two terms on the

right side are of much less magnitude than the first two terms on the right side

of Eq. (3-17).
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The magnitude of the perturbation vertical pressure gradient can be estimated

from ∣∣∣∣ 1�0

�p̂

�z

∣∣∣∣ � 1

�0

∣∣∣∣T0R ��̂

�z
+ RT̂

��0

�z
+ R�0

�T̂

�z

∣∣∣∣
∼
∣∣∣∣− R

�T

Lz

∣∣∣∣+
∣∣∣∣R �T

H�

∣∣∣∣+
∣∣∣∣R �T

Lz

∣∣∣∣ ∼ R
��T �
Lz

	

where for the purposes of this scale analysis, the large-scale atmosphere

is assumed to be isothermal and the linearized ideal gas law of the form

��/� � −��T /T �+ ��p/p� � −�T /T is used. For this analysis, the term with

the vertical gradient of the large-scale density �0 can be neglected if Lz � H�.

The ratio of the vertical acceleration to this perturbation pressure gradient

term is thus given as

R̂w = L2
z

L2
x

UCx

R�T
= H 2

�

L2
x

UCx

R�T
�when Lz ∼ H��
 (3-21)

This relationship is more restrictive than Rw, since �T rather than T is in the

denominator. [Note that R̂w does not increase without bound, because UCx

results from horizontal gradients in temperature (see, e.g., Section 3.3.2), so as

�T goes to 0 in Eq. (3-21), so must UCx.
4] If R̂w � 1	 g�̂/�0 must be of the

same order of magnitude as the perturbation vertical pressure gradient [since

2�u cos� is small relative to the first two terms in Eq. (3-20) under all expected

atmospheric conditions, as is discussed shortly].

To illustrate the magnitude of R̂w for representative values on the mesoscale,

�T and U are set equal to 10�C and 10 m s−1 (based on observed values), Cx

is set equal to U , and R is equal to 287 J K−1 kg−1. This yields

R̂w = 0
03H 2
�/L

2
x	

where H� � 8 km (Wallace and Hobbs 1977). If the depth of the circulation is

less than the scale height (Lz < H�), then R̂w is proportionately smaller (e.g., if

Lz = 0
1H�, then R̂w = 0
0003H 2
�/L

2
x). Thus from this analysis, a conservative

estimate for neglecting vertical accelerations relative to the vertical pressure

gradient term in Eq. (3-17) is

H�/Lx<̃1
 (3-22)

The remaining two terms are evaluated by

g/�� �p/�z� ∼ gH�/RT

and

�2�u cos��/�� �p/�z� ∼ 2�UH�/RT 	
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and if, for example, g ∼ 10 m s−2, T = 270 K, � ∼ 7 × 10−5 s−1 = 2�/day,

U ∼ 20 m s−1, H� ∼ 8 km, and R = 287 J K−1 kg−1, then

g/�� �p/�z� ∼ 1

and

�2� cos��/�� �p/�z� ∼ 3× 10−4


Thus the influence of the rotation of the earth on the vertical acceleration is

inconsequential for any reasonable velocity and can be neglected in Eq. (3-17).

However, the gravitational acceleration cannot be neglected relative to the ver-

tical pressure gradient.

If Eq. (3-22) is valid, then Eq. (3-17) reduces to

�p/�z = −g/� = −�g (3-23)

and is called the hydrostatic equation.5 In this relationship, it must be empha-

sized that the results of the scale analysis imply only that the magnitude of the

vertical acceleration is much less than the magnitude of the pressure gradient

force, not that the magnitude of the vertical acceleration is identically 0 (e.g.,

�dw/dt� � �� �p/�z�, not �dw/dt� = 0).

3.3.2 Horizontal Equation of Motion

The horizontal component of Eq. (2-45) can be written as

�u

�t
= −u

�u

�x
− v

�u

�y
− w

�u

�z
− 1

�

�p

�x
+ 2v� sin�− 2w� cos� (3-24)

and

�v

�t
= −u

�v

�x
− v

�v

�y
− w

�v

�z
− 1

�

�p

�y
− 2u� sin�
 (3-25)

To estimate the approximate magnitude of the pressure gradient term in

Eqs. (3-24) and (3-25), we use two methods. First, it is useful to apply the ver-

tically integrated form of Eq. (3-23), assuming that the density � is a constant

�∗ so that

pz=0 =
∫ z=D

z=0

�∗g dz = �∗g
∫ z=D

z=0

dz = �∗gD	

where the pressure at height D is assumed to equal 0. Thus if the magnitude of

the pressure gradient at z = 0 is representative of the pressure gradient at any

level in the troposphere, then∣∣∣∣1� �p

�x

∣∣∣∣ ∼ g
�D

Lx

	 and

∣∣∣∣1� �p

�y

∣∣∣∣ ∼ g
�D

Ly
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where Lx and Ly are the representative horizontal scales of the mesoscale sys-

tem and �D is the representative change of D over Lx and Ly . The parameter

�D represents the relation between horizontal pressure gradient and horizontal

gradients in the depth of a homogeneous atmosphere (i.e., �p/Lx ∼ �∗g �D/Lx).

The second technique involves replacing pressure in Eq. (3-24) with the ideal

gas law [Eq. (2-13)], yielding for the x derivative (for convenience subscripts d

and V have been dropped)

�p

�x
= �R

�T

�x
+ TR

��

�x
� �0R

�T

�x
	 (3-26)

where to estimate the magnitude of the pressure gradient, the term T ��/�x is

neglected and �0 is used to approximate �.
Thus, using these two analyses, we have∣∣∣∣1� �p

�x

∣∣∣∣ ∼ R�T

Lx

∼ g
�D

Lx

and

∣∣∣∣1� �p

�y

∣∣∣∣ ∼ R�T

Ly

∼ g �D

Ly

	

where �T is the representative magnitude of the horizontal temperature varia-

tions across the mesoscale system. From these relations, �D ∼ �R/g��T .
The advection terms are given by

�u �u/�x� ∼ U 2/Lx	 �v �u/�y� ∼ UV /Ly	

�w �u/�z� ∼ WU/Lz	 �u �v/�x� ∼ UV /Lx	

�v �v/�y� ∼ V 2/Ly	 �w �v/�z� ∼ WV/Lz
 (3-27)

If U ∼ V and Lx ∼ Ly (as would be expected in general), and since W/Lz ∼
U/Lx from relation 3.9, these terms are of the same order. If Ly  Lx, the

y derivative terms in Eq. (3-27) can be neglected, and Eqs. (3-24) and (3-25)

reduce to their two-dimensional forms. Henceforth, in this section U 2/Lx rep-

resent the advective terms and V and Ly are replaced by U and Lx whenever

they appear.

The local tendency terms in Eqs. (3-24) and (3-25) are estimated by

��u/�t� ∼ U/tu ∼ UC/Lx and ��v/�t� ∼ V /tv ∼ VC/Ly ∼ UC/Lx	

where, as for the vertical component of the conservation-of-motion equation,

C � U for both advective and internal gravity wave changes in mesoscale

systems often can be assumed.

The remaining three terms in Eqs. (3-24) and (3-25) can be represented as

�2u� sin�� ∼ �fu� ∼ �f �U	 �2v� sin�� ∼ �fv� ∼ �f �V ∼ �f �U	

and �2w� cos�� ∼ �f̂ w� ∼ �f̂ �W ∼ �f̂ ��Lz/Lx�U 	

where f = 2� sin� and is called the Coriolis parameter and f̂ = 2� cos�.
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TABLE 3-1

The Ratio of the Orders of Magnitude of the Individual Terms in Eqs. (3-24) and (3-25)a

Advective

terms, e.g.,∣∣∣∣ �u�t
∣∣∣∣�
∣∣∣∣ �v�t
∣∣∣∣

∣∣∣∣u �u�x
∣∣∣∣

∣∣∣∣ 1� �p

�x

∣∣∣∣�
∣∣∣∣ 1� �p

�y

∣∣∣∣ �fu�� �fv� �f̂ w�
∣∣∣∣ �u�t
∣∣∣∣�
∣∣∣∣ �v�t
∣∣∣∣ 1 C/U

UC

R�T
∼ UC

g�D

C

�f �Lx

= C

U
R0

C

�f̂ �Lx

= C

U

Lx

Lz

R0

Advective

terms, e.g.,∣∣∣∣u �u�x
∣∣∣∣ U/C 1

U 2

R�T
∼ U 2

g�D

U

�f �Lx

= R0

U

�f̂ �Lz

= Lx

Lz

R0∣∣∣∣ 1� �p

�x

∣∣∣∣�
∣∣∣∣ 1� �p

�y

∣∣∣∣ R�T

UC
∼ g�D

UC

R�T

U 2
∼ g�D

U 2
1

R�T

�f �ULx

∼ g�D

�f �ULx

R�T

�f̂ �ULz

∼ g�D

�f̂ ULz�

�fu�� �fv� �f �Lx

C
= U

CR0

�f �Lx

U
= 1

R0

�f �ULx

R�T
∼ �f �ULx

g�D
1

Lx

Lz

�f̂ w� �f̂ �Lz

C
= U

C

Lz

LxR0

�f̂ �Lx

U
= Lz

LxR0

�f̂ �ULz

R�T
∼ �f̂ �ULz

g�D

Lz

Lx

1

aThe elements in the columns are divided by the elements in the rows.
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The ratios of the scales of the individual terms are given in Table 3-1 where

the elements in the columns are divided by those in the rows. In this table,

R0 = U/�f �Lx is the Rossby number.
Interpretations that can be made from this analysis include the following:

1. The local time tendency terms �u/�t and �v/�t can be neglected if the

movement of the mesoscale system is much less than the advecting wind speed

(e.g., C ∼ Cg � U ). Such a system is said to be steady state if Cg = 0 or

quasi-steady if Cg 	= 0 but Cg � U .

2. The terms associated with the rotation of the earth (fu	 fv	 and f̂ w) can
be neglected if R0  1. Since R0 is inversely proportional to Lx, the larger the

horizontal scale of the mesoscale system, the more inappropriate it becomes to

neglect those terms. The magnitude of the f̂ w term is dependent on the ratio of

Lz/Lx (e.g., if Lz = 0
1Lx, then it is expected to be about 10% of fu and fv�.
3. The ratio of the pressure gradient force and advective terms is inversely

proportional to the square of the wind speed and proportional to the horizontal

temperature gradient. Since the horizontal pressure gradient is approximately a

linear term, (
e.g.,

1

�

�p

�x
� 1

�0

�p

�x
	 since

∣∣∣∣ �′

�0

∣∣∣∣ ∼
∣∣∣∣�′

�0

∣∣∣∣� 1

)
	

whereas the advective terms are nonlinear, solutions to the conservation relations

are greatly simplified if the ratio is large and the nonlinear contribution of

advection to the equations can be ignored. Equations (3-24) and (3-25) are

linearized if � = �0 is used in the pressure gradient term, and the advective

terms are deleted.

Representative values of R0	 D	 and �D can be estimated for mesoscale sys-

tems in the earth’s troposphere. With �f � ∼ 10−4 s−1, U ∼ 20 m s−1, pz=0 ∼
1000 mb, g = 10 m s−2, �0 = 1
25 kg m−3, �T ∼ 5�C, Lx = 100 km, and

Lz = D, for example,

D = 8 km ∼ H�	 R0 = 2
0	 �D = 143 m	 and Lz/Lx = 0
08


Thus for this case it would be appropriate to neglect the term f̂ w but not fu
and fv. Moreover, because the ratio of the magnitudes of the pressure gradient

force term to the advective terms is on the order of four, neither of these terms

can be neglected in Eqs. (3-24) and (3-25). The local tendency terms �u/�t and
�v/�t also cannot be ignored if C ∼ U , since for this case their ratio to the

pressure gradient force term is approximately 0.3.

These scaled terms need to be reevaluated for each study of different

mesoscale systems to determine the appropriate form of Eqs. (3-24) and (3-25)

to use. If one is in doubt as to whether or not to exclude a term, it is, of course,

consistent to include it.6 In the limiting case of R0 � 1	 Lz � Lx	 U ∼ C,



3.3 Conservation of Motion 37

and R�T  U 2 with �D ∼ �f �ULx/g (which is the same as �T ∼ �f �ULx/R),
Eqs. (3-24) and (3-25) reduce to

vg =
1

�f

�p

�x
and ug = − 1

�f

�p

�y
	 (3-28)

where vg and ug are called the geostrophic wind components.7 At the other

extreme, if R0  1, the Coriolis terms can be neglected relative to the advective

terms. This is the assumption used in cumulus and other smaller-scale models.

A final analysis of the vertical and horizontal equations of motion is to exam-

ine the magnitude of the molecular viscous forces to the terms in Eq. (2-45). As

stated in the discussion of internal forces in Section 2.3.2 in Chapter 2, molec-

ular forces are assumed to be insignificant on the mesoscale and are ignored in

Eq. (2-45). To justify this assumption, the method-of-scale analysis is used, in

which the molecular dissipation of motion D is approximated by

Di = v�2ui/�xj�xj	 �D� ∼ vS/L2	 (3-29)

where L represents Lx	 Ly , or Lz (for j = 1	 2	 or 3) and S represents U	 V 	 or
W (for i = 1	 2	 or 3). The kinematic viscosity v is about 1
5× 10−5 m2 s−1 for

air. To examine the significance of the viscous force, it is customary to compare

it to the advective terms, which have a magnitude of U 2/Lx in the horizontal

equation and a magnitude of W 2/Lz in the vertical equation of motion. For this

analysis, if it is assumed that Lx ∼ Lz ∼ L	 so that W ∼ U ∼ S, then the ratio

of the magnitude of the advective terms to the viscous force is given by

S2/L

vS/L2
= SL

v
= Re	

where Re is called the Reynolds number. When Re  1, changes in motion by

advection are much more important than the dissipation of velocity by molecular

interactions. Under this condition, the flow is said to be turbulent, and trans-

fers of all properties of the air (e.g., heat, water vapor) are performed through

the movement of air from one point to another. In contrast, when Re � 1, the

molecular dissipation of velocity dominates, and the flow is said to be laminar.
Under this condition, properties of the air are transferred on the molecular

scale. When Re ∼ 1, both effects are important, and initial and boundary con-

ditions imposed on the flow will determine whether laminar or turbulent mixing

predominates.8

On the mesoscale, the Reynolds number is very large, and the flow is highly

turbulent. With S = W = 1
5 cm s−1 and L = Lz = 1 km, for example, Re =
106. Only near the ground do molecular transfers become important. In this

situation, air flow with Lz ∼ 0
1 mm and W ∼ 1
5 cm s−1, for example, result

in a Reynolds number of 0.1, so that the movement of air is laminar. However,

since atmospheric flow above a centimeter or so off the ground has a Reynolds

number much greater than unity, the viscous dissipation term is neglected in

Eq. (2-45).
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Using the scale analysis in this section, a more formal definition of mesoscale

than presented in Chapter 1 can be given. The criteria are as follows:

1. The horizontal scale must be sufficiently large so that the hydrostatic

equation can be applied,

2. The horizontal scale must be sufficiently small so that the Coriolis term is

small (although it can still be significant) relative to the advective and pressure

gradient forces, resulting in a flow field that is substantially different from the

gradient wind relation even in the absence of friction effects.

This definition of mesoscale is similar to that proposed by Emanuel (1982a).

He defined this scale to occur when both ageostrophic advection and Coriolis

accelerations are important, which is essentially the same as given in criterion

2. In addition, since in this text criterion 2 forms the upper bound in terms

of horizontal scale of mesoscale circulations, this meteorological definition is a

function of latitude. At the equator, for example, much larger atmospheric fea-

tures would be expected to be mesoscale, since the winds are not constrained

by the gradient wind relation. In contrast, at high latitudes, the upper bound

on mesoscale is more limited, since the Coriolis term is larger and the wind

closely approximates gradient balance above the boundary layer even for rela-

tively small horizontal scales. Thus at low latitudes, mesoscale mass adjustment

dominates, even for relatively large circulation features (e.g., several thousand

kilometers), whereas at higher latitudes for the same-sized features, this restruc-

turing of the mass field is performed by near-gradient wind synoptic motions.9

On other planets with their different rotation rates and diameters, the maximum

horizontal scale as function of latitude at which the systems are mesoscale will

differ from that of the earth’s.

Scales of motion in which vertical accelerations become important can

be termed the microscale and correspond to the meso-� scale as defined by

Orlanski (1975). This scale of motion, somewhat smaller than the mesoscale,

has also been called the cumulus scale, with the smallest sizes referenced as

the turbulence scale. Scales larger than the mesoscale where the Coriolis effect

becomes of the same magnitude as the pressure gradient are termed the regional

(synoptic) scale and correspond to Orlanski’s meso-� and larger. Therefore,

mesoscale as defined in this text corresponds closely to Orlanski’s meso-�
scale.

If the atmospheric feature is on the mesoscale, as defined here, Eq. (3-23)

could replace the vertical equation of motion �i = 3� from Eq. (2-45), and

Eqs. (3-14) or (3-11) could be used in lieu of Eq. (2-43) to represent the conser-

vation of mass. The vertical equation of motion can be retained, of course, even

though the atmospheric feature being modeled is on the mesoscale. Indeed, this

practice has been generally adopted, as discussed in Sections 10.4 and 10.5 of

Chapter 10. However, knowledge that a system is mesoscale or larger permits us
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to directly obtain the pressure field from knowledge of the vertical temperature

profile, as shown in Chapter 4. As a result of these simplifications, mesoscale

circulations are defined to be anelastic, hydrostatic, and significantly nongradi-
ent wind meteorological systems. In Sections 5.2.2 and 5.2.3 in Chapter 5, the

scales of motion in which the hydrostatic assumption applies are examined more

quantitatively, since scale analysis provides only very qualitative guidance.

3.4 Conservation of Water and Other Gaseous
and Aerosol Contaminants

As with the conservation relation for heat, the source-sink expressions for

the conservation of water and other gaseous and aerosol contaminants, Sqn and

S�m , are complex. The most restrictive relation is to assume that qn and �m are

conserved so that

�qn/�t = −uj�qn/�xj	 n = 1	 2	 3

and

��m/�t = −uj��m/�xj	 m = 1	 2	 � � � 	M

or, equivalently,

dqn/dt = 0 and d�m/dt = 0


It is valid to use these equations to represent atmospheric circulation if∣∣Sqn ∣∣�
∣∣∣∣�qn�t

∣∣∣∣�
∣∣∣∣u �qn

�x

∣∣∣∣�
∣∣∣∣v �qn

�y

∣∣∣∣�
∣∣∣∣w �qn

�z

∣∣∣∣
and ∣∣S�m ∣∣�

∣∣∣∣��m

�t

∣∣∣∣�
∣∣∣∣u ��m

�x

∣∣∣∣�
∣∣∣∣v ��m

�y

∣∣∣∣�
∣∣∣∣w ��m

�z

∣∣∣∣

The first of these conditions is most closely fulfilled when the amount of water

undergoing phase changes between solid, liquid, and gas, and when that created

by chemical reactions is much less than changes caused by the advection of

water. Similarly, the second condition is satisfactory if the aerosol and gaseous

constituents undergo phase and chemical changes that are much smaller in mag-

nitude than the advective changes. Scale analysis of Sqn and S�m could be per-

formed; however, the complexity and high degree of parameterization of these

terms would make such a qualitative evaluation of dubious value. Therefore, a

discussion of the scale analysis of these source-sink terms is not presented here.

Sqn is discussed in more detail in Chapter 9.
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Notes to Chapter 3
1. Scale analysis is specifically a procedure for using the dimensions of a set of variables to

interrelate them. Buckingham (1914) originally developed this method of dimensional analysis.

Recent overviews have been reported in Schmidt and Housen (1995) and Vogel (1998). Hicks

(1978) and Meroney (1998) discuss misinterpretation of dimensional analyses if the nondimensional

variables are not properly selected.

2. In Section 4.1, �0 and �′ are defined more formally.

3. As discussed in Chapter 5, one of the significant types of wave motions on the mesoscale is

an internal gravity wave. Speeds as high as 30 m s−1 or so are typical of such features (see, e.g.,

Gedzelman and Donn 1979). Also, as illustrated by Dutton (1976, Figure 12-5) the relationship

between the group velocity for internal gravity waves and their wavelength is given by an expression

similar to Eq. (3-9), i.e., Cgx/Lx ∼ Cgz/Lz, where Cgx and Cgz are the group velocities in the x and

z directions.

4. In addition, if the horizontal pressure gradient force and the horizontal acceleration are

assumed to be of equal magnitude, then using the analysis discussed in Section 3.3.2, Eq. (3-21)

can also be written as R̂w = �L2
z�xT �/�L

2
x�T �, where the subscript x on � in the numerator is

used to indicate that the difference in T is in the horizontal direction. (In contrast to past analyses

by other investigators, �T and �xT need not be of the same magnitude.) Thus for this situation,

a greater difference in temperature over the same horizontal scale Lx results in a greater vertical

acceleration, whereas a greater change in the perturbation temperature for a specific vertical scale

Lz reduces the importance of the vertical acceleration relative to the vertical pressure gradient. This

latter result implies that the more rapidly a temperature disturbance decreases with height (perhaps

because of a more stable large-scale atmosphere), the greater the reduction in the importance of

the vertical acceleration.

5. This form of the hydrostatic equation is actually valid only for a flat world, since the x− y− z

Cartesian system was used in its derivation. However, as discussed by Bannon et al. (1997), since

the earth is a sphere, the actual pressure change with altitude is slightly modified from that in

Eq. (3-23). The actual surface pressure, for example, would be about 0.25% less than that calculated

using Eq. (3-23).

6. In addition, quantitative linear (see, e.g., Section 5.2.3) and nonlinear (see, e.g., Section 12.4)

models should be integrated with and without selected terms in the conservation equations to deter-

mine their importance for specific atmospheric circulations.

7. When curvature of the synoptic horizontal pressure field is included, the resultant wind is

called the gradient wind.
8. Tennekes and Lumley (1972) reported that boundary-layer flows in a zero pressure gradient

become turbulent at Re ∼ 600, whereas a fluid far from a boundary attains this condition at values

of the Reynolds number much closer to unity.

9. The omega equation (Carlson 1991; Bluestein 1992, 1993; Pielke 1995) is an effective math-

ematical framework for assessing the resulting synoptic-scale vertical motion.

Additional Readings
Lilly, D.K. 1996. A comparison of incompressible, anelastic and Boussinesq dynamics. Atmos. Res.

40, 143–151.
This article discusses different formulations for the conservation equations. Among its con-

clusions is that the incompressible form of the conservation of mass equation is not nondi-

vergent, and that when the Boussinesq assumption is made, mass is not conserved.

Thunis, P. and R. Bornstein. 1996. Hierarchy of mesoscale flow assumptions and equations. J. Atmos.
Sci. 53, 380–397.



Chapter 4

Averaging the Conservation Relations

4.1 Definition of Averages

Equations (2-43)–(2-47) and their simplified forms introduced in Chapter 3

are defined in terms of the differential operators ��/�t	 �/�xi�, and thus in terms

of mathematical formalism are valid only in the limit when �t	 �x	 �y, and �z
approach 0. In terms of practical application, however, they are valid only when

the spatial increments �x	 �y, and �z are much larger than the spacing between

molecules (so that only the statistical characteristics of molecular motion, rather

than the movement of individual molecules themselves, are important), but are

small enough so that the differential terms over these distances and over the

time interval �t can be represented accurately by a constant. If these terms

vary significantly within the intervals, however, then Eqs. (2-43)–(2-47) must

be integrated over the distance and time intervals over which they are being

applied.

Stated more formally, if

lm � �x	 �y	 and �z	 (4-1)

where lm is the representative spacing between molecules, and if

�

�x
�u  ��x�

2

�2�u

�x2
	

�

�y
�v  ��y�

2

�2�v

�y2
	

��

�t
 ��t�

2

�2�

�t2
	 � � � 	 etc.	 (4-2)

then using Eqs. (2-43)–(2-47) (or a simplified form of this system of equations)

is justified.

In the atmosphere, the criteria given by Eqs. (4-1) and (4-2) limit the direct

application of Eqs. (2-43)–(2-47) to space scales on the order of about 1 cm

and to time scales of 1 second or so. Therefore, to use Eqs. (2-43)–(2-47) to

41
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represent the atmosphere accurately, they must be evaluated over those space

and time intervals. Because mesoscale circulations have horizontal scales on the

order of 10 to 100 km or more and a vertical size of up to approximately 10

km, these equations would have to be solved at 1018–1020 locations. Unfortu-

nately, this amount of information far exceeds the capacity of any existing or

foreseeable computer system.

Therefore, to circumvent this problem, it is necessary to integrate the con-

servation equations over specified spatial and temporal scales, whose sizes are

determined by the available computer capacity, including its speed of opera-

tion. For a specific mesoscale system, the smaller these scales, the better the

resolution of the circulation.

In performing this integration, it is convenient to perform the following

decomposition:

� = �̄+ �′′	

where � represents any one of the dependent variables and

�̄ =
∫ t+�t

t

∫ x+�x

x

∫ y+�y

y

∫ z+�z

z
� dz dy dx dt/��t���x���y���z�
 (4-3)

Thus �̄ represents the average of � over the finite time increment �t and space

intervals �x, �y, and �z. The variable �′′ is the deviation of � from this average

and is often called the subgrid-scale perturbation. In a numerical model, �t is
called the time step and �x, �y, and �z represent the model grid intervals, as
illustrated schematically in Figure 4-1.

One convenient decomposition is to define the averaging volume such that

the subgrid-scale perturbation includes the nonhydrostatic part of the solution

and the resolvable scale is accurately represented by the hydrostatic assump-

Fig. 4-1. A schematic of a grid volume. Dependent variables are defined at the cor-
ners of the rectangular solid.
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tion. Thus the influence of the nonhydrostatic component of a model would be

parameterized and the hydrostatic portion explicitly resolved.

Using this definition, Eq. (2-45) can be rewritten as

�
(
ūi + u′′

i

)
�t

= −(ūj + u′′
j

) �
�xj

(
ūi + u′′

i

)− (�̄+ �′′)�(p̄ + p′′)
�xi

− g�i3 − 2�ijk�j

(
ūk + u′′

k

)

 (4-4)

Performing the integration of Eq. (4-4) over the intervals �x	�y	�z, and �t
yields

�

�t

(
ūi + u′′

i

) = −(ūj + u′′
j

) �
�xj

(
ūi + u′′

i

)− (�̄+ �′′)�(p̄ + p′′)
�xi

− g�i3 − 2�ijk�j

(
ūk + u′′

k

)
	 (4-5)

where the overbar represents the integral operation

� � =
∫ t+�t

t

∫ x+�x

x

∫ y+�y

y

∫ z+�z

z
� �dz dy dx dt ��t���x���y���z�	 (4-6)

as performed on � in Eq. (4-3). This operation is often called grid-volume
averaging, since it is performed over the spatial increments �x, �y, and �z.1

To simplify this equation, it is convenient to assume that the averaged depen-

dent variables change much more slowly in time and space than do the devi-

ations from the average. This scale separation between the average and the

perturbation implies that �̄ is approximately constant and �′′ significantly fluc-

tuates across the distance �x	�y	 and �z and time interval �t. Examples

illustrating when this scale separation is valid and when it is not are given in

Figure 4-2. In addition, the grid intervals and time increments are also presumed

to not be functions of location or time, so that the derivatives (i.e., �/�t	 �/�xj )
can be straightforwardly removed from inside the integrals. Equation (4-5) then

reduces to

�ūi

�t
= −ūj

�ūi

�xj
− u′′

j

�u′′
i

�xj
− �̄

�p̄

�xi
− �′′ �p

′′

�xi
− g�i3 − 2�ijk�j ūk	 (4-7)

where the conditions prescribed previously permit the following type of

simplifications:2

=
ui= ūi	 u

′′
i = 0	

�ui

�t
= �ūi

�t
	
�ui

�xj
= �ūi

�xj
	 etc. (4-8)

The stipulation that the average of the deviations is 0 ��′′ = 0� is commonly

called the Reynolds assumption.
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Fig. 4-2. A one-dimensional schematic illustration of a situation where (a) �′′ 	= 0 and
(b) �′′ � 0. The averaging length is illustrated by the interval 	x drawn on the figure


�̄ = 1
10

∫ xi+10
xi

�dx�. Since � = �̄+ �′′��′′ = 0 only if �̄ ==
�.

Even with the simplifications, Eq. (4-7) contains two additional terms not

found in Eq. (2-45) that involve the correlation between the subgrid-scale vari-

ables. The second of these terms, �′′�p′′/�xi, could be eliminated if the assump-

tion is made in Eq. (4-4) that ��′′�/�̄ � ��′′�/�0 � 1 [In Section 3.1, �0 was

defined as a synoptic-scale specific volume in the derivation of the approximate

forms of the conservation-of-mass relation. The mathematical definition of this

synoptic scale is given by Eq. (4-12).]

With this requirement on specific volume and the assumption that Eq. (3-11)

can be written as

�

�xj
�0uj �

�

�xj
�̄uj

(
since

��′′�
�̄

� ��′′�
�0

� 1

)
	 (4-9)

using the simplifying assumptions given by Eq. (4-8), Eq. (4-5) can be written

as

�̄
�ūi

�t
= − �

�xj
�̄ ūj ūi −

�

�xj
�̄u′′

j u
′′
i −

��̄

�xi
− �̄g�i3 − 2�ijk�j ūk�̄	 (4-10)

where, since ��′′�/�̄ � 1, the pressure gradient term is represented by �̄ �p̄/�x.
The remaining subgrid-scale correlation term, �̄u′′

j u
′′
i , represents the contribu-

tions of the smaller scales on the resolvable grid scale resulting from fluctuating

velocity components and is in general very important in all aspects of dynamic
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meteorology. This term, also called the turbulent velocity flux, must be param-
eterized in terms of averaged quantities to ensure that the number of unknowns

is equal to the number of equations. Terms of this sort, which arise in the aver-

aged conservation relations, are often of the same order or even larger than the

terms that involve only resolved dependent variables. The proper specification

of this and similar subgrid-scale correlation terms as functions of resolvable

averaged quantities, is referred to as the closure problem and is discussed further

in Chapter 7.

Equation (4-10) can be written in a second way by assuming that

�̄ = �0 + �′	 (4-11)

where (as before, � represents any one of the dependent variables)

�0 =
∫ x+Dx

x

∫ y+Dy

y
�̄ dx dy/DxDy (4-12)

and is called the layer domain-averaged variable. Here Dx and Dy represent

distances that are large compared to the mesoscale system of interest [perhaps

the horizontal size (domain) of the mesoscale model representation], so that �0

is assumed to represent the synoptic-scale atmospheric conditions, as referred to

previously. Thus the variable �′ represents the mesoscale deviations from this

larger scale.

Substituting Eq. (4-11) into Eq. (4-10) and rearranging results in

��ui0
+u′

i�

�t
= −�uj0

+u′
j �

�

�xj
�ui0

+u′
i�−

1

�0�1+��′/�0��

�

�xj
�0

(
1+ �′

�0

)
u′′
j u

′′
i

− �0

(
1+ �′

�0

)
�
(
p0+p′)
�xi

−g�i3−2�ijk�j�uk0
+u′

k�
 (4-13)

If ��′�/�0 � 1 is required, then the horizontal and vertical components of

Eq. (4-13) can be rewritten as

�ūi

�t
= −ūj

�ūi

�xj
− 1

�0

�

�xj
�0u

′′
j u

′′
o − �0

�p̄

�xi
− 2�ijk�j ūk	 i = 1	 2 (4-14)

and

�w̄

�t
= −ūj

�w̄

�xj
− 1

�0

�

�xj
�0u

′′
j w

′′ − �0

�p′

�z
+ �′

�0

g + 2ū� cos�	 i = 3 (4-15)



46 4 Averaging the Conservation Relations

where it is assumed that the synoptic-scale pressure field is hydrostatic

(�p0/�z = −g/�0), so that

��0 + �′�
�

�z
�p0 + p′�+ g = �0

(
1+ �′

�0

)
�p′

�z
− g + g − �′

�0

g

� �0

�p′

�z
− �′

�0

g


The term ��′/�0�g is the only expression retained in Eqs. (4-14) and (4-15) that

contains temporal variations in specific volume when ��′�/�0 � 1. Neglecting

temporal variations of density (as given by �′) except for��′/�0�g is called the

Boussinesq approximation. This term can also be rewritten by logarithmically

differentiating the ideal gas law so that

d�

�
= dT

T
− dp

p

 (4-16)

When the changes of �	 T , and p are assumed to be much less than their

absolute magnitudes (e.g., �d�� � �	 �dT � � T , and �dp� � p), and if � � �0,

T � T0, and p � p0, then Eq. (4-16) can be approximated by

�′

�0

� T ′

T0
− p′

p0


 (4-17)

Since ��′�/�0 has already been assumed much less than unity, the requirement

that �T ′�/T0 � 1 and �p′�p0 � 1 is implied from Eq. (4-17). Thus the vertical

component of acceleration can also be written as

�w̄

�t
= −ūj

�w̄

�xj
− 1

�0

�

�xj
�0u

′′
j w

′′

− �0

�p′

�z
+
(
T ′

T0
− p′

p0

)
g + 2ū� cos�
 (4-18)

Finally, since � = T �1000/p�Rd/Cp	 �′/�0 can also be approximated by

�′

�0

= �′

�0
− Cv

Cp

p′

p0

	 (4-19)

which represents another form of the ideal gas law when ��′�/�0 � 1. Here the

relation Cp = Cv +Rd has been used to obtain the given form. This approximate

form for �′/�0 can be simplified when the vertical scale of the circulation, Lz,
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is much smaller than the scale depth of the atmosphere, H�. Using the scale

analysis procedure introduced in Chapter 3, we have

��0 �p
′/�z� ∼ �0�p′�/Lz	

and assuming that the vertical mesoscale pressure perturbation and the density

perturbation terms are of the same order of magnitude, we have

��0 �p
′/�z� ∼ ��′/�0�g	

so that

RT0�p′�
Lzp0

∼ ��′�
�0

g

or

�p′�
p0

∼ Lzg

R T0

��′�
�0

= Lzg

p0�0

��′�
�0

= Lz

D

��′�
�0

∼ Lz

H�

��′�
�0

	

where the results from Chapter 3 that p0 ∼ �0gD and D ∼ H� have been used.

Thus if Lz � H�, then

�p′�/p0 � ��′�/�0 and ��′�/�0 ∼ ��′�/�0	
so that for this situation, Eq. (4-18) can be written as

�w̄

�t
= −uj

�w̄

�xj
− 1

�0

�

�xj
�0u

′′
j w

′′ − �0

�p′

�z
+ �′

�0
g + 2ū� cos�
 (4-20)

Thus when the shallow form of the conservation-of-mass equation [Eq. (3-14)]

can be used, it is appropriate to use Eq. (4-20) as the vertical equation of motion.

Equations (4-14) and (4-15) can, therefore, be written in tensor form as

�ūi

�t
= −ūj

�ūi

�xj
− 1

�0

�

�xj
�0 u

′′
j u

′′
i − �0

�p′

�xi
− �0

(
�p0

�x
�i1 +

�p0

�y
�i2

)
+ �′

�0

g�i3 − 2�ijk�j ūk	 (4-21)

where

�′/�0 = ��′/�0�− �Cvp
′/Cpp0�

for deep atmospheric circulations and

�′/�0 = �′/�0

for shallow systems. Either Eq. (4-21) or Eq. (4-10) can be used to predict

velocity fluctuations.
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The remainder of the prognostic equations [Eqs. (2-43), (2-44), (2-46), and

(2-47)] can be averaged in the same manner as performed for the conservation-

of-motion relations.

The complete conservation-of-mass equation (2-43), after using the averaging

operation given by Eqs. (4-3) and (4-6) along with the assumptions listed in

Eq. (4-8), is given as

��̄

�t
= − �

�xj
�̄ ūj −

�

�xj
�′′u′′

j 	 (4-22)

whereas averaging the approximate forms of this relation given by Eqs. (3-11)

and (3-14) yields

�

�xj
�0ūj �

�

�xj
�̄ ūj = 0 and

�ūj

�xj
= 0
 (4-23)

The remainder of the prognostic equations [Eqs. (2-44), (2-46), and (2-47)], are

similar in form, and the equivalent averaged forms can be written as

��̄

�t
= −ūj

��̄

�xj
− 1

�0

�

�xj
�0u

′′
j �

′′ + �S�	 (4-24)

�q̄n
�t

= −ūj

�q̄n
�xj

− 1

�0

�

�xj
�0u

′′
j q

′′
n + �Sqn	 n = 1	 2	 3	 (4-25)

and

���m

�t
= −ūj

���m

�xj
�0u

′′
j �

′′
m + �S�m	 m = 1	 2	 � � � 	M	 (4-26)

where �S�	�Sqn and �S�m , represent the integrated contributions of the source-sink

terms over the intervals defined by Eq. (4-6).

Using the conservation-of-mass relation, given by Eq. (4-23), the advection

terms in Eqs. (4-24)–(4-26) can be given as

−ūj

��̄

�xj
= − 1

�0

�

�xj
�0ūj �̄	 (4-27)

−ūj

�q̄n
�xj

= − 1

�0

�

�xj
�0ūj q̄n	 (4-28)

and

−ūj

���m

�xj
= − 1

�0

�

�xj
�0ūj��m	 (4-29)

where the right side is often referred to as the flux form of the advection terms.

The averaged conservation-of-motion equations given by (4-21) [or by (4-10)]

along with Eqs. (4-23)–(4-26) are often called the primitive equations, because
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they are derived straightforwardly from the original conservation principles pre-

sented in Chapter 2. As evident from the assumptions required to obtain them,

however, they are not the most fundamental form of the conservation laws, as

implied by the word “primitive.”

4.2 Vorticity Equation

The conservation-of-motion equation has not always been used in the primi-

tive equation form. Equation (4-21) can be rewritten as

��0ūi

�t
= − �

�xj
�0ūj ūi −

�

�xj
�0u

′′
j u

′′
i −

�p′

�xi
−
(
�p0

�x
�i1 +

�p0

�y
�i2

)
+ �′

�2
0

g�i3 − 2�ijk�j ūk�0	

where the conservation-of-mass relation given on the left side of Eq. (4-23) has

been used, along with the assumption that �ūi��0/�t� � ��0 �ūi/�t�.
A vorticity equation3 can be derived from this relation by applying the oper-

ator �pqi �/�xq (e.g., the vector curl operation �x). The parameter �pqi has the

same definition as given in Chapter 2, where it is equal to 0 if any of the indices

are the same, to +1 for even permutations, and to −1 for odd permutations of

the indices p	 q, and i. This results in the equation

�

�t

[
�pqi

�

�xq
�0ūi

]
= − �

�xj

[
ūj �pqi

�ūi�0

�xq

]
− �

�xj

[
�0ūi �pqi

�ūj

�xq

]
− �pqi

�

�xq

�

�xj
�0u

′′
j u

′′
i − �pqi

�

�xq

�p′

�xi

− �pqi
�

�xq

[
�p0

�x
�i1 +

�p0

�y
�i2

]
+ �pqi

�

�xq

�′

�2
0

g�i3 − 2�pqi�ijk�j

��0ūk

�xq
	 (4-30)

where �pqi��/�xq���p
′/�xi� = 0. This latter identity can be shown by expanding

the term into its nine components. In vector terminology, this identity is written

as �x�p′ = 0; that is, the curl of a gradient is always 0. The large-scale pressure

term ��pqi��/�xq� ���p0/�x��i1 + ��p0/�y��i2�� is identically 0 when �p0/�z is

included in the calculation of curl of the synoptic pressure gradient, so it will

be deleted henceforth.
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Defining a density-weighted mesoscale vorticity (hereafter referred to as vor-

ticity) by

�p = �pqi
�

�xq
�0ūi

(this is equivalent to �p = � x�0
�V ′), Eq. (4-30) can be written as

��p

�t
= − �

�xj
�ūj�p�− �pqi

�

�xj

(
�0ūi

�ūj

�xq

)
− �pqi

�

�xq

�

�xj

(
�0u

′′
j u

′′
i

)
+ �i3g�pqi

�

�xq

�′

�2
0

− 2�pqi�ijk�j

��0ūk

�xq

 (4-31)

The individual terms in Eq. (4-31) correspond to the following:

1. The local tendency of vorticity ���p/�t�.
2. The gradient of the resolvable flux of vorticity �−��/�xj�ūj�p�.
3. The tilting term4 ��pqi��/�xj��0ūi�ūj/�xq = �pqi��0ūi��

2ūj/�xj�xq� +
��ūj/�xq��� �0ūi/�xj���, whereby vorticity is transferred between the three

spatial components as a result of velocity shear and as a result of planar

convergence/divergence of vorticity.

4. The subgrid-scale term �−�pqi��/�xq���/�xj��0 u
′′
j u

′′
i �, in which vorticity

is created or destroyed by small-scale motions.

5. The solenoidal term ��i3g�pqi��/�xq���
′/�2

0��, in which vorticity is cre-

ated or removed as a result of gradients in density. For shallow atmospheric

circulations, this term becomes �i3g�pqi��/�xq���0�
′/�0�, so that differential

heating is one mechanism to change the vorticity.

6. The solid-body rotation term �2�pqi�ijk�j���0ūk/�xq��, in which vorticity

is created or destroyed as a result of the rotation of the earth.

The advantages of replacing Eq. (4-21) with Eq. (4-31) to study mesoscale

phenomena include the following:

1. When �′/�0 � �′/�0, the mesoscale pressure perturbation term p′ does
not appear in the equation; hence it is not necessary to compute pressure.

2. Since the integral of vorticity over a volume equals circulation, results

obtained using Eq. (4-31) are straightforward to interpret physically.

The disadvantages of using Eq. (4-31) include the following:

1. There is a computational difficulty in applying this equation to represent

three-dimensional mesoscale flows, since the velocity ūj must be mathematically

recovered from �p.

2. Boundary conditions required to initialize and solve the vorticity equation

are more difficult to apply than those required for Eq. (4-21). This is partially
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a result of the definition of vorticity, since the differentiation operation (e.g.,

�/�xq) magnifies errors in initial, imposed velocity fields.

Most uses of the vorticity equation to represent the conservation of motion

in meteorological flows have been limited to one of its components. Early syn-

optic models, such as the equivalent barotropic model (Haltiner 1971), used a

simplified form of the vertical component of vorticity to simulate the move-

ment of large-scale troughs and ridges in the middle troposphere. In mesoscale

and cumulus cloud models, one of the horizontal components of vorticity has

been used to simulate a vertical cross-section of the circulation. Examples of

the latter usage include Orville (1965, 1968), Murray (1970), Orville and Sloan

(1970), and Pearson (1973).

Meteorological investigators have increasingly declined to use a vorticity

equation of the form of Eq. (4-31) to represent the conservation of motion and

instead have relied on Eq. (4-21) or its equivalent, because of its computational

and conceptual simplicity. The only three-dimensional mesoscale model that

uses the vorticity form of which the author is aware is described most recently

in Thunis and Clappier (2000). For this reason, the remainder of the text focuses

on the primitive equation format.

4.3 Diagnostic Equation for Nonhydrostatic Pressure

The use of Eq. (4-21) or (4-10), however, requires an evaluation of pressure.

If H�/Lx<̃1 such that the motion can be assumed to be hydrostatic, then it is

straightforward to integrate Eq. (3-23) to obtain pressure at any level. Using the

averaging procedures discussed in this chapter, the vertical equation of motion

in Eq. (4-10), in its hydrostatic form can be represented by

�p̄/�z = −�̄g	 (4-32)

and the equivalent expression for use in the third component of Eq. (4-21) is

�p′/�z = g�′/�2
0	 (4-33)

which can be replaced by

�p′/�z = g�0�
′/�0 (4-34)

if Lz � H�.

If ��′′�/�0 is not assumed to be much less than unity and if the hydrostatic

assumption is not expected to be valid or is otherwise not used, then pressure

p̄ can be computed from the ideal gas law and from Eq. (4-22), assuming that

�′′u′′
j can be parameterized in terms of known quantities or ignored. If either of

the approximate forms of the conservation-of-mass relation given by Eq. (4-23)
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is used, however, then pressure cannot be computed in this fashion. In this case,

the divergence �/�xi (equivalent to � · in vector notation) of Eq. (4-21) yields

�

�t

�

�xi
�0ūi = − �2

�xi�xj
��0ūj ūi�−

�2

�xi�xj
�0u

′′
j u

′′
i −

�2p′

�x2
i

− �

�xi

[
�p0

�x
�i1 +

�p0

�y
�i2

]
+ �i3g

�

�xi

�′

�2
0

− 2�ijk�j

�

�xi
�0ūk


Using the left side of Eq. (4-23) along with the approximation for �′/�0 given

by Eq. (4-19) gives the diagnostic second-order differential equation for the

mesoscale pressure perturbation,

�2p′

�x2
i

+ gCv

Cp

�

�z

(
�0p

′

p0

)
= − �2

�xi�xj
��0ūj ūi�−

�2

�xi�xj
�0u

′′
j u

′′
i

− �

�xi

[
�p0

�x
�i1 +

�p0

�y
�i2

]
+ g

�

�z

(
�0�

′

�0

)
− 2�ijk�j

�

�xi
�0ūk
 (4-35)

When Lz � H�, the second term on the left side of Eq. (4-35) does not appear,

in which case Eq. (4-35) is referred to as a Poisson partial differential equation
(see, e.g., Hildebrand 1962).

When Eq. (4-35) is used to diagnose pressure, the vertical component of

Eq. (4-21) must be dropped, otherwise the system of equations that includes

(4-19), (4-21), (4-23)–(4-26), and (4-35) would be overspecified (i.e., one more

equation than the number of unknowns). Vertical velocity can be diagnosed

directly from the appropriate form of Eq. (4-23); the right side of (4-23) can be

used if Lz � H�.

The advantages of using Eq. (4-35) to compute pressure include the following:

1. The horizontal wavelength of the mesoscale system Lx can be of any size

without concern for when the hydrostatic assumption is valid.

2. By using Eq. (4-23), sound waves, which in general are not expected to

be meteorologically important on the mesoscale, are excluded. (This is demon-

strated in Section 5.2.2.)

The disadvantages include the following:

1. The required computation time is increased, since pressure must be eval-

uated from the involved formulation given by Eq. (4-35).

2. As with the vorticity equation [Eq. (4-31)], the mathematical operation

of differentiation magnifies errors in the evaluation of Eq. (4-35).
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Models that use Eq. (4-35) to determine pressure, or the more general method

of using the complete conservation-of-mass equation [i.e., Eq. (4-22)], along

with the ideal gas law and definition of potential temperature to obtain pres-

sure, are referred to as nonhydrostatic models. Of course, it actually is not

appropriate to refer to such models as nonhydrostatic since, as shown in Song

et al. (1985) and discussed in detail in Section 5.2.3.2, the pressure perturbation

typically remains close to hydrostatic balance even when nonhydrostatic pres-

sure effects become important. The nonhydrostatic pressure is also referred to

as the dynamic pressure. The relative importance of hydrostatic and dynamic

pressures is discussed in Chapter 5.

Investigators who have used an equation of the form given by Eq. (4-35)

include Ogura and Charney (1961) and Neumann and Mahrer (1971). Models

such as those reported by Tapp and White (1976), Cotton and Tripoli (1978),

and Pielke et al. (1992) preferred to retain the more complete conservation-of-

mass relation of the form given by Eq. (4-22). This is being done in recent

models since, as shown in Section 10.4, the computational problems associated

with retaining sound waves as a solution to the model equations have been

eliminated.

4.4 Scaled Pressure Form

Finally, in mesoscale modeling, it has often been convenient to replace the

pressure gradient term in Eq. (2-45) with

1

�

�p

�xi
= �

��

�xi
	 (4-36)

where the ideal gas law [Eq. (2-49)] and the definition of potential temperature

[Eq. (2-48)] have been used, so that

� = Cp�p/p00�
Rd/Cp = CpTv/�


The variable � is often referred to as the Exner function.5 Using the definitions

of averaging presented in this chapter, we have

�
��

�xi
= �̄

��̄

�xi
+ �′′ ��

′′

�xi



The subgrid-scale correlation term on the right side of this expression is of the

same form as the �′′�p′′/�xi term in Eq. (4-7); however, it cannot be eliminated

by using the approximate form of the conservation-of-mass relation [Eq. (4-9)],

as was done in creating Eq. (4-10). To remove this term, it is necessary to use

results from measurements (e.g., Lumley and Panofsky 1964) that show that

u′′
j �u

′′
i /�xj  �′′ �� ′′/�xi
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In mesoscale systems, this inequality is reasonable since u′′
j often has vari-

ations in magnitude over short distances equal to or greater than ūj (e.g., if

ū = 5 m s−1, then it is common to have wind gusts to 10 m s−1 (u′′ = +5 m

s−1), whereas if �̄ and �̄ have magnitudes around 300 K and 103 J kg−1K−1,

respectively, then �′′ and � ′′ are observed to vary at most 10 K and 3 J kg−1

K−1, respectively, (assuming a p′′ of 10 mb over the same distances).

Therefore,

�
��

�xi
� �̄

��̄

�xi
(4-37)

is a reasonable approximation for the averaged pressure gradient term.

Decomposing �̄ and �̄ into synoptic and mesoscale components yields

�0

(
1+ �′

�0

)
��̄

�xi
� �0

��̄

�xi
	 i = 1	 2	

and

��0 + �′�
�

�z
��0 + � ′�+ g = �0

(
1+ �′

�0

)
�� ′

�z
− g + g − �′

�0
g

� �0
�� ′

�z
− �′

�0
g
 (4-38)

where the synoptic scale is presumed to be hydrostatic; i.e., �1/�0���p0/�z� =
�0 ��0/�z = −g.

The total resolvable form of the conservation-of-motion relation, equivalent

to Eq. (4-10) and using �̄ as the scale pressure, can then be written as

�ūi

�t
= −ūj

�ūi

�xj
− 1

�0

�

�xj
�0u

′′
j u

′′
i − �̄

��̄

�xi
− g�i3 − 2�ijk�j ūk	 (4-39)

and the form equivalent to Eq. (4-21) is given by

�ūi

�t
= −ūj

�ūi

�xj
− 1

�0

�

�xj
�0u

′′
j u

′′
i − �0

�� ′

�xi

+ �0

[
��0

�x
�i1 +

��0

�y
�i2

]
+ �′

�0
g�i3 − 2�ijk�j ūk
 (4-40)

If the hydrostatic assumption is used, then the vertical equation of motion

(i = 3) from Eq. (4-39) is replaced with

��̄/�z = −g/�̄	 (4-41)

and Eq. (4-40) yields

�� ′/�z = g�′/�2
0 (4-42)

for the same situation.
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The major advantages of writing the equations in this form are as follows:

1. The pressure perturbation term p′, or its equivalent � ′, does not occur in
the gravity term even if the depth of the circulation is on the same order as the

scale depth of the atmosphere �Lz ∼ H��.
2. The need to compute the density perturbation (�′ = 1/�′) is removed;

thus one less equation needs to be evaluated.

3. The vertical gradient of � is much less than that of p, hence approx-

imating that term using finite difference techniques introduces less error (i.e.,

���̄/�z/��p̄/�z�� = 1/��̄�̄� � 1).

The disadvantages include that in deriving a nonelastic equation for � ′, equiv-
alent to Eq. (4-35), a first-derivative term in � ′ arises in all three spatial

directions,

�0�0
�2� ′

�x2
i

+ �� ′

�xi

��0�0
�xi

= − �

�xi
�0ūj

�ūi

�xj
− �2

�xi�xj
�0u

′′
j u

′′
i

− �

�xi
�0�0

[
��0

�x
�i1 −

��0

�y
�i2

]
+ �

�xi
�0

�′

�0
g�i3

− 2�ijk�j

�

�xi
ūk�0

�assuming �ūi��0/�t� � ��0�ūi/�t��

The inequality given by Eq. (3-22) suggests when either of the hydrostatic

equations given by Eqs. (4-41) and (4-42) can be used in lieu of the third

equation of motion. Since, as shown in Chapter 10, the smallest-sized horizontal

feature that can be resolved with reasonable accuracy in a mesoscale model has

a size corresponding to 4�x, then

H�/Lx = H�/4�x <̃ 1 (4-43)

defines a restriction for the use of the hydrostatic equation. If �x = 2 km, for

example, then the adequacy of the hydrostatic approximation seems assured, at

least, based on the analysis given in Chapter 3. Additional and more quantitative

evaluation of the accuracy of the hydrostatic assumption are given in Chapter 5,

Sections 5.2.2 and 5.2.3.

4.5 Summary

Using the averaging technique presented in this chapter, consistent sets of the

conservation relations can be derived. To develop a consistent set of equations,
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the number of equations must be the same as the number of dependent variables.

These averaged equations can be presented in several forms.

In determining the specific grid-volume-averaged equations, it is essential to

identify the form used for:

� the conservation-of-mass equation (a scalar equation)

� the conservation-of-heat equation (a scalar equation)

� the conservation-of-motion equation (a vector equation)

� the conservation-of-water equation (three scalar equations)

� the conservation-of-other gaseous and aerosol materials equations (M scalar

equations)

� the equation of state.

If simplified forms of any of these equations are used, the assumptions need to

be stated.

The terms that constitute these equations also need to be identified. These

terms are in one of the following forms:

� externally prescribed variables (e.g., ui0
	 �0)

� dependent variables (e.g., u′
i	 �

′	 u′′
j u

′′
i , u

′′
j �

′′	�S�)
� prescribed constants or functions (e.g., g	 f ).

The dependent variables can be further categorized into two types:

� those that are predicted from the conservation equations (e.g., u′
i	 �

′)
� those for which parameterizations are often introduced (e.g., u′′

j u
′′
i , u

′′
j �

′′,
�S�). Parameterizations are based on the variables that are predicted. As

shown in Chapter 7, terms such as u′′
j u

′′
i can be predicted or parameterized.

For each model, the approach adopted needs to be identified.

In Chapters 7–9, examples of methods to parameterize grid-volume-average val-

ues variables are described. Chapter 10 describes how the predicted variables

are represented in the conservation equations.

Notes to Chapter 4

1. Equation (4-6) can be generalized to an ensemble average, as discussed in Cotton and

Anthes (1989:Chapter 3). In that approach, an ensemble average can be defined as �� �� =
limN→�

∑N
i=1 � �, where Eq. (4-6) is an average for a particular case (e.g., a model realization).

The number of realizations is N. When the results are sensitive to, for example, initial conditions,

there will be a spread of realization results, which is called the ensemble. The grid-volume

average has been stochastically chosen for some applications from an ensemble, as shown in, for

example, Pielke (1984:Section 7.5) and Uliasz et al. (1996) for estimating atmospheric dispersion.

More generally, however, as shown in Chapters 7–9 and 11, parameterizations exclusively use

ensemble-average representations.
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2. Raupach and Shaw (1982:80–82) discuss the situation in which these assumptions fail at

interfaces with rigid objects. Galmarini and Thunis (1999) and Galmarini et al. (2000) discuss the
errors introduced when the Reynold’s assumption is invalid.

3. Vorticity and circulation are directly proportional to one another, i.e.,
∮
C
uTds =

∫ ∫
s
�� × �u� ·

�ndS using the theorem of Stokes (see, e.g., Kaplan 1952:275), where uT is the tangential velocity

along the perimeter of the surface S (i.e., the circulation). The variable �n is a unit vector normal to S.

4. Referred to as the tilting term, it should more appropriately be referred to as simultaneous

tilting and vortex line convergence. Convergence occurs when the cross-sectional area normal to the

axis of the vortex tube changes (Pielke et al. 1995a).
5. The term “Exner function” is also often used for � = �p/p00�

Rd/Cp . Such a definition yields

a nondimensional pressure variable. However, Cp is the specific heat of air and thus can be treated

as nearly a constant. Consequently, it is reasonable to incorporate Cp into the definition of �.

Additional Readings

Cotton, W. R., and R. A. Anthes. 1989. Storm and Cloud Dynamics. Academic Press, San Diego.

Cotton and Anthes provide an extensive discussion of types of averaging as applied to the

conservation equations, as well as the use of scale analysis to derive consistent forms for

these equations. Their text provides a useful complement to the material in Chapters 3 and

4 in this text.

Green, S. (Ed.) 1994. Fluid Vortices. Kluwer Academic Publishers, Amsterdam.

Sheldon Green provides a thorough review of the use of vorticity to investigate fluid flow as

well as many other aspects of the circulation of fluids.

Problems

Select an atmospheric model.

1. List the specific form of the following grid-volume conservation equations used. Assume flat

terrain so that the equations appear in a simpler form. State each of the assumptions used to obtain

the equations.

(a) Mass

(b) Heat

(c) Motion

(d) Water

(e) Other gases and aerosols

2. List the following. Of the dependent variables used in the selected model, which are predicted

from the conservation equations and which are parameterized? Does the number of conservation

equations agree with the number of dependent variables which are predicted? To be a consistent

model, they must be the same number!

(a) Externally prescribed variables

(b) The dependent variables

(c) The prescribed constants

3. To select a model to investigate, refer to Appendix B for examples and references.



Chapter 5

Physical and Analytic Modeling

There are two fundamental methods of simulating mesoscale atmospheric

flows: physical models and mathematical models. With the first technique, scale

model replicas of observed ground surface characteristics (e.g., topographic

relief, buildings) are constructed and inserted into a chamber such as a wind

tunnel (water tanks are also used). The flow of air or other gases or liquids

in this chamber is adjusted so as to best represent the larger-scale observed

atmospheric conditions. Mathematical modeling, in contrast, utilizes such basic

analysis techniques as algebra and calculus to solve directly all or a sub-

set of Eqs. (2-43)–(2-50). As discussed later in this chapter, certain subsets

of Eqs. (2-43)–(2-50) can be solved exactly, whereas other subsets, includ-

ing the complete system of equations, requires the approximate solution tech-

nique called numerical modeling. Numerical modeling methods are described

in Chapters 7–12.

Models are used for three purposes: diagnostic evaluations, process studies,

and predictions. Diagnostic models, for example, use the conservation equations

combined with whatever observations are available to interpolate data through-

out a region. Process models utilize the conservation equations to improve phys-

ical understanding of atmospheric dynamics and thermodynamics. Predictive

models are designed to provide forecasts. Predictive models that use the conser-

vation equations need to improve on the forecast skill of statistical prediction

models to demonstrate that they have forecast skill (Landsea and Knaff 2000).

A series of papers on the topic of prediction as a link between science and

decision making, have been published in Sarewitz et al. (2000).
Bankes (1993) separates models into consolidative and exploratory mod-

els. Consolidative models are intended to be a surrogate for an actual system.

Exploratory models are used to explore the implications of various assumptions

and hypotheses, but recognizing that there is incomplete knowledge to actually

represent the real system. In the context of mesoscale models, if, for example,

58
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the parameterizations of the physical system are not universally applicable, then

the model is an exploratory model.

5.1 Physical Models

As shown in Chapter 3, the ratio of the individual terms in Eqs. (2-43)–(2-47)

have representative orders of magnitudes that are dependent on the time and

space scales of the phenomena being studied. In that chapter, nondimensional

parameters such as the Rossby number and Reynolds number were introduced

to examine the relative importance of the individual terms.

When constructing a physical-scale model of a real tropospheric circulation,

it is desirable that these dimensionless parameters have the same order of mag-

nitude in the model as in the actual atmosphere. Indeed, neglecting to observe

proper scaling in such endeavors as the filming of scale models for motion

pictures is easily evident to viewers, such as when explosions destroy replica

buildings much too easily or a fire flickers too quickly.

Using the order of magnitude estimates for the dependent variables introduced

in Chapter 3, and assuming that L and S are the representative length and veloc-

ity scale of the circulation of interest (i.e., no distinction is made here between

U	 V , and W or between Lx	 Ly	 and Lz), the scaled version of Eq. (4-39) can

be written as[
S2

L

]
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′
�i3 − ��S�2�ijk�̂j

ˆ̄uk	 (5-1)

where a circumflex � ˆ � over a dependent variable or an independent variable

indicates that it is nondimensional. The scaled parameter eui is a measure of the

subgrid-scale velocity correlations that can be estimated from the mean subgrid-

scale kinetic energy given by

eui =
[(
u′′2
i /2
)]1/2




Including the estimate for the molecular viscous dissipation given by

Eq. (3-29), and multiplying Eq. (5-1) by L/S2 (to obtain a nondimensional
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equation for the local acceleration) results in
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 (5-2)

To use a scaled physical model to accurately represent the conservation-of-

motion relation in the atmosphere, one of the following conditions must hold:

1. the individual bracketed terms be equal in the model and in the

atmosphere,

2. the bracketed terms that are not equal must be much less in magnitude

than the other bracketed terms in Eq. (5-2).

When these conditions are met, the actual and modeled atmospheres are said to

have dynamical similarity.
Two of these bracketed terms are of the same form as defined in Chapter 3,

Section 3.3.2, and are given as

�L/S = 1/R0

and

v/LS = 1/Re	

where R0 is the Rossby number and Re is the Reynolds number, and

gL���/�0�/S
2 = Ribulk

is called the bulk Richardson number. (Here �� represents the potential temper-

ature perturbation and is the same order as �T used in Section 3.3.)

From Eq. (5-2), to maintain dynamic similarity, it is implied that to rep-

resent all of the terms in the equation properly, the following criteria must

be met:

1. The ratio of the subgrid-scale kinetic energy to the grid-volume average

kinetic energy must be kept constant.

2. Reducing the length scale L in the physical model requires:

(a) an increase in the magnitude of the horizontal temperature pertur-

bation �� or a reduction in the simulated wind flow speed S, or
both

(b) an increase in the rotation rate � or a reduction in S, or both
(c) a decrease in the viscosity v or an increase in S, or both.
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3. An increase in �� in the pressure gradient term necessitates that S also

increase.

Unfortunately, it is impossible to satisfy all of these requirements simultane-

ously in existing physical models of mesoscale atmospheric circulations. Such

physical models are constructed inside of buildings, which limits the dimensions

of the simulated circulations to the size of meters, whereas actual mesoscale

circulations extend over kilometers.

To illustrate the difficulty of obtaining dynamic similarity in a mesoscale

physical model for all terms in Eq. (5-2), let the horizontal scale of a moun-

tain ridge be 10 km, whereas the physical model of this geographic feature

utilizes a 1-m representation. The scale reduction is, therefore, 104. Thus if S =
10 m s−1 in the real situation and air is used in the scaled model atmosphere,

then the simulated wind speed would have to be 105 m s−1 to maintain identical

Reynolds number similarity! In addition, to have the same Rossby number for

this example, the physical model must rotate 10,000 times more rapidly than

the earth, or the wind speed must be reduced by 10,000. Of course, reducing the

speed is contradictory to what is required to obtain Reynolds number similarity!

Only if the results are relatively insensitive to changes in these nondimensional

quantities—as suggested by, for example, Cermak (1975) for large values of the

Reynolds number in simulations of the atmospheric boundary layer—can one

ignore large differences in the nondimensional parameters.

From the example just given, however, it should be clear that it is impossible

to obtain exact dynamic similarity between mesoscale atmospheric features and

the physical model when all of the terms in Eq. (5-2) are included. Nonethe-

less, investigators who use physical models have proposed a type of similarity

between actual mesoscale atmospheric circulations in which e2ui /S
2  v/LS

and physical model representations in which e2ui /S
2 � v/LS. With this type of

simulation, it is assumed that the mixing by molecular motions, as expressed by

Eq. (3-29), acts in the same manner as the mixing by air motions as given by

the turbulence flux divergence term ��/�x̂j�û
′′
j u

′′
i . In its dimensional form, this

latter term can be approximated by

�

�xj
u′′
j u

′′
i �

�

�xj

(
−K

�ūi

�xj

)
(5-3)

(an approximation discussed in detail in Chapter 7), where K is called the

turbulent exchange coefficient and is analogous to the kinematic viscosity v.
If a turbulent Reynolds number, Returb, is defined as the ratio of the advective

terms to the subgrid-scale correlation terms, then, by scale analysis,

Returb = Lmeso Smeso/K	
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where the subscript “meso” refers to the mesoscale. Similarity of flow between

the real atmosphere and the physical model are then assumed to occur when

Returb = Lmeso Smeso/K = Re = Lmodel Smodel/v	

where the subscript “model” refers to the scaled physical representation.

If both the actual and simulated wind speeds are equal, Smeso = Smodel, then if

Lmeso = 104Lmodel, for example, K = 104v is used to justify similarity between

the mesoscale and the physical model, when subgrid-scale mixing is the dom-
inant forcing term in Eq. (5-2). If air is used in the physical model, then v =
1
5× 10−5 m2 s−1, so that K must be equal to 1
5× 10−1 m2 s−1—a condition

that may be fulfilled near the ground when the air is very stably stratified.

Using this analysis, physical modelers assume that turbulent mesoscale atmo-

spheric circulations are accurately simulated by laminar laboratory models, pro-

vided that the appropriate ratio between the eddy exchange coefficient and

kinematic viscosity is obtained.

Using the same assumptions applied to produce Eq. (5-1), the conservation-

of-heat relation, represented by the potential temperature equation (4-24), can

be written as[
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where e�eui is a measure of the subgrid-scale correlation between the fluctuating

velocities and temperatures, with e� perhaps represented by

e� = ���′′2/2��1/2


If the molecular conduction of potential temperature C� is included in Eq. (5-4)

and represented in analogy with the viscous dissipation term as

C� =
k�
�Cp

�2�̄

�xj�xj
� �C�� ∼

k�
�0Cp

��

L2
	

where k� is the potential temperature molecular conduction coefficient, then

multiplying Eq. (5-4) by L/�� S and including the order-of-magnitude estimate

of C� yields
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�0Cpv
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j

+ ˆ̄S�
 (5-5)

The ratio

k�/�0 Cp v = Pr−1

where Pr represents the Prandtl number and is of order unity for air.
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Thus, to obtain thermal similarity between the mesoscale circulation and its

laboratory representation, the Reynolds number must also be very large and the

partitioning of heat transport between the subgrid-scale and resolvable fluxes

must be the same. If in Eq. (5-2), for example, the temperature perturbation

�� must be increased in the bulk Richardson number, Ribulk, to compensate

for a decrease of L in the laboratory model, then in Eq. (5-5) the turbulent

fluctuations in the simulated atmosphere also must be increased.

The nondimensional source-sink term for potential temperature Ŝ� is included
in the analysis. However, the mathematical procedure of representing it as a

single variable masks its physical complexity. As discussed in Chapters 8 and

9, this term includes such effects as radiative flux divergence, phase changes

of water, etc. and is an involved function of the dependent variables. Thus it

is extremely difficult to evaluate this term using scale analysis, and in practice

physical modelers exclude it in their representation of mesoscale atmospheric

flows. An equivalent similarity analysis can be performed for water substance

and other aerosol and gaseous contaminants. Because of the inability to accu-

rately represent the sources and sinks of these variables (i.e., ˆ̄Sqn
and ˆ̄S�m

), how-

ever, physical modelers have studied the movement of nonreactive, conservative

pollutants only around terrain and building obstacles.

When utilizing physical models, the conservation-of-mass relation given by

Eq. (2-43) must also be satisfied, and as long as the ratio of the variations

of specific volume to the average specific volume in the physical model is

much less than unity, Eqs. (3-11) and (3-14) are satisfactory approximations.

The scaled version of the incompressible conservation-of-mass equation (3-14)

shows that

W ∼ LzU/Lx and W ∼ LzV /Ly	

so that if the ratio of the vertical scale to the horizontal scale of the circulation

is kept constant between the physical model and the atmosphere, then kinematic
similarity is obtained. This requirement could be satisfied provided that the

horizontal to vertical representation of the terrain and other physical features

of the ground surface in the physical model are not exaggerated. This latter

condition is called geometric similarity.
The final similarity conditions needed in physical models include the require-

ment that air flowing into the simulated mesoscale region have velocity and

temperature profiles scaled according to the nondimensional relations given by

Eqs. (5-2) and (5-5) and that the flow be close to equilibrium; i.e., � ˆ̄ui/�t̂ and
��̂/�t̂ are small relative to the remaining terms in Eqs. (5-2) and (5-5). In addi-

tion, such bottom conditions as surface temperature and aerodynamic roughness

must be scaled so as to produce kinematic, dynamic, and thermal similarity in

the lowest levels of the physical model. These requirements are referred to as

boundary similarity, and their creation necessitates a comparatively long fetch
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from the input region of the laboratory apparatus to the region of simulation, as

well as obstacles such as a lattice placed upwind in the flow to generate specific

velocity profiles and turbulence characteristics.

With all of these requirements, physical modeling of the mesoscale has been

primarily limited to stably stratified flows over irregular terrain. Even for this

case, however, such observed features of the real atmosphere as the veering of the

winds with height, radiational cooling, and condensation cannot be reproduced.

The main advantage of physical models of the mesoscale, therefore, has been

to provide qualitative estimates of airflow over terrain obstacles during dense,

overcast, or nighttime situations. Figure 5-1, reproduced from Cermak (1971),

illustrates such a simulation for a scale model of Port Arguello, California,

where helium is released as a tracer to represent pollution dispersal. The influ-

ence of the model topography on the flow was very marked and corresponded

well with the observed trajectories and concentrations. A number of other

physical model simulations of relevance to the mesoscale have been performed,

including those of Cermak (1970), Chaudhry and Cermak (1971), Yamada and

Meroney (1971), SethuRaman and Cermak (1973), Hunt et al. (1978), Meroney

et al. (1978), Baines (1979), Baines and Davis (1980), Lee et al. (1981),

Mitsumoto et al. (1983), Noto (1996), Poreh (1996), and Chen et al. (1999a).
Egan (1975) also discusses physical modeling over complex terrain. Avissar

et al. (1990) provide a review of the ability of meteorological wind tunnels

Fig. 5-1. Visualization of advective dispersion over Port Arguello, California in a sta-
bly stratified laminar flow in a wind tunnel. (From Cermak 1971.)
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to simulate sea and land breezes. Cermak (1996) provides a recent review of

physical modeling.

Because physical models are severely limited in their applicability to the

mesoscale, however, it is necessary to utilize the techniques of mathematical

modeling. The remainder of the text is devoted to this methodology.

5.2 Linear Models

As discussed previously, the system of equations given by Eqs. (2-43)–(2-50),

represents a simultaneous set of nonlinear partial differential equations. The set
is termed “simultaneous” because each conservation relation must be satisfied

at any given time, and they involve partial derivatives because four independent
variables, x	 y	 z, and t, are involved. The nonlinear character of the equations

occurs because products of the dependent variables (e.g., ū �ū/�x, w̄ ��̄/�z) are
included in the relationships.

Mathematical techniques have evolved over the last several hundred years

that permit exact solutions of a range of algebraic and differential equations.

However, except for a few highly simplified and idealized situations, no method

exists to solve exactly general sets of nonlinear equations. To solve these non-

linear equations, the differential operators must be approximated for use in a

numerical model, as discussed in Chapter 10, so that the results obtained are

not exact.
To obtain exact1 solutions to the conservation relationships, it is necessary to

remove the nonlinearities in the equations. Results from such simplified, linear

equations are useful for the following reasons:

1. The exact solutions of simplified linear differential equations gives some

idea as to the physical mechanisms involved in specific atmospheric circulations.

Because precise solutions are obtained, an investigator can be certain that the

results are not caused by computational errors, as can be true with numerical

models.

2. Results from these linear equations can be contrasted with those obtained

from a numerical model in which the magnitude of the nonlinear terms are deter-

mined to be small relative to the linear terms. An accurate nonlinear numerical

model must be able to reproduce the linear results closely when the products of

the dependent variables are small.

Linear representations of the conservation relations have been used to inves-

tigate wave motions in the atmosphere, as well as to represent actual mesoscale

circulations. Kurihara (1976), for example, applied a linear analysis to inves-

tigate spiral bands in a tropical storm. Klemp and Lilly (1975) used such an
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approach to study wave dynamics in downslope wind storms to the lee of large

mountain barriers. Other linear models of airflow over mountain barriers include

the model of Wang and Lin (1999).

Simultaneous sets of linear partial differential equations relevant to atmo-

spheric circulations are derived from Eqs. (2-43)–(2-50), or from their approx-

imate forms. For example, with shallow adiabatic atmospheric circulations,

Eqs. (4-21), (4-23), and (4-24) can be written in linear form as

�ūi

�t
= −uj0

�ūi

�xj
+ K

�2ūi

�x2
j

− �0

�p′

�xi
− �0

[
�p0

�x
�i1 +

�p0

�y
�i2

]
+ �′

�0
g�i3 − 2�ijk�j ūk	 (5-6)

�ūj

�xj
= 0 (5-7)

and

��̄

�t
= −uj0

��̄

�xj
+ K

�2�̄

�x2
j

	 (5-8)

where the subgrid-scale correlation terms have been replaced by

1

�0

�

�xj
�0u

′′
j u

′′
i � −K

�2ūi

�x2
j

(5-9)

and

1

�0

�

�xj
�0 u

′′
j �

′′ � −K
�2�̄

�x2
j

	 (5-10)

with K equal to either a constant or a function of the independent vari-

ables. Besides these subgrid-scale terms, only the advective terms uj �ūi�xj
and ūj ��̄/�xj are directly affected by the linearization for this particular

atmospheric system. Since ��′�/�0 � 1, the pressure gradient force and the

conservation-of-mass relation were already assumed to be linear in Chapter 4,

and the term involving the rotation of the earth, 2�ijk�j ūk, was a linear contri-

bution in the original derivation of the conservation-of-motion equation given

in Chapter 2.

The linearizing assumptions made to obtain Eqs. (5-6) and (5-8) from

Eqs. (4-21) and (4-24) are major oversimplifications of the atmosphere and

are made only so that exact solutions can be obtained. Observations, nonlinear

numerical model results (see, e.g., Chapter 13), and even linear solutions (as

is shown in this chapter) demonstrate that the mesoscale velocity perturbations

u′
j are not in general much less than the synoptic components uj0

. In addition,

as discussed in Chapter 7, subgrid-scale mixing is not represented accurately
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for most situations using such a simple form of the exchange coefficient as

assumed in Eqs. (5-9) and (5-10).

In the remainder of this chapter, examples of simplified linear models are

discussed.

5.2.1 Tank Model

5.2.1.1 Single Homogeneous Fluid

Among the simplest of these models is a model that represents a homoge-

neous fluid (�̄ = �0 = a constant) situated in a two-dimensional rectangular

tank. This model is frequently used to test numerical computational schemes,

since the physical response of this system is straightforward and easily under-

stood.

Figure 5-2 illustrates this tank, where Ph is the pressure at the free surface

h, �0 is the density of the fluid, and PB is the pressure at the bottom. A set of

equations to describe the flow in this tank can be obtained from Eqs. (4-10),

(4-32), and (4-23) and written in component form to yield

�u′

�t
= − �

�x
u′2 − �

�z
w′u′ − 1

�0

�p̄

�x
	 (5-11)

�p̄

�z
= −�0 g	 (5-12)

�u′

�x
+ �w′

�z
= 0	 (5-13)

Fig. 5-2. A two-dimensional tank containing one fluid with constant density 0. The
pressure at the free surface h is Ph. On the flat bottom, pressure is indicated by PB.
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where the hydrostatic relation has been presumed valid, the thermodynamic

equation is not required since �′ is identically 0, the subgrid-scale mixing and

the rotation of the earth are ignored, and the large-scale velocities (u0	 w0) and

their gradients are set identically to 0. Further, the flow is assumed to be two-

dimensional. Since the fluid is homogeneous, Eq. (5-13) is the exact form of the

conservation of mass relation. In this system of equations, only the advective

terms in Eq. (5-11) are nonlinear.

Using the homogeneous nature of the fluid in the tank, Eqs. (5-11)–(5-13) can

be further simplified. The vertical derivative of the horizontal pressure gradient

force can be given as

�

�z

1

�0

�p̄

�x
= 1

�0

�

�x

�p̄

�z
= 1

�0

�

�x
�−�0 g� = 0	

since �0 and g are constants. Thus the horizontal pressure gradient does not

change with height.

Integrating Eq. (5-12) between the bottom z = 0 and the surface of the fluid

h yields ∫ h
0

�p̄

�z
dz = Ph − PB = −�0 gh	 (5-14)

and if Ph � PB (if a vacuum exists above h, then Ph is identically equal to 0),

then

PB = �0 gh
 (5-15)

Differentiating Eq. (5-15) with respect to x and rearranging results in

1

�0

�PB

�x
= g

�h

�x
	 (5-16)

which, since the horizontal pressure gradient is invariant with height [i.e.,

�1�0� ��PB/�x� = 1�1/�0���p̄/�x�], permits the horizontal pressure gradient in

Eq. (5-11) to be replaced by the right side of Eq. (5-16).

Next, differentiating Eq. (5-11) with respect to height and rearranging yields

�

�t

(
�u′

�z

)
+ u′ �

�x

(
�u′

�z

)
+ w′ �

�z

(
�u′

�z

)
= 0


where ��u′/�x + �w′/�z� = 0 was applied. Thus if �u′/�z = 0 initially, then

it can never be generated, since the terms in this expression require existing

velocity shear to be nonzero. With this result, Eq. (5-11) can now be written as

�u′

�t
= −u′ �u

′

�x
− g

�h

�x

 (5-17)
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Equation (5-13) can also be given in a different form by integrating between

z = 0 and z = h, so that∫ h
0

�w′

�z
dz = w′

h − w′
0 = w′

h = −
∫ h
0

�u′

�x
dz	 (5-18)

where w0 = 0 since the bottom is flat. Since

�

�z

�u′

�x
= �

�x

�u′

�z
= 0	

because �u′/�z is identically equal to 0, then the horizontal gradient of u′ is not
a function of height and Eq. (5-18) can be written as

w′
h = −�u′

�x
h
 (5-19)

If h is defined to be a material surface, which moves up and down with the

vertical velocity, then

w′
h =

dh

dt
= �h

�t
+ u′ �h

�x
	

using the chain rule of calculus, where it is assumed that h = h�t	 x�t�� and

u0 = 0.

Thus Eq. (5-19) can be written as

�h

�t
= −u′ �h

�x
− h

�u′

�x

 (5-20)

Along with Eq. (5-17), these two relations are in the form most commonly

applied to the single-fluid tank model. Even though this situation of a homo-

geneous fluid in a tank is conceptually simple, Eqs. (5-17) and (5-20) are, of

course, still nonlinear, and no general analytic solution is obtainable.

One way to linearize this system of equations is to set h = h0 + h′, where
h0 is a constant defined to be equal to the average depth of the fluid, so that

Eq. (5-20) is written as

�h

�t
= −u′ �h

′

�x
− h0

�u′

�x
− h′ �u

′

�x

 (5-21)

Then, by neglecting products of the dependent variables in Eqs. (5-17) and

(5-21), a set of two simultaneous linear partial differential equations is given by

�u′

�t
= −g

�h′

�x
(5-22)

�h′

�t
= −h0

�u′

�x

 (5-23)

This system of equations is rigorously fulfilled when h′ � h0, so that, for

example, in a tank 1 m deep, a perturbation height of 1 cm (a 1% deviation)

might be said to satisfy this inequality.
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The method of solving Eqs. (5-22) and (5-23) involves representing h′ and u′

as functions of wavenumber k and frequency � (i.e., a Fourier transform). This

relationship can be expressed mathematically as

u′�x	 t� =
∫ �
−�

∫ �
−�

ũ�k	 ��ei��t+kx�dk d� (5-24)

h′�x	 t� =
∫ �
−�

∫ �
−�

h̃�k	 ��ei��t+kx�dk d�	 (5-25)

where ũ�k	 ��, h̃�k	 ��, and ei��t+kx� are complex variables. The advantage of

performing this transformation is that the linear partial differential equations
given by Eqs. (5-22) and (5-23) are replaced by two algebraic equations. The

exponential term can also be written as

ei��t+kx� = cos��t + kx�+ i sin��t + kx�	

which corresponds to a unit vector of components cos��t + kx� on the real axis

and sin��t + kx� on the imaginary axis. The frequency � and wavenumber k
can also be expressed as a complex number. As an example, if

� = �r + i�i	

then

ei�t = ei��r+i�i�t = e−�itei�r t = e−�it
(
cos�rt + i sin�rt

)
	 (5-26)

so that e−�it can indicate whether u′�x	 t� and h′�x	 t� damps ��i > 0� or ampli-

fies ��i < 0� with time, and the term cos�rt + i sin�rt is used to determine

changes in u′�x	 t� and h�x	 t� owing to propagation. A similar decomposition

can be applied to the wavenumber k, where e−kix denotes the damping or ampli-

fication of the dependent variables in the x direction as a function of wavelength

and cos krx + i sin krx refers to the periodic portion of the spatial distribution

of the dependent variables.

When the complex form is used to solve a system of differential equations,

only the real part of the solution gives information on the magnitude of the

dependent variables. Complex variables are valuable tools in the solutions of

equations expected to have periodic solutions.

One crucial advantage of linearizing a system of differential equations is that

any single term inside of the integral of Eqs. (5-24) and (5-25) is separately a

solution to Eqs. (5-22) and (5-23). In a nonlinear system, products of integrals

arise (e.g., from the multiplication of the Fourier representation of u′ by that

for �h′/�x), reflecting the interactions between different scales of motion. No

such interaction is possible with a linear system, however.

Since Eqs. (5-22) and (5-23) are linear equations,

u′�x	 t� = ũ�k	 ��ei��t+kx� (5-27)
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and

h′�x	 t� = h̃�k	 ��ei��t+kx� (5-28)

can be used to represent the two dependent variables in those equations. The

complete solution can be obtained by adding together the solutions for all possi-

ble wavenumbers in a particular problem. Since no sources or sinks of velocity

are permitted in Eqs. (5-22) and (5-23), we also assume that ũ	 h̃	 �, and k are

all real, so that no terms of the form given by e−wit , for example, are produced.

We also assume that the fluid extends indefinitely in the horizontal direction

(i.e., there are no lateral walls). Substituting Eqs. (5-27) and (5-28) into the two

differential equations (5-22) and (5-23) yields the two algebraic equations

�ũei�kx+�t� + gkh̃ei�kx+�t� = 0

�h̃ei�kx+�t� + h0kũe
i�kx+�t� = 0


Since ei�k	x�t� cannot equal 0, these equations can be reduced to

�ũ+ gkh̃ = 0	

h0kũ+ �h̃ = 0	
(5-29)

which is given in matrix form as[
w gk
h0k �

] [
ũ

h̃

]
=
[
0

0

]

 (5-30)

The solution to this set of algebraic equations can be determined either by

performing algebraic rearrangement of Eq. (5-29) or by applying concepts of

linear algebra to Eq. (5-30). In the first case, solving the top equation for ũ and

substituting it into the bottom relation yields

h̃

[
−h0k

2g

�
+ �

]
= 0


Since h̃ does not equal 0 in general, the bracketed quantity must equal 0 so that

the equation

�/k = ±√gh0

expresses the relationship between � and k in Eqs. (5-22) and (5-23).

The determination of the solution using the matrix form is not as straightfor-

ward but is introduced here because it plays an important role in the evaluation

of the computational stability of numerical solution techniques (Chapter 10) and

in the solution of Eq. (5-44). Matrix equation (5-30) represents a system of two

linear homogeneous algebraic equations in two unknowns. It is linear because

the coefficients of the 2× 2 matrix on the left side of Eq. (5-30) are not func-

tions of ũ and h̃, and it is homogeneous since there is no nonzero function in
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the equation that is not a function of ũ and h̃. [This is the reason that the right

side of Eq. (5-30) is 0.]

As shown by, for example, Murdoch (1957), a system of homogeneous

algebraic equations has a nontrivial solution (a solution other than when the

dependent variables are identically equal to 0) only if the determinant of the

coefficients is 0. Therefore,2∣∣∣∣ � gk
h0k �

∣∣∣∣ = 0 = �2 − ghok
2

or

�/k = ∓√gh0
 (5-31)

Finally, since � = 2�/P and k = 2�/L, where P is the period and L is a

wavelength, setting the exponents of Eqs. (5-27) and (5-28) equal to 0 (i.e.,

�t+ kx = 0 and �/k = −x/t), yields �/k = −c, where c is the phase velocity.

Therefore,

c = ±√gho	 (5-32)

and the movement in the tank model corresponds to two waves that can propa-

gate in two opposite directions with a speed given by Eq. (5-32). This wave is

called an external gravity wave, since it is found only at the top of the fluid and

requires gravitational acceleration to occur. For g = 9
8 m s−2 and h0 = 10 km,

for example, c � ±313 m s−1.

5.2.1.2 Two-Layered Fluids

A somewhat more complicated tank model can be derived if it is assumed

that Ph is not much less than PB in Eq. (5-14).3 Such a situation is depicted in

Figure 5-3, where a fluid of one uniform density �1 overlies a second homoge-

neous fluid with a greater density �0. The pressure at the rigid top of the second

fluid is assumed to be much less than the pressure at the interface Ph. In the

lower fluid, pressure is determined by Eq. (5-12), whereas in the upper fluid,

the hydrostatic relation

�p̄/�z = −�1 g

is presumed to be valid.

Integrating Eq. (5-12) between the bottom and the initial interface height h0

yields ∫ h0
0

�p̄

�z
dz = Ph0

− PB = −�0gh0
 (5-33)

The pressure variation at h0 is given by

�Ph0
= �0g�h− �1g�h	
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Fig. 5-3. A two-dimensional tank containing two fluids with densities 0 and 1

(0 > 1). The pressure at the interface h is Ph. On the flat bottom, pressure is indicated
by PB. The depth of the upper fluid is assumed to be much greater than the displacement
height, �h, of the interface.

since when �h > 0, fluid with density �0 moves above h0, displacing fluid of

density �1, whereas when �h < 0 the reverse is true. Therefore,

�Ph0

�x
= ��0 − �1�g

�h

�x
or

lim
�x→0

�Ph0

�x
= �Ph0

�x
= �p̄

�x
= ��0 − �1�g

�h

�x
	 (5-34)

where the invariance of the pressure gradient with height has been applied in

both fluids. Thus the horizontal pressure gradient for this case can be written as

− 1

�0

�p̄

�x
= − ��0 − �1�

�0

g
�h

�x
	

so that the equation equivalent to Eq. (5-17) for two fluids becomes

�u′

�t
= −u′ �u

′

�x
− ��0 − �1�

�0

g
�h

�x

 (5-35)

Equation (5-20) has the same form for this situation, except that h now refers

to the interface between the two fluids.

The linear forms of Eqs. (5-35) and (5-20) are written as

�u′

�t
= −�0 − �1

�0

g
�h

�x

�h

�t
= −h0

�u′

�x
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Applying the same solution technique to this model and assuming that the fluid

extends indefinitely in the horizontal direction (as in the single fluid tank) results

in the phase velocity equation

c = ±√��gh0/�0	 (5-36)

where �� = �0 − �1.

Waves that form on such discontinuous interfaces between fluids are one type

of internal gravity wave. In Section 5.2.2, it is shown that internal waves can

occur even without a density discontinuity. Equation (5-36) reduces to the exter-

nal gravity wave when the overlying layer has a much smaller density than the

bottom fluid (i.e., �0  �1), such as is the case for air (�1 ∼ 1
25 kgm−3) and

water (�0 ∼ 1000 kgm−3). From Eq. (5-36), it is evident that internal gravity

waves of this type always travel more slowly than external waves. For g = 9
8
m s−2, h0 = 1 km, and ��/�0 = 0
1, for example, c � 31 m s−1. This speed of

motion is close to that observed on frontal interfaces in the atmosphere when

cold, dense air is being overrun by warmer, less dense air aloft (e.g., Gedzelman

and Donn 1979).

These tank models are, of course, gross oversimplifications to any type of

mesoscale circulation. But even in terms of real tanks with one or two fluids,

these models have serious shortcomings, including the following:

1. Although propagation speeds of waves are specified once motion is ini-

tiated, there are no mechanisms in these models to generate waves.

2. As is well known, waves generated in tanks can attain a sufficient size

such that breaking and overturning occurs. These models are unable to represent

such an event.

3. The influence of bottom and lateral friction and of side walls have been

excluded. Thus waves in these models will persist indefinitely in space and time.

Although some of these shortcomings can be minimized by adding linear

terms to the original tank model equations (5-11)–(5-13), the basic problem

with such models is the neglect of nonlinear effects. For example, breaking of

waves can occur when h′ is a significant fraction of h0, so that h′ � h0 is no

longer fulfilled. Nevertheless, because exact analytic solutions can be obtained,

these simple models are often used to evaluate computational schemes as well

as to demonstrate procedures used in numerical models. The tank model is used

in this context in Section 10.1.4.

5.2.2 Generalized Linear Equations

The tank models discussed in the previous section represent a situation in

which the conservation laws are greatly reduced in form, thereby permitting a
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straightforward, comparatively simple solution to the possible forms of motion.

Unfortunately, by simplifying, only one wave solution was obtained.

To obtain a more complete representation of the types of wave motion in the

mesoscale atmosphere, it is desirable to retain as many terms as possible in the

conservation relations, yet still linearize the equations so that exact solutions

are possible. These solutions not only will aid in the evaluation of the more

complete nonlinear numerical models, but also should provide insight into the

physical mechanisms involved in atmospheric circulations.

In the following derivation, the main goal is to obtain the characteristic

phase velocity of different classes of atmospheric wave motion. This informa-

tion is essential for successfully applying computational techniques to numerical

mesoscale models. To illustrate how the more general equations can be lin-

earized, Eqs. (4-19), (4-21), (4-22), and 4.24 can be reduced to the linear form

as follows:

�0

�u′

�t
= −�p′

�x
+ �0fv

′	 (5-37)

�v′

�t
= −fu′	 (5-38)

�1�0

�w′

�t
= −�p′

�z
− �′g	 (5-39)

��′

�t
= −w′ ��0

�z
	 (5-40)

�2

��′

�t
= −�0

[
�u′

�x
+ �w′

�z

]
− w′ ��0

�z
	 (5-41)

�′ = �0

Cv

Cp

p′

p0

− �0

�′

�0
	 (5-42)

where the following conditions hold:

1. The layer-domain averaged fields (u0	 v0	 w0	 �0	 p0	 �0) are hydrostatic,

horizontally homogeneous, and unchanging in time.

2. All subgrid-scale correlation terms are ignored.

3. Gradients in the y direction (i = 2) are neglected.

4. The Coriolis term is neglected in the vertical equation of motion, as is

the term involving w′ and the Coriolis term f̂ .
5. All motion is adiabatic (�S� = 0).

6. u0	 v0, and w0 are assumed to be identically equal to 0.

7. The vertical gradients of �0 and �0 are constant throughout the atmo-

sphere.

8. Variations of �′	 p′	 and �′ are assumed to be much less than the mag-

nitudes of �0	 p0, and �0, so that �0 � �̄.



76 5 Physical and Analytic Modeling

9. Products of the mesoscale dependent variables are removed (e.g.,

u′
j�u

′
i/�xj and u′

j ��
′/�xj ).

10. Moisture and effects of other gaseous and aerosol atmospheric materials

are ignored.

The parameters �1 and �2 are defined as

�1 =
{
1 for the nonhydrostatic representation

0 for the hydrostatic representation

�2 =
{
1 for the compressible representation

0 for the anelastic representation.

These are used to keep track of the terms that are neglected when either the

hydrostatic or the anelastic assumptions are made.

This simplified set of six linear algebraic and differential equations in the six

unknowns, u′	 v′	 w′	 p′	 �′, and �′, can be solved using the Fourier represen-

tation method, such as that applied to the linear tank model equations. In the

application of this method to Eqs. (5-37)–(5-42), the following forms are used

where the dependent variables are assumed to have a periodic wave form in

each of the independent variables:

u′�x	 z	 t� = ũ�kx	 kz	 ��e
i�kxx+kzz+�t�	

v′�x	 z	 t� = ṽ�kx	 kz	 ��e
i�kxx+kzz+�t�	

w′�x	 z	 t� = w̃�kx	 kz	 ��e
i�kxx+kzz+�t�	

�′�x	 z	 t� = �̃�kx	 kz	 ��e
i�kxx+kzz+�t�	

p′�x	 z	 t� = p̃�kx	 kz	 ��e
i�kxx+kzz+�t�	

�′�x	 z	 t� = �̃
(
kx	 kz	 �

)
ei�kxx+kzz+�t�


(5-43)

As discussed in the solution of the linearized tank model equations, any

individual term in a Fourier representation (also called a harmonic) is a solution.
Any linear combination is also a solution, with the complete representation given

by adding together all of the harmonics. Thus Eq. (5-43) is used to represent

the dependent variables in Eqs. (5-37)–(5-42).

Rearranging and substituting Eq. (5-43) into these equations yields the simul-

taneous set of six linear homogeneous algebraic equations in six unknowns:

�0i�ũ+ ikxp̃ − �0f ṽ = 0	

i�ṽ + f ũ = 0	

�1�0i�w̃ + ikzp̃ + g�̃ = 0	

i��̃ + w̃
��0
�z

= 0	
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�2i��̃+ �0ikxũ+ �0ikzw̃ + w̃
��0

�z
= 0	

�̃+ �0

�0
�̃ − �0

p0

Cv

Cp

= 0


Rewriting this system of equations in matrix form gives

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0i� −f�0 0 0 0 ikx

f i� 0 0 0 0

0 0 �1�0i� 0 g ikz

0 0
��0
�z

i� 0 0

�0ikx 0

[
�0ikz +

� �0

�z

]
0 �2i� 0

0 0 0
�0

�0
1 −�0Cv

p0Cp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũ

ṽ

w̃

�̃

�̃

p̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

 (5-44)

As briefly discussed for the tank model, a nontrivial solution exists for a

homogeneous system of equations, only if the determinant of the coefficients of

the matrix equation is 0. Large determinants, such as obtained from Eq. (5-44),

are unfortunately not as simple to interpret as the 2 × 2 determinant of the

tank model, nor as simple to evaluate. Fortunately, programs such as Mathe-

matica (Wolfram 1988) provide a computationally efficient procedure to solve

Eq. (5-44).4

Expanding the determinants of Eq. (5-44) and rearranging yields the fifth-

order equation for �

�A� = (�2 − f 2
){�0

�0

��0
�z

�2�kz −
�2
0

p0

i�3Cv

Cp

�2�1

+ �kz

[
�0ikz +

��0

�z

]
− �0

p0

i�
Cv

Cp

g

[
�0ikz +

��0

�z

]}
+ �3k2x�1�0i − g�k2x

�0

�0
i
��0
�z

= 0	 (5-45)
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which can also be written as

�A� =
[
�2
0

p0

i
Cv

Cp

�2�1

]
�4 +
[
−k2x�1�0i +

�0

p0

i
Cv

Cp

g

(
�0ikz +

��0

�z

)
− kz

(
�0ikz +

��0

�z

)
− f 2 �

2
0

p0

i
Cv

Cp

�2�1 −
�0

�0

��0
�z

�2kz

]
�2

+ f 2 �0

�0

��0
�z

�2kz + f 2kz

(
�0ikz +

��0

�z

)
− f 2 �0

p0

i
Cv

Cp

g

(
�0ikz +

��0

�z

)
+ gk2x

�0

�0
i
��0
�z

= 0	 (5-46)

where the trivial solution � = 0 has been removed. Ogura and Charney (1961)

obtained a similar fourth-order algebraic equation in frequency in the analysis

of a similar set of the conservation relations.

Despite our linearization of the conservation equations, along with our sim-

plifying assumptions (e.g., �S� = 0	 ū0 = 0), evaluation of Eqs. (5-45) and (5-46)

is not simple. The tedious effort to get to this point is not in vain, however,

since it is possible to make further simplifying assumptions to aid interpretation

of these relations.

If it is assumed that kx = 0 (i.e., no variations of the dependent variables are

permitted in the x directions), f = 0 (i.e., the earth’s rotation is neglected), and

kz and � are real (so that there is no amplification or decay of waves in the

vertical direction or in time), then, after rearranging, Eq. (5-46) reduces to

− �1�2�
2 − igkz −

g

�0

��0

�z
+ p0

�0

Cp

Cv

k2z

− p0

�2
0

Cp

Cv

kzi
��0

�z
− Cp

Cv

i
p0

�0�0

��0
�z

�2kz = 0


(5-47)

Using the ideal gas law and definition of potential temperature for the synoptic

scale (p0 = �0RT0 and �0 = T0�1000/p0 (in mb)�Rd/Cp ), we have

1

�0

��0
�z

=
(
1− R

Cp

)
1

p0

�p0

�z
− 1

�0

��0

�z
= Cv

Cp

1

p0

�p0

�z
− 1

�0

��0

�z

= −g�0

p0

Cv

Cp

− 1

�0

��0

�z
	

where the synoptic scale is assumed to be hydrostatic ��p0/�z = −�0g�.
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Substituting this expression into Eq. (5-47) results in

−�2�1�
2 + (�2 − 1

)(
igkz
)+ (�2 − 1

)
i
Cpp0

Cv�
2
0

kz
��0

�z

− g

�0

��0

�z
+ p0

�0

Cp

Cv

k2z = 0


If the compressible continuity of mass relation (�2 = 1) is used, then

�2�1�
2 = p0

�0

Cp

Cv

k2z −
g

�0

��0

�z

 (5-48)

The ratio of the two terms on the right side is∣∣∣∣ g�0

��0

�z

∣∣∣∣/
∣∣∣∣p0

�0

Cp

Cv

k2z

∣∣∣∣ � 1

H�Dk2z
= L2

z

�2��2H 2
�

	

since �1/�0���0/�z = H−1
� 	 p0/�0g = D ∼ H�, and kz = 2�/Lz. Even if Lz ∼

H�, this ratio is still less than unity (�1/2��2 = 0.03), so that the solution to

Eq. (5-48) can be reasonably estimated by dropping the second term on the

right in Eq. (5-48). Therefore, when �2 = �1 = 1,

�2

k2z
� p0

�0

Cp

Cv

= RT0
Cp

Cv

� c2


The wave propagation speed (phase speed), c, for this situation,

c � ±
(
RT0

Cp

Cv

)1/2
	 (5-49)

is that of a vertically propagating sound (acoustic) wave, which moves upward

and downward at the same speed. When either �1 = 0 (i.e., the hydrostatic

assumption is applied) or �2 = 0 (i.e., the local time tendency of density is

neglected) a wave solution to Eq. (5-48) does not exist. This is the reason that

the conservation-of-mass relation given by Eq. (3-11) is termed the anelastic
assumption, since vertically propagating sound waves (and, as is shown shortly,

sound waves with horizontal components) are eliminated as a possible solution.

For reasonable values of temperature (e.g., T0 = 300 K), c � 350 m s−1 in the

earth’s lower troposphere.

Another type of wave motion can be isolated from Eq. (5-46) by prescribing

�2 = 0 and neglecting the terms associated with the rotation rate of the earth

(e.g., terms multiplied by f ). Equation 5-46 then reduces to[
−k2x�1�0i +

�0

p0

i
Cv

Cp

g

(
�0ikz +

��0

�z

)
− kz

(
�0ikz +

��0

�z

)]
�2

+ gk2x
�0

�0
i
��0
�z

= 0	
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which can be rewritten as[
−�0i
(
�1k

2
x + k2z
)+ �0

p0

i
Cv

Cp

g
��0

�z
− �2

0

p0

Cv

Cp

gkz − kz
��0

�z

]
�2

+ gk2x
�0

�0
i
��0
�z

= 0
 (5-50)

In this equation it is specified that kx and � are real. (Waves are assumed to

not amplify or decay in the horizontal direction or in time.) The vertical wave

number kz is prescribed as complex, however, to account for the imaginary

terms that appear in this relation.

Rewriting Eq. (5-50) and rearranging with kz = kzr + ikzi yields[
�0

[
�1k

2
x + k2zr − k2zi

]− g
�0

p0

Cv

Cp

��0

�z
+ �2

0

p0

Cv

Cp

gkzi + kzi
��0

�z

]
�2

− gk2x
�0

�0

��0
�z

+ i

[
2�0kzikzr −

�2
0

p0

Cv

Cp

gkzr − kzr
��0

�z

]
�2 = 0
 (5-51)

Thus, to ensure that Eq. (5-51) is a real equation,

kzi =
�0Cv

2p0Cp

g + 1

2�0

��0

�z

is required, so that Eq. (5-51) reduces to{
�0

(
�1k

2
x + k2z
)+ 1

4

�3
0

p2
0

(
Cv

Cp

)2
g2 + 1

4�0

(
��0

�z

)2
− 1

2

�0

p0

Cv

Cp

g
��0

�z

}
�2

−gk2x
�0

�0

��0
�z

= 0	 (5-52)

where kzr is written as kz to simplify the notation. In permitting the vertical

wave number to be complex, the assumed solutions given by Eq. (5-43) include

the exponential term e−�z, where

� = �0

2p0

Cv

Cp

+ 1

2�0

��0

�z



Thus, for example,

�′�x	 z	 t� = �̃
(
kx	 kz	 �

)
e−�ze1�kxx+kzr z+�t�	

where � represents any one of the dependent variables in Eq. (5-43).
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Using scale analysis, the ratios of the magnitudes of the three right-side terms

within the braces of the first term can be examined:∣∣∣∣14 �3
0

p2
0

(
Cv

Cp

)2
g2
∣∣∣∣/∣∣�0

(
�1k

2
x + k2z
)∣∣ ∼ 1

4

(
Cv

Cp

)2
g2

R2T 2
0 k̄

2

≈ 4
2× 10−11L2 (in meters)	∣∣∣∣ 14�0

(
��0

�z

)2∣∣∣∣/∣∣�0

(
�1k

2
x + k2z
)∣∣∣∣ ∼ 1

4H 2
�k̄

2

≈ 9
9× 10−11L2 (in meters)	∣∣∣∣12 �0

p0

Cv

Cp

g
��0

�z

∣∣∣∣/∣∣�0

(
�1k

2
x + k2z
)∣∣ ∼ 1

2

Cv

Cp

g

RT0H�k̄
2

≈ 13
1× 10−11L2 (in meters)

where k̄ is used to represent the wavenumber �k̄ ∼ �k2z + k2x�
1/2� and k̄ = 2�/L,

where L is the representative wavelength of the atmospheric circulation. A tem-

perature of 300 K and H� = 8 km were used in this scale estimate along with

the values of R	Cp, and Cv for dry air (287, 1004, and 717 J deg−1 kg−1, respec-

tively). Thus if we assume that a ratio of 0.01 is sufficient justification for

neglecting the largest of these three terms, then

L <̃ 10 km

is required. For longer wavelengths, and for quantitative analyses, these terms

must be retained. The terms are about equal for wavelengths on the order of

100 km.

If it is appropriate to neglect the three terms, then Eq. (5-52) reduces to5

�2 � k2x
�1k

2
x + k2z

g

�0

��0
�z


 (5-53)

As shown for the tank model, the negative of the phase speed is equal to the

frequency � divided by the wavenumber in the direction of wave propagation k.
The phase speeds in component form are given by

cx =
−�kx
k2x + k2z

and cz =
−�kz
k2x + k2z




Equation (5-53) can be written as

c2 � k2x
�k2x + k2z ���1k

2
x + k2z �

g

�0

��0
�z

(5-54)
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or, when �1 = 1,

c � ± kx
k2x + k2z

(
g

�0

��0
�z

)1/2

 (5-55)

On the one hand, if the wave motion is primarily in the horizontal, then cz � cx
and thus kz � kx, so Eq. (5-55) is written as

c � ± 1

kx

(
g

�0

��0
�z

)1/2

 (5-56)

On the other hand, if the wave motion is predominantly in the vertical, so that

cz  cx and thus kz  kx, we have

c ∼ ±kx
k2z

(
g

�0

��0
�z

)1/2

 (5-57)

This wave motion is a type of internal gravity wave that can occur in a con-
tinuously and uniformly stratified fluid. In the two-layer tank model discussed

earlier, an internal gravity wave that can occur at a density discontinuity was

presented. Gravitational acceleration is required for both of these types of waves

to occur.

If Eq. (3-22) (i.e., H�/Lx <̃ 1) is applicable, then the hydrostatic assumption

can be applied (�1 = 0), and Eq. (5-53) reduces to

�2 = k2x
k2z

g

�0

��0
�z


 (5-58)

Comparing Eqs. (5-53) and (5-58), an alternate justification for applying the

hydrostatic assumption is valid if the atmospheric circulation of interest is pri-

marily influenced by this kind of internal gravity wave. In this case, if

k2x � k2z

or, equivalently,

L2
x  L2

z	 (5-59)

then using the hydrostatic assumption is valid.

Using Eq. (5-55), speeds of propagation of internal gravity waves can be

estimated. As discussed in Section 10.1.4, this information is essential for suc-

cessfully utilizing numerical simulation methods. For example, using represen-

tative values of the parameters in Eqs. (5-56) and (5-57) (i.e., �0 = 300 K,

��0/�z = 1�/100 m, and g = 9.8 m s−2), we have c � 15 m s−1 for Lx = 5 km

and Lz = 25 km and c � 3 m s−1 for Lx = 25 km and Lz = 5 km. Thus in

a hydrostatic system with a constant temperature lapse rate, the phase speed

of the internal gravity wave is primarily upward with a relatively slow propa-

gation speed. When the hydrostatic assumption is not valid, wave propagation
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tends to be more horizontal and somewhat faster, but still more than an order of

magnitude slower than the phase speed of vertically propagating sound waves.

From Eq. (5-55), it is seen that a nonzero value of ��0/�z is needed to pro-

duce an internal gravity wave. Thus if we require that the vertical gradient of

potential temperature be 0 and neglect terms that include the gravitational accel-

eration, then it is possible to determine wave solutions from Eq. (5-46) that are

not gravity waves. To simplify the analysis, we also assume that ��0/�z is 06

and that the rotation of the earth is negligible. With these conditions, Eq. (5-46)

reduces to

�2�1�
2 = p0

�0

Cp

Cv

(
�1k

2
x + k2z
) = RT0

Cp

Cv

(
�1k

2
x + k2z
)

(5-60)

and, since �2/�k2x + k2z � = c2,

c = ±�RT0Cp/Cv�
1/2 (5-61)

when �1 = �2 = 1. The phase speed given by Eq. (5-61) is the same as that

given by Eq. (5-49) and corresponds to the speed of sound propagation. From

Eq. (5-60), it is evident that either the hydrostatic or the anelastic assumptions

eliminate this form of wave propagation.7 In numerical models (as shown in

Chapter 10), the ability to correctly resolve a wave form in a model (and often

to produce stable results) requires that the time step used be less than or equal

to the time it takes for a wave to travel between grid points. With sound waves

removed by applying the hydrostatic or the anelastic assumption, the fastest

waves are gravity waves.

A final wave form that we examine includes the influence of the earth’s

rotation. We can illustrate this relation most easily by assuming that the lapse

rate is adiabatic (��0/�z = 0) and that either the hydrostatic assumption is used

(�1 = 0) or no variations are permitted in the x-direction. In this case, Eq. (5-45)

reduces to the simple frequency equation for an inertial wave,8

� = ±f 
 (5-62)

Our final discussion regarding the types of wave motions concerns the effect

of two or more waves traveling at different propagation speeds. As is evident

from Eq. (5-54), for example, phase speed is dependent on the wavenumber.

Thus the complete solution to the system of linear equations (5-37)–(5-42) is

a linear superposition of the solutions given by all of the harmonics of the

form given by Eq. (5-43). When the speeds of the different waves are in phase,

constructive reinforcement occurs, and the amplitude of the solution is a maxi-

mum. If the waves are out of phase, destructive reinforcement results, and the

amplitudes of the individual waves can sum to 0. The propagation speed of

the locations of constructive and destructive reinforcement is called the group
velocity.
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To illustrate this more mathematically, let two waves of the same amplitude

but different wavelengths coexist such that

�1�x	 t� = �̃ cos�k1x + �1t� = �̃ cos�2�/l1��x − c1t� (5-63)

�2�x	 t� = �̃ cos�k2x + �2t� = �̃ cos�2�/l2��x − c2t�	 (5-64)

where �̃ = �̃�k1	 �1� = �̃�k2	 �2�, �1/k1 = −c1, and �2/k2 = −c2. Defining
c1 = c − �c, c2 = c + �c, l1 = l − �l, and l2 = l + �l, where �c and �l are
small incremental changes in phase speed and wavelength, for �1 we have

2�

l1
�x − c1t� =

2�

l − �l
�x − ct + t�c� � 2�

l

(
1+ �l

l

)
�x − ct + t�c�

+ 2�

l
�x − ct�+ 2�

l

(
t �c + �l

l
x − �l

l
ct + t�l�c

l

)
� 2�

l
�x − ct�+ 2�

l

(
t�c + �l

l
x − �l

l
ct

)
= 2�

l
�x − ct�+ 2�

l2
�l

[
x −
(
c − l

�c

�l

)
t

]
	

where the binomial expansion [i.e., �1− ��−n � 1+ � for � � 1] has been used

and �c and �l are assumed to be much less than c and l. A similar expression

can be derived for the second wave,

2�

l2
�x + c2t� �

2�

l
�x + ct�+ 2�

l2
�l

[
−x +
(
c − l

�c

�l

)
t

]



Defining � = �2�/l��x − ct� and � = �2�/l2��l�x − �c − l��c/�l��t�, to

simplify the notation, the linear superposition of the two waves of similar

but not equal phase speeds and wavelengths given by Eqs. (5-63) and (5-64)

yields

�1�x	 t�+ �2�x	 t� = �̃
[
cos��+ ��+ cos��− ��

]
= �̃
[
cos� cos�− sin� sin�+ cos� cos�+ sin� sin�

]
= 2�̃
[
cos� cos�

]
0


= 2�̃

[
cos

2�

l
�x − ct� cos

2� �l

l2

(
x −
(
c − l

�c

�l

)
t

)]



The second term in the brackets represents the linear interaction between the

two waves leading to constructive reinforcement if x = �c − l��c/�l��t. The
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quantity c − l��c/�l� is the group velocity, which in the limit when �c and �l
approach 0 can be written as

cg = c − l
dc

dl
= d

dk
�kc�k�� = −d�

dk
	

since c = −�/k.
The group velocity cg in the coordinate directions can be written as

cgi = −��/�ki (5-65)

by the change rule, because in general � is a function of the three components

of the wavenumber; e.g., � = ��kx	 ky	 kz� = ��ki�� i = 1	 2	 3.
Thus using Eq. (5-65), one can determine the group velocity for any of the

wave forms that we have derived. For example, the components of the internal

gravity wave group velocity when L2
x  L2

z can be calculated from Eq. (5-58)

as

cgx = ±
(
g

�0

��0
�z

)1/2
Lz

2�

and

cgz = ±
(
g

�0

��0
�z

)1/2
Lz

2�

(
Lz

Lx

)
	

so that when the hydrostatic assumption is valid, the group velocity is predom-

inantly in the horizontal direction (in contrast with the phase velocity, which is

primarily vertical).

With a definition of group velocity, we conclude discussion of specialized

wave forms in the atmosphere. On the mesoscale, the internal gravity and iner-

tial waves are the most important classes of oscillatory motion generated. Both

internal waves in a continuously stratified atmosphere and on density inver-

sions are important. Sound waves, in contrast, are considered insignificant on

the mesoscale, and it is desirable to eliminate them from the solutions if com-

putational problems arise because of their presence. All of these wave forms

were derived after linearizing the conservation relations, as well as making addi-

tional simplifying assumptions that allowed us to remove certain terms from the

equations. Of course, in the atmosphere such limitations on the modes of inter-

action are not present. Hence it is seldom possible to observe the idealized wave

forms that have been derived here. Such features as velocity shear and multi-

ple temperature inversions, for example, even if the response of the atmosphere

were linear, would produce phase and group velocities of internal gravity waves

different than those we have derived. Nonetheless, an understanding of these

idealized wave forms is essential if one is to effectively apply numerical solu-

tion techniques. Numerical models are the preferred tool, however, since they
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can include nonlinear interactions and thus provide a more physically complete

representation.

From the analysis of internal waves, the ratio of the vertical scale to the

horizontal scale of the atmospheric circulation [Eq. (5-59)] suggests whether or

not the hydrostatic assumption should be used in the simulation. If the smallest

horizontal feature that can be resolved with reasonable accuracy in a numerical

model is 4�x, as used to obtain Eq. (4-43), and H� � 8 km is used to esti-

mate the largest expected vertical wavelength, then �x ≥ 6 km appears to be

needed to ensure that the hydrostatic assumption is valid within about a 10%

error for all internal waves formed in a continuously stratified medium in that

model representation. If the predominant horizontal wavelength of such waves

is assumed to be determined by bottom surface variations (e.g., a mountain),

then such forcings must have a horizontal scale of 25 km or more. This crite-

rion for using the hydrostatic assumption is more restrictive than that given by

Eq. (4-43), but it must be emphasized that it applies only in mesoscale models

in which internal gravity waves propagating in a continuously stratified medium

are an important part of the physical solution.

5.2.3 Mesoscale Linearized Equations

5.2.3.1 Defant Model

Although the linear analysis presented in Section 5.2.2 illustrates character-

istic wave motions expected in the atmosphere, it does not represent any actual

mesoscale atmospheric system. This inability to represent such features results

from the assumed periodic solution in time and space given by Eq. (5-43). To

relax this constraint, at least part of the solution to the linearized equations must

include nonperiodic spatial structure.

Linear models have been developed from the basic conservation relations for

a number of different mesoscale features (e.g., Walsh 1974, sea breeze; Klemp

and Lilly 1975, forced airflow over a mountain) to improve the fundamental

understanding of mesoscale systems. During the years before computers, lin-

ear models provided the only means for representing atmospheric circulations

mathematically.

To illustrate a method of solving a linear mesoscale model, a modified version

of Defant’s (1950) sea- and land-breeze formulation is used in this section. The

analysis presented here was extracted and slightly modified from that presented

in Martin (1981) and Martin and Pielke (1983).

Equations (5-37)–(5-42) can be written as

�u′

�t
= −�0

�p′

�x
+ fv′ − �xu

′	 (5-66)
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�v′

�t
= −fu′ − �yv

′	 (5-67)

�1

�w′

�t
= ��′ − �0

�p′

�z
− �1 �zw

′	 (5-68)

�u′

�x
+ �w′

�z
= 0	 (5-69)

��′

�t
+ w′� = K

{
�2�′

�x2
+ �2�′

�z2

}
	 (5-70)

where � = ��0/�z and � = g/�0. The assumptions used here are the same as

given following Eq. (5-42), except that the incompressible form of Eq. (5-41)

is used and several of the subgrid flux terms are retained from Eqs. (4-21) and

(4-24). These flux terms are represented by

1

�̄

�

�x
�̄u′′2 + 1

�̄

�

�z
�̄u′′w′′ = �xu

′	

1

�̄

�

�x
�̄v′′u′′ + 1

�

�

�z
�̄v′′w′ = �yv

′	

1

�̄

�

�x
�̄u′′w′′ + 1

�̄

�

�z
�̄w′′2 = �zw

′	

1

�̄

{
�

�z
�̄w′′�′′ + �

�x
�̄u′′�′′
}
= −K

{
�2�′

�x2
+ �2�′

�z2

}
	

where we assume that �x = �y . The terms that involve ��/�y� �̄v′′2, ��/�y�
�̄u′′v′′	 and ��/�y� �̄w′′v′′ are neglected (or they could be considered included

in the parameterizations involving �x and �z). When �1 = 0, the equations are

hydrostatic.

To solve Eqs. (5-66)–(5-70) in five unknowns (i.e., u′	 v′	 w′	 p′, and �′),
Defant recognized that u′ and v′ must be 90� out of phase with w′	 p′, and �′

since the first two dependent variables are expressed in terms of derivatives of

the others. Moreover, the solutions should be a function of height above the

ground surface rather than simply a periodic function, since the sea and land

breeze does not extend upward indefinitely. Defant, therefore, assumed solutions

of the form

w′�x	 z	 t� = w̃�z�ei�t sin kxx	 u′�x	 z	 t� = ũ�z�ei�t cos kxx	

p′�x	 z	 t� = p̃�z�ei�t sin kxx	 v′�x	 z	 t� = ṽ�z�ei�t cos kxx	

�′�x	 z	 t� = �̃�z�ei�t sin kxx	

(5-71)

with the boundary conditions

w′�z = 0� = w′�z → �� = �′�z → �� = 0 and �′�z = 0� = M ei�t sin kxx	
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where M is the amplitude of the maximum mesoscale perturbation surface

potential temperature. In general, w̃	 p̃	 �̃	 ũ, and ṽ are complex valued vari-

ables. The wave number kx is equal to 2� divided by the wavelength Lx of the

assumed periodic function. In this model, 0
5Lx corresponds to the size of land

in which the maximum heating occurs 0
25Lx inland from the coast. The fre-

quency � represents the temporal periodic variation in the system, which for a

sea- and land-breeze simulation corresponds to the diurnal period.

The assumed solutions given by Eq. (5-71) are substituted into Eqs. (5-66)–

(5-70), which after simplification yields

i�ũ = −kx�0p̃ + f ṽ − �xũ	 (5-72)

i�ṽ = −f ũ− �xṽ	 (5-73)

i��1w̃ = −�1�zw̃ − �0

dp̃

dz
+ ��̃	 (5-74)

−kxũ+ dw̃

dz
= 0	 (5-75)

i��̃ = −w̃�− K�̃k2x + K
d2�̃

dz2

 (5-76)

These equations, with boundary conditions, are solved simultaneously for the

dependent variables ũ	 ṽ	 w̃	 �̃, and p̃, which are now only functions of z.
Rearranging Eqs. (5-72)–(5-76) yields

ũ = 1

kx

dw̃

dz
	 (5-77)

ṽ = −f

i�+ �x

ũ	 (5-78)

p̃ = − 1

�0kx

[
�i�+ �x�

2 + f 2

�i�+ �x�

]
ũ	 (5-79)

d2w̃

dz2
= �2w̃ + r�̃	 (5-80)

d2�̃

dz2
= �w̃ + s�̃	 (5-81)

where

�2 = k2x
�i�+ �x��1�i�+ �z�

�i�+ �x�
2 + f 2

� r = − �k2x�i�+ �x�

�i�+ �x�
2 + f 2

�

� = �

K
� and s = i�

K
+ k2x
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The complex-valued variables w̃ and �̃ are assumed to have a solution of the

form

w̃�z� = Aeaz + Be−bz (5-82)

and

�̃�z� = Ceaz +De−bz
 (5-83)

Applying the lower boundary condition w̃�z = 0� = 0 to Eq. (5-82) results in

A = −B	

so that

w̃�z� = A�eaz − e−bz�
 (5-84)

Substituting this expression for w̃ into Eq. (5-80) gives

A�a2eaz − b2e−bz� = �2A�eaz − e−bz�+ r�̃
 (5-85)

The lower boundary condition on �′ requires that

M ei�t sin kxx = �C +D�ei�t sin kxx	 (5-86)

which reduces to D = M − C, as long as ei�t or sin kxx does not equal 0.

Equation (5-83) then becomes

�̃ = M e−bz + C�eaz − e−bz�
 (5-87)

Substituting this expression for �̃ into Eq. (5-85) and setting z to 0 yields

A = −rM�b2 − a2�−1
 (5-88)

To obtain C, Eqs. (5-81), (5-87), and (5-88) are combined with z set equal to

0, resulting in

b2Me−bz + C�a2eaz − b2e−bz� = �

( −rM

b2 − a2

)
�eaz − e−bz�

+ s�Me−bz + C�eaz − e−bz��	

which reduces to

C = b2 − s

b2 − a2
M
 (5-89)

All of the coefficients in the assumed solutions, with the exception of a and b,
are now expressed in terms of the physical parameters. Using the equations for
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A	B	C	 and D and Eqs. (5-87), (5-84), and (5-77)–(5-80), the analytic forms

for �̃	 w̃	 ũ	 ṽ, and p̃ are given by

�̃�z� = Me−bz + b2 − s

b2 − a2
M�eaz − e−bz�	 (5-90)

w̃�z� = −rM

b2 − a2
�eaz − e−bz�	 (5-91)

ũ�z� = − 1

kx

rM

b2 − a2
�aeaz + be−bz�	 (5-92)

ṽ�z� = f

i�+ �x

1

kx

rM

b2 − a2
�aeaz + be−bz�	 (5-93)

p̃�z� = 1

�0k
2
x

�i�+ �x�
2 + f 2

�i�+ �x�

rM

b2 − a2
�aeaz + be−bz�
 (5-94)

To solve for the parameters a and b, Eq. (5-83) is substituted into Eq. (5-85)

(using D = M − C, as derived previously), yielding, after rearranging and

simplifying,

�Aa2 − A�2 − rC�eaz − �Ab2 − A�2 + rM − rC�e−bz = 0
 (5-95)

A similar relation is found by differentiating Eq. (5-83) twice with respect to z,
resulting in

d2�̃/dz2 = Ca2eaz + �M − C�b2e−bz	

and then combining this with Eqs. (5-81), (5-84), and (5-87) to give

�Ca2 − �A− sC�eaz + �Mb2 − Cb2 + �A− sM + sC�e−bz = 0
 (5-96)

The quantities eaz and e−bz are independent functions, and eaz − e−bz 	= 0 in

general if a 	= b. If this is true, then each of the exponential coefficients in

Eqs. (5-95) and (5-96) are equal to 0, leading to the following two systems of

equations:

A�a2 − �2�− rC = 0	

−A� + C�a2 − s� = 0

and

A�b2 − �2�+ r�M − C� = 0	

A� + �M − C��b2 − s� = 0


Since the determinant of the coefficients of these two systems of algebraic

equations must equal 0, the quadratic equations in a2 and b2 given by

�a2 − �2��a2 − s�− �r = 0 or a4 − ��2 + s�a2 + ��2s − �r� = 0	
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and

�b2 − �2��b2 − s�− �r = 0 or b4 − ��2 + s�b2 + ��2s − �r� = 0	

are produced.

The quadratic formula is used to compute the complex valued parameters a2

and b2, yielding

a2� b2

{
= �2 + s

2
± 1

2

√
��2 + s�2 − 4��2s − �r�
 (5-97)

It follows that a and b can have the values

a = ±√
a2 and b = ±√

b2
 (5-98)

The question remains of which roots to choose in Eqs. (5-97) and (5-98). To

avoid division by 0, a2 and b2 must be opposite roots of Eq. (5-97). Solutions

of the model equations, however, showed that identical results were obtained

whether a2 was the first root and b2 the second root of Eq. (5-97), or vice versa.

Furthermore, to satisfy the boundary condition w�z → �� = 0, in conjunction

with Eq. (5-91), b must have a positive real part and a must have a negative

real part. This is no restriction, since the square roots of a complex number will

yield one with a positive real part and one with a negative real part.

With this information, the analytic solution to Defant’s linear model is

obtained. Values of the dependent variables w′	 p′	 �′	 u′, and v′ as functions

of x	 z	 and t are determined by calculating the real parts of Eqs. (5-71)

and (5-90)–(5-94), using Eqs. (5-97), (5-98), and the formulas following

Eq. (5-81) to determine the values of �2	 �	 s	 �	 a2	 b2	 a	 and b.
Figure 5-4 illustrates the ũ	 w̃	 �̃	 and p̃ fields at 6 hours after simulated

sunrise obtained using this linear model. The values of the parameters used in

the model were

��0/�z = � = 1�C/1 km	 K = 10m2 s−1	 �0 = 0
758m3 kg−1	

�x = �z = 10−3 s−1	 f = 1
031× 10−4 s−1	 g = 9
8m s−2	

�0 = 273K	M = 10�C	 and kx = 2�/100 km


⎫⎪⎪⎬⎪⎪⎭ (5-99)

The symmetric circulation evident in Figure 5-4 is a result of the horizontal peri-

odicity assumed in the solutions. Land and water are differentiated in the model

only by the magnitude of kx. [The same dependent variables over water and

land are always of opposite sign because of the form of the assumed solution,

Eq. (5-71).]

This solution illustrates the interrelation between the dependent variables.

Because of the prescribed heating–cooling pattern in the model, pressure falls

develop in the region of heating, whereas rises occur where cooling is specified.

This pressure pattern causes horizontal accelerations toward regions of lower
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Fig. 5-4. The horizontal and vertical velocity fields predicted from Defant’s (1950)
model 6 hours after sunrise using the input parameters given by Eq. (5-99). (From
Martin 1981.)

pressure, as evident from Eq. (5-66). Since mass conservation is required from

Eq. (5-69), upward motion necessarily results in the region of heating, whereas

subsidence occurs in the region of cooling.

Varying the parameters in the model, as was done by Martin (1981), also pro-

vides insight into the physics of this specific mesoscale circulation. To examine

the importance of the hydrostatic assumption, for example, it is possible to cal-

culate nonhydrostatic and hydrostatic results from this model by letting �1 = 1

and �1 = 0. Since the scale analysis presented previously in this book [i.e.,

Eqs. (3-22) and (5-59)] suggest that the horizontal-scale length of a mesoscale

circulation Lx is the most important indicator of whether or not the hydrostatic

assumption is valid, it is desirable to determine, as a function of Lx, the influ-

ence of several of the parameters in Eq. (5-99) on the hydrostatic assumption.

To perform this analysis, following Martin (1981), the relative error between

the nonhydrostatic and hydrostatic amplitudes of a given dependent variable is

given by

E = 2
��h� − ��nh�
��h� + ��nh�
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where ��n� and ��nh� are the maximum absolute amplitudes over time and

space for a given set of parameters such as listed in Eq. (5-99). The sub-

scripts “h” and “nh” correspond to hydrostatic and nonhydrostatic versions,

respectively.

Figure 5-5 illustrates one such comparison, where E is evaluated as a function

of the domain-averaged lapse rate, �, and Lx. As the atmosphere becomes more

stably stratified, according to Defant’s model, the hydrostatic relation becomes

a more accurate assumption for a given horizontal scale of the circulation.

With a value of � = 1�C/100 m, for instance, the maximum error is less

than 2% even with Lx = 1 km, whereas an equivalent level of accuracy is not

attained for � = 0
01�C/100 m until Lx is about 10 km. Figure 5-6 shows a

similar analysis for the magnitude of the exchange coefficient for heat K, which

is assumed to be a constant in a given solution of Defant’s model. In the model,

as the rate in which heat is mixed up increases, the hydrostatic relation becomes

a poorer assumption for the pressure distribution in the model. With values of

Fig. 5-5. Relative error in vertical velocity Ew between nonhydrostatic and hydrostatic
models. The units for ��0/�z = � are in �C/km. (From Martin 1981.)
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Fig. 5-6. Relative error in vertical velocity Ew between nonhydrostatic and hydrostatic
models. The units for K are in m2 s−1. (From Martin 1981).

K = 102 m2 s−1 and Lx = 1 km, for example, the maximum error is about 4%,

whereas it increases to more than 14% for K = 103 m2 s−1.

These results are at variance with the conclusion reached by Wipperman

(1981) and Orlanski (1981). Wipperman suggested that the hydrostatic assump-

tion is valid only for horizontal scales larger than 10 km or so, whereas Orlanski

claimed that H�/�x � 1 is needed before the hydrostatic assumption can be

accurately applied. However, both of these studies examined only frequency

equations of the form given in Section 5.2.2, where no boundary conditions were

applied. Thus their conclusion regarding the hydrostatic assumption, which is

consistent with that given by Eq. (5-59), is valid only for meteorological sys-

tems where internal gravity wave propagation in the free atmosphere is the

dominant disturbance. Consistent with Martin’s (1981) result, Wipperman found

the hydrostatic assumption to be valid for smaller scales when the atmosphere

is more stable. He also stated that increased wind speed has the same effect as

decreased thermal stability.
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As illustrated here, such solutions provide insight into the physical mecha-

nisms that generate and influence the strength of sea and land breezes. Unfor-

tunately, in Defant’s model, physical interactions such as the following are

inappropriately represented, or not even included:

1. The subgrid-scale parameterizations for � and K are assumed to be inde-

pendent of time and space, so that the intensity of the land breeze is equal to

that of the sea breeze. Because vertical mixing is known to be reduced at night

over land, however, the land breeze is usually observed to be more shallow

and weaker than the sea breeze (e.g., Mahrer and Pielke 1977a; see also Sec-

tion 13.1.1). Moreover, realistic parameterizations of the subgrid-scale mixing

are nonlinear functions of the dependent variables, as discussed in Chapter 7.

2. Advection of temperature and velocity are ignored. Even if the large-

scale prevailing flow is zero, the marine air is known to move the region of

maximum upward motion inland when a sea breeze occurs (e.g., Estoque 1961).

3. The vertical profile of the large-scale potential temperature is assumed to

be linear. In general, such a condition does not exist, and subgrid-scale mixing

causes changes in potential temperature owing to curvature in the large scale as

well as in the perturbation field.

4. The surface temperature perturbation is prescribed, whereas in reality it

is a function of the mesoscale circulation (e.g., Physick 1976; see also Fig-

ure 11-26).

5. No interactions are permitted among the dependent variables. Although

a necessary condition for obtaining analytic results, if u′ �′u′/�x, for example,

attains a magnitude on the order of �1/�0���p
′/�x�, nonlinear effects need to

be considered.

Although some of these shortcomings were eliminated in later linear models

(e.g., Smith 1957 included a linear advection term), it is still impossible to solve

the conservation equations analytically when one or more of the terms involve

products of dependent variables. Such nonlinear terms arise in the representation

of the subgrid-scale processes, the source–sink terms, and the expression for

advection. The effect of the nonlinear advection (e.g., u′�u′/�x	 u′��′/�x) on

numerical model results for two values of surface heating in a sea-breeze model,

as described by Martin (1981), is discussed in Chapter 11, Section 11.1.1.1,

and illustrated by Figure (11-3). Those calculations show that the sea-breeze

circulation becomes asymmetric owing to nonlinear advection for larger values

of surface heating, which results in intensified low-level convergence and weak-

ened low-level divergence. Such asymmetry develops because the advection

enhances the convergence in the region of heating, thereby causing a larger hor-

izontal pressure gradient. This increased pressure gradient generates additional

convergence because of horizontal advection, and this positive feedback contin-
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ues until surface frictional retardation, horizontal turbulent mixing, or cooling

of the surface limits the horizontal velocity acceleration.

With regard to the hydrostatic assumption, however, the reduction in horizon-

tal scale caused by nonlinear advection dictates that a complete nonlinear model

must be used to more completely examine the importance of nonhydrostatic

pressure forces when such advection is present. This question is examined in

Chapter 12, Section 12.4.

5.2.3.2 Further Exploration of the Nonhydrostatic Pressure Perturbations
Using the Defant Model

The Defant model can be used to investigate additional aspects of the nonhy-

drostatic and hydrostatic pressure components (Song et al. 1985). As shown in

Section 5.2.3.1, when the hydrostatic assumption is made, �1 = 0; thus �2 = 0,

and a and b are obtained from

a2
H = b2

H = s

2
± 1

2
�s2 + 4�r�1/2 (5-100)

aH = ±
√
a2
H	 bH = ±

√
b2
H (5-101)

where the subscript “H” of any quantity denotes hydrostatic and aH and bH are

obtained in the same manner as a and b.
Since all of the prognostic variables are functions of a and b, we know that

they will have different solutions if aH and bH replace a and b. Thus, to obtain

the exact solution for the differences between the hydrostatic and nonhydrostatic

quantities, we need to consider this difference in all of the prognostic variables

in the governing equations.

The residual (i.e., nonhydrostatic) pressure perturbation (denoted by R, where
R ≡ p − pH ) is obtained as follows:

Take
�

�x
�1� �

�2p

�x2
= − 1

�0

�

�x

�u

�t
+ f

�0

�v

�x
− �x

�0

�u

�x
(5-102)

Take
�

�z
�3� �

�2p

�z2
= − 1

�0

�

�z

�w

�t
+ g

�0�0

��

�z
− �z�w

�0�z

 (5-103)

Similarly, for the hydrostatic system, we obtain

�2pH

�x2
= − 1

�0

�

�x

�uH

�t
+ f

�0

�vH
�x

− �x

�0

�uH

�x
(5-104)

�2pH

�z2
= g

�0�0

��H
�z


 (5-105)
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Subtracting Eq. (5-104) from (5-102), and (5-105) from (5-103) and adding the

results yields the Poisson equation for the pressure residual term:

� 2R = − 1

�0

�

�x

�

�t
�u− uH�+

f

�0

�

�x
�v − vH�

− �x

�0

�

�x
�u− uH�+

g

�o�0

�

�z
�� − �H�

− 1

�0

�

�z

�w

�t
− �z

�0

�w

�z

 (5-106)

Using Defant’s analytic solutions, listed in Eqs. (5-90)–(5-94), we have, for

example, the first term on the right side of Eq. (5-106):

− 1

�0

�

�x

�

�t
�u−uH�=

i�rM

�0

ei�t×sinkxx

[
aHe

aHz+bHe
−bH z

b2
H−a2

H

− aeaz+be−bz

b2−a2

]



Similar expressions can be obtained for the other terms on the right side of

Eq. (5-106). After rearrangement, the Poisson equation for the pressure residual

can be rewritten as

� 2R = M

�0

ei�t sin kxx�Ae
az + Be−bz + CeaHz +De−bH z�	 (5-107)

where

A = a

b2 − a2

[ −rf 2

i�+ �x

− r�x + r�z +
g

�0
�b2 − s�

]
B = b

b2 − a2

[
rf 2

i�+ �x

− r�x + r�z +
g

�0
�a2 − s�

]
C = aH

b2
H − a2

H

×
[
i�r + rf 2

i�+ �x

+ r�x −
g

�0
b2
H − s�

]
D = bH

b2
H − a2

H

×
[
i�r + rf 2

i�+ �x

+ r�x −
g

�0
�a2

H − s�

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5-108)

Equations (5-107) and (5-108) provide the exact solution for the pressure

residual term, which represents the analytic difference of pressure perturbation

between hydrostatic and nonhydrostatic states in Defant’s model. However, the

formulation has quantities belonging to both states (the a	 b and aH	 bH ) that
need to be evaluated simultaneously. This means that the complete residual can

be used for diagnostic purposes only if applied in a nonlinear numerical model,

since it would be just as easy to use the complete anelastic equation for p.
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To obtain a practical method that calculates nonhydrostatic effects using only

information available from a hydrostatic model, following Pielke (1972), the

equation for the quasi-nonhydrostatic residual (denoted by RH ) is obtained in

the same manner as in Eqs. (5-102)–(5-106), except that the difference between

hydrostatic and nonhydrostatic appears in only the time derivative term and the

vertical friction term. Thus we have

� 2RH = − 1

�0

�

�x

�u

�t
+ 1

�0

�

�x

�uH

�t
− 1

�0

�

�z

�w

�t
− �z

�0

�w

�z



Using the incompressible continuity, this equation is reduced to

� 2RH = 1

�0

�

�x

�uH

�t
− �z

�0

�w

�z

 (5-109)

This is analogous to the form as applied in Pielke (1972) and Martin and Pielke

(1983) in their numerical model evaluations.

Comparing Eq. (5-109) with Eq. (5-106), we see that Eq. (5-109) can be

obtained directly from Eq. (5-106) by neglecting the differences between u	 v	 �
and uH	 vH	 �H and assuming incompressibility. Using the assumption of incom-

pressibility, Eq. (5-109) becomes

� 2RH = 1

�0

�

�x

�uH

�t
+ �z

�0

�uH

�x

 (5-110)

It is then clear that Eq. (5-110) is of practical value because only hydrostatic

quantities are involved in the estimation of the nonhydrostatic effects, all of

which can be obtained in a hydrostatic model. Also, comparing Eq. (5-110) with

Eq. (5-106), we see that the neglected terms in the derivation of Eq. (5-110)

are the first four terms in Eq. (5-106), which involve the immediate feedback

associated with the buoyancy, horizontal friction, and the Coriolis terms.

In terms of Defant’s analytic solutions, Eq. (5-110) is written as

� 2RH = M

�0

ei�t sin kx�C ′eaHz +D′e−bH z�	 (5-111)

where

C ′ = aH

b2
H − a2

H

�i�r + r�z�

D′ = bH
b2
H − a2

H

�i�r + r�z�


The solutions for Eqs. (5-107) and (5-111) are obtained using the method of

separation of variables. However, it is straightforward to show that the solution
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for RH is exactly the solution for R, except with aH and bH replacing a and b.
Written formally, the solution for R is

R = M

�0

ei�t sin kxx

[
A

a2 − k2x
eaz + B

b2 − k2x
e−bz

+ C

a2
H − k2x

eaHz + D

b2
H − k2x

e−bH z

]
	 (5-112)

with A	B	C, and D defined in Eq. (5-108).

The pressure terms (p	 pH ) and the residual terms (R	RH ) can be analyzed as

functions of the horizontal length scale, large-scale stability, subgrid-scale heat

diffusion, heating amplitude, and surface friction. The purpose of these analyses

is to determine how the nonhydrostatic pressure residual varies with changing

physical conditions within the framework of Defant’s model. Furthermore, as

stated before, since the nonhydrostatic effects are evaluated using Eqs. (5-107)

and (5-108) instead of using � = 1 in Defant’s model, it seems necessary to

show the consistency of the results obtained from the two independent proce-

dures. Unless otherwise mentioned, the values of the parameters used for the

examples are those listed in Table 5-1.

Figure 5-7 shows the maximum amplitude for the pressure terms (p	 pH ) and

the residual terms (R	RH ) as functions of horizontal length scale (L) plotted on

a logarithmic scale. (All of the dependent variables in the following section and

figures are presented at their maximum.) The range of scales is chosen from

200 m to 50 km, which should cover most of the spatial scales for which there

is concern about the adequacy of the hydrostatic assumption in a model. Since

the pressure perturbations are caused by surface heating in this study, and since

all perturbation quantities decrease exponentially with height, the perturbations

are evaluated near the surface (z = 15 m). All of the pressure and the residual

terms are given in units of millibars.

TABLE 5-1

Control Values for the Parameters

�
( = d�0

dz

)
0.01�C km−1

K 10 m2 s−1

�0 0.758 m3 kg−1

�x	 �z 10−3s−1

P 1 h

�0 273 K

M 10�C
L 1 km

z 15 m

f 10−4s−1
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Fig. 5-7. Variations of the pressure perturbation and the residual terms (p� pH and
R�RH ; mb) and the absolute error term (�R − RH �/�P �, %) as a function of the hori-
zontal length scale (Lx). Other physical parameters are given in Table 5-1. (From Song
et al. 1985.)

As can be seen, when the length scale becomes large, p becomes nearly

constant. The difference between p and pH (i.e., R) becomes negligible for larger

scales. This feature can be explained using the definitions of the parameters

following Eq. (5-81): as L → �, kx → 0, and �2 → 0, r → 0; also, s =
s��	 k�. Thus there is a decreasing dependence on the length scale as it becomes

large, resulting in a nearly constant p. Also, it can be seen that there are virtually

no differences between a	 b and aH	 bH when the scale is large.

For smaller scales, k2 becomes large, and the situation is more complicated.

From Figure 5-7, we see that for scales less than about 1 km, the residuals

are of the same order of magnitude as the pressure terms. This indicates that

for such small scales, the nonhydrostatic effect is significant and that pH is

significantly overestimating the true pressure perturbation. Pielke (1972, Fig-

ure 19) schematically illustrated how the hydrostatic pressure overestimates the

real pressure.

What is also of interest here is how RH behaves as compared to R. From
Figure 5-7, we see that for length scales larger than about 1 km, there is

essentially no difference between R and RH , while for the smaller scales, this

difference becomes significant. The quantity ��R− RH�/P �, hereafter called the

absolute error and expressed as a percentage, is also plotted. This measure illus-
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trates how much error is introduced as a fraction of the true pressure perturba-

tion, when RH is used instead of the complete nonhydrostatic pressure residual

R. Figure 5-7 shows that this absolute error drops to essentially 0 for L > 1 km,

but increases sharply when L < 1 km. It is clear that under this near-neutral

condition (� = 0
01�C km−1) with a surface heating of 10�C effective for 1

hour, the quasi-nonhydrostatic residual method gives an accurate measure of the

nonhydrostatic effect for horizontal length scales as small as about 1 km.

The dependence of p	 pH	 R	 and RH on the large-scale stability is illustrated

for L = 10 km (Figure 5-8) and L = 1 km (Figure 5-9). The strength of the

surface heating, the heating period, and the strength of the eddy heat diffusion

are all the same as used to create Figure 5-7. In Figure 5-8, we see that for

L = 10 km, the difference between p and pH is negligible for all of the chosen

stabilities (�; from 0.01 to 20�C km−1). RH and R, although they differ some-

what relative to each other, are both negligibly small compared to the pressure

terms. Thus the absolute error term is very small for all of the chosen stabil-

ities (with the largest error 1.5%, occurring at � = 0
4�C km−1). The result

shown here indicates that for the scales normally considered in mesoscale anal-

yses (L = 10 km or larger), in which the driving mechanism is surface heating

and the upward transport of this heating occurs primarily through the associ-

ated turbulent eddy processes, the situation is approximately hydrostatic, and

the residual method can be used to accurately calculate the small nonhydrostatic

effects.

Fig. 5-8. As in Figure 5-7, except as a function of the stability parameter (�); Lx =
10 km. (From Song et al. 1985.)



102 5 Physical and Analytic Modeling

Fig. 5-9. As in Figure 5-8 with Lx = 1 km. (From Song et al. 1985.)

When the length scale is reduced to 1 km, however, the residuals become

relatively larger than for the previous case, and, as seen in Figure 5-9, RH departs

significantly from R for a wide range of stabilities. Figure 5-9, shows that for the

less stable situations (� ≤ 0
1�C km−1), RH differs more significantly from R.
The dependence of the pressure and the residual terms upon the strength of

the eddy heat diffusion is shown in Figure 5-10. The horizontal length scale is

1 km, and the other parameters are the same as in the aforementioned cases.

The range of the (constant) diffusion coefficient K is from 0.5 to 50 m2 s−1.

Figure 5-10 shows that as the strength of eddy heat diffusion increases, the

pressure perturbations increase. The hydrostatic pressure perturbation consis-

tently exceeds the real pressure perturbation. For this small horizontal scale

(1 km), the residual is the same order of magnitude as the pressure terms.

Here RH gives a very accurate measure of the nonhydrostatic effect associated

with the vertical turbulent mixing of heat, except when the diffusion coefficient

becomes very large.

Figures 5-11 and 5-12 illustrate the dependence of P	 PH	 R, and RH on

the horizontal scale of heating for small K (K = 1 m2 s−1) and large K
(K = 50 m2 s−1), respectively. Figure 5-11 shows that when the eddy heat

diffusion is sufficiently small, RH gives an accurate measure of the nonhy-

drostatic effects for scales as small as about 300 m. For very large diffusion

(Figure 5-12), the residual is the same order of magnitude as the pressure for

scales of a few kilometers or less. The absolute error is rather large for the

small scales and drops to essentially 0 at scales greater than about 3 km. The
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Fig. 5-10. As in Figure 5-7, except as a function of the heat diffusion coefficient (K).
(From Song et al. 1985.)

Fig. 5-11. As in Figure 5-7, except K = 1�0 m2 s−1. (From Song et al. 1985.)
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Fig. 5-12. As in Figure 5-7, except K = 50 m2 s−1. (From Song et al. 1985.)

increase of the nonhydrostatic effect with increasing strength of the eddy heat

diffusion was also illustrated in Martin and Pielke (1983).

The discrepancy between R and RH for very large K (Figure 5-10) is found

only for small horizontal scales. Figure 5-12 shows that the same strength of heat

diffusion (K = 50 m2 s−1), the difference between R and RH is essentially zero

at scales larger than about 3 km. This implies that when a strong energy input

is coupled with a small horizontal scale, there may be buoyancy oscillations

excited which cause departures of RH from R. From Figures 5-11 and 5-12, we

see that either increasing the horizontal scale or decreasing the strength of heat

diffusion will minimize the discrepancy between RH and R.
The strength of the surface heating is obviously important in producing non-

hydrostatic effects. However, this forcing appears only as a constant in Defant’s

linear model [see Eq. (5-90) for �̃�z�], thus preventing the interactions between

surface heating and mesoscale circulation from occurring.

Finally, the effect of the frictional term on pressure and the residual terms is

shown in Figure 5-13. The physical parameters are the same as in Figure 5-7

except that the (constant) frictional coefficient is reduced by one order of magni-

tude. Comparing Figure 5-13 with Figure 5-7, we see that reducing the friction

produces negligible effects on the pressure perturbations. The absolute error is

within 2% for scales larger than about 2 km.
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Fig. 5-13. As in Figure 5.7, except with a smaller Rayleigh friction coefficient (10−4s−1).
(From Song et al. 1985.)

Two other different approximate residual formations (based on the Defant

model) can be derived. Using Defant’s linear model, the Orlanski (1981) pres-

sure correction term is derived from a vertical integration of the local time

derivative of the hydrostatically obtained vertical velocity. Written in an appro-

priate form for the comparisons here, the equation for the Orlanski residual

(hereafter denoted by RQ) is

�2

�z2
RQ = − 1

�0

�

�z

�wH

�t

 (5-113)

It is seen from Eqs. (5-106), (5-109), and (5-113) that RQ can be derived from

Eq. (5-106) by making, in addition to the simplifications made for obtaining RH ,

two simplifications concerning the horizontal second derivative of the residual

and the vertical friction term. This can be clearly seen if we compare the formal

solutions for RH and RQ:

RH = 1

�0

ei�t sin kxx

(
rM

b2
H − a2

H

)[
�i��

(
aH

a2
H − k2x

eaH z + bH
b2
H − k2x

e−bH z

)
+ �z

(
aH

a2
H − k2x

eaHz + bH
b2
H − k2x

e−bH z

)] (5-114)

RQ = 1

�0

ei�t sin kxx

(
rM

b2
H − a2

H

)
×
[
�i��

(
1

aH

eaHz + 1

bH
e−bH z

)]

 (5-115)
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Neglecting the friction term, we see that RQ can be obtained directly from RH

by setting kx to 0. Thus when the horizontal scale of heating becomes large,

in the absence of friction (which, as discussed previously, is a relatively small

term), RQ and RH are asymptotic to the same value.

Mathematically, the quantity k2x is associated with the x-direction second

derivative of the residual, which is derived from the horizontal equation-of-

motion in which the nonhydrostatic effect is explicitly included. That is, from

Eq. (5-66), we have

�2

�x2
�p − pH� = − 1

�0

�

�t

�

�x
�u− uH�+

f

�0

�

�x
�u− uH�

− �x

�0

�

�x
�u− uH�
 (5-116)

Therefore, setting k2x to 0 is also equivalent to neglecting the nonhydrostatic

horizontal momentum residual (i.e., the horizontal velocity residual).

Since in an incompressible system the horizontal velocity gradient is directly

related to the generation of vertical acceleration [Eq. (5-69)], it is thought neces-

sary to further examine the effect of neglecting k2x (but retaining other important

terms). For this purpose, a new residual (hereafter denoted by Rz) is considered

which is obtained from the complete vertical equation of motion; that is

�2

�z2
Rz = − 1

�0

�

�z

(
�wH

�t

)
− �z

�0

�w

�z
+ g

�0�0

�

�z
�� − �H�
 (5-117)

Thus there are four different residuals to be compared: R	RH	RQ	 and Rz,

obtained from Eqs. (5-106), (5-109), (5-113), and (5-117), respectively. Aside

from the friction and the Coriolis terms (which are not essential to the main con-

clusion), RH and RQ differ from R and Rz in that the former do not include the

nonhydrostatic buoyancy residual [i.e., the potential temperature residual term,

as in Eqs. (5-106) and (5-117)]. On the other hand, Rz and RQ differ from R and

RH in that the former neglect the nonhydrostatic horizontal momentum resid-

ual or, equivalently, they are based on the assumption of an infinite horizontal
length scale.
To have consistent numerical experiments with those in the previous section,

the following computations are performed using, unless otherwise mentioned,

the physical parameters listed in Table 5-1. Another set of experiments was also

performed using the heating period of 12 hours. Since the general patterns of

the residuals are similar using either 1 hour or 12 hours as the heating period,

only the 1-hour results are analyzed here.

In Figure 5-14, the four residuals are plotted as functions of the horizontal

length scale for three selected stabilities. For the scale range between about 1

and 10 km, the magnitude of the total pressure perturbations are on the order of

10−1 mb. We first see that for a given length scale, the nonhydrostatic residuals
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Fig. 5-14. The magnitudes (in mb) of the four residuals at z = 15 m: R (solid line), RH

(dashed line), Rz (dotted line), and RQ (dashed-dotted line), as functions of the length
scale and of three selected stabilities (� = 0�1� 1� 10�C km−1, as shown). (From Song
et al. 1985.)

increase with decreasing stability. For the stable situation (� = 10�C km−1),

all of the residuals are about two orders of magnitude smaller than the total

pressure perturbation, while for the near-neutral situation (� = 0
1�C km−1),

the residuals are comparable to the total pressure perturbation for the smaller

length scales. For a given stability, the residuals are generally decreasing with

increasing length scale. The closer to the neutral state, the greater the rate of

decrease of the residuals with increasing length scale. An exception to this is

the nonmonotonic variation of R and Rz in the more stable categories, which

indicates that an optimal horizontal scale exists in which vertical acceleration

is maximized as a result of contributions to convergence from opposite coasts

(e.g., Abe and Yoshida 1982). This relative maximum is not as significant in

the 12-hour period experiments.

With regard to the comparison among the residuals, Figure 5-14 shows that in

the stable situation, Rz matches with R, while RH and RQ deviate from R. On the

other hand, in the near-neutral situation, RH matches with R, while RQ and Rz

deviate from R. To more clearly analyze the relative magnitudes of the residuals,

vertical profiles of the residuals are plotted for a selected length scale (1 km)

and for two stabilities: � = 0
001�C km−1 (Figure 5-15), and � = 10�C km−1

(Figure 5-16). The magnitudes of the corresponding total pressure perturbations
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Fig. 5-15. Vertical profiles of the four residuals (with the same notations as in Fig-
ure 5-14) and �p� for the near-neutral stability case (� = 0�001�C km−1). The vertical levels
are at z = 0, 15, 50, 100, 500, and 1000 m. (From Song et al. 1985.)

are also shown to indicate the possible absolute errors which are introduced

when a certain residual is used.

Figure 5-15 shows that in the near-neutral situation, RH matches with R
everywhere, while Rz and RQ are both about two orders of magnitude larger than

R. Furthermore, both Rz and RQ are around more than one order of magnitude

larger than the total pressure perturbation. It seems clear that the RQ approach

should not be considered for the situations where the environmental stability

is near neutral. On the other hand, RH provides an accurate measure of the

nonhydrostatic effect under the near-neutral condition.

Figure 5-16, shows that in the stable situation, Rz matches with R while RQ

and RH deviate somewhat from R, with RQ slightly better than RH . In this

case, however, all the residuals are almost more than two orders of magnitude

smaller than the total pressure perturbation. Clearly, this result indicates that

Fig. 5-16. As in Figure 5-15, except for � = 10�C km−1. (From Song et al. 1985.)
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nonhydrostatic effects are negligible in the stable situation, and thus the discrep-

ancies are of little practical importance. As discussed previously, the difference

between the exact residual and other residuals is related to the nonhydrostatic

buoyancy and horizontal momentum residuals. That is, the horizontal momen-

tum change and the buoyancy associated with the surface heating are the two

most important physical mechanisms that contribute to the generation of nonhy-

drostatic effects for the situations considered in this study. The vertical profiles

of � and �H (Figure 5-17), and u and uH (Figure 5-18), are plotted for the same

length scale (1 km) and the same stabilities (� = 0
001� 10�C km−1).

Figure 5-17 shows that � is slightly larger than �H�� − �H ≤ 0
1�C) for

the stable situation, while matching with each other everywhere in the near-

neutral situation. This explains why RQ and RH [in which the (� − �H ) term is

neglected] deviate from R for the stable situation. Physically, this implies that

for a system being heated from below, the more thermodynamically stable the

system, the larger the fractional contribution of the nonhydrostatic buoyancy

to the residual generated within the system. In the absolute sense, however,

the nonhydrostatic effect is negligible in this case, as computed with the total

pressure perturbation.

Fig. 5-17. Vertical profiles of � (solid line) and �H (dashed line) for the near-neutral
case (thick line) and the stable case (thin line.) (From Song et al. 1985.)



110 5 Physical and Analytic Modeling

Fig. 5-18. Vertical profiles of u (solid line) and uH (dashed line) for the neutral case
(thick line) and the stable case (thin line.) (From Song et al. 1985.)

Figure 5-18 shows that for the stable situation u and uH are almost equal,

while for the near-neutral situation they differ significantly from each other.

Again, this explains why RQ and Rz [in which the (u− uH ) term is neglected]

deviate significantly from R in the near-neutral case, and RH [which contains

the (u− uH ) term] matches with R. Physically, this implies that for an incom-

pressible system, the closer the system’s stability toward neutral stratification,

the stronger the wind velocity generated within the system. Thus the horizontal

momentum change plays a more important role in generating nonhydrostatic

effects (i.e., vertical acceleration) compared to the situation with only weak

horizontal velocity perturbations.

Finally, computations presented in Figures 5-14–5-18 were repeated for var-

ious � values between those of the very stable case (� = 10�C km−1) and the

near-neutral case (� = 0
001�C km−1). These results, which are not shown,

reflected intermediate features to those presented in these figures.

Defant’s linear model is used to derive a mathematically exact solution for

the nonhydrostatic pressure residual (total pressure perturbation minus hydro-

static pressure perturbation). From the complete form of this exact residual, we

can see that the thermally induced nonhydrostatic effects are caused, within

the linear framework, by physical processes such as horizontal momentum

variations, buoyancy effects, frictional effects, and Coriolis effects. Since the

complete residual requires simultaneous evaluation of hydrostatic and non-

hydrostatic quantities, this residual can be used only in a diagnostic analysis

for numerical modeling purposes. For the purpose of deriving a prognostic

approach to incorporate nonhydrostatic effects into one or more subdomains

of a mesoscale model, the complete residual must be simplified so as to

neglect those terms that cannot be evaluated without a complete nonhydrostatic

model.
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One type of simplification made to the exact residual for the purpose of deriv-

ing a prognostic approach is to neglect the nonhydrostatic buoyancy residual

term. Together with the incompressible continuity, this results in the residual

approach introduced in Pielke (1972). Aside from the horizontal friction and

the Coriolis terms (which are found to be not critical to the discussions of this

study), the Pielke (1972) method differs from the exact residual only in the

buoyancy residual term, which in the experiments performed in this study is

relatively important only in the very thermally stable environments. For such

stable situations, the nonhydrostatic pressure perturbations are generally about

two orders of magnitude smaller than the total pressure perturbation. Thus the

discrepancy between the approximate residual and the exact residual is of little

practical importance.

For near-neutral stabilities, the Pielke (1972) residual approach has been

found to be capable of providing accurate approximations to the true pressure

perturbation, indicating that it is of practical value for evaluating nonhydrostatic

effects within a subdomain of a mesoscale model when the environment is in a

near-neutral state.

Another type of simplification is to neglect the nonhydrostatic horizontal

momentum residual term. Within Defant’s linear framework, this simplifica-

tion results in the residual approach introduced in Orlanski (1981). It is found

that this residual can be obtained from the exact residual by merely making

an assumption that the involved horizontal length scale is very large (i.e., a

wavenumber approaching 0). This simplification is equivalent to neglecting the

nonhydrostatic velocity perturbation. The nonhydrostatic velocity (momentum)

residual is relatively much more important in a near-neutral environment than

in a stable environment. Neglecting this velocity residual causes the Orlanski

residual to overestimate the nonhydrostatic pressure perturbation by about two

orders of magnitude.

Physically, the previous results imply that for an incompressible system being

heated from below, the actual pressure perturbation tends to depart from the

hydrostatic pressure perturbation by an amount depending primarily on the sys-

tem’s environmental thermal stability and horizontal scale of heating. A suffi-

ciently stable system has negligible nonhydrostatic effects. On the other hand,

when the stability is near neutral, relatively stronger perturbations will develop

that tend to more closely connect the vertical acceleration with the horizontal

momentum variations. In such situations, a residual approach must include the

nonhydrostatic momentum residual term, such as the approach of Pielke (1972),

to accurately evaluate the nonhydrostatic effects. The residual approach pre-

sented here can be applied for subregions within a mesoscale model where

vertical accelerations are large, while the hydrostatic assumption can be applied

in the remainder of the model. At the boundaries of the model subdomain, the
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boundary condition RH = 0 would be applied in the solution of the nonlinear

form of Eq. (5-109).

Other studies that have explored the differences in results when hydro-

static and nonhydrostatic versions of a model are used include Sun (1984a),

Rõõm and Männik (1999), Cassano and Parish (2000), and Crook and Klemp

(2000).

5.3 Long’s Analytic Solution to Nonlinear
Momentum Flow

There are special cases of exact solutions to nonlinear atmospheric flow. The

Long (1953, 1955) model is one of these cases. Long’s solutions are valid only

for the special case when the flow is steady state and the density multiplied

by the domain-averaged horizontal velocity squared is independent of height.

The limitations of Long’s solution to actual stratified flows over an obstacle

is discussed by Baines (1977). Durran (1981) has referenced studies by other

investigators who obtained exact solutions for specialized sets of the nonlinear

conservation equations.

The derivation of Long’s (1953) exact solution is straightforward. Assuming

incompressibility9 [see Eq. (4-23), right-side expression], Eq. (4-10) for i = 1

and 3 can be written as

�̄
�
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(
ū2 + w̄2

2
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)
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where steady-state conditions have been assumed and the Coriolis and subgrid

mixing effects have been neglected. Differentiating Eq. (5-118) with respect to

z and Eq. (5-119) with respect to x and subtracting the first equation from the

second yields
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(5-120)

Using the definition of vorticity10 given by  ̄2 = �2qi�ūi/�xq , requiring that den-

sity surfaces form a material surface [i.e., d�̄/dt = ū���̄/�x� +w̄���̄/�z� = 0

with ��̄/�t = 0, since a steady-state assumption has been applied]11, and writing

ū2 + w̄2 = q̄2, Eq (5-120) can be written as

d 2
dt

+ 1
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− 1
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g = 0
 (5-121)
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Defining the streamlines using the stream function !�x	 z� so that

ū = −�!

�z
and w̄ = �!

�x
(5-122)

[i.e., ��ū/�x� + ��w̄/�z� = ��2!/�z�x� − ��2!/�x�z� = 0]; then Eq. (5-121)

can be rewritten as

d 2
dt

+ 1

�̄

d�̄

d!

(
−�!

�z

�q̄2/2

�x
+ �!

�x

�q̄2/2

�z

)
+ g

�̄

d�̄

d!

�!

�x
= 0 (5-123)

In Eq. (5-123), density is defined in the form �̄ = �̄�!�, and the chain rule of

calculus with ! = !�x	 z� is used. Using the definitions of ū and w̄ given by

Eq. (5-122), Eq. (5-123) can be rewritten as

d

dt

[
 2 +

1

�̄

d�̄

d!

(
q̄2

2
+ gz

)]
= 0	 (5-124)

where the definition of w̄ = dz/dt and the requirement d�̄/dt = �d/dt�×
���̄/�!� = 0 have been used. Using the definition of the stream function given

by Eq. (5-122), Eq. (5-124) can be rewritten as

d

dt

[
� 2! + 1

�̄

d�̄

d!

(
q̄2

2
+ gz

)]
= 0	

which can be integrated to yield

� 2! + 1

�̄

d�̄

d!

(
q̄2

2
+ gz

)
= �!	 (5-125)

where the integration constant � is a function of ! since the definition of a

stream function requires that d!/dt = 0.

Far upstream from an obstacle, Eq. (5-125) dictates that

��!� =  20�!�+
1

�̄

d�̄

d!

(
u2
0

2
+ gh0

)
	

where  20�!� is the upstream vorticity; u0 is the synoptic wind flow, which can

be a function of height (with w0 assumed to equal 0); and h0�!� represents

the upwind streamline heights, where �!/�x = 0. With this definition of the

integration constant, Eq. (5-125) can be written as

� 2! + 1

�̄

d�̄

d!

q̄2

2
=  20�!�+

1

�̄

d�̄

d!

[
u2
0

2
+ g�h0 − z�

]

 (5-126)

Using the definition of the stream function given by Eq. (5-122) evaluated far

upstream and the chain rule of calculus,

d

d!
= − 1

u0

d

dh0

and − u0

�2h0

�z2
= −u0�

2h0 = � 2!
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Thus Eq. (5-126) can be rewritten, after rearranging, as

�2h0

�z2
+ 1

2

d ln �̄u2
0

dh0

[
q̄2

u2
0

− 1

]
= g

�̄u2
0

d�̄

dh0

�h0 − z�
 (5-127)

In obtaining Eq. (5-127), the condition that u0 is a constant has been used.

Defining � = z− h0, Eq. (5-127) can be written as

�2�

�z2
+ 1

2

[
d

dh0

ln �̄u2
0

][
q̄2

u2
0

− 1

]
= g

�̄u2
0

d�̄

dh0

�
 (5-128)

As evident from Eq. (5-128), a linear solution is possible if �̄u2
0 is a constant,

so that Eq. (5-128) reduces to

�2�

�z2
+ �2� = 0	 (5-129)

where

�2 = − g

�̄u2
0

d�̄

dh0

	

with �̄ linear12 in h0.

Lilly and Klemp (1979) provide solutions to Eq. (5-129) for a wide range

of terrain shapes, zG�x�, where the bottom boundary condition needed to solve

Eq. (5-129) is given by

��x	 zG� = zG�x�	 (5-130)

and the upper boundary is defined such that upward propagating energy exits

the model domain without reflection (i.e., a radiative boundary condition;
see Section 11.3.2). As adapted from the analysis of Lilly and Klemp, and as

can be verified by substitution, the solution to Eq. (5-129) can be written as

��x	 z� = a1�x�e
−i��z−zG� + a2�x�e

+i��z−zG�	 (5-131)

where a1�x� and a2�x� are integration constants and are in general complex

functions of x. Since by Eq. (5-130), ��x	 zG� is a real quantity, a2 must be

equal to the complex conjugate of a1. Hence Eq. (5-131) can be written as

��x	 z� = Re�ZGe
−i��z−zG�� = 1

2
�ZGe

−i��z−zG� + Z∗
Ge

i��z−zG��	 (5-132)

where 2a1�x� = ZG = zG + izGi
and 2a2�x� = Z∗

G = zG − izGi
. Here Re indi-

cates that only the real portion of the expression in the braces is used. The

complex conjugate of ZG is Z∗
G.
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Evaluating Eq. (5-132) at z = 0 yields

��x	 0� = 1

2
�ZGe

i�zG + Z∗
Ge

−i�zG� =
∫ �
−�

�̃�kx	 0�e
ikxxdkx	 (5-133)

where the right side of Eq. (5-133) is the Fourier transform13 of the displacement

height at z = 0. The inverse transform of Eq. (5-133) is defined as

�̃�kx	 0� =
1

2�

∫ �
−�

��x	 0�e−ikxxdx
 (5-134)

The vertical group velocity of internal gravity waves generated by terrain

is upward in the troposphere if there is no reflection or dissipation of wave

energy in the troposphere. For this situation, the wave disturbance is dissipated

at higher levels. However, below the region of dissipation, some of this energy

can be reflected back downward as a result of such effects as large changes

in the height of the vertical gradients of velocity and thermodynamic stability.

Dissipation of the vertically propagating wave energy can occur because of

turbulence within the troposphere or stratosphere, or through the excitation of

horizontally propagating waves.

The vertical group velocity can be computed from Eq. (5-58) for the forced

hydrostatic airflow over terrain situation where �2 is replaced with ��− u0kx�
2.

The frequency u0kx is subtracted from � since a nonzero base current (i.e.,

u0 	= 0) acts to change the time period of a parcel within a wave. In a linear

representation, the frequency depends directly on the large-scale wind speed and

inversely on the horizontal wavelength. In the derivation of Eq. (5-58), u0 = 0

was assumed.

The modified form of Eq. (5-58) (applicable to hydrostatic flow) is then writ-

ten as

��− u0kx�
2 = k2x

k2z

g

�0

��0
�z


 (5-135)

Using the ideal gas law [Eq. (2-49)] and definition of potential temperature

[Eq. (2-48)] evaluated for the domain-averaged [i.e., Eq. (4-12)] values, differ-

entiating logarithmically with respect to height and substituting for the hydro-

static relation �p0/�z = −�0g and for the speed of sound ca [see Eq. (5-49)]

yields the alternative expression for Eq. (5-135), given as

��− u0kx�
2 = −k2x

k2z

[
g

�0

��0

�z
− g2

c2a

]

 (5-136)

For realistic values in Eq. (5-136), ��1/�0���0/�z� � 1/�8 km� (see Figure 3-1)
and g/c2a � 1/(12 km), so the two terms are of the same order. To evaluate the

direction of wave energy propagation, however, the second term in the brackets

in Eq. (5-136) is dropped. (No loss of generality results, because both terms
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are of the same sign.) Thus with �0 � �̄ [see Eq. (4-9)], Eq. (5-136) can be

represented as

��− u0kx�
2 � −k2x

k2z

g

�̄

��̄

�z

 (5-137)

From Eq. (5-65), the vertical group velocity is given by cgz = −��/�kz. There-
fore, differentiating Eq. (5-137) with respect to kz and rearranging yields

cgz = −��− u0kx�/kz	 (5-138)

so that the group velocity is upward as long as kx and kz are of the same sign,

� = 0 and u0 > 0.

Rearranging Eq. (5-137) and solving for kz gives

kz = ± kx
��− u0kx�

(−g

�̄

��̄

�z

)1/2
= ± kx

��− u0kx�

(−g

�̄

d�̄

dh0

)1/2
	 (5-139)

where ��̄/�z = d�̄/dh0 is used to define the vertical density gradient. Equation

(5-138) is then written as

cgz = ∓��− u0kx�
2

/
kx

(−g

�̄

d�̄

dh0

)1/2

 (5-140)

For the steady-state situation represented by Long’s equation [Eq. (5-129)],

� = 0, so Eq. (5-140) reduces to

cgz = ±�u0�kx
/(

− g

�̄u2
0

d�̄

dh0

)1/2
= ±�u0�kx

�

 (5-141)

From Eq. (5-141), the group velocity of these internal gravity waves is directly

proportional to the prevailing wind speed and inversely proportional to the verti-

cal thermodynamic stability. The quantity � is often called the Scorer parameter
(also discussed in Section 13.1.4).

Since from Eq. (5-138), only upward group velocities occur when the flow

is assumed to be constant with time and no dissipation or reflection of wave

energy is permitted, Eq. (5-133) can be partitioned into

ZGe
i�zG = 1

�

∫ �
−�

��x̂	 0�
∫ �
0

eikx�x−x̂�dkxdx̂

Z∗
Ge

−i�zG = 1

�

∫ �
−�

��x̂	 0�
∫ 0
−�

eikx�x−x̂�dkxdx̂	

(5-142)

where Eq. (5-134) has been used to substitute for �̃�kx	 0� and the order of

integration has been reversed. The partitioning is permitted to ensure an upward



5.3 Long’s Analytic Solution to Nonlinear Momentum Flow 117

group velocity −� = kz when kx < 0 and � = kz when kx > 0, thereby

requiring the removal of Z∗
Ge

i�zG with kx > 0 and ZGe
i�zG with kx < 0.

The right-side integrals of Eq. (5-142) are evaluated using the relation∫ �
�

eikx�x−x̂�dkx = 2���x − x̂�	 (5-143)

where the term on the right side arises from the definition of the delta function.14

Equation (5-143) can be rewritten as∫ 0
−�

eikx�x−x̂�dkx = 2���x − x̂�−
∫ �
0

eikx�x−x̂�dkx∫ �
0

eikx�x−x̂�dkx = 2���x − x̂�−
∫ 0
−�

eikx�x−x̂�dkx	

(5-144)

where the integrals needed in Eq. (5-142) are on the left side.

The integrals on the right side of Eq. (5-144) can be written as∫ �
0

eikx�x−x̂�dkx =
∫ 0
−�

eikx�x̂−x�dkx = ���x − x̂�+ i

x̂ − x
	

where, since the real part of the left side of Eq. (5-143) is symmetric around

kx = 0, the term with the Dirac delta function is also symmetric. Substituting

the relations given by Eq. (5-144) into Eq. (5-142), and using the evaluation for

the right-side integrals in Eq. (5-144), yields

ZGe
i�zG = 1

�

∫ �
�

[
���x − x̂�− i

x̂ − x

]
��x̂	 0�dx̂

Z∗
Ge

−i�zG = 1

�

∫ �
�

[
���x − x̂�− i

x̂ − x

]
��x̂	 0�dx̂


(5-145)

Multiplying through by i and expanding the left side of Eq. (5-145) gives

i�zG cos�zG − zGi
sin�zG�− zGi

cos�zG − zG sin�zG

= 1

�

∫ �
−�

[
�i ��x − x̂�+ 1

x̂ − x

]
��x̂	 0�dx̂

i�zG cos�zG − zGi
sin�zG�+ zGi

cos�zG + zG sin�zG

= 1

�

∫ �
−�

[
�i ��x − x̂�− 1

x̂ − x

]
��x̂	 0�dx̂


(5-146)

Subtracting the top equation in Eq. (5-146) from the bottom one yields

zGi
cos�zG + zG sin�zG = − 1

�

∫ �
−�

�zG cos�zG − zGi
sin�zG�

x̂ − x
dx̂	 (5-147)

where ��x	 0� from the middle formulation of Eq. (5-133) has been used.
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The evaluation of Eq. (5-147) must include the influence of the singular-

ity when x̂ = x. Mathematical techniques have been developed to handle this

type of integral; the right side of this expression is a Hilbert transform15 of

zG cos�zG − zGi
sin�zG. The inverse Hilbert transform is skew-symmetric (i.e.,

of the same form except with a minus sign), so that the inverse transform of

Eq. (5-147) is

zG cos�zG − zGi
sin�zG = − 1

�

∫ �
−�

�zGi
cos�zG + zG sin�zG�

x − x̂
dx̂
 (5-148)

Multiplying Eq. (5-147) by cos�zG and Eq. (5-148) by sin�zG and subtract-

ing the second equation from the first yields

zGi
�x� = − 1

�

∫ �
−�

{
zG�x̂� cos��zG�x̂�− zG�x��− zGi �x̂� sin��zG�x̂�− zG�x��

x − x̂

}
dx̂


(5-149)

Multiplying Eq. (5-147) by sin�zG and Eq. (5-148) by cos�zG and adding the

two resulting equations gives

zG�x� =
1

�

∫ �
−�

{
zG�x̂� sin��zG�x̂�− zG�x��+ zGi �x̂� cos��zG�x̂�− zG�x��

x − x̂

}
dx̂
 (5-150)

Equation (5-149) can be rewritten as

zGi
�x� = �−1/��

∫ �
−�

�zG�x̂��cos��zG�x̂�− zG�x��− 1�


− zGi
�x̂� sin��zG�x̂�− zG�x���/�x − x̂�dx̂

− 1

�

∫ �
−�

zG�x̂�

x − x̂
dx̂ (5-151)

to avoid the singularity at x = x̂. When zG�x� is a known analytic function,

the first term in the first integral in Eq. (5-151) and the last term in Eq. (5-151)

generally can be evaluated exactly. However, because zGi
is in the middle term

of Eq. (5-151), an iterative evaluation for zGi
is required, where the first guess

can be obtained by neglecting the middle term. Satisfactory convergence can

be defined by substituting zGi
into Eq. (5-150) and determining whether the

calculated value of zG agrees within certain limits of the known value of zG
used in Eq. (5-151).

Lilly and Klemp (1979) presented several results using this solution tech-

nique. Among their major conclusions, they found that the wave amplitude

caused by forced airflow over rough terrain is enhanced for mountains with

gentle windward and steep leeward slopes. Their solutions of Long’s equation

[Eq. (5-129)] provides an effective mechanism for examining the fidelity of

numerical model results. Carruthers and Choularton (1982), for example, con-
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trasted their results with those of Lilly and Klemp to investigate the influence

of boundary conditions on a solution of airflow over rough terrain. However,

Laprise and Peltier (1989a) used a linear stability analysis to show that Long’s

steady-state solution is unstable when the terrain is high enough to cause local

overturning of the streamlines. In a related paper (Laprise and Peltier 1989b),

used the Long steady-state solution as a tendency-free initial state for their time-

dependent numerical model. Another example of the application of the Long

model is presented in Hu et al. (1988).

Notes to Chapter 5

1. Exact solutions are also referred to as analytic solutions.

2. A two-by-two determinant,

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ is equal to a11a22 − a21a12.

3. The following material is based on the analysis given in Holton (1972:169–171).

4. The introduction of symbolic algebra (e.g., Hearn 1973) onto computers has removed much of

the drudgery associated with expanding such large determinants. Derickson and Pielke (2000) have

used this technique to investigate the influence of nonlinear interactions associated with advection.

5. The quantity ��g/�0���0/�z�
1/2 is called the Brunt–Väisälä frequency. Durran and Klemp

(1982a) discuss the proper form of the Brunt–Väisälä frequency in a saturated atmosphere.

6. In the atmosphere, if ��0/�z = 0, then, using the ideal gas law and definition of potential

temperature, it can be shown that �0 will decrease with height. In the analysis used to obtain

Eq. (5-61), this change of density with height is ignored.

7. If only the hydrostatic assumption is made, then a periodic motion called the Lamb wave
can occur that has a speed on the same order as sound waves (see, e.g., Haltiner and Williams

1980:35). Pielke et al. (1993a) and Nicholls and Pielke (1994a,b; 2000) show how the magnitude

of the Lamb wave can be directly associated with the magnitude of diabatic heating in cumulus

convection. Bannon (1995) discusses how the Lamb wave is related to hydrostatic adjustment. Tijm

and Van Delden (1998) discuss the role of sound waves in sea breezes. Rõõm and Männik (1999)

conclude that a linear nonhydrostatic compressible model provides the most realistic simulation at

all spatial scales, but that the hydrostatic version is equally as accurate at space scales from 10 km

to 500–700 km.

8. Egger (1999) provides the solution for inertial motion when more complete versions of the

equations are retained.

9. As discussed in Raymond (1972), it is appropriate to represent the atmosphere as an incom-

pressible fluid as long as the depth of displacement as air is forced over a topographic barrier is

much less than the density-scale height of the atmosphere. His conclusion is consistent with the

scale analysis argument used to derive Eq. (3-14). When this requirement of air motion is fulfilled,

then as reported by Raymond, the fractional density variation along a streamline is equal to the

negative fractional variation in potential temperature [i.e., see following Eq. (4-21)].

10. See Section 4.2 for a brief discussion of the representation of the conservation-of-motion

equation using a vorticity formulation.

11. The condition that d�̄/dt = 0 and ��̄/�t = 0 dictates that lines of constant density coincide

with streamlines. This requirement is in addition to the incompressibility assumption [Eq. (4-23)

right-side expression]. That equation only states that velocity gradients are much larger than local

changes of density, but not that such local changes are identically zero.
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12. As long as the streamline displacement is small relative to the density scale height of

the atmosphere, the requirement that both �̄u2
0 and d�̄/dh0 equal constant values is a reasonable

assumption.

13. Fourier transforms are briefly discussed in Section 5.2.1.1. For a more detailed discussion of

Fourier transforms, the reader should consult such specialty texts as Churchill (1963).

14. That is,
∫ �
−� f �x���x − x̂�dx = f �x̂� and

∫ �
−� ��x − x̂�dx = 1. Thus the Fourier transform

of a delta function can be written as e−ikx x̂ = ∫ �−� e−ikxx��x− x̂�dx with its inverse transform given

by ��x − x̂� = �1/2��
∫ �
−� eikxxe−ikx x̂ dkx = �1/2��

∫ �
−� eikx�x−x̂�dkx; see Carrier et al. (1966:318)

for a detailed discussion of the Dirac delta function.

15. A Hilbert transform is formally defined as

g�y� = 1

�
−
∫ �
−�

f �x�

�x − y�
dx	

where x and y are real and

−
∫ �
−�

= lim
�→0

( ∫ y−�

−�
+
∫ �
y+�

)
	 � > 0


This is the formal procedure used to avoid the singularity at x = y. Erdélyi et al. (1954: Chapter 14)
provided an overview of Hilbert transforms.

Additional Readings

Among the numerous books and texts that can be used to provide additional quantitative under-

standing of the material presented in this chapter are the following.

Dutton, J. A. 1976. “The Ceaseless Wind, An Introduction to the Theory of Atmospheric Motion.”

McGraw-Hill, New York.

As already mentioned in Chapter 2, this is a valuable source text. The discussion on wave

motions provides considerable, clearly written material on wave dynamics.

Hildebrand, F. B. 1962. “Advanced Calculus for Applications.” Prentice-Hall, Englewood Cliffs, NJ.

Chapter 10 provides a useful discussion of functions of complex variables.

Lilly, D. K., 1982. Gravity waves and mountain waves. Lecture notes prepared for the NATO

Advanced Study Institute on Mesoscale Meteorology—Theory, Observation, and Models, July

13–21, 1982, Gascogne, France.

These notes succinctly describe the derivation of linearized wave equations for gravity wave

motion with x and t periodicity assumed. The solutions for linear airflow over idealized

terrain are discussed.

Dalu, G. A., and R. A. Pielke. 1989. An analytical study of the sea breeze. J. Atmos. Sci. 46,
1815–1825.

Dalu, G. A. and R. A. Pielke. 1993. Vertical heat fluxes generated by mesoscale atmospheric flow

induced by thermal inhomogeneities in the PBL. J. Atmos. Sci. 50, 919–926.
Dalu, G. A., R. A. Pielke, M. Baldi, and X. Zeng. 1996. Heat and momentum fluxes induced by

thermal inhomogeneities with and without large-scale flow. J. Atmos. Sci. 53, 3286–3302.
Using a linear model, these three Journal of Atmospheric Science research articles describe

how spatial variation in land-surface heating influence the magnitude and structure of

mesoscale flow. In the most recent article, the influence of linear advective effects are

included. Among the major conclusions is that horizontal turbulent diffusion and horizontal

advection both work to horizontally homogenize the atmosphere above small-scale patches.
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Thunis, P., and A. Clappier. 2000. Formulation and evaluation of a nonhydrostatic Mesoscale Vor-

ticity Model (TVM). Mon. Wea. Rev. 128, 3236–3251.
This article assesses the adequacy of the hydrostatic and anelastic assumptions in simulating

thermally induced circulations as well as describes their vorticity-based model.

Wolfram, S. 1988. “Mathematica: A System for Doing Mathematics by Computer.” Addison-Wesley,

Reading, MA.

Problems

1. Program the Defant model using the analytic solutions given by Eqs. (5-90)–(5-94). Calculate

the solution given for the parameters specified by Eq. (5-99). Then assess the changes of the results

as each parameter is altered by 10% of its value. (In Chapter 10 you are asked to write a finite

difference version of the Defant model, to ascertain whether you can recreate the analytic solutions

calculated here.)

2. Program the Long model defined by Eq. (5-132). Calculate the solution for zG =
zGmax

b2/�x2 + b2�, where b is the half-width of the mountain and zGmax
is the maximum height

of the terrain. Calculate the solution to the Long model for b = 10 km and b = 100 km, and for

zGmax
= 1 m, 1 km, and 3 km.

3. Using Eq. (5-46), calculate phase speed in two different ways. First, set f = 0, �1 = 0	 and

�2 = 0. For the second approach, let ��o/�z = 0 and assume that the horizontal length scale is

less than 10 km (so that you can use scale analysis to remove terms). Show that both approaches

converge to Eq. (5-57).



Chapter 6

Coordinate Transformations

6.1 Tensor Analysis

Thus far in this text we have used the independent spatial variables x, y, and
z in the derivation of the conservation relationships. These spatial coordinates

have been defined to be perpendicular to each other at all locations.

In the application of the conservation relations, however, it is not always

desirable to use this coordinate representation. In synoptic meteorology, for

example, since pressure, p, is the quantity measured by the radiosonde, it is

usually used to replace height, z, as the vertical coordinate. When a different

coordinate form is used, however, the conservation relations that are developed

from fundamental physical principles must be unchanged despite the different

mathematical representation. Thus, in transforming the conservation relations

from one coordinate system to another, the equations must be written so that the

physical representation is invariant in either system. The mathematical operation

developed to preserve this invariance requires some knowledge of the methods

of tensor analysis.1

If, for example, in the rectangular coordinate system xi, which has been used

in this text up to now (xi = x1	 x2	 x3 = x	 y	 z),

ri = fi	 (6-1)

where ri and fi represent functions and derivatives of functions [e.g., the left and

right sides of Eq. (2-45)], then in another coordinate system x̃i that is related

to the xi coordinate system by a functional transformation, the same physical

relation must be

r̃i = f̃i

to preserve physical invariance. The components of x̃i are x̃1, x̃2, and x̃3. The

transformation between coordinate representations is defined in terms of the

122
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functional relation between the independent variables in the two coordinate sys-

tems. Transformations between coordinate systems are of two types.

The first-order tensor f̃i is defined to be covariant if the transformation

between the xi and x̃i coordinate systems is given by

f̃i =
�xj

�x̃i
fj 	 (6-2)

where �xj/�x̃i is the operation that transforms fj into its proper representation

in the x̃i coordinate system. The Jacobian of the transformation is �xj/�x̃i. The

use of a subscript denotes that f̃i is a covariant vector (a tensor of order 1), since
it transforms according to Eq. (6-2). By convention, a superscript in the denom-
inator of a derivative quantity (e.g., �/�xj ) is defined as a covariant quantity.

The relation given by Eq. (6-1) can also be written as

r i = f i	

so that in the transformed coordinate system x̃i, this physical relation must be

written as

r̃ i = f̃ i	

where

f̃ i = �x̃i

�xj
f j 
 (6-3)

When the transformation operation is given by �x̃i/�xj	 f̃ i is called a con-
travariant vector (or tensor of order 1) and is indicated using a superscript.

Higher-order tensors are defined in the same way, so that

B̃mn =
�xr

�x̃m

�xs

�x̃n
Brs	 B̃mn = �x̃m

�xr

�x̃n

�xs
Brs	 and Bm

n = �x̃m

�xr

�xs

�x̃n
Br
s

refer to, respectively, the covariant, contravariant, and mixed tensors of order 2.

In the rectangular coordinate system that we have used up to now, the covari-

ant and contravariant forms are identical, so that, for example, ui = ui. However,

in nonorthogonal coordinate systems, ũi 	= ũi in general, because ũi is defined

in terms of base vectors �� i that are perpendicular to the surface x̃i = constant,
whereas ũi is defined in terms of base vectors �"i that are tangent to the curve
along which each coordinate except x̃i is a constant, as illustrated in Figure 6-1.

In the coordinate system that we have used up to this point, the two sets of

basis vectors are coincident, and there is no need to differentiate between the

covariant and contravariant forms.

In terms of the original rectangular coordinate system, these basis vectors in

the transformed coordinate system are defined as

�"j =
�

�x̃j

(
x1�i + x2 �j + x3�k) = � �x

�x̃j
	 (6-4)

�� i = �i �

�x1
x̃i + �j �

�x2
x̃i + �k �

�x3
x̃i + ��x̃i	 (6-5)
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Fig. 6-1. Illustration of the two types of basis vectors in a nonorthogonal coordinate
representation. The vector �� 3 is perpendicular to the plane x̃3 = constant, whereas ��3 is
tangent to the curve along which each coordinate, except x̃3 is a constant. (From Dutton
1976.)

where �i	 �j , and �k are the orthogonal unit basis vectors in the rectangular coor-

dinate representation. A coordinate system is orthogonal when the vector dot

product of the basis vectors �"j · �"i and �� i · ��j is 0 at all points except when

i = j and nonorthogonal when they are not 0. Also, in an orthogonal system,

�"i = �� i.

Scalar products2 involving dependent and independent variables require that a

covariant component be multiplied by a contravariant component. This is evident

from the scalar product of the basis functions, since

�"j · �� i = � �x
�x̃j

· ��x̃i = �xl

�x̃j

�x̃i

�xl
= �x̃i

�x̃j
= �i

j 	

where the chain rule,

�x̃i

�x̃j
= �xl

�x̃j

�x̃i

�xl
	

has been used along with the definition of the Kronecker delta given in

Chapter 2, except that �i
j is now represented as a mixed tensor with one

covariant component and one contravariant component. Since a vector in the

transformed coordinate system can be given in terms of either set of basis

vectors, then vectors �f and �h, which represent physical quantities and are thus

invariant between coordinate systems, can be represented by

�f = f̃i �� i = f̃ j �"j
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and

�h = h̃i �� i = h̃j �"j	
so that the scalar products �f · �f and �f · �h, for example, are given by

�f · �f = �� i · �"j f̃if̃ j = �i
j f̃if̃

j = f̃if̃
i

and
�f · �h = �� i · �"j f̃ih̃j = �� i · �"j f̃ j h̃i = f̃ ih̃i = f̃ih̃

i


Thus scalar products require multiplication of the covariant and contravariant

components of the same index.

The contravariant and covariant components of a vector are thus found by

taking the scalar product of the contravariant and covariant basis functions,

yielding

f i = �� i · �f and fi = �"i · �f 

In our original orthogonal coordinate system, xi, the square of the length of

a differential line segment, is expressed by

�ds�2 = dxi dxi


To express �ds�2 in the transformed coordinates, note that dxi = ��xi/�x̃j�dx̃j ,

and hence

�ds�2 =
(
�xi

�x̃j
dx̃j

)(
�xi

�x̃m
dx̃m

)
≡ G̃jmdx̃

j dx̃m	 (6-6)

where G̃jm is the metric tensor, defined by ��xi/�x̃j���xi/�x̃m�. This metric

tensor is fundamental in the requirement that the conservation laws are invari-

ant regardless of the functional form of the coordinate transformation. In the

rectangular coordinate system used up to now, Gjm = �jm; thus the individual

coordinate axis �x1	 x2, and x3� is independent of and orthogonal to one another

at all points.

The inverse of the metric tensor is defined by the relation

G̃jl = �x̃j

�xn

�x̃l

�xn

 (6-7)

To verify Eq. (6-7), note that

G̃jmG̃
jl = �xr

�x̃j

�xr

�x̃m

�x̃j

�xn

�x̃l

�xn
= �xr

�x̃j

�x̃j

�xn

�xr

�x̃m

�x̃l

�xn

= �r
n

�xr

�x̃m

�x̃l

�xn
= �xr

�x̃m

�x̃l

�xr
= �l

m
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These forms of the metric tensor can also be expressed as

G̃jm = �"j · �"m and G̃jl = ��j · ��l


One advantage of the metric tensor and its inverse is their ability to change a

covariant tensor to a contravariant tensor and vice versa. This ability is needed

because only tensors of the same type (e.g., covariant or contravariant) can be

added. The reason for this is that covariant tensors are defined in terms of

different basis vectors than contravariant tensors, and thus adding them together

would be somewhat similar to adding the �i unit vector to the �k unit vector in

our original xi coordinate system.

To illustrate this capability of the metric tensor, let

f̃l =
�xi

�x̃l
fi�

then

G̃lj f̃l =
(
�x̃l

�xm

�x̃j

�xm

)
�xi

�x̃l
fi=

�x̃l

�xm

�xi

�x̃l

�x̃j

�xm
fi=�i

m

�x̃j

�xm
fi=

�x̃j

�xi
fi= f̃ j 
 (6-8)

Similarly, the covariant component f̃l can be created by multiplying f̃ j by G̃lj .

To determine whether or not a quantity is a tensor [i.e., transforms according

to Eq. (6-2) or (6-3) for all coordinate systems], it is necessary to define a third

coordinate representation given by, for example, x̄i, which is related to the x̃i

coordinate system by a functional transformation.

If � is defined here to be a scalar, then, using the chain rule,

��

�x̄i
= �x̃j

�x̄i

��

�x̃j
= �x̃j

�x̄i

�xl

�x̃j

��

�xl



Hence derivatives of scalar quantities transform according to Eq. (6-2), and �
is a covariant tensor of order 0.

However, if �̄m is defined to be a vector representation in the x̄i coordinate

system, then

��̄m

�x̄i
= �

�x̄i

(
�x̃l

�x̄m
�̃l

)
= �x̃l

�x̄m

��̃l

�x̄i
+ �̃l

�2x̃l

�x̄i �x̄m
	

so that derivatives of a vector are not tensors, since they do not transform

between coordinate systems according to Eq. (6-2) or (6-3). To circumvent this

problem, let

�̃l =
�xj

�x̃l
�j	

so that �̃l is a covariant tensor. But

��̃l

�x̃m
= �2xj

�x̃m �x̃l
�j +

��j

�x̃m

�xj

�x̃l
(6-9)
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is not a tensor, as has already been shown. Since

��j

�x̃m
= �xr

�x̃m

��j

�xr

by the chain rule, and since

�j =
�x̃s

�xj
�̃s	

substituting these two relations into Eq. (6-9) and rearranging yields

��̃l

�x̃m
= �2xj

�x̃m�x̃l

�x̃s

�xj
�̃s =

�xr

�x̃m

�xj

�x̃l

��j

�xr

 (6-10)

Thus a quantity has been created that transforms as a covariant tensor. By con-

vention, Eq. (6-10) is written as

�̃l�m = ��̃l

�x̃m
− #̃ s

ml�̃s =
�xr

�x̃m

�xj

�x̃l

��j

�xr
(6-11)

and is called the covariant derivative, where

#̃ s
ml =

�2xj

�x̃m�x̃l

�x̃s

�xj
(6-12)

and is called the Christoffel symbol. In the x̄i coordinate system,

�̄t�u =
��̄t

�x̄u
− #̄ i

ut�̄i =
�x̃v

�x̄u

�x̃w

�x̄t

��̃w

�xv
	

so that the proper tensorial transformation properties are maintained between

coordinate systems. Using an analogous derivation, it is also true that the covari-

ant derivative of a contravariant vector is given by

�̃t
�u =

��̃t

�x̃u
+ #̃ t

us�̃
s
 (6-13)

Other important tensor relations are listed as follows. The Christoffel symbol

and the metric tensor are related by

#̃ s
ml =

1

2
G̃sj

(
�G̃ij

�x̃m
+ �G̃mj

�x̃l
− �G̃lm

�x̃j

)
	 (6-14)

as can be shown by substituting for the metric tensor on the right side. In

addition, since in the original Cartesian coordinate system �ij = Gij = Gij , it

must also be true that in any coordinate system, the covariant derivative of the

metric tensor is

G̃ij�k = G̃
ij
�k = 0
 (6-15)

The covariant derivative of a second-order tensor can also be shown to have a

form similar to that given by Eqs. (6-11) and (6-13), except that two Christoffel
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symbols appear. If, for example, �̃
j
k is a mixed tensor of order 2 in the x̃i

coordinate system, then the covariant derivative is given by

�̃
j
k�i =

��̃
j
k

�xi
− #̃ s

ki �̃
j
s + #̃

j
iu �̃

u
k


Using this relation, the product rule of differentiation can be shown to be valid

since if �̃
j
k = ãkb̃

j , then

(
ãkb̃

j
)
�i
= �ãkb̃

j

�xi
− #̃ s

kiasb
j + #̃

j
iuakb

u

= b̃ j �ãk

�xi
− #̃ s

kiasb
j + ãk

�b̃ j

�xi
+ #̃

j
iuakb

u = b̃ j ãk�i + ãkb̃
j
�i


Moreover, using this rule along with Eq. (6-15),

�̃j�i =
(
G̃jl�̃

l
)
�i
= G̃jl�̃

l
�i	

so that the covariant derivative of contravariant and covariant components can

be interchanged using the metric tensor.

The determinant of the metric tensor is another important quantity that can

be used in specifying the conservation relations in any coordinate system. The

determinant is related to the Jacobian of the transformation and its inverse by

G̃1/2 =
∣∣∣∣ �xi

�x̃m

∣∣∣∣ =
∣∣∣∣�x̃m

�xi

∣∣∣∣−1

	 (6-16)

where G̃ is the determinant of the metric tensor G̃jm. This quantity is very

valuable in representing the Christoffel symbol when its contravariant and one

of its covariant components are the same, such as when u is set equal to t in

Eq. (6-13), so that

�̃t
�t =

��̃t

�x̃t
+ #̃ t

ts�̃
s = 1√

G̃

�

�x̃s

(√
G̃�̃s
)

 (6-17)

In obtaining the right side of the expression, the relation

#̃ t
ts =

1√
G̃

�

�x̃s

√
G̃ (6-18)

has been used, where Eq. (6-18) is obtained from Eq. (6-14) using the defi-

nition of matrix inverses and derivatives of matrices in terms of cofactors and

determinants (see, e.g., Dutton 1976:142).

To transform the conservation relations into a separate coordinate system, it

is also necessary to require the proper tensorial transformation of the term �ijk,
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which is used to represent the curl operation in vector notation. This is achieved

by the operation

�̃ijk =
√
G̃�ijk	 (6-19)

since the determinant of the Jacobian of a three-dimensional transformation can

be expanded into

√
G̃ = �xr

�x̃1

�xs

�x̃2

�xt

�x̃3
�rst (6-20)

and, therefore,

�xr

�x̃i

�xs

�x̃j

�xt

�x̃k
�rst =
√
G̃ �ijk
 (6-21)

The left side of Eq. (6-21) is equal to Eq. (6-20) since the term is 0 if any of

the indices are equal. The expression given by Eq. (6-20) is valid only when

transforming from our original rectangular coordinate system, where
√
G = 1.

In the general case,

�x̃r

�x̄i

�x̃s

�x̄ j

�x̃t

�x̄k

√
G̃�rst = �̄ijk (6-22)

is used to transform this term properly.

The contravariant transformation form of the term �ijk is obtained by multi-

plying the covariant form by the inverse of the metric tensor, using the method

given in Eq. (6-8), so that√
G̃G̃ir G̃ jsG̃ kt�ijk = �rst

/√
G̃ = �̃ rst	 (6-23)

where G̃ir G̃ jsG̃kt is equal to the determinant of the inverse of the metric tensor

using the same procedures as followed in obtaining Eq. (6-21). This determinant

is then equal to 1/G̃ using Eq. (6-16).

Using these properties of tensor transformations, it is possible to rewrite the

conservation equations in any coordinate system of our choosing with the cer-

tainty that the physical representations, which are represented by these conser-

vation relations, remain unchanged. By convention, the equations are written

in the contravariant form, using the covariant differentiation operation given by

Eq. (6-13).
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Therefore, the original prognostic conservation relations given by

Eqs. (2-43)–(2-47) in Chapter 2 can be written as

��

�t
= −(�ũi

)
�i
= − 1√

G̃

�

�x̃i

(
�
√
G̃ũi
)
	 (6-24)

��

�t
= ũj ��

�x̃j
+ S̃�	 (6-25)

�ũi

�t
= −ũj ũi

�j − G̃ ij �
��

�x̃j
− �x̃i

�x3
g − 2�̃ ijl�̃j ũl	 (6-26)

�qn
�t

= −ũj �qn
�x̃j

+ S̃qn 	 n = 1	 2	 3	 (6-27)

��m

�t
= −ũj ��m

�x̃j
+ S̃�m	 m = 1	 2	 � � � 	M	 (6-28)

where the pressure gradient term is represented in terms of the scaled pres-

sure � defined by Eq. (4-36). The definitions of the tensor transformation

parameters needed to preserve the physical invariance of these operations (e.g.,√
G̃	 G̃ ij 	 �̃ ijl	 and ũi

�j ) are given by Eqs. (6-20), (6-7), (6-23), and (6-13). These

equations are then valid for any functional coordinate representation.

The major rules for obtaining a consistent representation of the conservation

laws in the generalized coordinate system are as follows:

1. Require that the individual terms have the same number of contravari-

ant and covariant indices. If they do not, then use the metric tensor to change

between covariant and contravariant forms. (Remember that a superscript on

independent variables in the denominator of a derivative indicates, by conven-

tion, that it is a covariant form.)

2. Use the definition of covariant differentiation to ensure that the deriva-

tives retain physical invariance.

3. Use the Jacobian to transform dependent variables in a covariant repre-

sentation from one coordinate to the next. Use the inverse of the Jacobian when

a contravariant representation is desired.

4. The square root of the determinant of the metric tensor must be used to

transfer the parameter �ijk between coordinate systems properly.

6.2 Generalized Vertical Coordinate

In the application of these equations to simulate mesoscale atmospheric flows,

only the vertical coordinate in the rectangular system is customarily transformed.

This procedure is adopted in the discussion that follows. In addition, it is neces-

sary to average the transformed equations since, of course, Eqs. (6-24)–(6-28)
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are valid only over spatial and temporal intervals that are much smaller than the

mesoscale space and time scales.

The functional form of this generalized vertical coordinate transformation, in

terms of the original Cartesian system, can be written as

x̃1 = x	 x = x̃1	

x̃2 = y	 y = x̃2	

x̃3 = ��x	 y	 z	 t�	 z = h
(
x̃1	 x̃2	 x̃3

)
	 t


The functional form of � has been specified in a number of forms, including

� = �	 � = s�z− zG�/�s − zG�	

� = p	 � = �pG − p�/�pG − pT�	

� = p/pG � = �� − �T�/��G − �T�


� =
[
p − pT

pG − pT

][
pref�0�− pT

pref�zG�− pT

]



In these expressions, pG	 �G	 pT	 and �T refer to the pressures and potential

temperatures at the bottom and top of the coordinate representation; zG and s
specify the terrain height and height of the top; and pref�0� and pref�zG� are the

pressure at sea level and at zG using a standard reference atmosphere that is

the same across the model (Black 1994). The first two forms of � on the left

are referred to as isentropic and isobaric representations, and the remaining six

are terrain-following coordinate systems, usually called sigma representations.

The bottom formulation in the right column for � is a normalized isentropic

representation introduced by Branković (1981).

The innovative form of � at the bottom of the lefthand column is called the

“Eta coordinate system” (Janjić et al. 1988, Janjić 1990; Mesinger and Black

1992; Black 1994; Mesinger 1996, 1997, 1998; Mesinger et al. 1997) and is

the system used by the U.S. National Centers for Environmental Prediction

(NCEP) for one of their regional models. The Eta system has the advantage of

a form of sigma system that is nearly horizontal, while meeting the requirement

that the system not intersect the terrain. Gallus and Klemp (2000) provide a

recent comparison of model simulations of airflow over mountains using the Eta

coordinate and another form of a terrain-following coordinate system. In ocean

models, a coordinate system that uses density as a vertical coordinate is often

used (see, e.g., Bleck and Boudra 1981). Adcroft et al. (1997) and Marshall et al.
(1997) use a partial grid volume coordinate system (called “shaved cells”) at

their ocean bottom–ocean interface. Laprise (1992a) suggests using hydrostatic

pressure as the vertical coordinate.
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Phillips (1957) originated the concept of the lowest coordinate surface being

coincident with the ground. Deaven (1974, 1976), Friend et al. (1977), Bleck
(1978), Uccellini et al. (1979), and Johnson and Uccellini (1983), have used

an isentropic system well above the ground and a type of sigma representation

near the ground. Kasahara (1974) and Sundquist (1979) have discussed various

types of vertical coordinates, including the sigma system.

In the expressions for �	 pT and s are generally prescribed as constant in time

and space, although several investigators (e.g., Mahrer and Pielke 1975, 1978a)

permitted temporal and spatial variations of their top coordinate. Examples of

two-dimensional cross-sections in several of these representations are given in

Figure 6-2, where a mountain is situated in the center of the region.

This concept of defining a coordinate surface coincident with the bottom

topography permits more efficient use of computer resources, and it simpli-

fies the application of lower boundary conditions. In Phillips’s original form,

adopted by many models (e.g., the U.S. Weather Service forecast models; Rieck

1979), pressure is used to define the independent vertical coordinate � , where
surface pressure is used as the lower boundary. Haltiner (1971), for example,

defines � = p/pG, where pG is the surface pressure whereas p is the pressure

at any level. For this example, � = 1 corresponds to the ground surface. In

mesoscale models, however, � is often defined using one of its forms that is a

function of height rather than pressure. This is advantageous because pG is a

function of time, whereas terrain height is not.

Fig. 6-2. Schematic illustrations of (a) rectangular, (b) isobaric, (c) isentropic, and (d)
sigma coordinate representations as viewed in a rectangular coordinate framework.
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The contravariant and covariant forms of the metric tensor G̃ij and G̃ij for

the generalized vertical coordinate are given as

G̃ij = �x̃i

�xl

�x̃j

�xl
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
��

�x

0 1
��

�y

��

�x

��

�y

{(
��

�x

)2
+
(
��

�y

)2
+
(
��

�z

)2}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6-29)

G̃ij =
�xl

�x̃i

�xl

�x̃j
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+
(
�h

�x̃1

)2
�h

�x̃1

�h

�x̃2

�h

�x̃1

�h

�x̃3

�h

�x̃1

�h

�x̃2
1+
(
�h

�x̃2

)2
�h

�x̃2

�h

�x̃3

�h

�x̃1

�h

�x̃3

�h

�x̃2

�h

�x̃3

(
�h

�x̃3

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
	

using Eqs. (6-6) and (6-7), and the only nonzero Christoffel symbol is

#̃ 3
jl =

��

�z

�2h

�x̃j�x̃l
(6-30)

[from Eq. (6-12)], so that the covariant derivative of velocity is given by

ui
�j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�ũi

�x̃j
	 i = 1	 2

�ũ3

�x̃j
+ #̃ 3

jlũ
l	 i = 3

(6-31)

[from Eq. (6-13)]. The determinant of the Jacobian of the transformation,(∣∣∣∣ �xi

�x̃j

∣∣∣∣ = √G̃)
[(from Eq. (6-16)], is given by

∣∣∣∣ �xi

�x̃j

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

1 0 0

0 1 0

�h

�x̃1

�h

�x̃2

�h

�x̃3

∣∣∣∣∣∣∣∣∣∣∣
=
√
G̃ = �h

�x̃3
≡ �h

��

 (6-32)
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The tangent and normal basis vectors for the generalized vertical coordinate

system in terms of the rectangular representation are given by

�"1 = �i + �k �h

�x̃1
	 ��1 = �i	

�"2 = �j + �k �h

�x̃2
	 ��2 = �j	 (6-33)

�"3 = �k �h

�x̃3
	 ��3 = �i ��

�x
+ �j ��

�y
+ �k��

�z

[using Eqs. (6-4) and (6-5)], where, since �"i · �"j does not equal 0 when i 	= j ,
this coordinate system in general is nonorthogonal. In the original rectangular

coordinate system, the normal and tangent basis functions are the same (i.e.,
�i	 �j , and �k) and are orthogonal to one another. Since �"3 is tangent to the curve

in which only x̃3 varies, the � coordinate is vertical at all points, that is, �"3 is

in the direction of �k, from Eq. (6-33).

The individual contravariant and covariant velocity components are found

from ũi = ��i · �u and ũi = �"i · �u, respectively, where �u = u�i + v �j + w�k, so that

ũ1 = u	 ũ1 = u+ �h

�x̃1
w	

ũ2 = v	 ũ2 = v + �h

�x̃2
w	

ũ3 = u
��

�x
+ v

��

�y
+ w

��

�z
	 ũ3 = w

�h

�x̃3



(6-34)

Kinetic energy is computed from these expressions by

e2 = 1

2

(
ũ1ũ1 + ũ2ũ2 + ũ3ũ3

)

 (6-35)

The Coriolis term in the transformed coordinate system is expressed in terms

of the rectangular representation as

2�̃ijl�̃j ũl = 2�ijl
��

�z
�̃j ũl (6-36)

[using Eq. (6-23)], where

2�̃1 = 2

(
�1 +

�h

�x̃1
�3

)
= 2

�h

�x̃1
�3 = 2

�h

�x̃1
� sin� = �h

�x̃1
f
(
�1 = 0

)
	

2�̃2 = 2

(
�2 +

�h

�x̃2
�3

)
= 2� cos�+ 2

�h

�x̃2
� sin� = f̂ + �h

�x̃2
f 	

2�̃3 = 2�3

�h

�x̃3
= 2

�h

�x̃3
� sin� = �h

�x̃3
f
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with f = 2� sin� and f̂ = 2� cos�. (Here � is the rotation rate of the earth

and � is the latitude.)

Averaging of Eqs. (6-24)–(6-28) is of course required if these equations are to

be used in meteorological numerical models with finite grid and time intervals.

The averaging operator given by Eq. (4-6) in Chapter 4 is not the correct one,

however, because �x�y�z�t is no longer the appropriate averaging volume.

In the transformed coordinate system, the appropriate grid-volume–averaging

operator is defined as3( ) = ∫ t+�t

t

∫ x̃1+�x̃1

x̃1

∫ x̃2+�x̃2

x̃2

∫ �+��

�
� �d� dx̃2 dx̃1dt

��x̃1���x̃2�������t�

 (6-37)

The dependent variables can be decomposed into an average and a subgrid-

scale perturbation expressed as

� = �̄+ �′′	

where �′′ is a deviation from the grid-volume average given by Eq. (6-37). The

symbol � represents any one of the dependent variables.

For example, Eq. (6-26) can be rewritten using Eq. (6-37) as

� ¯̃ui

�t
= −¯̃uj ¯̃ui

�j − ¯̃uj ′′
ũi′′
�j − G̃ ij �̄

��̄

�x̃j
− �x̃i

�z
g − 2�̃ ijl�̃j

¯̃ul
 (6-38)

In deriving this form, we have assumed that � = �̄�1+ ��′′/�̄�� � �̄ and that

=
ũi= ¯̃ui

	 �ui/�t = �ūi/�t	 etc. �and, therefore, ũi′′ = 0	 etc.�	 (6-39)

as was required in Section 4.1. To make this assumption in the transformed

coordinate system, however, it is necessary to require that changes of the metric
tensor over the four-dimensional grid-volume �x̃1�x̃2���t are small, since
this tensor appears in Eq. (6-38). Expressed mathematically, this requirement

can be written as

G̃ ij =
∫ t+�t

t

∫ x̃+�x̃1

x̃1

∫ x̃2+�x̃2

x̃2

∫ �+��

�
G̃ ijd� dx̃2 dx̃1 dt

��t���x̃1���x̃2�����
� G̃ij 


This requirement has significant implications for the choice of the vertical gen-

eralized coordinate, since it must be selected such that variations of the gradient
of the transformed coordinate within the grid volume are small compared to the

grid-volume–averaged gradient.

The advection term in Eq. (6-38) is derived from

ũj ũi
�j = ũj

�ũi

�x̃j
+ #̃ i

jlũ
j ũl � ũj

�ũi

�x̃j
+�̃

#
i

jlũ
j ũl

� ¯̃uj � ¯̃ui

�x̃j
+ ũj ′′ �ũ

i′′

�x̃j
+�̃

#
i

jl

[ ¯̃uj ¯̃ul + ũj ′′ ũl′′
] = ¯̃uj ¯̃ui

�j + ũj ′′ ũi′′
�j 	
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where the assumption that changes of the metric tensor and its derivatives

are small permits removal of the Christoffel symbol from the integrand. This

assumption can also be written as

#̃ i
jl = �̃

#
i

jl + #̃ ′′i
jl = �̃

#
3

jl + #̃ ′′3
jl � �̃

#
3

jl	 where
∣∣#̃ ′′3

jl

∣∣� ∣∣�̃# 3

jl

∣∣

The Coriolis term can be expanded as

2�̃ ijl�̃j
¯̃ul =

2�̃jG̃ lm
¯̃um

�ijl√
G̃

= 2�ijl
�xr

�x̃j
�rG̃lm

¯̃um ��

�z
	

with �r = �0	� cos�	� sin�� = �0	 f̂ /2	 f /2�.
In addition,

�h

�x̃3

��

�x3
= 1

and

�x̃1

�z
= �x̃2

�z
= 0


Thus, with the decomposition of the variables into resolvable and subgrid-

scale terms, Eq. (6-38) can be written for the generalized vertical coordinate

representation in its component form as

� ¯̃u1

�t
= −¯̃uj � ¯̃u1

�x̃j
− ũj ′′ �ũ

1′′

�x̃j
− �̄

��̄

�x̃1
− �̄

��

�x

��̄

�x̃3

− f̂
( �h
�x̃1

¯̃u1 + �h

�x̃2
¯̃u2 + �h

�x̃3
¯̃u3)+ f ¯̃u2

	 (6-40)

� ¯̃u2

�t
= −¯̃uj � ¯̃u2

�x̃j
− ũj ′′ �ũ

2′′

�x̃j
− �̄

��̄

�x̃2
− �̄

��

�y

��̄

�x̃3
− f ¯̃u1

	 (6-41)

and

� ¯̃u3

�t
= − ¯̃uj � ¯̃u3

�x̃j
− ũj ′′ �ũ

3′′

�x̃j
− ¯̃

#
3

jl
¯̃uj ¯̃ul − ¯̃

#
3

jlũ
j ′′ ũl′′

− �̄

{
��

�x

��̄

�x̃1
+ ��

�y

��̄

�x̃2
+
[(

��

�x

)2
+
(
��

�y

)2
+
(
��

�z

)2]
��̄

�x̃3

}
+
(
f̂ + �h

�x̃2
f

)
��

�z

[(
1+
(
�h

�x̃1

)2)
¯̃u1 + �h

�x̃1

�h

�x̃2
¯̃u2 + �h

�x̃1

�h

�x̃3
¯̃u3

]
− �h

�x̃1
f
��

�z

[
�h

�x̃2

�h

�x̃1
¯̃u1+
(
1+
(
�h

�x̃2

)2)
¯̃u2+ �h

�x̃2

�h

�x̃3
¯̃u3

]
− ��

�z
g
 (6-42)
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Since from Section 6.1, the vector velocity �v = ¯̃uj �"j	 ¯̃u3
is in the same direction

as the Cartesian velocity w̄, whereas ¯̃u1
and ¯̃u2

are in general at some angle to

ū and v̄ in the original rectangular coordinate system, as shown by Eqs. (6-33)

and (6-34).

The transformed grid-volume–averaged conservation-of-mass relation [from

Eq. (6-24)], can be written as

��̄

�t
= −��

�z

�

�x̃j

(
�h

�x̃3
�ũj

)
	 (6-43)

which, since ��/�t = −��/�xj��uj in the rectangular coordinate system [i.e.,

Eq. (2-43)] can be approximated by

0 = −��

�z

�

�x̃j

(
�0

�h

�x̃3
ũj

)
= − �

�x̃j

(
�0

�h

�x̃3
ũj

)
� − �

�x̃j

(
�̄
�h

�x̃3
ũj

)
(6-44)

if it is assumed that ��′′�/�̄ ∼ ��′′�/�0 � 1, as was done in obtaining Eqs. (3-11)

and (4-9). In invoking the assumption that ��′′� is much less than �̄ and �0, so

that Eq. (6-44) can be written in its existing form, one must remember that the

averaging volume is in the transformed coordinate system.

The conservation of heat as represented by potential temperature and the

conservation-of-water substance and other gaseous and aerosol atmospheric

material given by Eqs. (6-25), (6-27), and (6-28) can be written in grid-volume–

averaged form as

��̄

�t
= −¯̃uj ��̄

�x̃j
− ũj

��′′

�x̃j
+�̃

S�	 (6-45)

�q̄n
�t

= −¯̃uj �q̄n
�x̃j

− ũj ′′ �q
′′
n

�x̃j
+�̃

Sqn
	 n = 1	 2	 3 (6-46)

��̄m

�t
= −¯̃uj ��̄m

�x̃j
− ũj ′′ ��

′′
m

�x̃j
+�̃

S�m
	 m = 1	 2	 � � � 	M (6-47)

In summary, the 8 +M prognostic equations [(6-40)–(6-42), (6-44), (6-46),

and (6-47)] in the 8+M unknowns ¯̃u	 �̄	 �̄	 q̄n, and �̄m can be used to represent

the conservation relations in any generalized vertical coordinate system, as long

as the assumptions such as given by Eq. (6-39) are valid. Because tensor trans-

formation rules were used, one can be certain that the physical representation

of the conservation relations is unaffected.

These equations can also be manipulated to obtain equivalent expressions for

other forms of the conservation equations. The diagnostic equation for pressure

in the transformed system, for example, can be obtained by taking the diver-

gence of Eqs. (6-40)–(6-42). This operation can be performed by applying the

covariant differentiation operation with respect to the free index i [i.e., � ��i is
applied] to the grid-volume–averaged form of Eq. (6-26).
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6.3 The Sigma-z Coordinate System

Terrain-following coordinate systems that are a function of z have been used

extensively in regional and mesoscale models (e.g., Mahrer and Pielke 1975;

Colton 1976; Blondin 1978; Yamada 1978a) in which the hydrostatic assumption

has been applied and in mesoscale models in which the hydrostatic assumption

has not been made (e.g., Gal-Chen and Somerville 1975a, b; Clark 1977; Pielke

et al. 1992; Shi et al. 2000).

6.3.1 The Hydrostatic Assumption Derivation

In developing hydrostatic model equations, investigators have generally

applied the chain rule separately in the vertical and horizontal dimensions

(using the hydrostatic relation). Using the terrain-following coordinate system

defined by

� = s
z− zG
s − zG

	 (6-48)

for example, where s is a constant and zG is a function of x and y, application
of the chain rule to the hydrostatic relation given by Eq. (4-40) yields

��̄

��
= − s − zG

s

g

�̄

 (6-49)

Applying the chain rule separately to Eq. (4-41) is appropriate if the hydrostatic

assumption is exactly satisfied. However, the invariance of the physical represen-
tation is lost if the assumption is not exact, as discussed by Dutton (1976:242),

since a correct tensor transformation is required. When the horizontal scales are

much larger than the vertical scales of motion, the hydrostatic relation is very

closely satisfied, and such a separation of the vertical and horizontal equation

may be justified. By making the hydrostatic assumption before the coordinate

transformation, however, significant insight into the effect of the change of coor-

dinates on the form of the physical invariance of the conservation relations in

the transformed system cannot be evaluated. To provide such insight, it is nec-

essary to use the methods of tensor analysis to transform coordinate systems,

and then to invoke a more general form of the hydrostatic assumption. A more

in-depth understanding of the coordinate transformation is then obtained.

To examine the effect of using the hydrostatic assumption in Eqs. (6-40),

(6-41), and (6-42), Eq. (6-48) is defined as the generalized vertical coordinate.



6.3 The Sigma-z Coordinate System 139

Fig. 6-3. Schematic representation of �-coordinate surfaces as they would appear in
a rectangular representation, as defined by Eq. (6-48).

The relation between the spatial coordinates in the two representations is given

by

x̃1 = x	 x = x̃1	
x̃2 = y	 y = x̃2	
x̃3 = � = s�z− zG�x	 y�� z = h = ��/s��s − zG�x̃

1	 x̃2��
/�s − zG�x	 y��	 + zG�x̃

1	 x̃2�	

(6-50)

so that the nonzero quantities needed to evaluate the Jacobian and its determi-

nant [Eq. (6-32)], metric tensor [Eq. (6-29)], and Christoffel symbol [Eq. (6-30)]

are given as

��

�x
= �zG

�x

(
� − s

s − zG

)
	
�h

�x̃1
= �zG

�x̃1

(
s − �

s

)
	
��

�y
= �zG

�y

(
� − s

s − zG

)
	

�h

�x̃2
= �zG

�x̃2

(
s − �

s

)
	
��

�z
= s

s − zG
	

�h

��
= s − zG

s
= √

G

(6-51)

and

#̃ 3
11 =

s − �

s − zG

�2zG
�x̃12

	 #̃ 3
22 =

s − �

s − zG

�2zG
�x̃22

	 #̃ 3
21 =

s − �

s − zG

�2zG
�x̃1�x̃2

	

#̃ 3
23 = − 1

s − zG

�zG
�x̃2

	 and #̃ 3
13 = − 1

s − zG

�zG
�x̃1

	

(6-52)

with #̃ 3
21 = #̃ 3

12	 #̃
3
23 = #̃ 3

32, and #̃ 3
13 = #̃ 3

31.

Figure 6-3 schematically illustrates this coordinate transformation as viewed

in the Cartesian coordinate framework.
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The velocity vector �V , can be expressed as (Pielke and Cram 1989)

�V = ũi ��i= ũi �"j =u�i+v �j+w�k	
�V = ũ1

�i+ ũ2
�j+ ũ3

[
�i
(
�−s

s−zG

)
�zG
�x

+ �j
(
�−s

s−zG

)
�zG
�y

+�k
(

s

s−zG

)]
	

�V = ũ1

[
�i+�k
(
s−�

s

)
�zG
�x̃1

]
+ ũ2

[
�j+�k
(
s−�

s

)
�zG
�x̃2

]
+ ũ3�k
(
s−zG
s

)



(6-53)

The velocities ũi and �ui are the covariant and contravariant components, respec-

tively, and are given by

ũ1 = u	

ũ2 = v	

ũ3 = u

(
� − s

s − zG

)
�zG
�x

+ v

(
� − s

s − zG

)
�zG
�y

+ w

(
s

s − zG

)
	

ũ1 = u+
(
s − �

s

)
�zG
�x̃1

w	

ũ2 = v +
(
s − �

s

)
�zG
�x̃2

w	

ũ3 =
(
s − zG

s

)



(6-54)

Therefore, the vectors in Eq. (6-53) can be rewritten in terms of the Cartesian

quantities as

�V =
[
u+
(
s − �

s

)
�zG
�x̃1

w

]
�i +
[
v +
(
s − �

s

)
�zG
�x̃2

w

]
�j

+ w

(
1

s

)[
�i�� − s�

�zG
�x

+ �j�� − s�
�zG
�y

+ �k
]

�V = u

[
�i + �k
(
s − �

s

)
�zG
�x̃1

]
+ v

[
�j + �k
(
s − �

s

)
�zG
�x̃2

]
+
[
u�� − s�

�zG
�x

+ v�� − s�
�zG
�y

+ w�s�

]
�k
(
1

s

)



(6-55)

Figure 6-4 shows the vector �V presented in the Cartesian, covariant, and con-

travariant forms for a two-dimensional case.
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Fig. 6-4. Vector �V as expressed in Cartesian, covariant, and contravariant components
in a terrain-following coordinate system. The � surface is parallel to ũ1 and perpendic-
ular to ũ3. (From Pielke and Cram 1989.)

Note that the contravariant form has a component in the vertical direction

and a component parallel to the � surface, which at � = 0 is the ground. The

covariant form, in contrast, has a component perpendicular to the � surface and

a horizontal component. The consistent form of kinetic energy is 1

2
�V · �V and

can be calculated from

�V · �V = ũi �� iũj �"j = �i
j ũiũ

j = ũiũ
i


The covariant components must be multiplied by the corresponding contravari-

ant components, that is,

ũiũ
i = ũ1ũ

1 + ũ2ũ
2 + ũ3ũ

3

or

ũiũ
i = u

[
u+
(
s − �

s

)
�zG
�x̃1

w

]
+ v

[
v +
(
s − �

s

)
�zG
�x̃2

w

]

+ w

[
u

(
� − s

s

)
�zG
�x

+ v

(
� − s

s

)
�zG
�y

+ w

]
= u2 + v2 + w2
 (6-56)

The complete conservation-of-motion equation in the contravariant form can

be written in general form for the coordinate transformation as

�ũ1

�t
= −ũj �ũ

1

�x̃j
− �

��

�x̃1
+ �

� − s

s − zG

�zG
�x

��

�x̃3
− f̂ ũ3 + f ũ2	 (6-57)

�ũ2

�t
= −ũj �ũ

2

�x̃j
− �

��

�x̃2
+ �

� − s

s − zG

�zG
�y

��

�x̃3
− f ũ1	 (6-58)
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and

�ũ3

�t
= −ũj �ũ

3

�x̃j
− 1(

s − zG
)[�s − ��

�2zG
�x̃12

�ũ1�2 + �s − ��
�2zG
�x̃22

�ũ2�2

+ 2�s − ��
�2zG
�x̃1�x̃2

ũ1ũ2 − 2
�zG
�x̃1

ũ1ũ3 − 2
�zG
�x̃2

ũ2ũ3

]
− �

{
�zG
�x

(
� − s

s − zG

)
��

�x̃1
+ �zG

�y

(
� − s

s − zG

)
��

�x̃2

+
[((

�zG
�x

)(
� − s

s − zG

))2
+
((

�zG
�y

)(
� − s

s − zG

))2
+
(

s

s − zG

)2]
��

�x̃3

}
− s

s − zG
g	 (6-59)

where, to reduce notational complexity, the Coriolis term was left out of the ũ3

equation.4 Equations (6-57) and (6-58) are applied parallel to � surfaces, while

Eq. (6-59) is applied in the vertical axis along a � coordinate [see Eq. (6-53)].

6.3.2 Generalized Hydrostatic Equation

A generalized hydrostatic form of Eq. (6-59) can be derived if it is

assumed that vertical accelerations are small compared to the remaining terms,

which yields

0 = −�

{
�zG
�x

(
� − s

s − zG

)
��

�x̃1
+ �zG

�y

(
� − s

s − zG

)
��

�x̃2

+
[((

�zG
�x

)(
� − s

s − zG

))2
+
((

�zG
�y

)(
� − s

s − zG

))2
+
(

s

s − zG

)2]
��

�x̃3

}
− s

s − zG
g
 (6-60)

Rearranging Eq. (6-60) to solve for ��/�x̃3 produces

��

�x̃3
= −
(

s

s − zG

g

�
+ �zG

�x

(
� − s

s − zG

)
��

�x̃1
+ �zG

�y

(
� − s

s − zG

)
��

�x̃2

)
/[(

�zG
�x

(
� − s

s − zG

))2
+
(
�zG
�y

(
� − s

s − zG

))2
+
(

s

s − zG

)2]

 (6-61)

Equation (6-61) is a generalized hydrostatic equation because accelerations

are neglected in the � direction but permitted in the �-parallel orientation,

thereby retaining some nonhydrostatic motion when referred back to the Carte-

sian hydrostatic equation.5
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When slope angles are small, Eq. (6-61) reduces to

��

�x̃3
= −
(
s − zG

s

)
g

�
	 (6-62)

which is the form generally applied to represent the hydrostatic assumption in

atmospheric models with a terrain-following coordinate system [Eq. (6-48)].

Equation (6-62) is, therefore, the shallow-slope generalized hydrostatic approx-

imation. Physick (1986) did apply the complete form given by Eq. (6-61) in his

simulation of the flow in the Grand Canyon, however.

The main result of this analysis is that a generalized hydrostatic equation

can be derived that retains some nonhydrostatic motions when referred back to

the Cartesian coordinate system. Section 6.4 discusses this approach applied to

drainage flow models.

6.3.3 Generalized Geostrophic Wind

A generalized geostrophic wind can be derived from Eqs. (6-57) and (6-58),

where a balance between the pressure gradient force and the Coriolis term is

assumed, and Eq. (6-62), used to represent ��/�x̃3 (Pielke and Cram 1987;

Cram and Pielke 1989), that is,

ũ2
g =

1

f

[
�
��

�x̃1
− g

� − s

s

�zG
�x

]
ũ1
g = − 1

f

[
�
��

�x̃2
− g

� − s

s

�zG
�y

] (6-63)

(where, for simplicity, the f̂ ũ3 term was ignored).6

Since ũ1
g �"1 and ũ2

g �"2 are the components on � surfaces, a horizontal compo-

nent of the generalized geostrophic wind can be derived from

ug = ũ1
g �"1 · �i and vg = ũ2

g �"2 · �j	
which, using the form of �"j and ũj in Eqs. (6-53) and (6-54), yields

ug = u and vg = v	

so that the horizontal geostrophic wind derived from the terrain-following coor-

dinate system is the same as would be derived in a Cartesian framework.

At the surface, z = zG�� = 0�, so that Eq. (6-63) reduces to

vg =
�

f

��

�x̃1
+ g

f

�zG
�x

= �

f

��̃

�x

ug = − �

f

��

�x̃2
− g

f

�zG
�y

= −�

f

��̃

�y

(6-64)

Equation (6-64) is an equation for the surface geostrophic wind that can be

used to obtain a corresponding horizontal pressure gradient over flat terrain
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���̃/�x	 ��̃/�y�, which defines the surface geostrophic wind components ug

and vg . The values of �̃ are obtained from the equation

�2�̃

�x2
+ �2�̃

�y2
= �

�x

(
vgf

�

)
− �

�y

(
ugf

�

)
	 (6-65)

where ug and vg are evaluated from Eq. (6-64). The geostrophic wind defined

by Eq. (6-63) is parallel to the � surfaces and thus includes a nonzero vertical

component. The component of the �-system pressure gradient that we want to

display for analysis purposes, however, is the one on a flat surface. Since in a

flat, mean-sea-level z system, the geostrophic wind is nondivergent except for

the effect of north–south f variations, vg is differentiated by �/�x and ug by

�/�y; then subtraction yields the elliptic equation for �̃.

Potential temperature must be known and the horizontal boundary values of

�̃ specified to permit the solution of Eq. (6-65) to obtain �̃ (and thus pressure)

everywhere within the domain. The boundary values of �̃ can be specified using

the standard lapse rate reduction, and the interior values of �̃ can be obtained

using a relaxation procedure such as that discussed in Chapter 10.

Surface values of � were used for �, although the procedure was found to

be relatively insensitive to the � field. The most consistent specification of the

lateral boundary conditions needed in Eq. (6-65) would be from a domain in

which the perimeter is at sea level.

Sangster (1960) developed the idea that the streamline and potential fields

of the surface geostrophic winds can provide a better intuitive estimate of the

horizontal pressure gradients than can reduce pressure. The analysis of horizon-

tal pressure gradients using Eq. (6-65) is less arbitrary than the conventional

reduced mean sea level (MSL) pressure analyses routinely shown on synoptic

weather maps and easily and directly interpreted by a weather forecaster.

To demonstrate the technique, Figure 6-5 illustrates the smoothed topography

of the western United States and northern Mexico. The U.S. Air Force 30-minute

average elevation data were splined to a 1� latitude–by–1� longitude grid (40×
30 grid points, from 25� to 49�N and 130� to 91�W) and then operated on with

five passes of a two-dimensional, five-point smoother. The data for the two cases

discussed were obtained from the National Meteorological Center (NMC) 2.5�

global analyses of heights and temperatures on the standard pressure surfaces.

These were splined horizontally and interpolated vertically to the 40 × 30 grid

and surface elevations.

The conventional MSL-reduced pressure analyses were calculated by using

the assumption of a standard lapse rate of temperature �T /�Z = −6
5 ×
10−3 K m−1 below the ground surface to permit a comparison of the two

procedures of surface weather map analysis. More sophisticated procedures to

estimate what would be the temperature lapse rate below elevated terrain are
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Fig. 6-5. Surface elevation in meters. (From Pielke and Cram 1987.)

used by the national weather services; however, the need to arbitrarily extrapo-

late below the surface of the ground remains. These analyses are compared to

those obtained using Eq. (6-65). The boundary conditions for that solution are

obtained using the conventional pressure reduction.

The conventionally reduced MSL pressure analysis for 1200 UTC,

February 5, 1980 is shown in Figure 6-6. The geostrophic wind vectors and

wind magnitude computed from this analysis, that is,

ugs
= − �

f

��

�y
and vgs =

�

f

��

�x
	

are given as Figures 6-7 and 6-8. A large pressure gradient and correspond-

ing large geostrophic wind speeds are evident along the base of the high-

pressure ridge. In contrast, using Eq. (6-64) along with the terrain gradients

from Figure 6-5 and the surface pressure distribution in Figure 6-9 produces

the much smoother and somewhat reduced geostrophic wind speed pattern illus-

trated in Figures 6-10 and 6-11. The much more chaotic distribution of wind

speeds in Figure 6-8 as compared to the distribution in Figure 6-11 is a result

of the arbitrary reduction of pressure to sea level used to obtain Figure 6-8.

The corresponding pressure analysis derived using Eq. (6-65) is shown in Fig-

ure 6-12. The conventional MSL reduction analysis has a much stronger high-

pressure area (stronger by as much as 6 mb) over the Great Basin, and associ-

ated stronger horizontal pressure gradients. The conventionally reduced pressure

analysis results in overly strong pressure gradients and has overly strong surface

geostrophic winds.
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Fig. 6-6. MSL pressure (mb), pMSL, obtained by using a standard lapse rate reduction
for February 5, 1980. (From Pielke and Cram 1987.)

Fig. 6-7. Geostrophic wind vectors for February 5, 1980 from pMSL in Figure 6-6. (From
Pielke and Cram 1987.)
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Fig. 6-8. Geostrophic wind magnitudes (m s−1) for February 5, 1980 from pMSL in Fig-
ure 6-6. (From Pielke and Cram 1987.)

Fig. 6-9. Surface pressure (mb) for February 5, 1980. (From Pielke and Cram 1987.)
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Fig. 6-10. Geostrophic wind vectors for February 5, 1980 calculated using Eq. (6-64).
(From Pielke and Cram 1987.)

Fig. 6-11. Geostrophic wind magnitudes (m s−1) for February 5, 1980 calculated using
Eq. (6-64). (From Pielke and Cram 1987.)
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Fig. 6-12. Geostrophic pressure analysis obtained from Eq. (6-65) for February 5, 1980.
(From Pielke and Cram 1987.)

A summertime situation (1200 UTC, July 20, 1981) is presented in

Figures 6-13–6-19. As with the February 5, 1980 example, a comparison

between Figure 6-15 (geostrophic wind evaluated from reduced MSL pressure)

and Figure 6-18 (geostrophic wind evaluated at the ground surface) shows that

the large geostrophic wind speed and somewhat chaotic pattern is eliminated

when the ad hoc, arbitrary reduction of pressure to sea level is not performed.

Figure 6-19 is the derived pressure analysis [from Eq. (6-65)] for the summer

case. The strength of the analyzed high-pressure area over the western United

States is again reduced by approximately 6 mb, and the surrounding pressure

gradients are correspondingly decreased. The surface pressure analysis in

Figure 6-19 is less misleading than that in Figure 6-13.

The main result of this analysis is a simple methodology for analyzing sur-

face geostrophic wind and pressure that eliminates the arbitrariness of reducing

pressure to MSL in areas of elevated terrain. The method reduces the appar-

ently excessive pressure gradients that result from conventional MSL pressure

reduction analyses. The procedure uses a geostrophic wind defined in terms of

a terrain-following coordinate system to derive a flat ground surface pressure

field that is consistent in concept (i.e., nondivergent except for the f variation

with latitude) with the currently applied MSL analyses. This approach is easy

to implement and would be useful to both operational meteorologists in inter-

preting real-time synoptic data and researchers in their analysis of model output

and observational data.
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Fig. 6-13. MSL pressure (mb), pMSL, obtained by using a standard lapse rate reduction
for July 20, 1981. (From Pielke and Cram 1987.)

Fig. 6-14. Geostrophic wind vectors for July 20, 1980 from pMSL in Figure 6-13. (From
Pielke and Cram 1987.)
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Fig. 6-15. Geostrophic wind magnitudes (m s−1) for July 20, 1981 from pMSL in Fig-
ure 6-13. (From Pielke and Cram 1987.)

Fig. 6-16. Surface pressure (mb) for July 20, 1981. (From Pielke and Cram 1987.)
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Fig. 6-17. Geostrophic wind vectors for July 20, 1981 calculated using Eq. (6-64). (From
Pielke and Cram 1987.)

Fig. 6-18. Geostrophic wind magnitudes (m s−1) for July 20, 1981 calculated using
Eq. (6-64). (From Pielke and Cram 1987.)
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Fig. 6-19. Geostrophic pressure analysis obtained from Eq. (6-65) for July 20, 1981.
(From Pielke and Cram 1987.)

6.4 Derivation of Drainage Flow Equations Using
Two Different Coordinate Representations

In this section two transformations for drainage flow modeling are exam-

ined and, for simplicity, illustrated for two-dimensional formulations originally

described in Berkofsky (1993) and Pielke et al. (1985, 1993b). The extension

to three dimensions is straightforward. The formulations are as follows:

Transformation I.

x̃1 = x

x̃3 = z− zG�x�

x = x̃1

z = x̃3 + zG�x̃
1�

Transformation II.

x̃1 = x cos� + z sin �

x̃3 = z cos� − x sin �

x = x̃1 cos� − x̃3 sin �

z = x̃1 sin � + x̃3 cos�
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Fig. 6-20. Representations of a drainage flow wind using (a) the contravariant and (b)
covariant forms of the velocity components derived from transformation I, and (c) the
velocity components obtained by the orthogonal rotation transformation II. The magni-
tude and direction of the components of the vector in the different representations have
been given in terms of the Cartesian velocity components u and w and basis vectors �i
and �k. The slope �zG/�x = � and � is the slope angle. (From Pielke et al. 1985.)

Here zG is terrain height and � = tan−1��zG/�x� is the slope angle of the terrain.
Transformation I represents one form of the nonorthogonal generalized verti-

cal coordinate transformations given at the beginning of Section 6.2. As shown

in Figure 6-4, the x̃3 coordinate is parallel to the gravity vector and x̃1 lies

along the terrain slope. Transformation II represents an orthogonal rotation in

which x̃1 is parallel and x̃3 perpendicular to the terrain. Both transformations

are illustrated in Figure 6-20.

The orthogonal rotation is of the form commonly used to develop idealized

analytic models of slope flow as summarized by for example, Mahrt (1982)

and applied by McNider (1982). Mahrt suggests that one advantage of such a

coordinate transformation is that the

� � � gravitational force perpendicular to the ground is approximately balanced

by the pressure gradient force, while the component of the gravitational force

parallel to the slope is not balanced and leads to downslope acceleration.

This type of separation into a hydrostatic part and a nonhydrostatic component

is of substantial usefulness in developing analytic (and numerical) slope flow

models. Its application and generalization are explored using Transformations I

and II.

6.4.1 Transformation I

Using the definition of G̃ik and �x̃i/�z and covariant differentiation and Trans-

formation I, we obtain

G̃ik =
⎡⎢⎣ 1 −�zG

�x

−�zG
�t

(�zG
�x

)2 + 1

⎤⎥⎦ � �x̃i

�z
= �0	 1�
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For two dimensions, when subgrid-scale flux7 terms with f̂ and f are ignored

and the pressure gradient force is represented by p′ instead of �̄, Eqs. (6-40)

and (6-42) can be written as

�ũ1

�t
+ ũj �ũ

1

�x̃j
= − 1

�0

�p′

�x̃1
+ 1

�0

�zG
�x

�p′

�x̃3
(6-66)

�ũ3

�t
+ ũj �ũ

3

�x̃j
= + 1

�0

{
�zG
�x

�p′

�x̃1
−
[(

�zG
�x

)2
+ 1

]
�p′

�x̃3

}
+ g

�′

�0

 (6-67)

This type of coordinate transformation has considerable utility, because a

type of hydrostatic assumption can be assumed to be valid in the x̃3 direction

but with accelerations still explicitly resolved in the terrain-parallel direction,

which for nonzero slope has a component in the vertical direction. This form of

hydrostatic representation is different from that suggested by Mahrt (1982).

If the assumption is made that in the x̃3 direction, dũ3/dt is small relative

to the other terms (i.e., a generalized hydrostatic assumption, as discussed in

Section 6.3.2), then Eqs. (6-66) and (6-67) reduce to

�ũ1

�t
+ ũ1 �ũ

1

�x̃1
+ ũ3 �ũ

1

�x̃3
= − 1

�0

�p′

�x̃1
+ 1

�0

�zG
�x

�p′

�x̃3
(6-68)

and

�p′

�x̃3
= 1[(

�zG/�x
)2 + 1
](g�′

�0
�0 +

�zG
�x

�p′

�x̃1

)

 (6-69)

Inserting Eq. (6-69) into Eq. (6-66) and rearranging yields

�ũ1

�t
+ ũ1 �ũ

1

�x̃1
+ ũ3 �ũ

1

�x̃3
= − 1

�0

�p′

�x̃1
×
[
1− ��zG/�x�

2[
��zG/�x�

2 + 1
]]

+ �zG/�x[
��zG/�x�

2 + 1
]g �′

�0
	

or

�ũ1

�t
= − 1

�0

�p′

�x̃1

(
1− �2

1+ �2

)+ g
�(

�2 + 1
) �′

�0
− ũ1	

�ũ1

�x̃1
− ũ3 �ũ

1

�x̃3
	 (6-70)

where � = �zG/�x has been defined for convenience. For flat terrain, this rela-

tion reduces to the original Cartesian horizontal equation of motion.
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6.4.2 Transformation II

Using the definition of G̃ik and �x̃i/�z and covariant differentiation and Trans-

formation II, we obtain

Gik =
[
1 0

0 1

]
�
�x̃i

�z
= (sin �	 cos�)


Using Eq. (6-38), in which the same assumptions used to derive Eqs. (6-66)

and (6-67) are applied, the simplified equations can be written as

�ũ1

�t
+ ũk �ũ

1

�x̃k
= − 1

�0

�p′

�x̃1
+ g

�′

�0
sin � (6-71)

�ũ3

�t
+ ũk �ũ

3

�x̃k
= − 1

�0

�p′

�x̃3
+ g

�′

�0
cos�
 (6-72)

If a hydrostatic-type assumption is made in the x̃3 direction, as suggested by

Mahrt (1982) for sufficiently small slopes, then Eqs. (6-71) and (6-72) reduce to

�ũ1

�t
+ ũk �ũ

1

�x̃k
= − 1

�0

�p′

�x̃1
+ g

�′

�0
sin � (6-73)

�p′

�x̃3
= �0g

�′

�0
cos�
 (6-74)

To compare quantitatively the result of differences in the two transformations,

we can develop a layer-integrated momentum and thermodynamic system for

a uniform slope configuration and solve it analytically. The layer-integrated

thermodynamic equation can be expressed in the general system by

��̄

�t
+ ũk ��̄

�x̃k
= �Lc	 (6-75)

where �Lc is the local warming rate for the integrated layer including both radia-

tive and turbulent processes. Using �̄ = �0 + �′, where �0 is a function of z
only, and assuming ��0/�t = 0, we have

��′

�t
= −
(
ũ1 ��0

�x̃1
+ ũ1 ��

′

�x̃1
+ ũ3 ��

′

�x̃3

)
+�Lc
 (6-76)

For an infinite uniform slope, ��′/�x̃1 = 0, and mass continuity requires that

ũ3 = 0. Thus, using the chain rule,

��0
�x̃1

= ��0
�z

�x3

�x̃1
	 (6-77)

so that Eq. (6-76) can be written as

��′

�t
= −ũ1 ��0

�x3

�x3

�x̃1
+�Lc
 (6-78)
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For Transformation I, the generalized hydrostatic system for the uniform slope

is

�ũ1

�t
= g

tan �

�tan2 � + 1�

�′

�0
(6-79)

��′

�t
= −ũ1� tan � +�Lc	 (6-80)

where ũ1 and �′ represent layer quantities, tan � = �zG/�x	 tan � = �x3/�x̃1 =
�z/�x̃1, and � = ��0/�z. Since the slope is uniform, �p′/�x̃1 = 0 is assumed.

Following McNider (1982), take �/�t of Eq. (6-79) and substitute for ��′/�t,
giving

�2ũ1

�t2
= g

�0

tan �

�tan2 � + 1�
�−ũ1� tan � +�Lc� (6-81)

or

�2ũ1

�t2
+ g

�0
� sin2 �ũ1 − g

�0
cos� sin ��Lc = 0
 (6-82)

Since the slope is uniform and represents a single layer, the equation is an

ordinary differential equation that becomes

d2ũ1

dt2
+ g

�0
� sin2 �ũ1 − g

�0
cos� sin ��Lc = 0
 (6-83)

In a similar manner, the differential equation for Transformation II is

d2û1

dt2
+ g

�0
� sin2 �û1 − g

�0
sin ��Lc = 0	 (6-84)

where a caret (∧) rather than a tilde (∼) is placed over u1 to indicate that ũ1 and

û1 are different velocities. Note that the difference in Eqs. (6-83) and (6-84) is

a cos� coefficient in the last term in Eq. (6-83), so that the variation in the two

formulations increases for increasing slope angles. For initial conditions

û1 = ũ1 = 0 and
dû1

dt
= dũ1

dt
= 0	

the solution for Eq. (6-83) (Transformation I) becomes

ũ1 = �Lc

� tan �
�1− cos "t�	 (6-85)

where

"2 = g�

�0
sin2 �
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TABLE 6-1

Values of tan� and sin� for Several
Different Slope Angles, �.

� sin � tan �

5� 0.09 0.09

10� 0.17 0.18

15� 0.26 0.27

20� 0.34 0.36

25� 0.42 0.47

30� 0.50 0.58

35� 0.57 0.70

40� 0.64 0.84

45� 0.71 1.00

Likewise, the solution for Eq. (6-84) (Transformation II) is

û1 = �Lc

� sin �
�1− cos "̂ t�	 (6-86)

with

"̂2 = g�

�0
sin2 �	

where " and "̂ are the periods of oscillation in the frictionless results.

Relative values of û1 and ũ1, for both transformations, are tabulated for several

slope angles in Table 6-1. The terrain-following formulation (Transformation I)

should be more realistic, since nonhydrostatic accelerations along the terrain

slope can be represented. Nonetheless, slopes greater than about 20� would

be required before the difference in the two velocities would exceed 6%. The

oscillation periods, " and "̂ , are identical in the two coordinate transformations,

however.

6.5 Summary

Based on the derivations in this chapter, the conservation equations can be

written for any vertical coordinate system, � , as

� ¯̃u1

�t
= −¯̃uj � ¯̃u1

�x̃j
− ũj ′′ �ũ

1′′

�x̃j
− �̄

��̄

�x̃1
− �̄

��

�x

��̄

�x̃3

− f̂

(
�h

�x̃1
¯̃u1+ �h

�x̃2
¯̃u2+ �h

�x̃3
¯̃u3

)
+f ¯̃u2

	 (6-87)
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� ¯̃u2

�t
= −¯̃uj �ũ2

�x̃j
− ũj ′′ �ũ

2′′

�x̃j
− �̄

��̄

�x̃2
− �̄

��

�y

��̄

�x̃3
−f ¯̃u1

	 (6-88)

� ¯̃u3

�t
= − ¯̃uj � ¯̃u3

�x̃j
− ũj ′′ �ũ

3′′

�x̃j
− #̃

3

jl
¯̃uj ¯̃ul− #̃

3

jlũ
j ′′ ũl′′

− −�̄

{
��

�x

��̄

�x̃1
+ ��

�y

��̄

�x̃2
+
[(

��

�x

)2
+
(
��

�y

)2
+
(
��

�z

)2]
��̄

�x̃3

}

+
(
f̂ + �h

�x̃2
f

)
��

�z

[(
1+
(
�h

�x̃1

)2)
¯̃u1+ �h

�x̃1

�h

�x̃2
¯̃u2+ �h

�x̃1

�h

�x̃3
¯̃u3

]

− �h

�x̃1
f
��

�z

[
�h

�x̃2

�h

�x̃1
¯̃u1+
(
1+( �h

�x̃2

)2)
¯̃u2+ �h

�x̃2

�h

�x̃3
¯̃u3

]
− ��

�z
g	 (6-89)

��̄

�t
= −¯̃uj ��̄

�x̃j
− ũj

��′′

�x̃j
+ S̃�	 (6-90)

�q̄n
�t

= −¯̃uj �q̄n
�x̃j

− ũj ′′ �q
′′
n

�x̃j
+ S̃qn

	 n=1	2	3	 (6-91)

��̄m

�t
= −¯̃uj ��̄m

�x̃j
− ũj ′′ ��

′′
m

�x̃j
+ S̃�m

	 m=1	2	� � � 	M	 (6-92)

��̄

�t
= −��

�z

�

�x̃j

(
�h

�x̃3
�ũj

)
	 (6-93)

p̄ = �̄RdT v	 (6-94)

�̄ = T v�1000 mb/p�Rd/Cp (6-95)

Equations (6-87)–(6-89) are the conservation-of-velocity equations. Equation

(6-90) is the conservation-of-heat equation, Eq. (6-91) is the conservation-of-

water substance equation, Eq. (6-92) is the conservation-of-other atmospheric

gases and aerosols equation, and Eq. (6-93) is the conservation-of-mass of the

air equation. Equation (6-94) is the ideal gas law, which is the equation of state

for the air, and Eq. (6-95) is the definition of potential temperature. The overbar

in these equations is of course the generalized form of the grid-volume average,

as defined by Eq. (6-37). In the derivation of these equations, it is assumed that

���′′�/�̄� � 1	 �ũi′′ � = 0, and G̃ ij = G̃ ij . These equations can be manipulated in

various ways in a model; however, it must always be possible to work backward

to these fundamental conservation relationships.
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Among the standard approximations used in these equations is the replace-

ment of Eq. (6-89) with

��̄

�x̃3
= −g

�̄

(
��

�z

)−1

	 (6-96)

where all vertical acceleration terms and terms involving f and f̂ are ignored

and ���/�z�  ���/�x� ∼ ���/�y� is assumed. This makes Eqs. (6-87)–(6-88),

(6-90)–(6-95), and (6-96) a hydrostatic set of nonlinear partial differential equa-

tions. Another common assumption (the “anelastic approximation,” introduced

in Section 3.1.1) is to replace Eq. (6-93) with Eq. (6-44).

6.6 Application of Terrain-Following
Coordinate Systems

Unfortunately, the use of terrain-following coordinate systems introduces sev-

eral new computational problems to accurate numerical modeling. These can be

summarized as follows.

1. The two terms that represent the pressure gradient force along a �
surface, for example, [see, e.g., Eqs. (6-87) and (6-88)] represent differences

between large terms. Slight errors in their definition (Mahrer and Pielke 1977a;

Fortunato and Baptista 1996) can introduce significant errors in the model. Sun

(1995) suggests using a reference local vertical pressure gradient from which a

perturbation pressure gradient in the � system is computed; however, two terms

(albeit smaller) still appear.

2. When the vertical grid increments (��) are much smaller than the grid

increments �x and �y, the interpolation needed to define gradients in the x and

y directions introduce significant errors, as shown by Mahrer (1984). There is no

known solution for this problem, except to limit how small the ratio of ��/�x
and ��/�y can be. Mahrer 1984 concludes that �� ≤ ��s − ��/�s − zG���zG
is needed, where �zG is the change in terrain height across one horizontal grid

interval.

3. The subgrid-scale flux terms along a � surface produce fluxes in the

vertical (�k) direction. This is not desirable since turbulence fluxes (Chapter 7)

are represented separately in the vertical and horizontal directions.

Mesoscale models have been developed that successfully use terrain-following

coordinate systems as summarized in Appendix B. To take advantage of the

terrain-following coordinate representation and still retain some of the benefits

of a Cartesian coordinate system, models such as RAMS (Pielke et al. 1992)
interpolate the dependent variables to a Cartesian gradient so that horizontal
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gradients, rather than �-parallel gradients, are calculated for use in the numerical

form of the conservation equations. However, problems such as 2 and 3 above

still appear as a result of the interpolation.

As a new approach, the developers of RAMS are testing a Cartesian coordi-

nate system for use in complex terrain, where the eta-coordinate system or the

shaved-coordinate system8 are retained for the dynamics of the model (i.e., the

pressure gradient force, advection, the Coriolis term), while the model param-

eterizations (Chapters 7–9) are evaluated on a Cartesian grid. Since all of the

parameterizations are expressed in a one-dimensional framework, there is no

need to use a terrain-following coordinate system. There is only the need to

define the bottom of the parameterization as the earth’s surface (i.e., zsurface = zG,
with z̃ = z− zG the Cartesian height above the surface).

The insertion of at least some subgrid-scale topographic effects into the

models [i.e., z′′G�x�] has, as reported by Marty Bell (2000, ASTeR—Mission

Research Corporation, personal communication) and based in part on the ideas

of Roger Ridley, used averaging, silhouette topography, envelope topography

(Wallace et al. 1983), or reflected envelope topography to represent these

smaller-scale effects. With the averaging approach, the average grid area terrain

height is used. The silhouette method fills in the valleys [i.e., z′′G�x� ≤ 0

within the grid] in computing the grid-area–averaged z̄G. The envelope terrain

representation uses the grid-area–averaged terrain height plus a user-defined

variation (such as �zG
) within the grid area to compute the zG value applied for

that grid point. The reflected envelope topography, which is currently applied

in RAMS, is the envelope scheme mirrored about the local mean topography

heights. If it is a local maximum or minimum, then the user-defined variation

is inserted. None of these approaches is a completely adequate form for repre-

senting the appropriate grid-volume–averaging effect [Eq. (6-37)], but each is

an improvement over not considering subgrid-scale terrain effects at all.

Notes to Chapter 6

1. The following discussion of tensor analysis uses Dutton’s (1976) excellent in-depth description

of this mathematical tool. Readers who require a more in-depth discussion of tensor analysis should

refer to that source.

2. In vector terminology, this operation is also called the dot product.

3. It must be stressed that Eq. (6-37) does not represent the same volume as does Eq. (4-6). To

do that, the integrand must include the determinant of the Jacobian of the transformation. It is not

desirable to do this here, because x̃3	 x̃2	 x̃1, and t are the coordinates of a grid that will be used in

a numerical model and are thus the appropriate averaging volume.

4. One can manipulate Eqs. (6-57)–(6-59) as performed by Clark (1977) and Clark (1988, per-

sonal communication), such that explicit prognostic equations for ũ1	 ũ2, and w (the Cartesian ver-

tical velocity) are obtained. This rearrangement makes use of the contravariant velocity component
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definitions in Eq. (6-54). These equations can be written in a flux form, which is advantageous for

computational accuracy, as pointed out by Clark. The mathematical equivalence of the Christoffel

symbols still occur in his equations, however, appearing in his diagnostic pressure equation derived

using Eqs. (6-57)–(6-59).

5. It is important to recognize that while the Cartesian hydrostatic equation represents a balance

of forces between the vertical pressure gradient and gravitational forces, the generalized hydrostatic

equation as defined here retains those vertical accelerations that are parallel to � surfaces.

6. Sangster (1987) also introduced an improved procedure to compute the geostrophic wind at the

ground surface. Cram and Pielke (1989) demonstrate that the flat pressure field derived in this section

is essentially equivalent to the streamfunction of Sangster, although the two methods have different

lateral boundary conditions, formulations, and resulting sensitivities to these boundary conditions.

7. A straightforward assumption for the subgrid-scale fluxes in the vertical direction in Eq. (6-68)

for use in an analytic model could be written as −ũ3′′ �ũ1′′
�x̃3

= �

�x̃3

(
K �ũ1

�x̃3

)
. Integrating this expression

vertically between the surface and the top of a drainage flow, h, yields
∫ x̃3=h

x̃3=0
ũ3′′ �ũ1′′

�x̃3
dx̃3 =

K �ũ1

�x̃3

∣∣at x̃3=h

at x̃3=0
, which could be used in a layered model of drainage flow; K��ũ1/�x̃3� at x̃3 = 0

could be approximated as CD�ũ
1�2, for example, while K��ũ1/�x̃3� at h could be used to represent

entrainment at the top of the drainage flow. An additional advantage of using Transformation I is

that the integration is in the vertical direction rather than in the direction perpendicular to the x̃3

surface.

8. Adcroft et al. (1997), and Marshall et al. (1997) use partial grid volumes at the bottom of

their model (called “shaved cells”) in an ocean model. Shaved models permit sloping terrain, yet

retain a Cartesian framework.
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Byun, D. W. 1999b. Dynamically consistent formulations in meteorological and air quality mod-

els for multiscale atmospheric studies. Part II: Mass conservation issues. J. Atmos. Sci. 56,
3808–3820.

These articles provide an effective overview of terrain-following coordinate transformations,

including excellent figures that illustrate different forms of the transformations.

Dutton, J. A. 1976. “The Ceaseless Wind.” McGraw-Hill, New York.

Dutton provides an outstanding review of tensor analysis and generalized vertical coordi-

nate representations. Pages 129–144 and 248–251 were particularly useful in preparing this

chapter.

Gal-Chen, T., and R. C. J. Somerville. 1975a. On the use of a coordinate transformation for the

solution of the Navier–Stokes equations. J. Comput. Phys. 17, 209–228.
This article provides an excellent overview of the application of a specific terrain-following

coordinate system for use in a nonhydrostatic meteorological model. The material on pages

215–219 was referred to frequently during the writing of this chapter.

Other references that provide supplemental information on the material presented in this chapter

are as follows.

Clark, T. L. 1977. A small-scale dynamic model using a terrain-following coordinate transformation.

J. Comput. Phys. 24, 186–215.
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Kasahara, A. 1974. Various vertical coordinate systems used for numerical weather prediction. Mon.
Wea. Rev. 102, 509–522.

Lapidus, A. 1967. A detached shock calculation by second-order finite difference. J. Comput. Phys.
2, 154–177.

Phillips, N. A. 1957. A coordinate system having some special advantages for numerical forecasting.

J. Meteor. 14, 184–185.

Problems

1. Show that for flat terrain, the equations listed in Section 6.5 reduce to the grid-volume–

averaged form of the conservation equations presented in Chapter 4.

2. Substitute one of the specific terrain-following coordinate systems listed at the beginning of

Section 6.2 and write the form of each of the conservation equations listed in Chapter 4.

3. Select an atmospheric model that uses a generalized vertical coordinate system (e.g., MM5,

ARPS, Eta) and use their form of � to derive their specific form of the equations in Section 6.5.

4. For the model in problem 3, write the conservation equations used for flat terrain. Identify

(a) the advective terms, (b) the vertical subgrid-scale flux terms, (c) the horizontal subgrid-scale

flux terms, (d) the pressure gradient force term, and (e) the Coriolis terms.



Chapter 7

Parameterization-Averaged
Subgrid-Scale Fluxes

The grid-volume averaging of the conservation relations as described in

Chapters 4 and 6 results in averaged subgrid-scale correlation terms [e.g.,

�0u
′′
j u

′′
i from Eq. (4-21)] and averaged source–sink terms [e.g., �S� from

Eq. (4-24)]. In the following three chapters, the representation in mesoscale

models of three types of physical processes are introduced. This specification of

subgrid-scale and source–sink processes using experimental data and simplified

fundamental concepts is called parameterization. Usually the parameterizations

are not defined in terms of basic conservation principles. A parameterization

does not necessarily have to actually simulate the physical processes that it is

representing to be a realistic representation of these terms.

Indeed, if the quantitative accuracy of a parameterization is not sacrificed,
then it is desirable to make the parameterization as computationally simple as
possible. The three processes to be parameterized are

� averaged subgrid-scale fluxes [i.e., �0u
′′
j u

′′
i 	 �0u

′′
j �, etc., in Eqs. (4-21) and

(4-24)–(4-26)]

� averaged radiation flux divergence [i.e., part of �S� in Eq. (4-24)]

� averaged effects of the change of phase of water, including precipitation

[i.e., �Sqn in Eq. (4-25), part of �S� in Eq. (4-24)].

The averaged effects of change of phase, precipitation, and/or change into

other chemical species of atmospheric gases and aerosols other than water

[i.e., S�m in Eq. (4-26)] is not covered in this text. The reader is referred to

Seinfeld (1975) and Seinfeld and Pandis (1997) for reports on the status of

parameterizing these complex effects.

This chapter describes the parameterization of the averaged vertical subgrid

fluxes. As discussed in Section 10.5 in Chapter 10, horizontal subgrid-scale

fluxes are used only for computational reasons, since little is known of

164
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horizontal subgrid-scale mixing on the mesoscale (or in other models whenever

�x��y  �z), although work for ocean mixing, such as that of Young

et al. (1982), offers an avenue for future research. As discussed in Chapter 4,

the magnitude of the subgrid-scale variables and fluxes often can be the same

or even larger than the resolvable dependent variables. A wind gust of 5 m s−1

(representing u′′), for example, is not uncommon with an average wind speed

of 5 m s−1 (representing ū). Figure 7-1 schematically illustrates a subgrid-scale

correlation between vertical velocity and potential temperature. In this exam-

ple, assumed to be close to flat ground so the grid-volume–averaged vertical

velocity is approximately 0 (i.e., w̄ � 0), the ground surface is assumed to

be warmer than the air above, so that an upward perturbation vertical velocity

tends to transport warm air upward, whereas descending motion tends to advect

cooler air downward.1 Averaging over the grid interval in this example yields

an upward flux of heat (w′′�′′ > 0 with a magnitude of 6.9 cmK s−1). Thus,

despite the insignificant vertical flux of heat associated with the resolvable

dependent variables (i.e., w̄�̄ � 0, since w̄ � 0), a substantial transport of heat

will occur because of the positive correlation between the subgrid-scale vertical

velocity and potential temperature perturbation.

In developing subgrid-scale averaged quantities, however, one must recognize

that the preferred representation is an ensemble average over the grid vol-

ume, rather than simply the grid-volume average as defined by Eq. (4-6). The

ensemble average represents the most likely value of the subgrid-scale quan-

tity, whereas the grid-volume average represents just one realization. Unless

the subgrid-scale quantity is completely deterministic (i.e., without a statisti-

cal component), the two averages will not in general be the same. Thus in the

parameterizations discussed in this chapter, it is assumed that they are the most

Fig. 7-1. Schematic illustration of subgrid-scale values of vertical velocity, w, poten-
tial temperature, �, and the subgrid-scale correlation, w′′�′′. In this example, the grid-
averaged value of vertical motion is required to be approximately 0 (i.e., w̄ � 0), and
�̄ = 299�5 K is used. Both grid value averages are assumed to be constant over 	x. The
grid-averaged subgrid-scale correlation w′′�′′ is equal to 6.9 cm K s−1.
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likely (i.e., ensemble) estimates. Wyngaard (1982, 1983) and Cotton and Anthes

(1989) discuss ensemble averaging in more depth. Defining a parameterization

in terms of a realization from a probability distribution is an area meriting

future research. Preliminary work in this area has been completed, as reported

in Garratt and Pielke (1989), Garratt et al. (1990), and Avissar (1991, 1992).

7.1 Basic Terms

To develop parameterization for these subgrid-scale correlations, it is

necessary to introduce several basic definitions. To simplify the interpretation,

a Cartesian coordinate framework is applied in this analysis. Modifications

for when a generalized vertical coordinate system is used were discussed in

Chapter 6.

Neglecting the Coriolis effect, Eq. (4-4) can be rewritten as

�

�t
�ūi + u′′

i � = − �ūj + u′′
j �

�

�xj
�ūi + u′′

i �

− ��0 + �′ + �′′�
���̄ + � ′′�

�xi
− g�i3	 (7-1)

where Eq. (4-36) is used to represent the pressure gradient force, with � and �
decomposed using the definitions given by Eqs. (4-3) and (4-12). Assuming that

the synoptic-scale variables are in hydrostatic equilibrium, and that fluctuations

in potential temperature (i.e., �′ and �′′) are neglected relative to �0 except when
multiplied by gravity,2 Eq. (7-1) can be rewritten as

�

�t

(
ūi + u′′

i

) = −(ūj + u′′
j

) �
�xj

(
ūi + u′′

i

)− �0
��� ′ + � ′′�

�xi

− �0

[
��0

�x
�i1 +

��0

�y
�i2

]
+ g�′

�0
�i3 +

g�′′

�0
�i3
 (7-2)

Averaging this equation over a grid volume using Eq. (4-6) and applying the

assumptions given by Eq. (4-8) yields

�ūi

�t
= −ūj

�

�xj
ūi − u′′

j

�

�xj
u′′
i − �0

�� ′

�xi

− �0

[
��0

�x
�i1 +

��0

�y
�i2

]
+ g

�′

�0
�i3
 (7-3)
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Subtracting Eq. (7-3) from (7-2) gives

�u′′
i

�t
=−ūj

�

�xj
u′′
i −u′′

j

�u′′
i

�xj
−u′′

j

�ūi

�xj
+u′′

j

�u′′
i

�xj
−�0

�� ′′

�xi
+g

�′′

�0
�i3	 (7-4)

which is a prognostic equation for the subgrid-scale velocity perturbation.

Multiplying Eq. (7-4) by u′′
i , averaging using Eq. (4-6), and applying the

assumption3 u′′
i = 0 results in

�ē

�t
= −ūj

�ē

�xj
− u′′

j

�e

�xj
− u′′

j u
′′
i

�ūi

�xj
− �0u

′′
i

�� ′′

�xi
+ g

u′′
i �

′′

�0
�i3	 (7-5)

where ē = 1

2
u

′′2
i and e = 1

2
u

′′2
i . In the context of a numerical model, Eq. (7-5) is

the grid-volume–averaged, subgrid-scale perturbation kinetic energy equation.

This equation is usually called the turbulent kinetic energy equation,4 with ē
the average turbulent kinetic energy.5 The individual terms in Eq. (7-5) have the

interpretation given in Table 7-1.

TABLE 7-1.

An Interpretation of the Individual Terms in Eq. (7-5)a

Term Interpretation

�ē

�t
Local grid-volume change of averaged subgrid-scale perturbation

kinetic energy ē

ūj

�ē

�xj
Advection of ē by the grid-volume–averaged velocity

u′′
j

�e

�xj
Grid-volume–averaged advection of e by the subgrid-scale

perturbation velocity

u′′
j u

′′
i

�ūi

�xj
Extraction from or input to ē from the existence of both an average

velocity shear and subgrid-scale velocity fluxes; also referred to as

the shear production of turbulent kinetic energy

�0u
′′
i

�� ′′

�xi
Multiplying this term by �0 and assuming that the anelastic

conservation-of-mass equation is valid for the subgrid scale (i.e.,

��/�xi��0u
′′
i = 0� yields �0��/�xi� �0u

′′
i �

′′. Therefore, when the

anelastic assumption is valid, this term causes changes in ē only by

advection through the boundaries of the grid volume. As discussed

by Lumley and Panofsky (1964), the influence of the correlation

between the turbulent velocity and pressure variables is to transfer

kinetic energy between the three velocity components.

g
u′′
i �

′′

�0
�i3 = g

w′′�′′

�0
Extraction or production of ē by buoyancy; referred to as the buoyant

production of turbulent kinetic energy

aLumley and Panofsky (1964), from which the derivation of Eq. (7-5) was based, discuss the turbulent kinetic

energy equation and its derivation in detail.
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If Eq. (7-5) were used to simulate the details of turbulence in a model, then

the molecular dissipation of average turbulent kinetic energy would be included

to guarantee a sink for this energy. In a mesoscale model, however, as discussed

in Section 10.6, computational devices such as horizontal filters are applied

to prevent the artificial accumulation of kinetic energy at short wavelengths.

Such mechanisms are necessitated by the inability to resolve both the mesoscale

and the small spatial scales in which the molecular dissipation of kinetic energy

becomes significant.6

To contrast the relative contribution of the two source–sink terms of ē in

Eq. (7-5), it is useful to define the ratio

Rf =
g

�0
w′′�′′
/[

w′′u′′ �ū
�z

+ w′′v′′
�v̄

�z

]
	 (7-6)

where Rf is called the flux Richardson number. In this expression, horizontal

contributions to the shear production of ē are neglected and ��ū/�z� �
��v̄/�z�  ��w̄/�z�. The flux Richardson number is a measure of the relative

contribution of the buoyant production or dissipation of averaged, subgrid-scale

kinetic energy relative to its generation or extraction by the vertical shear of

the averaged horizontal wind.

In analogy with the molecular fluxes of heat and momentum [e.g.,

Eq. (3-29)], the vertical subgrid-scale flux terms w′′�′′	 w′′u′′	 and w′′v′′ are

often represented by

w′′�′′ =−K�

��̄

�z
	 w′′q′′

k = −K�

�q̄k
�z

	 w′′� ′′
m − K�

���m

�z
	

w′′u′′ =−Km

�ū

�z
	 and w′′v′′ = −Km

�v̄

�z
	

(7-7)

as assumed, for example, by Eq. (5-3), where K� and Km are referred to as

exchange coefficients. This form of representing the grid-volume subgrid-scale

fluxes is called first-order closure. As discussed later in this section, however, it

is important to note that although molecular mixing is a function of the type of

fluid involved, turbulent mixing, such as represented by Eq. (7-7), is a function

of the flow. Therefore, the turbulent exchange coefficients K� and Km given

in Eq. (7-7) are not constant in time or in space. Moreover, the expressions

given by Eq. (7-7) require that the subgrid-scale fluxes be downgradient as long
as the exchange coefficients are positive. In the atmosphere, countergradient
turbulent fluxes are often observed (e.g., Deardorff 1966), as discussed just

before Section 7.3.3.3. Nonetheless, Eq. (7-7) has been shown to be a useful

representation of subgrid-scale fluxes.
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Substituting Eq. (7-7) into Eq. (7-6) yields

Rf = K�

g

�0

��̄

�z

/
Km

[(
�ū

�z

)2
+
(
�v̄

�z

)2]
= K�

Km

g

�0

��̄

�z

/[(�ū
�z

)2
+
(
�v̄

�z

)2]
= K�

Km

Ri	 (7-8)

where Ri is called the gradient Richardson number. The sign of Ri is determined

by the sign of the lapse rate of potential temperature. Thus the following

conditions apply:

� Ri > 0 corresponds to ��̄/�z > 0, which indicates a stably-stratified layer.

� Ri = 0 corresponds to ��̄/�z = 0, which corresponds to neutral

stratification.

� Ri < 0 corresponds to ��̄/�z < 0, which indicates an unstably stratified

layer.

Theory (e.g., Dutton 1976:79) indicates that when Ri is greater than 0.25, the

stable stratification sufficiently suppresses turbulence so that the flow becomes

laminar, even in the presence of mean wind shear. This value of Ri is called the

critical Richardson number.
The unstable-stratified layer itself is broken down into two regimes:

� �Ri� ≤ 1, where the shear production of subgrid-scale kinetic energy is

important (a regime referred to as forced convection).
� �Ri� > 1, where the shear production becomes unimportant relative to the

buoyant product of subgrid-scale kinetic energy (a regime called free con-
vection).

The characteristic size of turbulent eddies in the atmosphere are larger during

free convection than under forced convection. Brutsaert (1999) provides a recent

review of boundary-layer turbulence during free convection.

As reported in Turner (1969), the intensity of turbulence near the ground

can be estimated straightforwardly using a wind speed of 10 m, incoming solar

radiation, cloud cover, and time of day. The stability classification scheme dis-

cussed by Turner forms the foundation of most air quality assessments on the

mesoscale in the United States today. Unfortunately, although the dispersion

estimates were developed from observations of diffusion over flat, horizontally

homogeneous terrain, Gaussian plume models using these estimates are being

applied for a wide range of mesoscale systems that are neither flat nor homo-

geneous. As reported by the American Meteorological Society in a position

paper (AMS 1978), over flat, horizontally homogeneous terrain, Gaussian plume

models probably give estimates of downwind plume concentrations within a
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factor of 2. However, much more serious errors can result when this idealized

topography is not achieved (e.g., Pielke et al. 1983).
Equation (7-4) can be used to obtain prognostic conservation equations for

the subgrid-scale fluxes. Multiplying Eq. (7-4) by u′′
k yields

u′′
k

�u′′
i

�t
= −u′′

k ūj

�

�xj
u′′
i − u′′

ku
′′
j

�u′′
i

�xj
− u′′

ku
′′
j

�ūi

�xj

+ u′′
ku

′′
j

�u′′
i

�xj
− u′′

k�0
�� ′′

�xi
+ g u′′

k

�′′

�0
�i3
 (7-9)

Writing Eq. (7-4) with k as the free index and then multiplying by u′′
i yields an

equation for u′′
i �u

′′
k/�t. Adding that equation to Eq. (7-9) results in

�

�t
�u′′

ku
′′
i � = −ūj

�

�xj
u′′
ku

′′
i − u′′

j

�

�xj
u′′
ku

′′
i − u′′

i u
′′
j

�ūk

�xj
− u′′

ku
′′
j

�ūi

�xj

+ u′′
i u

′′
j

�

�xj
u′′
k + u′′

k u
′′
j

�u′′
i

�xj
− u′′

i �0
�� ′′

�xk

− u′′
k�0

�� ′′

�xi
+ gu′′

i

�′′

�0
�k3 + g u′′

k

�′′

�0
�i3
 (7-10)

Grid-volume averaging Eq. (7-10) using the assumptions given by Eq. (4-8)

yields

�

�t
u′′
ku

′′
i = −ūj

�

�xj
u′′
ku

′′
i − u′′

j

�

�xj
u′′
ku

′′
i − u′′

i u
′′
j

�ūk

�xj
− u′′

ku
′′
j

�ūi

�xj

− �0 u
′′
i

�� ′′

�xk
− �0 u

′′
k

�� ′′

�xi
+ g

�0
�k3 u

′′
i �

′′ + g

�0
�i3 u

′′
k�

′′
 (7-11)

Prognostic subgrid-scale equations can also be obtained for u′′
i �

′′, u′′
i q

′′
k , and

u′′
i �

′′
m. To illustrate how these equations are derived, multiply Eq. (7-4) by �′′,

which results in

�′′ �u
′′
i

�t
= −�′′ ūj

�

�xj
u′′
i − �′′u′′

j

�u′′
i

�xj
− �′′u′′

j

�ūi

�xj

+ �′′ u′′
j

�u′′
i

�xj
− �′′�0

�� ′′

�xi
+ g

�
′′2

�0
�i3
 (7-12)

A prognostic equation for �′′ can be obtained in a manner analogous to that

used to obtain Eq. (7-4). Equation (2-44) for � can be written as

�

�t
��̄ + �′′� = −(ūj + u′′

j

) �
�xj

��̄ + �′′�+ S�
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The source–sink term, S�, can be decomposed into a portion that is dependent

only on grid-resolved quantities, which are defined here as S̄�, and a remainder

that is also a function of subgrid-scale effects, S ′′
� . Averaging this relation over

a grid volume using Eq. (4-6) and applying the assumptions given by Eq. (4-8)

yields

��̄

�t
= −ūj

�

�xj
�̄ − u′′

j

��′′

�xj
+ S̄�


Note that requiring S ′′
� ≡ 0 assumes that the source–sink term has subgrid-scale

effects that average to 0 across the grid volume. This assumption is likely to be

often unrealistic, but nonetheless is used here in the derivation of �′′.
Subtracting the equation for ��̄

�t
from

���̄+�′′�
�t

yields

��′′

�t
= −ūj

��′′

�xj
− u′′

j

�

�xj
��̄ + �′′�+ u′′

j

��′′

�xj
+ S� − S ′′

� 
 (7-13)

Equation (7-13) can be multiplied by u′′
i and added to Eq. (7-12). Perform-

ing the grid-volume average to this equation, using the assumptions given by

Eq. (4-8) results in

�

�t
u′′
i �

′′ = −ūj

�

�xj
u′′
i �

′′ − u′′
j u

′′
i

��̄

�xj
− �′′u′′

j

�ūi

�xj
− u′′

j u
′′
i

��′′

�xj

− �′′u′′
j

�u′′
i

�xj
− �0�

′′ ��
′′

�xi
+ g

�0
�i3 �

′′2 + u′′
i S

′′
� 
 (7-14)

The prognostic equation for �′′2 can be determined from Eq. (7-13) by

multiplying that expression by �′′ and applying the assumption given by

Eq. (4-8), which results in

� �′′2

�t
= −ūj

�

�xj
�′′2 − u′′

j �
′′ �

�xj
�̄ − u′′

j

�

�xj
�′′2 − �′′S ′′

� 


These prognostic equations for the subgrid-scale fluxes are referred to as second-
order closure equations, since they provide explicit conservation equations that

are part of

• the conservation-of-velocity equation	 ��u′′
ku

′′
i �/�t	

• the conservation-of-heat equation	 ��u′′
i �

′′�/�t	

• the conservation-of-water equation	 ��u′′
i q

′′�/�t	

• the conservation-of-other atmospheric gases and

aerosols equation	 ��u′′
i �

′′
m�/�t	 and

• the conservation-of-mass of air equation	 ���′′u′′
i �/�t


(7-15)
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Of these equations, when the assumption that ��′′�/�0 � 1 is made, an equation

for �′′u′′
i is ignored.

The full equations represented by Eq. (7-15) are computationally expensive

to solve, and in all cases either prognostic equations must be developed for the

third-order correlation terms (i.e., u′′
j

�
�xj

�′′2, u′′
j

�
�xj

u′′
ku

′′
i , etc.) or an assumption

made regarding their functional form. The development of prognostic equations

will introduce fourth-order correlation terms with an even higher computational

cost. The necessity of truncating the derivation of successively higher-order

subgrid-scale prognostic equations is called closure. Second-order closure, for
example, means that functional forms are assumed for the third-order correla-

tion terms. Third-order closure means that functional terms are specified for

the fourth-order closure terms that appear in the prognostic equations for the

third-order terms.

Mellor and Yamada (1974) present a classic overview of subgrid-scale flux

closure schemes. They start with the complete subgrid flux equations such as

those shown by, for example, Eqs. (7-11) and (7-14). They then define differ-

ent levels of complexity in which they discriminate into four levels of detail

in the parameterizations. Their level 4, for example, retains the complete sub-

grid flux equations in their prognostic form, while level 1 is of the form given

by Eq. (7-7). Shafran et al. (2000) discuss level-1.5 parameterizations in which

the only prognostic subgrid flux equation used is the equation for subgrid-

scale kinetic energy. In the words of Mellor and Yamada (1974), the goal of

developing a hierarchical representation is to obtain a parameterization that

is “intuitively attractive and which optimizes computational speed and conve-

nience without unduly sacrificing accuracy.” Petersen and Holtslag (1999) dis-

cuss, for example, a first-order closure for the fluxes and covariances of �.
Sharan et al. (1999) use a level-2 Mellor–Yamada framework to represent �w

in a stable boundary layer. Glendening (2000) discusses the turbulent kinetic

energy budgets for strong shear conditions.

7.2 Surface Layer Parameterization

A parameterization of the vertical subgrid-scale fluxes near the ground can

be obtained using relations such as those given by Eq. (7-7), along with the

requirement of dimensional consistency.7 This parameterization plays a major

role in the parameterization of the planetary boundary layer as discussed later

in this chapter.
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From Eq. (7-7),

w′′u′′ = −Km

�ū

�z
= −u2

∗ cos

w′′v′′ = −Km

�v̄

�z
= −u2

∗ sin	
(7-16)

with

arctan�v̄/ū� =  and �̄u2
∗ = "


Equation (7-16) is a level-1 representation. The parameter u∗ is called the

friction velocity,8 which, when squared and multiplied by the fractional contribu-

tion of the mean wind to each component direction, is equal to the subgrid-scale

fluxes on the left side of Eq. (7-16). The variable " is the shearing stress caused
by the horizontal wind. If V is the magnitude of the grid-volume–averaged flow

[V = �ū2 + v̄2�1/2], then Eq. (7-16) can also be written as

Km �V /�z = u2
∗
 (7-17)

Since Km has dimensions of a length multiplied by a velocity, it is reasonable

to assume that

Km = kzu∗
 (7-18)

In Eq. (7-16), the friction velocity is the characteristic velocity and kz is used as

a length scale of turbulent eddies near the ground. The constant of proportion-

ality, k, is called von Karman’s constant, which from observations in the atmo-

sphere (e.g., Högström 1996) is estimated to have a value of k = 0
40 ± 0
01
(although Bergmann 1998 reports on a value of k = 0
3678; discussions of this
value of the von Karman constant are given in Andreas and Treviño 2000 and

Bergmann 2000). The relation given by Eq. (7-18), however, only applies when

buoyancy production of turbulent kinetic energy is negligible (i.e., Ri � 0), with

the shear of the mean wind providing the source for the turbulent energy.

Substituting Eq. (7-18) into (7-17) yields

�V /�z = u∗/kz	 (7-19)

which, integrating between the level V = 0 (defined as z0) and an arbitrary level

above the ground z, gives∫ z
z0

�V

�z
dz = V �z� =

∫ z
z0

u∗
kz

dz = u∗0
k

∫ z
z0

dz

z
= u∗0

k
ln

z

z0

 (7-20)

This relation is called the logarithmic wind profile, and z0 is called the

aerodynamic roughness. With relatively homogeneous upwind fetch, Carl

et al. (1973) found no significant deviation of the wind profile from Eq. (7-20)

up to 150 m when �Ri�, as computed from data at 18 and 30 m on a tower, was
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less than 0.05. In performing the integration in Eq. (7-20), u∗ was assumed to

be invariant with height; thus the layer over which Eq. (7-20) is an accurate

approximation is often called the constant flux layer. This term is inaccurate,

however, since the flux usually decreases exponentially near the surface. If

the surface layer were associated with a constant flux, then the wind speeds

could not decrease near the surface, since �
�z
u2
∗ = �

�z
V ′′w′′ would be 0! It is

more appropriate to define u∗ as the layer-averaged value using the mean-value

theorem of calculus to factor u∗ through the integral in Eq. (7-20). This is the

reason why the subscript “0” was included in u∗ in Eq. (7-20). In addition,

the wind is assumed to not change direction with height; otherwise, Eq. (7-20)

could not be written as a scalar equation.

The value of z0 depends on the characteristics of the surface, ranging from

a value of 0.001 cm over smooth ice to 10 m over large buildings (Oke 1978).

Driese and Reiners (1997) provide values of z0 for semi-arid natural shrub-

land. Over some surfaces, such as long grasses and water, z0 can be a func-

tion of the friction velocity. Over sand, for example, as reported by Bagnold

(1973), and Vugts and Cannemeijer (1981), z0 increases substantially when

u∗ ≥ 0
1��s�̄
−1gd�1/2, because of the aeolian transport of sand at stronger wind

speeds. In this expression, �s is the density of sand and d is the diameter of the

sand grains, assuming that all are of the same size.

Over water, Garratt (1992) suggested the form

z0 = �0
01625± 0
00225�u2
∗/g	 (7-21)

while Sheih et al. (1979) suggested the form

z0 =
(
0
016u2

∗/g
)+ v/�9
1u∗�	

where v is the kinematic viscosity of air (∼1
5× 10−5 s−1). Additional discus-

sion of values of z0 to use over water, including the effect of waves, is given in

Powers and Stoelinga (2000). The modification of surface drag by ocean waves

is discussed in Donelan et al. (1997). Zeng et al. (1998) also summarize forms

of z0 to use over water. Chamberlain (1983) suggested that Eq. (7-21) may also

apply over other mobile surfaces, such as sand and snow.

Representative values of z0 are presented in Table 7-2. A useful illustration

of characteristic values of roughness is given in McRae et al. (1982a, Figure 3).
The paper by van Dop (1983) provides a map of estimated average values of

z0 for areas on the order of 20 × 20 km2 in the Netherlands based on several

land-type categories.

For specific locations, z0 is calculated by taking wind observations at several

heights within the surface layer when the mean wind speed is strong, so that

Ri = 0 and V � �u∗/k� ln�z/z0) from Eq. (7-20) can be used. The winds are

then plotted as a function of the natural logarithm of height, as illustrated in

Figure 7-2 and extrapolated to the value V = 0. The intersection of the ln z-axis



7.2 Surface Layer Parameterization 175

TABLE 7-2.

Representative Values of Aerodynamic Roughness for a Uniform Distribution
of These Types of Ground Cover.

Aerodynamic Height of Displacement

roughness, z0 of ground cover height, D

Icea 0.001 cm

Smooth mud flatsf 0.001 cm

Snowa 0.005–0.01 cm

Sanda 0.03 cm

Smooth desertf 0.03 cm

Smooth snow on short grass c 0.005 cm

Snow surface, natural prairiec 0.1 cm

Soilsa 0.1–1 cm

Short grassa 0.3–1 cm 2–10 cm

Mown grassc 0.2 cm 1.5 cm

0.7 cm 3 cm

2.4 cm with V at 4.5 cm

2 m = 2 m s−1

1.7 cm with V at

2 m = 6.8 m s−1

Long grassa 4–10 cm 25 cm–1 m

Long grass (60–70 cm) 15 cmf , 9 cmc with V

at 2 m = 1.5 m s−1

11 cmf , 6.1 cmc with V

at 2 m = 3.5 m s−1

8 cmf , 3.7 cmc with V

at 2 m = 6.2 m s−1

Agricultural cropsa 4–20 cmd ∼40 cm–2 md ∼27–∼1
3 me

Orchardsa 50–1 md ∼5 m–10 md ∼3
3–∼6
7 me

Deciduous forestsa 1–6 md ∼10 m–60 md ∼6
7–∼40 me

Coniferous forestsa 1–6 md ∼10 m–60 md ∼6
7–∼40 me

Rural Delmarva peninsulab 33 cm (for NW flow)

Pakistan desertc 0.03 cm

aFrom Oke (1978).
bFrom Snow (1981).
cFrom Priestly (1959).
dUsing Eq. (7-36).
eUsing Eq. (7-35).
f From Sellers (1965).

defines z0. For particularly complex locations, such as city centers, Davenport

et al. (2000) recommends determining effective roughness using scale models

in wind tunnels.

When the atmosphere near the ground is not neutrally stratified, Eq. (7-19)

must be generalized to include buoyancy effects. The flux Richardson number



176 7 Parameterization-Averaged Fluxes

Fig. 7-2. Schematic illustration of the procedure used to compute z0 from observa-
tions of mean wind speed at three levels near the ground in a neutrally stratified atmo-
sphere. The slope of the line gives k/u∗.

given by Eq. (7-6) can be written as

Rf =
−g

�0
w′′�′′
/
u2
∗
�V

�z
	 (7-22)

using Eq. (7-16) and the definition of V .9 The flux Richardson number is then

multiplied by

�M = kz

u∗

�V

�z
	 (7-23)

where �M is called the nondimensional wind shear, yielding

Rf �M = −g w′′�′′ kz/�0 u
3
∗ = z/L
 (7-24)

The value of �M is defined as unity under neutral stratification [so that

Eq. (7-19) is satisfied] and as a function of the flux Richardson number other-

wise. The parameter L = −�0 u
3
∗/gw′′�′′ k has the dimensions of a length and

is called the Monin length. Since �M is assumed to be a function of Rf , �M

can be written as

�M = �M�Rf� = �M��MRf/�M� = �M

(
�z/L��M

) = �M�z/L�

using Eq. (7-24), so that �M is a function of z/L only. Values of �M determined

from observations are given in Figure 7-3. When z/L < 0 (the atmosphere
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Fig. 7-3. Plot of �M against 
z − d�/L in log-log representation for unstable stratifi-
cation. The small dots are data from Högström (1988). The other symbols have been
derived from modified expressions from the sources listed in the key. (From Högström
1996 with kind permission from Kluwer Academic Publishers.)

is unstably stratified), �M < 1, while under a stable stratification, �M > 1.

The modification to the wind profile can be determined using Eq. (7-23) and

Figure 7-3. The definition given by Eq. (7-23) can be rewritten as

kz

u∗

�V

�z
= 1− �1− �M�	

or

�V

�z
= u∗

kz
− �1− �M�

kz
u∗
 (7-25)

Integrating Eq. (7-25) with height, as was performed to achieve Eq. (7-20), gives

V = u∗0
k

ln
z

z0
− u∗0

k

∫ z/L
z0/L

�1− �M�d ln
z

L
	 (7-26)

where a change of variable was made in the integrand and limits. In writing

the right side of Eq. (7-26), L0 and u∗0 are assumed to be constant with height
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(L0 is the layer-averaged value of the Monin length, L). Equation (7-26) is often

written in the form

V �z� = u∗
k

[
ln

z

z0
− !M

(
z

L

)]
	 (7-27)

where z/L  z0/L is assumed; that is,

!M =
∫ z/L
0

�1− �M�

z/L
d
( z
L

)

 (7-28)

The function !M�z/L� is the correction to the logarithmic wind profile result-

ing from the deviation from neutral stratification. For a neutral stratification,

!M = 0. Figure 7-4 schematically illustrates the form of V when plotted as a

function of ln z for stable, unstable, and neutral stratification. Note that z0 is

presumed to be independent of stability, so that each profile is extrapolated to

the same value. This is required since �M approaches unity as z decreases (i.e.,

z/L = z0/L � 0 if z0 � L). Specific observational estimates of �M are dis-

cussed in Högström (1996), with one suggested formula presented in Eq. (7-42).

Expressions analogous to �M and !M can also be derived for the vertical

subgrid-scale fluxes of potential temperature, water, and other gaseous and

Fig. 7-4. Schematic illustration of the procedure used to compute the wind profile
near the ground from observations of mean wind speed at three levels, along with the
knowledge of the stability as measured by z/L. The difference between the logarith-
mic wind profile and the actual wind profile at any level is given by (u∗/k) �M [from
Eq. (7-27); �M < 0 when z/L > 0, �M > 0 when z/L < 0].
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Fig. 7-5. As in Figure 7-3 except for �H. (From Högström 1996 with kind permission
from Kluwer Academic Publishers.)

aerosol atmospheric materials. Figure 7-5 illustrates a function form for �H.

From Eq. (7-7), and using the same form to represent w′′q′′
n and w′′� ′′

m,

w′′�′′ = −K�

��̄

�z
= −u∗ �∗	

w′′q′′
n = −Kq

�q̄n
�z

= −u∗ qn∗	 (7-29)

w′′� ′′
m = −K�

���m

�z
= −u∗ �m∗ 


The parameter �∗ could be called the flux temperature, and qn∗ and �m∗ are

similar variables that have not been assigned labels. Generally, Kq and K� are

assumed to be equal to K� (Yamada 1977), since within the surface layer, �	 qn,
and �m are presumed to mix solely by subgrid-scale advection. The value of

Km, in contrast, also includes the effect of the subgrid-scale pressure on the

subgrid-scale velocity [as is evident from, for example, Eq. (7-4)], so that in
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general, Km is not assumed to be equal to the other three exchange coefficients.

Warhaft (1976) also shows that there should be differences between K� and Kq3

when the correlation �′′q′′
3 is small or when ��̄/�z and �q̄/�z have opposite

signs. However, these effects are expected to have a relatively small effect on

the magnitude of the exchange coefficients (Wyngaard 1981, personal commu-

nication), although Lang et al. (1983) presented evidence that K� and Kq3
can be

significantly different when substantial horizontal advection of heat and mois-

ture occur over a cool surface. Nevertheless, in the analysis presented below,

an equality between K� and Kq3
is assumed, which should be valid except over

wet areas surrounded by warmer, dry land. This topic requires additional study.

By analogy with Eq. (7-23),

�kz

�∗

��̄

�z
= �kz

qn∗

�q̄n
�z

= �kz

�m∗

���m

�z
= ��H = �̂H	 (7-30)

where the scale and intensity of turbulent mixing of �̄, q̄n, and ��m are assumed

to be the same, with � used to indicate that the characteristic vertical mixing

length for �̄, q̄, and ��m can be different than that for V . It has also been shown

that radiative cooling can significantly affect the magnitude of �H (Garratt and

Brost 1981; Gopalakrishnan et al. 1998). In Eq. (7-30), �̂H equal to unity at

z/L = 0 is required.

Following the same procedure as that used to derive Eq. (7-25) yields

�̄�z� = �̄�z0�+
�∗
�k

[
ln

z

z0
− !H

( z
L

)]
	

q̄n�z� = q̄n�z0�+
qn∗
�k

[
ln

z

z0
− !H

( z
L

)]
	 (7-31)

���z� = ��m�z0�+
�m∗
�k

[
ln

z

z0
− !H

( z
L

)]
	

where

!H =
∫ z/L
0

1− �̂H

z/L
d�z/L�	 (7-32)

with a plot of �H as a function of z/L from Högström (1996) given in Fig-

ure 7-5. In the derivation of !H	 z0 � z has been assumed. The first terms on

the right side of each equation in Eq. (7-31) are the values of �̄	 q̄n, and ��m

evaluated at the level where V becomes 0 (i.e., z0), although some conclude

that a different roughness length should be used (see Mahrt 1996:95–96 for a

discussion; also Bosveld et al. 1999, Junfang et al. 1999, and Ren et al. 1999).
Ma and Daggupaty (1998) discuss effective roughness lengths of momentum

and heat exchange associated with roughness changes. Sun (1999) concluded
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that it is more accurate to define ��z0� in terms of the surface irradiance tem-

perature rather than using the surface radiation temperature and adjusting a z0
specifically for �. She also found that a roughness length defined for � varies in

space and time much more than z0 as obtained from Eq. (7-20). Hence in this

chapter we use the same z0 for Eq. (7-31).

Substituting from Eqs. (7-30) and (7-23) for the vertical gradient terms in

Eqs. (7-29) and (7-17) gives

Km = ku∗z
�M

and K� =
�ku∗z

�̂H

	 (7-33)

which provides estimates of the exchange coefficients near the ground.

The relation between K� and Km can be derived for certain circumstances.

Pandolfo (1966) has shown from observations that z/L = Ri near the ground

under neutral and unstably stratified lapse rates. When this is true,

Ri = z/L = �MR f = �M�K�/Km�Ri	

from Eqs. (7-24) and (7-8), so that Km/K� = �M. Therefore, from Eq. (7-33),

K� = ku∗ z/�
2
M


Thus, since �M < 1 when z/L < 0 (see, e.g., Figure 7-3), the turbulent mixing

of �̄, q̄n, and ��m is greater than that for velocity in unstable air near the ground.

Unfortunately, this result is not consistent with a value of � different than 1.

From this analysis, Km = K� when z/L = 0, since �M for that value is unity.

However, from Eq. (7-33) and Figs. 7-3 and 7-5, K� � 1
05Km at z/L = 0.

Reexamination of the data is needed to clear up this discrepancy near z/L = 0.

However, the values of Km and KH are closer to each other at z/L = 0 using the

Högström (1996) paper than in the earlier Businger et al. (1971) formulation

summarized in Pielke (1982).

When the ground cover is sufficiently high so that significant turbulent flow

can occur below the top (e.g., within a pine forest, cornfield, etc.), Eqs. (7-27)

and (7-31) must be rewritten as

V �z̄� = u∗
k

[
ln

z−D

z0
−!M

(
z−D

L

)]
�̄�z� =�̄0�D+z0�+

�∗
�k

[
ln

z−D

z0
−!H

(
z−D

L

)]
q̄n�z� =q̄n0 �D+z0�+

qn∗
�k

[
ln

z−D

z0
−!H

(
z−D

L

)]
��m�z�=��m0

�D+z0�+
�m∗
�k

[
ln

z−D

z0
−!H

(
z−D

L

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z≥D+z0	 (7-34)
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where D is called the zero-plane displacement.10 Values of z0 used in these rela-

tions are displaced a distance D from the actual ground surface. In other words,

because of the significant height of ground cover, V 	 �̄	 q̄n, and �m respond to

the aerodynamic roughness of the top of the ground cover (e.g., the canopy)

rather than the ground surface or the morphology within the high ground cover.

To be a realistic representation of the ground cover, however, the cover must be

uniformly distributed, such as in a forest or large agricultural area. The values

of �̄�D + z0�	 q̄n0�D + z0�, and ��m0
�D + z0� are the values that would occur if

the height z = D actually corresponded to z � 0. Similarly, V �D + z0� would

equal 0 if z = D actually were z � 0, as shown schematically by the dashed

line in Figure 7-6.

Values of D are determined experimentally by plotting wind speed as a func-

tion of ln�z − D� for strong winds. Different D values are substituted into

the expression for V given in Eq. (7-34) until the logarithmic wind profile is

achieved (i.e., a straight line, as illustrated schematically in Figure 7-7).

A useful formula to estimate D for closely spaced stands of crops and trees

(from Oke 1978:98) is given by

D = 2

3
h	 (7-35)

Fig. 7-6. Schematic illustration of a wind profile (solid line) above and within a
dense, horizontally and vertically uniform ground cover. The dashed line represents the
expected wind profile if D = 0. Below z0 +D, the profile obeys Eq. (7-37) with a constant
value of a.
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Fig. 7-7. Schematic illustration of the procedure used to compute the wind profile
over tall, dense ground cover given three wind observations over the cover and Ri �
0. In this example, D = 60 cm is assumed to give the best fit to the logarithmic wind
profile; z0 is then determined to equal 10 cm.

where h is the height of the vegetation. Oke (1978:119) also reports on a

suggested relationship between roughness and vegetation height for tall, dense

vegetation, which is given by

log10 z0 = log10 h− 0
98	 (7-36)

so that z0 � h/10. Rosenberg (1974) reports on a formulation for D, based on

observations over different types of agricultural crops given by

log10 D = 0
979 log10 h− 0
154


Within the ground cover, a wind profile of

V = V D exp a

(
ln z

ln D
− 1

)
�a > 0� (7-37)

can be assumed, with V = V D at the zero-plane displacement height and

limz→0 V → 0.11 However, this expression is accurate only when the density of
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the ground cover is uniform with height. In a non-uniformly distributed ground

cover, such as a deciduous forest, a local wind maximum can occur below the

leaf canopy in the trunk region. Monteith (1975b) provides details on wind

profiles (and vertical distributions of other variables) in a variety of vegetation

types. When Eq. (7-37) is used within a vegetative cover, a is assumed to be

directly proportional to the leaf area index LA, where

LA = AS/AG	 (7-38)

with AS the total leaf area per area of ground surface AG.

The value of a in Eq. (7-37) is experimentally determined by plotting

observed wind speeds in the form of ln
(
V /V D

)
within the ground cover as a

function of �ln z/lnD�− 1. Fitting the data with a straight line, and recognizing

that V = 0 at z = 0, yields a. Within corn, for example, Blackadar (1969,

personal communication) estimates a value of a � 2
0 using the relationship

V = V D exp a��z/D�− 1�.
In his simulation of drainage flow, Garrett (1983a) also found that wind

speeds are substantially influenced by the presence of forest. With a 50% cov-

erage of forest, his model predicts a 50% decrease in maximum velocity and

depth of the nocturnal drainage flow. Yamada’s (1982) model of the bound-

ary layer structure over flat terrain simulates nearly constant low wind speeds

within a forest canopy with large wind shears near the treetops. Oke (1978:131)

concluded that for a given wind speed, the atmosphere is more turbulent over

a forest than over any other natural surface (excluding topographic effects).

Wilson and Shaw (1977) have presented results using a second-order–closure,

one-dimensional model of the flow within a corn crop. Lord et al. (1972) used a

one-dimensional model to investigate the effect of tundra vegetation on the land-

air interface and concluded that a three-dimensional representation is necessary

to account for the horizontal heterogeneity caused by the presence of thaw lakes

atop the permafrost.

Figure 7-6 illustrates how a wind profile would appear during neutral

stratification above and within a dense, horizontally and vertically uniform

ground cover when Eqs. (7-34) and (7-37) apply. The profiles of �̄�z�, q̄n�z�,
and ��m�z� within such ground cover are generally more complex, however,

since �̄�z� is significantly influenced by radiative flux divergence, whereas

water and other gaseous and aerosol atmospheric materials flow into and out of

the soil and vegetation. The radiation and moisture budgets within and above

vegetation are discussed in Section 11.3.3.2.

Enough basic material has been introduced to permit the discussion of the

parameterization of the planetary boundary layer within mesoscale models.

Additional discussion of similarity theory can be found in such sources as

Jensen and Busch (1982), Arya (1988), Stull (1988), Sorbjan (1989), and Garratt

(1992).
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7.3 Planetary Boundary-Layer Parameterization

Representation of the planetary boundary layer in mesoscale models is

handled primarily through the subgrid-scale correlation terms, since the model

grid resolution is too large to resolve explicitly the small-scale fluxes found

in this layer. Treatment of the influence of the planetary boundary layer in

numerical models can be grouped into two classes:

� those that treat it as a single layer (e.g., Deardorff 1972; Mahrt 1974; Smith

and Mahrt 1981)

� those that resolve it into a number of discrete levels.

In mesoscale models, the second approach is the most common. As shown by

Anthes et al. (1980), for example, detailed boundary-layer resolution is essential

for accurate solutions when differential heating along complex terrain and across

land–water boundaries is being represented, since significant vertical gradients

of the meteorological variables occur within the planetary boundary layer.

With the discrete level approach, the planetary boundary layer can be divided

into three sections: viscous sublayer, surface layer, and transition layer.

7.3.1 Viscous Sublayer

The viscous sublayer12 is defined as the level near the ground �z < z0; with
D � 0�, where the transfer of the dependent variables by molecular motions

become important. Zilitinkevich (1970) and Deardorff (1974a) suggest relating

temperature and specific humidity at the top of the layer �̄z0 and q̄z0 to the

surface values of the variables �̄G and q̄G using expressions of the form

�̄z0 = �G + 0
0962��∗/k��u∗z0/v�
0
45

and

q̄z0 = qG + 0
0962�q∗/k��u∗z0/v�
0
45
 (7-39)

By analogy,

��z0
= �G + 0
0962��∗/k��u∗z0/v�

0
45


In these expressions, v is the kinematic viscosity of air (∼1
5 × 10−5 m2 s−1)

and k is von Karman’s constant with �∗, u∗, q∗, and �∗ defined by Eqs. (7-27)

and (7-31). Between z = z0 and z = zG, ū = v̄ = w̄ = 0, whereas variations of

p̄ and �̄ across this depth are ignored.

As discussed by Businger (1973), u∗z0/v may be considered the Reynolds

number of the smallest turbulent eddy in the flow. Businger also reports on a

study by Nikuradse (1933) in which laminar flow occurs with u∗z0/v < 0
13,
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whereas turbulent motion dominates with u∗z0/v > 2
5. In between these

two limits, a transition regime exists. The laminar situation is said to be

aerodynamically smooth, whereas the fully turbulent flow is aerodynamically
rough.

7.3.2 Surface Layer

The surface layer extends from z0 to hs , with hs (the top of the surface layer)

usually varying from about 10 m to about 100 m. In this layer, the subgrid-scale

fluxes are represented by mean-layer values that are assumed to be indepen-

dent of height and where the veering of the wind with height owing to the

Coriolis effect is neglected, as used to derive Eqs. (7-27) and (7-32). With the

assumption that the conditions in this layer are steady and horizontally homo-

geneous, investigators (e.g., Yamamoto 1959; Yamamoto and Shimanuki 1966;

Shimanuki 1969) have developed empirical formulations for Eqs. (7-23), (7-28),

(7-30), and (7-32), to specify the relationship between the dependent variables

and the subgrid-scale fluxes. Högström (1996) provides a recent summary of

these formulations. Only a limited number of studies with nonhomogeneous

terrain have been done (e.g., Peterson 1969; Taylor 1977a, b; Taylor and Gent

1981) or sloping terrain (e.g., Gutman and Melgarejo 1981), and this work has

yet to be applied to mesoscale models.

One of the most common formulations for Eqs. (7-27) and (7-31) used in

mesoscale models is that reported by Högström (1996) and Högström (2000,

personal communication), in which13

u∗0 = kV /
[
ln�z/z0�− !M�z/L�

]
	

�∗0 = k
(
�̄�z�− �̄z0

)
/0
95
[
ln�z/z0�− !H�z/L�

]
	

q∗0 = k
(
q̄3�z�− q̄z0

)
/0
95
[
ln�z/z0�− !H�z/L�

]
	

�∗m0
= k
(��m�z�− ��z0m

)
/0
95
[
ln�z/z0�− !H�z/L�

]
	

(7-40)

where

!M =
{
2ln
[
�1+$�/2

]+ln
[
1+�$2/2�

]−2tan−1 $+�/2	 z/L≤0

−5
3$	 0<z/L≤0
5	

where $=�1−19z/L�1/4,

!H =
{
2ln
[
�1+$2

H�/2
]
	 z/L≤0

−8
0$	 0<z/L≤0
5	

where $H=�1−11
6z/L�1/4.

(7-41)
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Högström (2000, personal communication) found that his experimental data for

z/L>0
5 show that �H and �M tend to level off, but the data are very scattered:

�M = kz

u∗0

�V

�z
�
{
�1−19z/L�−1/4	 z/L≤0

1+5
3z/L	 0
5>z/L>0

�H = kz

�∗0

��̄

�z
= kz

q∗0

�q̄3
�z

= kz

�∗m0

���m

�z
�
{
�1−11
6z/L�−1/2	 z/L≤0

1+8
0z/L	 0≤z/L≤0
5	

(7-42)

with the definition of L given in Eq. (7-24), written as L= �̄u2
∗0/kg�∗0 . The value

of � in Eq. (7-31) was determined to be 1.05. The accuracy of �M is estimated

as 10–20% for unstably stratified surface layers with z/L greater than −0
5. The
same accuracy is assumed for �H for unstably stratified surface layers with z/L
greater than −2
0 (Högström 1988). Alternative formulas for these parameters

have been suggested by, for example, Viswanadham and Nogueira (1982), who

provided estimates of �M for very stable, unstable, and near-neutral surface-

layer stability conditions. Carl et al. (1973), using tower data over homogeneous

terrain, concluded that �M approaches a �−z/L�−1/2 relationship in an unstably

stratified surface layer with �z/L� large, rather than �−z/L�−1/4, as given in

Eq. (7-42). DeBruin (1999) proposes a formulation for �M which is a function

of �−z/L�−1/3 as �−z/L� becomes large and approaches the free convection

limit. Hsu et al. (1999) propose !M�z/L�=a�−z/L�b, with a=1
0496 and b=
0
4591 for z/L<0. However, these refinements to �M and �H as applied to

mesoscale modeling are relatively minor and should have only a small effect on

the resultant mean profiles of the dependent variables.

The subgrid-scale flux of other gaseous and atmospheric materials can also

be written as

w′′� ′′
m=−vs��mz

	

where vs is called the deposition velocity14 and ��mz
is the mixing ratio of the

gas or aerosol at level z. In the absence of scavenging by rain or snow (called

wet deposition), this deposition velocity is used to estimate the dry deposition
of materials with a negligible fall velocity onto the ground and vegetation sur-

faces. The value of vs also depends on the chemical species involved. For SO2,

the deposition velocity is estimated to be on the order of 1 cm s−1, whereas

sulfates of size 0.1–1 m are reported to have values of around 0.01–1 cm s−1

(Eliassen 1980). Everett et al. (1979) found a value of vs = 1.4 cm s−1 for

particulate sulfur, whereas Wesely et al. (1978) reports values of vs for ozone

during the daytime ranging from 0.2 to 0.8 cm s−1 with its peak in midmorning.

Lenschow et al. (1981) gave a value of vs of about 0.5 cm s−1 for ozone over a

portion of eastern Colorado during the day. These values of vs are for specific

measurement heights (since ��mz
is a function of z).
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Sheih et al. (1979) report on a formulation for the deposition velocity of SO2

over land given by

vSO2
=ku∗
[
ln�z/z0�+2
6+ku∗rSO2

−!H

]−1
	 (7-43)

where rSO2
represents the surface resistance to SO2 uptake. For a vegetative

surface, rSO2
is the integrated effect of the stomatal resistance of the plants

(called the effective bulk canopy stomatal resistance). Over water, Sheih

et al. (1979) suggest the formulation

vSO2
=ku∗
[
ln�ku∗z/vs�−!H

]−1
	 (7-44)

where vs is the molecular kinematic diffusivity of SO2 in air (vs�0
2 cm2 s−1±
50%)15 with rSO2

=0, since SO2 is highly soluble in water. Values of rSO2
as

a function of stability class are given in Sheih et al. (1979). The deposition

velocity of sulfate aerosols over land and water is given in Sheih et al. (1979) as

vSO4
=ku∗
[
ln�z/z0�+krSO4

u∗−!H

]−1
	 (7-45)

where rSO4
, the surface resistance to particle deposition, is assumed to be

1 s cm−1.

Additional discussions of deposition are given by Wesely and Hicks (1977),

Galloway et al. (1980), Brook et al. (1999), Jackson and Lyford (1999), and

Ma and Daggupaty (2000). Slinn (1982) discusses particle dry deposition to

vegetation.

7.3.3 Transition Layer

The transition layer extends from hs to zi, which ranges from 100 m or so

to several kilometers or more. Above the surface layer, the mean wind changes

direction with height and approaches the free-stream velocity at the height zi as
the subgrid-scale fluxes u′′w′′ and u′′v′′ decrease in magnitude. The definition of

zi, the top of the boundary layer, is the lowest level in the atmosphere at which
the ground surface no longer influences the dependent variables through the
turbulent transfer of mass.16 Tennekes (1974) gives a useful qualitative discus-

sion of the atmospheric boundary layer, and Krishnamurti et al. (1983) discuss
different types of boundary layers resulting from different sets of balance of

forces: (a) a balance among Coriolis, pressure gradient, and frictional forces

(an Ekman boundary layer); (b) a balance between the pressure gradient and

frictional forces and the advective accelerations (an advective boundary layer);
and (c) a balance between the pressure gradient and frictional forces (a Stokes
boundary layer). When thunderstorms occur, the boundary layer can extend into



7.3 Planetary Boundary-Layer Parameterization 189

the stratosphere. However, for most applications in mesoscale models, the plan-

etary boundary layer is between a few hundred meters and several kilometers

or so above the ground.

When the bottom surface is heated, the planetary boundary layer tends to be

well mixed, particularly in potential temperature. Specific humidity is somewhat

less well mixed because the entrainment of dry air into a growing boundary

layer permits a gradient in q̄3 to exist between the top of the planetary boundary

layer and the (usually) more moist surface (Mahrt 1976). Because of horizontal

pressure gradients, winds are the least well mixed. When the surface is cool,

relative to the overlying air, vertical gradients in all of the dependent variables

exist within the planetary boundary layer.

The depth of the planetary boundary layer, zi, is usually associated with an

inversion. As discussed by Oke (1978), there are three types of inversions:

� inversions caused by cooling: radiational cooling at night, or above

stratiform clouds and smog layers, and evaporative cooling over moist

ground

� inversions caused by warming: synoptic subsidence and cumulus-induced

subsidence

� inversions caused by advection: frontal inversions; warm air over cold land,

water, or snow; and vertical differences in the horizontal advection of tem-

perature.

Busch et al. (1982) discussed the formation of inversions over huge areas in the

polar region caused by several of these mechanisms. Diurnal variations in the

height of the inversion and stability within the boundary layer can contribute to

a large wind maximum just above zi, as discussed by Blackadar (1957), Hoxit

(1975), Zeman (1979), McNider and Pielke (1981), Arritt (1985), Arritt and

Pielke (1986), and others. Large wind shears can also develop at that level,

caused by increased surface-layer thermodynamic stability over land during a

hurricane landfall (Powell 1982). Internal gravity waves can occur on such inver-

sions (see Section 5.2.1.2), and can influence boundary-layer structure below

that level (see, e.g., Finnegan and Finnegan 1981). Horizontal roll vortices are

often observed within inversion-capped boundary layers that are heated from

below.17

In the absence of an inversion, when the air is neutrally stratified, Blackadar

and Tennekes (1968) suggested that zi is proportional to u∗/f . In contrast,

Deardorff (1972) and Mahrt (1972), as reported by Moss (1978), suggested that

the lifting condensation level is the appropriate height.

Formulations for the depth of the nocturnal boundary layer have been

suggested by Yu (1978), Nieuwstadt and Driedonks (1979), Yamada (1979a),

Zeman (1979), Mahrt (1981a), Nieuwstadt and Tennekes (1981), Wetzel (1982),

Stull (1983), and others. Tomasi (1983) has evaluated the use of several of these
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schemes to predict the height of the nocturnal inversion in Italy’s Po Valley

during stagnate, clear synoptic conditions. In Yamada’s formulation, nocturnal

longwave radiational cooling is included. Gopalakrishnan (1996) concluded that

with light winds on clear nights, radiational cooling dominates the creation of

the nocturnal boundary-layer depth. Sharan and Gopalakrishnan (1997) evaluate

several parameterizations of turbulence in strongly and weakly stable boundary

layers.

Mahrt (1981b) has studied the transition of a daytime mixed layer to a

nocturnal boundary layer. He found that the ageostrophic wind increases during

the transition because the surface shearing stress decreases more slowly than

does the downward transport of momentum associated with the decreased depth

of turbulence; therefore, the winds turn more toward lower pressure. André and

Mahrt (1982) conclude that for the observational datasets in clear sky conditions

which they investigated, the lower part of the nocturnal inversion is turbulent,

although strongly stratified, while the upper portion, despite its weaker strat-

ification, is created almost completely by longwave radiative flux divergence.

Arya (1981) provides a brief summary of proposed diagnostic and prognostic

relations for parameterizing the height of the nocturnal boundary layer. Mahrt

(1983) gives a brief survey of studies on stably stratified boundary layers. Dayan

and Rodnizki (1999) provide a summary of the behavior of a boundary layer

over Israel for a 3-year period.

Variations of the planetary boundary-layer depth caused by subgrid-scale

fluxes need not be parameterized when a local representation to the exchange

coefficients are used, but will appear through changes in the vertical profile of

the dependent variables. However, when a well-defined inversion is present, it

is useful to include an equation that represents its change over time.

When the surface layer is superadiabatic (i.e., ��̄/�z<0), a simplified

boundary-layer formulation, called a jump model, has been proposed (e.g.,

Ball 1960; Lilly 1968; Tennekes 1973; Deardorff 1974a; Driedonks 1982a).

Illustrated in Figure 7-8, this model has a potential temperature discontinuity

at zi of a magnitude of ��i. Below zi, the turbulent flux of heat, w′′�′′ is

assumed to decrease linearly with height and to become negative in the upper

boundary layer, with its minimum value of w′′
zi
�′′
zi
at the inversion. Above zi,

the lapse rate, defined as ��̄+/�z, is stably stratified. Such a boundary layer

is called a mixed layer, because the dependent variables, particularly �̄, tend to

be uniformly distributed with height.

In this representation, following the discussions of Lilly (1968) and Tennekes

(1973), the growth of zi is given by

�dzi/dt�−w̄zi
=−w′′

zi
�′′
zi
/��̄i	 (7-46)

where w̄zi
represents mesoscale or synoptic vertical motion, or both, at zi. When

w̄i=0, the change in height of zi with time depends on the rate of entrainment



7.3 Planetary Boundary-Layer Parameterization 191

Fig. 7-8. The potential temperature and heat flux profiles assumed in the “jump”
model.

of mass into the boundary layer.18 The prognostic expression for ��̄i is

d��̄i
dt

=
(
dzi
dt

−w̄zi

)
��̄+

�z
+w′′

zi
�′′
zi
−w′′

s �
′′
s

zi
	 (7-47)

where w′′
s �

′′
s is the surface heat flux equal to −u∗�∗ from Eq. (7-29). The first

term on the right side of Eq. (7-47) represents the tendency to increase ��̄i as
the boundary layer rises, whereas the second term tends to decrease ��̄i as the
layer warms from the surface. To specify the heat flux at zi in terms of the

surface heat flux, the assumption is made that

w′′
zi
�′′
zi
=−�w′′

s �
′′
s =+�u∗�∗	 (7-48)

where �=0
2 is usually used (e.g., Yamada and Berman 1979; Driedonks

1982b). Stull (1976) summarized published values of � obtained from obser-

vations, while Betts et al. (1992), and Hägeli et al. (2000) reported on values

of � that are quite different than 0.2. Sun (1993a) concluded that representing

entrainment in such a simple form does not work very well when clouds are

present such that evaporation and radiative cooling can produce negative buoy-

ancy at the inversion height. If d��i/dt is assumed to be small relative to the

other two terms in Eq. (7-47), then Eq. (7-47) can be written as

dzi
dt

= w̄zi
=− 1
2u∗�∗

zi��̄
+/�z

(7-49)
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Deardorff (1974a) has improved on the formulation given by Eq. (7-49) using

his three-dimensional numerical planetary boundary-layer simulation of Day 33

of the Wangara Experiment (Clarke et al. 1971). Deardorff’s (1974a) parameter-

ization has subsequently been adopted by Pielke and Mahrer (1975) and others

and shown to be very realistic when the variation of zi with time is strongly

influenced by surface heating. This prognostic representation for the planetary

boundary-layer height can be written as

�zi
�t

= −ūzi

�zi
�x

− v̄zi
�zi
�y

+w̄zi
+[1
8�w3

∗+1
1u3
∗

− 3
3u2
∗fzi�
]/(

g
z2i

�̄hs

��̄+

�z
+9w2

∗+7
2u2
∗

)
	 (7-50)

where

w∗=
{(− g

�̄hs
u∗�∗zi
)1/3

	 �∗≤0

0	 �∗>0

and �̄hs is the potential temperature at the top of the surface layer. The scaling

velocity, w∗, has been called the convective velocity scale, or the Deardorff

velocity (Stull 2000). As in Eq. (7-49), in Eq. (7-50) the growth of zi is

directly proportional to the surface heat flux and mesoscale vertical velocity

and inversely proportional to the overlying stability.

Equation (7-50) can also be used to estimate w̄zi
if it is assumed the boundary-

layer height is unchanging over time and horizontally homogeneous, �∗=0, and

the net radiational flux divergence is 0. For this case, Eq. (7-50) reduces to

w̄zi
=−(1
98u3

∗−5
94u2
∗fzi
)/(

g
z2i

�̄hs

�̄�̄+

�z
+7
2u2

∗

)
	

where zi is obtained from a radiosonde or other observational platform. For

example, with typical values of u∗=50 cm s−1, f =10−4s−1, �hs =300 K,

��̄+/�z=1�/100 m, and zi=1 km, we have w̄zi
=0
03 cm s−1.

When �∗=0, w̄zi
=0, ��̄+/�z=0, and dzi/dt=0, Eq. (7-50) reduces to zi=

0
33u∗/f , which is the expected depth of the planetary boundary layer in

a steady-state, horizontally homogeneous, neutrally stratified boundary layer.

Obviously, this latter representation for a neutral boundary layer must be mod-

ified in the tropics, where f approaches 0.

The height of the surface layer, hs, can be estimated from zi as

hs=0
04zi
 (7-51)

For example, with zi=1 km, h=40 m. This formulation was based on the

results of Blackadar (1972, personal communication) and Blackadar and Ten-

nekes (1968), who found the best agreement between their predictions and



7.3 Planetary Boundary-Layer Parameterization 193

observations in a neutrally stratified boundary layer when Eq. (7-51) was

adopted.

When clouds are present at the top of the mixed layer, the effect of

cumulus-induced subsidence must be included in the w̄zi
term in Eq. (7-50).

Brost et al. (1982a, b) discussed the mean and turbulent budgets in a marine

stratocumulus-topped mixed layer off the California coast, and Augstein and

Wendel (1980) presented a one-dimensional tradewind boundary-layer model

with nonprecipitating cumulus clouds. Chen and Cotton (1983b) discussed a

one-dimensional simulation of a stratocumulus-capped mixed layer in which

the relative importance of turbulence, radiation, and subgrid-scale cloud

condensation are contrasted.

In Augstein and Wendel’s study, the authors concluded that radiation was

as important in boundary-layer development as large-scale subsidence and the

horizontal advection of heat and water vapor. According to their model calcu-

lations, solar heating reduces the effect of both condensational heating within

the active cloud layer and evaporative cooling at the top of the cloud layer, as

compared to that occurring at night. This response, resulting from the depen-

dence of saturation specific humidity on temperature, results in deeper clouds at

night because the cumulus convection is more vigorous in the absence of this

solar heating.

7.3.3.1 Idealized Theory

An idealized representation of the winds in the transition layer can be derived

from a simplified form of Eq. (4-21) given in component form by

0 = K
�2ū

�z2
+f �v̄−vg�

0 = K
�2v̄

�z2
+f �ug− ū�	

(7-52)

where only the large-scale horizontal pressure gradient term (as represented

by the geostrophic wind components ug and vg [see, e.g., Eq. (3-28)], the

Coriolis terms f ū and f v̄, and the vertical subgrid flux terms are retained.

The geostrophic wind is assumed to be constant with height, whereas the

subgrid-scale flux terms are approximated with a constant exchange coeffi-

cient K. The horizontal wind components ū and v̄ do not vary with time or in

the x and y directions. An atmosphere represented by these two equations is in

steady-state equilibrium and horizontally homogeneous.

Following Dutton (1976:449), these equations can be written using complex

notation as

0= �2VH

�z2
+i

f

K
�VG−VH�	 (7-53)
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where VH= ū+iv̄ and VG=ug+ivg . Substituting VH into Eq. (7-53), it is

straightforward to show that

VH−VG=a1 exp
[
�1+i�l−1

E z
]+a2 exp

[−�1+i�l−1
E z
]
	

where lE=
√
2K/f .

The boundary conditions needed to solve this equation are

VH=0 at z=0 and lim
z→�VH=VG


Therefore, a1 must equal 0 and a2=−VG, so that

VH−VG = −VGexp
[−1�1+i�l−1

E z
]

= −VGe
−z/lE
[
cos�z/lE�−i sin�z/lE�

]
	 (7-54)

where z=�lE�zi is a representative depth for the boundary layer (i.e., the first

level above the ground where VH=VG), assuming that Eq. (7-52) is applicable.

The solution to Eq. (7-54) for particular values of f and K is plotted in Fig-

ure 7-9. In the northern hemisphere, where f >0, the winds near the surface,

according to Eq. (7-54), are to the left of the geostrophic wind (i.e., toward low

pressure). The wind veers (i.e., turns clockwise) with height and slightly over-

shoots the geostrophic value. This spiral wind profile, called the Ekman profile,
is useful in the initialization of mesoscale models, as illustrated by Eq. (11-13)

in Chapter 11. The transition layer is also called the Ekman layer, because this is
that section of the planetary boundary layer in which the average wind direction

changes with height. Kahl and Samson (1988) and Moran and Pielke (1996a, b)

have shown how such wind shear influences the transport and dispersion of

pollution.

Fig. 7-9. A plot of the Ekman wind using Eq. (7-54), with f =10−4 and K=10 m2 s−1;
lE=450 m and zi� 1400 m. Without loss of generality, the components of Eq. (7-54) can
be written as ū=ug 
1−e−z/Ecosz/lE� and v̄=uge−z/lE sinz/lE by setting vg =0, which is
how they are displayed in this figure. Rotating the figure through the angle given by the
arctangent of vg/ug gives the solution of Eq. (7-54) for any direction of the geostrophic
wind.
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7.3.3.2 Parameterization of the Transition Layer

The parameterization of the subgrid-scale correlation terms in the planetary

boundary layer can be grouped into four categories:

� drag coefficient representations

� local exchange coefficients

� exchange coefficients derived from profile functions

� explicit equations for the subgrid-scale fluxes.

The first three classes above are often called first-order closure representations,
because the subgrid-scale correlations are specified as functions of one or

more of the grid-volume–averaged dependent variables (ūi	�̄	q̄n	��m). The

fourth category is called second-order closure, because prognostic equations

are developed for the fluxes,19 which include triple-correlation terms involving

subgrid-scale variables [e.g., u′′
j �e/�xj in Eq. (7-5)] that must be represented

in terms of the double-correlation terms or the averaged dependent variables

or both. The procedure to obtain the prognostic equations for the subgrid-scale

fluxes (u′′
j u

′′
i 	u

′′
j �

′′	u′′
j q

′′
n , and u′′

j �
′′
m) was presented in Section 7.1.

Lewellen (1981), Zeman (1981), Mellor and Yamada (1982), and Wyngaard

(1982) provide derivations and discussion of second-order equations, and Mellor

and Yamada (1974) discuss the different levels of complexity using various sim-

plifications of these explicit representations of the subgrid-scale fluxes. Yamada

(1979b) performed a planetary boundary-layer analysis using one level of the

Mellor–Yamada formulation. Libersky (1980, Table 2) provides an effective

summary of approximations to the terms in second-order closure models, and

Burk (1981) and Lewellen et al. (1983) provide other examples of simulations

using second-order models. As illustrated in Section 7.3.3.4; accurate parame-

terizations of the planetary boundary layer in mesoscale models can be obtained

without using second-order closure, despite arguments to the contrary suggested

by such investigators as Zeman (1981).

The drag coefficient form (also called the bulk aerodynamic formulation) is

given by, for example,

w′′u′′=−CDV
2
cos	 w′′v′′ =−CDV

2
sin	 and

w′′�′′=C ′
DV
(
�̄�z0�− �̄

)
	

(7-55)

where V and �̄ are evaluated at some height within the surface layer (often 10 m)

with  equal to the arctan �V /ū�. The parameters CD and C ′
D are called drag

coefficients. Above this level, a local exchange coefficient form is sometimes

used if there is vertical resolution within the boundary layer. Rosenthal (1970),

Lavoie (1972), and others have obtained realistic simulations using this form.

Rosenthal used a value of CD=3×10−3 for velocity and C ′
D=0 for heat and

moisture. Lavoie used CD=7×10−3 over land and CD=1
5×10−3 over water
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for velocity, and used C ′
D=1
5×10−3 for heat if the surface layer was defined to

be superadiabatic and C ′
D=0 otherwise. Fujitani (1981) presents observational

estimates of the drag coefficient as measured over the East China Sea with

mean values of CD=1
3×10−3 and C ′
D=1
2×10−3, although both values were

lower for stable surface conditions. In that study, CD had a larger value of about

2
1×10−3, with high variability, for light winds (V less than 4 m s−1).

Because using Eq. (7-16), u2
∗=CDV

2
from Eq. (7-55), and by Eq. (7-29),

u∗�∗=C ′
DV ��̄− �̄�z0�� from Eq. (7-55), substituting for V from Eq. (7-27) and

�̄− �̄�z0� from Eq. (7-31), and rearranging yields the expressions for CD and

C ′
D given by20

CD = k2
/[

ln
z

z0
−!M

(
z

L

)]2
C ′

D = �k2
/[

ln
z

z0
−!M

(
z

L

)][
ln

z

z0
−!H

(
z

L

)]



(7-56)

Thus, except for special cases such as when the winds are strong [so that

!M�z/L�=!H�z/L��0] and the aerodynamic roughness of the surface is

unchanging, it is inappropriate to treat the drag coefficient as a constant. Using

drag coefficients, fluxes in the boundary layer can be represented by requiring

CD=C ′
D=0 at zi with a specified functional form between the surface and zi.

The use of exchange coefficients is of the form given by Eq. (7-7), for

example, where K� and Km are exchange coefficients. If these coefficients are

defined only in terms of local gradients, then they are called local exchange
coefficients, but if they are derived from a vertical interpolation formula that

is independent of local gradients, then they are called profile coefficients.
Blackadar (1979) suggested one form of local exchange coefficient when the

layer being simulated is stably stratified air (��̄/�z>0), which is expressed as21

Km=K�=
{
1
1�RiC−Ri�l2�� �V /�z�/RiC	 Ri≤RiC

0	 Ri>RiC	
(7-57)

where l is a mixing length and �V = ū�i+ v̄ �j . In the form used by McNider (1981)

and McNider and Pielke (1981), l is given as

l=
{
kz	 z<200 m

70 m	 z≥200 m


The parameter RiC is the critical Richardson number, described following

Eq. (7-8), which should equal 0.25 in the limit as the vertical grid spacing

approaches 0. The finite difference value of RiC increases as the vertical grid

increment increases, as discussed by, for example, Shir and Bornstein (1977).



7.3 Planetary Boundary-Layer Parameterization 197

Another example of a local exchange coefficient representation is that of

Orlanski et al. (1974), where Km and K� vary from a background value of these

coefficients only when ��̄/�z<0. Klemp and Lilly (1978) use a form of mixing

equivalent to a local exchange coefficient, which requires that the Richardson

number in their model always equal or exceed the critical Richardson number,

0.25. A local exchange coefficient is appropriate when the vertical grid res-

olution is high (so that the gradients can be accurately approximated), when

horizontal advection of turbulence is small, and when the characteristic length

scales of the subgrid-scale mixing are approximately the same size or less than

twice the vertical grid spacing.22

With such a representation, fluxes are always downgradient, since Km=
K�≥0 (i.e., toward smaller values of ū, v̄, �̄, q̄n, and ��m). As shown by Deardorff

(1966), however, countergradient fluxes are known to occur when the surface

layer is superadiabatic (i.e., z/L<0). Deardorff suggested that the vertical gra-

dient of potential temperature used in the representation w′′�′′ =−K���̄/�z be

modified to w′′�′′ =−K���̄C/�z with

��̄C
�z

= ��̄

�z
−�C	 (7-58)

where �C=0
65×10−3 K m−1 to permit fluxes of heat upgradient. Tijm

et al. (1999a), based on Holtslag and Boville (1993) and Holtslag et al. (1995),
expressed the countergradient flux effect for z/L � 0 in the following form:

w′′�′′ =−K�

(
��̄

�z
−�C

)
	 (7-59)

where

K�=1
4kw∗z
(
1− z

zi

)2
	 (7-60)

with w∗ defined as

w∗=
(−g

�hs
u∗�∗zi

)1/3

 (7-61)

The countergradient term in Eq. (7-59), expressed using the variables defined in

this chapter, is

�C=−10
u∗�∗
w∗z∗


 (7-62)

K� is an example of an exchange coefficient derived from a profile function.
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7.3.3.3 Parameterization Complexity

It is useful to dissect a parameterization algorithm to determine the number

of dependent variables and adjustable and universal parameters that are intro-

duced. This dissection can be illustrated through the following simple example.

Holtslag and Boville (1993) and Tijm et al. (1999a) propose the following form

for K� above the boundary layer:

K�= l2� SF��Ri�	 (7-63)

where

1

l�
= 1

kz
+ 1

��

	 (7-64)

S =
∣∣∣∣� �V�z
∣∣∣∣	 (7-65)

and

F��Ri�=
{
�1−18 Ri�1/2	 Ri≤0

1/�1+10 Ri +80 Ri2�	 Ri>0	
(7-66)

with

��=
{
300 m	 z≤1km

30 m+270exp�1−�z/1000 m��

(7-67)

This formulation for K� includes the following dependent variables, parameters,

and prescribed constants:

� In Eq. (7-63), the dependent variables l�, S, and F� define K�.

� In Eq. (7-64), l� is defined with the independent variable z, the dependent

variable ��, and the parameter k.
� In Eq. (7-65), S is defined by the vertical gradient of �V .
� In Eq. (7-66), F� (Ri) is defined by the dependent variable Ri [which is

defined by Eq. (7-8)] and the constants 18, 10, and 80 and the exponent

1/2.
� In Eq. (7-67), �� is defined by the independent variable z and the constants

300, 30, 270, and 1000.

Therefore, to represent the term K�, in addition to the fundamental variables ūi

and �̄, one parameter (k) and eight constants (18, 10, 80, 1/2, 300, 30, 270,
1000) must be provided.

A sensitivity analysis can be applied to show how K� responds to slight

changes in the dependent variables and constants. For example, in Eq. (7-67),

if 100 m were used instead of 300 m when �� dominates in Eq. (7-64), then

K� would be 1/9 as large, since K� is proportional to l2�. Clearly, the form of
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Eq. (7-67) will exert a major effect on the parameterized turbulent mixing in a

model.

Niyogi et al. (1999) discuss such a sensitivity analysis (in their case for

surface fluxes) in terms of the question “What scenarios make a particular

parameter significant?” They also appropriately conclude that parameter uncer-

tainty is not only related to its deviation, but is also dependent on the values of

the other parameters used in a parameterization.

7.3.3.4 Parameterization Comparisons

Various forms of the explicit representation of the subgrid-scale fluxes [e.g.,

��/�t�u′′
j u

′′
i 	 ��/�t�u′′

j �′′] have been used by Donaldson (1973), Deardorff

(1974a, b), Lumley and Khajeh-Nouri (1974), Wyngaard and Coté (1974), Burk

(1977), André et al. (1978), Brost and Wyngaard (1978), Gambo (1978), Lee

and Kao (1979), Abdella and McFarlane (1997, 1999), Mironov et al. (1999),

and others. As mentioned earlier in this chapter, Mellor and Yamada (1974)

categorized the level of complexity of those second-order representations.

Although theoretically more satisfying, this more expensive approach, with its

greater degrees of freedom, has not improved simulations of the evolution for

the resolvable dependent variables in the planetary boundary layer over those

obtained using the best first-order representations.

For example, Days 33 and 34 of the Wangara Experiment (Clarke et al. 1971)
has been used extensively to examine the accuracy of various parameterizations

of the planetary boundary layer. Deardorff (1974a), Wyngaard and Coté (1974),

Pielke and Mahrer (1975), Yamada and Mellor (1975), Dobosy (1979), Sun and

Ogura (1980), Blondin and Therry (1981), Mailhot and Benoit (1982), Chen and

Cotton (1983a), Therry and Lacarrere (1983), Sun (1993a), and Finkele (1998),

among others, have attempted to simulate boundary layer structure for all or a

portion of these days. Figure 7-10(a), reproduced from the sophisticated higher-

order model of André et al. (1978), illustrates the evolution of the averaged

vertical potential temperature in the boundary layer using a model that has an

explicit representation of the subgrid-scale fluxes. Figure 7-10(b) shows the

results for the same period using first-order closure, as described in McNider

and Pielke (1981), to represent the vertical exchange coefficient.

Both results closely correspond to the observed profile [Figure 7-10(c)]. The

profiles of the other dependent variables produced by the two models also

closely agree. Yu’s (1977) results support part of this conclusion in that he found

that using the McNider and Pielke (1981) parameterization produced accurate

simulations of the growth of the mixed layer when compared to a range of other

schemes, including a simplified second-order representation.

Sharan and Gopalakrishnan (1997) provide another comparison study of

the accuracy of several turbulent closure schemes in terms of their ability
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Fig. 7-10. Comparison of predictions using (a) higher-order closure (André et al. 1978)
for Day 33–34 of the Wangara Experiment, (b) first-order closure (McNider and Pielke
1981), and (c) observational data presented by André et al. (1978). The solid and dashed
lines correspond to 1200 LST and 1800 LST on Day 33; the dotted line corresponds to
0300 LST on Day 34.
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to represent the stable boundary layer. Another modeling study of several

boundary-layer parameterizations is discussed in Alapaty and Mathur (1998).

Zeman (1979) claims that his economical one-layer model compares favor-

ably against second-order closure models in simulating the evolution of a noc-

turnal boundary layer. Klöppel et al. (1978) showed that the development and

decay of ground-based inversions can be satisfactorily simulated by simple

models. Chang (1979) produced accurate results using a Richardson number

adjustment scheme for heat and momentum exchanges and concluded that this

method provides an economical and realistic alternative to higher-order closure

schemes.

Finally, investigators such as Mailhot and Benoit (1982) have suggested that

an exchange coefficient must depend on the past history of the flow, so they

use a coefficient that is dependent on the second-order property 1

2
ū′′2
i and a

length scale. However, the first-order exchange coefficients (which are depen-

dent only on resolvable quantities, such as, ūi and �̄) also depend on the his-

tory of the flow, since the resolvable variables themselves were determined in

part from the response to turbulent mixing at previous times. Therefore, con-

trary to the conclusion of Mailhot and Benoit, unless significant turbulent (i.e.,

subgrid-scale) energy created at one grid point is advected or diffused to another

grid cell, it appears unnecessary to include any prognostic equations for the

second-order terms to parameterize the influence of subgrid-scale mixing on the

grid-volume–averaged flow in mesoscale models.

Second-order closure boundary-layer models, of course, remain valuable tools

to use in developing the most accurate first-order closure schemes and in devel-

oping effective parameterizations of the diffusion of pollutants, as described in

Zannetti (1990), Uliasz et al. (1996), and Sharan et al. (1999). Of even more

value, however, may be the use of large-eddy simulation (LES) models (e.g.,

such as reported in Bader and McKee 1983) to determine small-scale responses

over nonhomogeneous terrain to specific sets of mesoscale forcing. Deardorff

(1974a) has used this approach very effectively to develop parameterizations

of mixed layer height for use in mesoscale models. A model is an LES when

the model-resolved fluxes are much larger than the subgrid-scale fluxes (e.g.,

�w′′�′′���w̄�̄�).
Examples of studies of using LES modeling to improve our understanding

of homogeneous and nonhomogeneous landscapes on the convective bound-

ary layer include Avissar and Schmidt (1998), Avissar et al. (1998), Stevens
et al. (1998, 1999), Gopalakrishnan and Avissar (2000), and Gopalakrishnan

et al. (2000). Mason and Brown (1999) used high-resolution LES modeling to

conclude that length scales of turbulence should be buoyancy dependent, and to

increase with unstable buoyant transfer.
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7.4 Heterogenous Boundary Layers
When the surface is unevenly heated, or of different aerodynamic roughness,

even though it is flat, the resultant surface and boundary-layer fluxes will be

different (see, e.g., Vickers and Mahrt 1999). As air blows across this landscape,

air near the surface will be directly responding to the turbulent fluxes which

result from that surface, while air higher up will be still responding to the

fluxes that resulted from the passage of the air over the original surface. The

interface between these two sources of turbulent fluxes is called the internal
boundary layer. Figures 7-11 and 7-12 illustrate schematically the behavior of

the internal boundary layer for several different spatial distributions of surface

heterogeneity. Examples of recent papers that discuss the internal boundary layer

include Batchvarova et al. (1999) and Jegede and Foken (1999).

An internal boundary layer resulting from spatially varying surface turbulent

sensible heat fluxes is called a thermal internal boundary layer. Turbulence
that remains above the internal boundary layer will leave an altered vertical

and horizontal structure of the temperature, winds, and other variables once

it decays. This remnant of the turbulence is called fossil turbulence (Gibson

1999). Nieuwstadt and Brost (1986) estimate that it can take up to an hour or so

for surface-forced convective eddies to decay once surface heating is removed.

Mahrt (2000) concludes that internal boundary layers have more a diffuse ver-

tical structure than textbook examples—a result, perhaps, of the heterogenous

character of real world landscapes.

As discussed by Kerman (1982) and others, the growth of such a boundary

layer can substantially influence the occurrence and location of fumigation

in coastal regions. It can also influence the propagation of electromagnetic

radiation (e.g., Gossard 1978) and the diffusion of pollutants (e.g., Gryning and

Fig. 7-11. Schematic illustration of the growth of an internal boundary layer with a
neutrally stratified surface layer as airflow advects (a) from a smooth (small z0) to a
rough surface (large z0); and (b) from a rough (large z0) to a smoother (small z0) surface.
Note that for (a), eventually only one planetary boundary layer remains, whereas for (b),
two levels of zi remain, with separate and distinct regions of turbulence that last until
the turbulent kinetic energy in the upper layer decays by dissipation.
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Fig. 7-12. Schematic illustration of the growth of an internal boundary layer as air
advects (a) from a stably stratified surface to a region with an unstably stratified surface
layer, and (b) from one unstably stratified region to another in which the equilibrium
height of zi over the new surface is lower.

Larsen 1981). Olsson and Harrington (2000) simulated the growth of an internal

cloudy boundary layer as air flowed off of sea ice to over a relatively warm

ocean surface. Physick et al. (1989) investigated how well a mesoscale model

could simulate an internal boundary layer.

Onishi (1968), Peterson (1969), and others have numerically simulated

changes in surface-layer structure caused by inhomogeneous terrain using two-

dimensional, steady-state models. Peterson showed that in neutrally stratified

air, the internal boundary layer grows about 1 unit upward for its first 10 units

downstream of a change in surface characteristics. He further claims that the

horizontal fetch must be 100 times its height for the new boundary layer to be

equilibrium.

In an unstably stratified lower boundary layer, the growth of the internal

boundary layer should be more rapid, as shown by Venkatram (1977), Højstrup

(1981), Gamo et al. (1983), and others, since the rate of growth is coupled

with the surface heat fluxes [see, e.g., Eq. (7-50)]. Højstrup reported that the

growth of the internal boundary layer in the direction of the mean wind n can

be written as

�zIBL/�n=D�w/V 	

where D is a constant of order 1 and �w is the standard deviation of the vertical

velocity as a function of height after zIBL has reached its equilibrium value.

With a highly unstable surface layer, V is almost constant with height (except

very close to the ground). Since �w reaches a maximum in the midlevels of the

boundary layer (see, e.g., McNider 1981), zIBL will have its largest increases for

a given downwind distance at those levels. Higher up, as �w approaches 0, the

growth rate diminishes. From Højstrup’s results, the ratio of the rate of growth of

zIBL to the distance traveled downstream during its early development was about

1–7 for the most unstable case examined and approximately 1–10 for the most

neutral situation. Venkatram (1977) concluded that the growth of such internal

mixed layers is enhanced by an increase of roughness, z0, an increase of the
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temperature difference between the new and original surfaces, and a decrease

in the prevailing wind speed, V . Venkatram’s results agree closely with the

observational results of Raynor et al. (1974). However, slower growth, occurs
when the surface layer is stably stratified (e.g., Mulhearn 1981). For example,

Lyons (1975) reported growth of a boundary layer to only 375 m even after

several days of transit over cold ocean waters.

If the development of the internal mixed layer of 1 unit upward for 10

units downstream is used as the slowest growth rate (i.e., for �∗=0), then a

10-km horizontal distance should be sufficient to generate a 1-km–deep plane-

tary boundary layer. (The degree and the heights to which this mixed layer is

in equilibrium with its new surface needs to be investigated further, however.)

When �∗<0, the growth rate would be greater, as previously discussed. Hsu’s

(1973) observations support the rapid growth of a heated boundary layer after

a change in surface characteristic from relatively cool ocean to land during

the daytime over Florida. Using two towers, one of 10-m elevation over a

beach and one of 100-m elevation 10 km inland, he found that the observations

agreed closely with surface-layer theory developed for horizontally homoge-

neous steady conditions. Similarly, Kerman et al. (1982) found a rapid adjust-

ment toward equilibrium (∼10 km inland) as cold air over Lake Erie advected

onshore over warm land. Additional detailed observations, such as those per-

formed by Vugts (1980) and Gamo et al. (1982), provide further insight into

the growth of the heated internal boundary layer.

These studies indicate that the larger the horizontal grid increment, the more

appropriate it is to represent the boundary-layer structure as being in local equi-

librium after a change of surface temperature and roughness, with the most

rapid adjustment occurring when the surface layer is very unstable. Unfortu-

nately, larger grid increments reduce the horizontal resolution so that the gains

in consistency using boundary-layer theory, which is strictly valid only for hori-

zontally homogeneous conditions, must be weighed against the need for greater

spatial resolution of the forcing.

If the original surface is unstably stratified near the ground, then two layers

of different turbulent characteristics can still result if the equilibrium zi value
of the downwind surface is less than that of upwind surface [e.g., caused by

a smaller z0, as illustrated in Figure 7-12(b)]. For this situation, turbulence

formulations that are parameterized in terms of zi will fail to provide proper

estimates of mixing within the upper layer, although the lower region should be

represented satisfactorily. In the upper region, a formulation such as that applied

by McNider (1981), based on the work of Panofsky et al. (1960) and Blackadar

(1979) and given by

Km=K�=�1−18Ri�
+1/2l2 �� �V /�z�	

could be used. [Here l can be defined using formulas such as Eq. (7-64) or the

definition of l following Eq. (7-57).] This relation can also be used when air
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with ��̄/�z<0 advects over a region that has a stably stratified (�∗>0) surface

layer.

Studies that evaluate the effect of spatially varying heat fluxes include

Hadfield et al. (1991, 1992), Serreze et al. (1992), Walko et al. (1992), Avissar
and Schmidt (1998), Banta et al. (1998), Liston and Sturm (1998), Burba

et al. (1999), Cai (1999), Hasager and Jensen (1999), Laubach and Teichmann

(1999), Liston (1999), Panin and Tetzlaff (1999), and Van Breugel et al. (1999).
Rodriguez-Camino and Avissar (1999) discuss the use of effective parameters
to describe surface heat fluxes in heterogenous terrain. They conclude that

nonlinear relations provide more accurate representations of the surface fluxes

than does linear averaging.

The concept of an effective parameter assumes that an interpolation variable

can be used to accurately represent area-averaged fluxes over a heterogenous

landscape. This interpolation variable itself has no explicit physical realism

(i.e., it cannot be directly measured or even diagnosed from point measure-

ments). As shown by Rodriguez-Camino and Avissar (1999) and Ronda and De

Bruin (1999), the relationship between most land-surface characteristics and sur-

face heat fluxes are nonlinear. This makes the computation of effective param-

eters more difficult. Other papers that discuss the effective parameter approach

include Hu et al. (1999).
Analytic and numerical modeling studies indicate that surface fluxes over

heterogeneous flat terrain can be linearly weighted to compute area-averaged

surface fluxes as long as the spatial scale of the landscape variations are smaller

than about 5–10 km on a side (Dalu et al. 1991; Avissar and Schmidt 1998).

This linear averaging of the surface fluxes is called the mosaic approach. These
surface fluxes can be calculated using the theoretical basis for subgrid-scale

parameterizations, as introduced in this chapter. On these spatial scales, it is

assumed (as based on the model) that the surface fluxes blend into a homo-

geneous boundary layer above the surface layer. The heights at which this

occurs is called the blending height (see, e.g., Goode and Belcher 1999). When

the blending height is within or at the top of the surface layer, this neces-

sarily means that the internal boundary layer is contained within the surface

layer.

However, when the internal boundary layer is above the surface layer, the

mosaic approach is necessarily inadequate. Variations in the boundary-layer

depth can create mesoscale wind circulations (Dalu and Pielke 1993; Zeng and

Pielke 1995a, b). Moreover, when internal boundary layers above the surface

layer are important, parameterizations for subgrid-scale fluxes as used in all

mesoscale and larger-scale models will have errors. There is no parameterization
of subgrid-scale fluxes that include the effects of such internal boundary layers.
The presence of terrain elevation variability introduces an additional type of

landscape variability (Gopalakrishnan and Avissar 2000). This elevation varia-
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tion will accelerate and decelerate the wind flow, even in the absence of surface

frictional effects, as represented by z0. The effect of terrain variability on the

flow is referred to as form drag. This topic was introduced in Section 5.3 and

is discussed further in Section 12.5.3. With respect to large-scale models, form

drag is discussed in Palmer et al. (1986), and McFarlane (1987).

The results of Panofsky et al. (1981, 1982) suggest that the turbulence spectra
of airflow over complex terrain rapidly reaches an equilibrium with the new

topography for wavelengths that are short compared to the fetch over the new

terrain. Since the vertical velocity spectra generally contain less long-wavelength

energy than the horizontal velocity spectra, it tends to reach equilibrium faster.

Over hilly terrain, the long-wavelength portion of the horizontal velocity spectra,

which is normal to the topography, loses energy to the horizontal terrain-parallel

flow and to vertical motion. This change in the energy within the individual

components results from the distortion of the mean flow by the terrain. Højstrup

(1981) reached the conclusion that the adjustment of the low frequencies to

changing terrain may require hours, so that in reality an equilibrium for these

long wavelengths is never achieved.

Other studies of the influence of terrain on boundary-layer airflow include

the wind tunnel studies by Britter et al. (1981), Pearse et al. (1981), and

Neal et al. (1982); the numerical modeling simulations of a two-dimensional

ridge by Taylor (1981) and of a three-dimensional isolated hill in Alberta by

Walmsley et al. (1982); the analytic study of Jackson and Hunt (1975); and the

observational studies of Camuffo (1982). Hunt and Simpson (1982) summarize

the understanding of the change in boundary-layer structure as air advects over

irregular terrain and other differential surface characteristics. Roth (2000) dis-

cusses how the boundary layer within about three times the height of buildings

in cities is not adequately represented by standard boundary-layer parameteri-

zations (such as discussed in this chapter and used by all existing mesoscale

models). Clearly, this is an aspect of the models that needs improvement.

In any case, the current lack of alternative parameterizations for the boundary

layer in heterogeneous nonsteady conditions requires that only theory developed
for horizontally homogeneous steady-state boundary layers are available for
use in mesoscale models to represent subgrid-scale fluxes.

Notes to Chapter 7

1. In this example, and in actual measurements, upward motion does not always transport warmer

air aloft even if the ground is warmer, because cooler air mixed downward at an earlier time or

different location may be entrained in an upward-moving region.

2. This is essentially the Boussinesq approximation. See Chapter 4 following Eq. (4-15) for a

description of this assumption.
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3. The Reynolds assumption; see following Eq. (4-8).

4. Although the reference to Eq. (7-5) as a turbulent kinetic energy equation is relatively standard,

it is imprecise to do so, since molecular viscosity [e.g., Eq. (3-29)] was ignored in the original

equations [e.g., Eq. (2-45)]. Therefore, molecular dissipation of turbulent energy is excluded in

Eq. (7-5).

5. It is important to note that the averaging operation given by Eq. (4-6) is not the same as

that used in turbulence theory. Standard turbulence observations involve measurements at specific

points on a tower or along an aircraft track. In the first case, averaging is in time, whereas in

the second case a one-dimensional space average is used. The parameterization of subgrid-scale

fluxes, however, uses the results from these observational studies, as discussed in this chapter. Such

an equivalence is justified only if the measured turbulence characteristics are essentially the same

as those occurring throughout the averaging grid volume. Porch (1982) presented an example of

a comparison of volume averaging (using an optical anemometer) and a point measurement (a

cup anemometer) for a drainage flow observational study in a California valley. He concluded for

that study that point measurements should be averaged for a relatively long time (around 2 hours)

to represent more accurately the volume-averaged values. Unfortunately, of course, if the spatial

variations are too large across the volume, then no amount of time averaging at a point can provide

the appropriate average.

6. A discussion of the number of grid points required to resolve such a range of scales is given

at the beginning of Chapter 4.

7. Schmidt and Housen (1995) provide a useful summary of the use of dimensional analysis in

geophysical problems.

8. Weber (1999) discusses alternative definitions of the friction velocity.

9. �w′′u′′ �ū
�z
+w′′v′′ �v̄

�z
�=−u2

∗�cos
�ū
�z
+sin �v̄

�z
�=−u2

∗�cos
2 �V

�z
+sin2  �V

�z
�=−u2

∗
�V
�z
.

10. Hicks and Everett (1979) commented that the displacement height could be different for each

of the dependent variables in Eq. (7-34). However, since additional research is needed to ascertain

whether this is true, in this section D is treated the same for all variables.

11. A somewhat different formation given by V =V D expa��z/D�−1� is often used. However,

with this expression, V D does not equal 0 at z=0, as it should. Pinker and Moses (1982) have given

an example of the estimation of the flow within an evergreen tropical forest using this formulation.

12. Traditionally, this layer was called a “laminar sublayer,” although, as evident in Eq. (7-39),

turbulent fluxes still occur within z<z0 since u∗, q∗, and �∗ still appear.

13. When a zero-plane displacement D is required, the formulation given by Eq. (7-34) must be

used. Also, in this section, only the flux of water vapor (i.e., n=3) is discussed.

14. The deposition velocity, as reported by, for example, Galloway et al. (1980), is dependent

on the rate of uptake of the gas or aerosol by vegetation, the speed of transfer through the laminar

layer just above the leaf surfaces of the vegetation, and the intensity of turbulent mixing at the top

of the vegetation.

15. This was estimated by R. Pearson, Jr., CSU (1982, personal communication).

16. In the context of a model, the height of the planetary boundary layer is the grid-area (i.e.,

�x̃1 by �x̃2)–averaged depth zi, to which the grid-volume–averaged fluxes of heat, momentum,

moisture, and pollutants extend through the transfer of mass.
17. Roll vortices also can occur in neutrally stratified boundary layers. In a neutral boundary

layer, roll vortices obtain their kinetic energy from vertical shear of the horizontal wind, whereas in

inversion-capped heated boundary layers, the energy is derived primarily from buoyancy (see, e.g.,

Mason and Sykes 1980, 1982).

18. w′′
zi
�′′
zi
/��̄i=w′′

zi
��′′

zi
/��̄i�=w′′

zi
��′′

zi
/��̄i� as long as ��′′

zi
����̄i� �̄0.

19. Some investigators (e.g., Mailhot and Benoit 1982) define first-order closure as meaning that

an exchange coefficient is used to represent the subgrid-scale fluxes [see, e.g., Eq. (7-7)]. In this

text, however, first-order closure means that the exchange coefficients must be defined only in terms
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of the grid-volume–averaged dependent variables and not by averages of the higher moments of the

subgrid-scale fluctuations, such as the grid-volume–averaged subgrid-scale kinetic energy 1

2
u
′′2
i .

20. The 0.01 uncertainty in the value of k [see the text before Eq. (7-19)], results in an uncertainty

in CD and, therefore, the fluxes that can be as large as 10% (u′′w′′ =−u2
∗ ∼−k2).

21. In the surface layer, when Ri = 0, Eq. (7-57) should reduce to Km=ku∗z [Eq. (7-18)]. Substi-
tuting Eq. (7-19) for ��V /�z�=�V /�z in Eq. (7-57), yields Km=1
1ku∗z however. Thus the reason

for the coefficient 1.1 in Eq. (7-57) is not clear. In addition, from Eq. (7-33), Km and K� are not

equal at Ri=0 in the surface layer. Finally, as discussed by Gutman et al. (1973), the vertical

derivative of the horizontal wind vector, rather than the vertical derivative of the wind speed, should

be used in Eq. (7-57) unless the wind direction is invariant with height.

22. A minimum of two grid lengths are needed to represent even a portion of a feature in a model,

and at least four grid lengths are required for somewhat accurate resolution in the conservation

equations, as discussed in Chapter 10.

Additional Readings
To understand the parameterization techniques for representing the subgrid-scale fluxes used in

mesoscale models, it is necessary to understand atmospheric turbulence. Among the valuable texts

in this area are the following:

Lumley, J. L., and H. A. Panofsky. 1964. “The Structure of Atmospheric Turbulence.” Interscience

Monographs and Texts in Physics and Astronomy, Vol. 12, Interscience, New York.

John Lumley wrote the first half of this classic book, and Hans Panofsky wrote the second.

Lumley’s sections provide the mathematical basis for turbulence theory, and Panofsky’s

portion emphasizes specific applications of this theory to an improved understanding of

mixing in the atmosphere.

Tennekes, H., and J. L. Lumley. 1972. “A First Course in Turbulence.” MIT Press, Cambridge, MA.

The authors introduce turbulence theory using effective physical examples of such mixing.

This text is a valuable reference source for nomenclature and clear explanations of turbulence

theory.

The following contributions provide excellent in-depth discussions on how to parameterize the

atmospheric boundary layer.

Bélair, S., J. Mailhot, J. W. Strapp, and J. I. MacPherson. 1999. An examination of local versus

nonlocal aspects of a TKE-based boundary layer scheme in clear convective conditions. J. Appl.
Meteor. 38, 1499–1518.

Beljaars, A. C. M., and P. Viterbo. 1998. Role of the boundary layer in a numerical weather pre-

diction model. In “Clear and Cloudy Boundary Layers,” A. M. Holstlag and P. G. Duynkerke,

Eds., Royal Netherlands Academy of Arts and Sciences, Amsterdam., 287–304.

Blackadar, A. K. 1979. High-resolution models of the planetary boundary layer. “Adv. Environ. Sci.

Eng.,” I, J. R. Pfafflin and E. N. Ziegler, Eds., Gordon and Breach Science Publishers, 50–85.

Cuijpers, J. W. M., and A. A. M. Holtslag. 1998. Impact of skewness and nonlocal effects on scalar

and buoyancy fluxes in convective boundary layers. J. Atmos. Sci. 55, 151–162.
Eugster, W., W. R. Rouse, R. A. Pielke Sr., J. P. McFadden, D. D. Baldocchi, T. G. F. Kittel, F. S.

Chapin III, G. E. Liston, P. L. Vidale, E. Vaganov, and S. Chambers. 2000. Land-atmosphere

energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate.

Global Change Biology, 6, 84-115.
Garratt, J. R. and G. D. Hess. 2001. The idealized neutrally stratified planetary boundary layer.

In “Encyclopedia of Atmospheric Sciences,” J. Holton and P. Taylor, Eds., Academic Press,

London.
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Holtslag, A. A. M. 1998. Fluxes and gradients in atmospheric boundary layers. In “Clear and Cloudy

Boundary Layers,” A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy

of Arts and Sciences, Amsterdam.

Moran, M. D. 2001. Basic aspects of mesoscale atmospheric dispersion. In “Mesoscale Atmospheric

Dispersion,” edited by Z. Boybeyi, Vol. 9, Advances in Air Pollution Series. Wit Press, Ashurst,

Southampton, United Kingdom.

Uliasz, M. 1994. Subgrid scale parameterizations. In “Mesoscale Modeling of the Atmo-

sphere,” R. Pearce and R. A. Pielke, Eds., 13–19, American Meteorological Society,

Boston, MA.

Velho, H. F. C., R. R. Rosa, F. M. Ramos, R. A. Pielke Sr., G. A. Degrazia, C. Rodrigues Neto,

and A. Zanandrea. 2001. Multifractal model for eddy diffusivity and counter-gradient term in

atmospheric turbulence. Physica A, 295, 219–223.
Vermeulen, J. P. L. 2001. The atmospheric boundary layer over a heterogeneous vegetated landscape.

Ph.D. Thesis, Vrije University, Amsterdam, 164 pp.

There are a series of excellent books on boundary-layer theory. The following texts are among

the best.

Arya, S. P. 1988. “Introduction to Micrometeorology.” Academic Press, San Diego.

Garratt, J. R. 1992. “The Atmospheric Boundary Layer.” Cambridge University Press, Cambridge,

U.K.

Garstang, M., and D. Fitzjarrald. 1999. “Observations of Surface to Atmospheric Interactions in the

Tropics.” Oxford University Press, New York.

Holtslag, A. A. M., and P. G. Duynkerke. 1998. “Clear and Cloudy Boundary Layers.” Royal

Netherlands Academy of Arts and Sciences, Amsterdam.

Sorbjan, Z. 1989. “Structure of the Atmospheric Boundary Layer.” Prentice-Hall, Englewood Cliffs,

NJ.

Stull, R. B. 1988. “An Introduction to Boundary Layer Meteorology.” Kluwer Academic Publishers,

The Netherlands.

Stull, R. B. 2000. “Meteorology for Scientists and Engineers.” 2nd ed., Brooks/Cole Thomson

Learning.

A very useful summary of field campaigns and long-term observational facilities to monitor the

boundary layer is reviewed in Tunick (1999). Recent valuable review papers include Avissar (1995)

and Brutsaert (1998).

Problems
1. Select a parameterization for the subgrid-scale heat fluxes from an atmospheric model of

your choice. Dissect the parameterization using the technique outlined in Section 7.3.3.3. List the

additional new dependent variables, and adjustable and universal parameters. Assess the sensitivity

in the calculated value of the flux for uncertainties of ±10% as a function of one or more of the

adjustable constants and universal parameters.

2. Perform problem. 1, except for the subgrid-scale parameterization used for the velocity fluxes.

What are the differences between the two parameterizations?

3. Derive an equation in which S ′′
� =0 is not assumed.



Chapter 8

Averaged Radiation Flux Divergence

8.1 Introduction

The radiative flux divergence source–sink term S̄� in Eq. (4-24) can be written

in part as

S̄� =
�T

�t

∣∣∣∣
rad

= − 1

�̄Cp

��R
�z

	 (8-1)

where ��R/�z is the grid-volume–averaged vertical gradient of absorbed irra-
diance (i.e., radiative energy per area per time) from all wavelengths of elec-

tromagnetic energy. In writing Eq. (8-1), the divergence of �R in the horizontal

direction is neglected, since on the mesoscale, variations of �R are much larger

in the vertical.1 In addition, changes in pressure resulting from the divergence of
�R are also neglected in Eq. (8-1). It is important to note that �R contains subgrid-

scale effects as well as resolvable effects. This chapter discusses methodologies

for parameterizing the divergence of irradiance.

8.2 Basic Concepts2

The unit of differential area on the surface of a hemisphere can be written as

dS = cosZ sinZ dAdZ d!	 (8-2)

where as shown in Figure 8-1, dA is a differential area on a plane through the

equator of the hemisphere, Z is the angle between the axis of the hemisphere

and a line to dS (i.e., the zenith angle)3, and ! is the longitude of dS on

the hemisphere (i.e., the azimuth angle). The quantity sinZ dZ d! is called a

differential solid angle and has units called steradians.

210
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Fig. 8-1. An illustration of the relation between a differential area, dA, on a flat sur-
face and the projection of this area, dS, onto the surface of a hemisphere with a radius
of unity. The angles �, and Z are the longitude and zenith. (Adapted from Liou 1980,
Figure 1.3.)

Using Eq. (8-2) and following Liou (1980), the monochromatic4 intensity

(radiance) of electromagnetic radiation through dS per time per wavelength can

be written as

I��Z	 !� = de�/�cosZ sinZ dAdZ d! d�dt�	 (8-3)

where de� is the differential amount of radiant energy at a given frequency

passing through dS in the time interval dt.
Integrating Eq. (8-3) over the entire hemisphere yields the monochromatic

irradiance on dA from all points above that differential surface,

R� =
∫ 2�
0

∫ �/2

0

I��Z	 !� cos Z sin Z dZ d!	 (8-4)

which can be written as

R� = �I� (8-5)

when I��z	 !� is independent of direction.5 The total isotropic irradiance is

obtained by integrating Eq. (8-5) over all wavelengths,

R = �
∫ �
0

I� d�
 (8-6)

The concept of a blackbody is essential in the economical parameterization

of Eq. (8-1). A blackbody is defined as an object that absorbs all radiation that
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impinges on it. As shown, by, for example, Coulson (1975), the intensity of elec-

tromagnetic radiation emitted by such a blackbody as a function of wavelength

� is given by

B��T � = C1

/[
�5
(
eC2/�T − 1

)]

 (8-7)

The monochromatic radiance given by Eq. (8-7), called the Planck function,
represents the maximum intensity of emitted radiative energy that can occur for

particular values of temperature and wavelength.

The derivation of Eq. (8-7) using the concepts of quantum mechanics is

described by Liou (1980:9–11 and App. C) and Kondratyev (1969:30–32). In

Eq. (8-3), B��T � has the same units as I��z	 !�. The values C1 = 1
191 ×
10−16 W m2 st−1 and C2 = 1
4388 × 10−2 m K (NBS 1974) are fundamental

physical constants derived from the speed of light and the Planck and Boltzmann

constants (see Liou 1980:10–11); values of fundamental (universal) physical

constants are given in Mohr and Taylor (2000).

Integrating Eq. (8-7) over all wavelengths and all directions within the hemi-

sphere depicted in Figure 8-1 (see Kondratyev 1969:33–34; Liou 1980:11),

where the emitted radiation is assumed to be isotropic, yields

R∗ = �
∫ �
0

B��T �d� = �T 4
[
� = 5
67400× 10−8 W m−2 K−4

]
(8-8)

(Mohr and Taylor 2000), which is called the Stefan-Boltzmann law; � is the

Stefan-Boltzmann constant. The quantity R∗ is the blackbody irradiance over all

wavelengths and is equal to the maximum amount of radiative energy per unit

area that an object can emit at a given temperature.

Figure 8-2, obtained from the work of List (1971:412), illustrates the black-

body irradiance computed as a function of wavelength using Eq. (8-7) with

T = 6000 K (e.g., corresponding to the surface of the sun) at the distance of

the earth from the sun, and with T = 290 K (e.g., corresponding to the surface

of the earth). As this figure shows, the two distributions (also called spectra)
of electromagnetic radiation have almost no overlap. For this reason, irradiance

from the sun is often referred to as shortwave radiation6, whereas radiation

emitted from the earth is called longwave (infrared) radiation. The wavelength

separation of these two electromagnetic spectra simplifies the parameterization

of Eq. (8-1), as is shown shortly. Using Eq. (8-7), the peak emission from the

sun’s surface has a wavelength of 0.475 m (blue light), whereas the earth,

using T = 290 K, has a peak of around 10 m.

As electromagnetic radiation traverses a layer in the atmosphere, it can be

absorbed, reflected, or transmitted. This relation can be written quantitatively as

I��absorbed�

B�

+ I��reflected�

B�

+ I��transmitted�

B�

= 1	



8.2 Basic Concepts 213

Fig. 8-2. Radiative flux, defined by R∗
�� = ∫ �+��

� E∗
�
T �d�, divided by the total black-

body radiation R∗ [from Eq. (8-8)] as a function of wavelength �. Note that the values of
R∗ are different for T = 6000 K and T = 290 K. However, at the distance of the earth from
the sun, the two values of R∗ must be almost the same, since the earth’s total irradiance
is always essentially equal to the annual irradiance received from the sun at the earth’s
orbital distance.

or

a� + r� + t� = 1	 (8-9)

where a�	 r�, and t� are called monochromatic absorptivity, reflectivity, and
transmissivity, respectively. In addition, the reflectivity can be decomposed into

that which through multiple reflections (scattering) is transmitted in the forward

direction, and that which through scattering propagates at a different angle than

that of the incoming electromagnetic energy. The sum of the absorption and scat-

tering out of the incident direction is called attenuation or extinction of the elec-

tromagnetic radiation (Paltridge and Platt 1976:38). As shown by Kondratyev

(1969:22), when an element of volume is in local thermodynamic equilibrium7,

a� = �� for that volume, where �� is the monochromatic emissivity. This rela-

tionship between absorptivity and emissivity is called Kirchhoff’s law. Levels
in the earth’s atmosphere below about 50 km or so are in local thermodynamic

equilibrium. With a blackbody, a� = 1, so that �� = 1 as well. When a� is

independent of wavelength but �� = a� < 1, the object is called a graybody.
Following Liou (1980), the change of radiance as the electromagnetic energy

travels a distance in the atmosphere, ds, can be written as

dI�/�k�� ds� = −I� + B��T �+ J�	 (8-10)

where � is the density of air and k� is the mass extinction cross-section (in S.I.

units of meters squared per kilogram of radiatively active material). The first

term on the right side of Eq. (8-10) is the loss of radiance from attenuation,

and B��T � is the emission and J� the source of radiance from scattering into

the line segment ds.
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Because of the separation of wavelength in the spectra plotted in Figure 8-2,

it is convenient to develop separate parameterizations for long and short

wavelengths.

8.3 Longwave Radiative Flux

8.3.1 Clear Atmosphere

In a clear atmosphere, scattering of longwave radiation is neglected relative

to the absorption and emission of electromagnetic energy (Liou 1980). Thus

Eq. (8-10) can be written as

dl�/�k�� ds� = −I� + B��T �
 (8-11)

To apply the solution of Eq. (8-11) to Eq. (8-1), it is necessary to define dI�
with respect to the vertical direction. Since cos Z = dz/ds (see Figure 8-3),

and attenuation results only from absorption, Eq. (8-11) can be written as

cosZ
dI�

ka�� dz
= − cosZ

dI�
d"�

= −I� + B��T �	 (8-12)

where

"� =
∫ �
z

ka�� dz (8-13)

is called the normal optical thickness.8

When solving Eq. (8-12), it is useful to evaluate this differential equation

separately for upward and downward radiances. The procedure for obtaining the

solution is to multiply Eq. (8-12) by the integrating factor9 e"�/ cos Z, integrate
from "� to "G�

, and multiply the result by e"�/ cos Z. The optical thickness "G�
is

Fig. 8-3. Schematic illustration of the relation between the zenith angle Z and ds
and dz.
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defined by Eq. (8-13) with z equal to the ground elevation (i.e., z = zG). The
result of this evaluation is

I�↑ = I�↑�Ge−�"G�−"��/ cos Z +
∫ "G�
"�

B��T �

∣∣∣∣
"̂�

e−��"̂�−"��/ cos Z�
d"̂�
cos Z

�1 ≥ cos Z > 0�	 (8-14)

where I�↑�G is the upward radiance from the ground. The downward radiance

is obtained in a similar fashion (see, e.g., Liou 1980:24), where Eq. (8-12) is

integrated downward from the top "T�
to "�,

10

I� ↓ = I�↓�Te−�"�−"T� �/ cosZ +
∫ "�
"T�

B��T �

∣∣∣∣
"̂�

e−��"�−"̂��/ cos Z�
d"̂�
cos Z

�1 ≥ cos Z > 0�	 (8-15)

where I� ↓ �T represents downward radiance from the top of the model. Using

the definition of irradiance given by Eq. (8-4) and assuming that the radia-

tive transfer is independent of azimuth and that I�↑�G and I� ↓ �T emit as

blackbodies,11 Eqs. (8-14) and (8-15) can be written as

R�↑ = 2� B��TG�E3�"G�
− "��+ 2�

∫ "G�
"�

B��T ��"̂� E2�"̂� − "��d"̂� (8-16)

R�↓ = 2�B̃��T
∗
T �E3�"� − "T�

�+ 2�
∫ "�
"T�

B��T ��"̂�E2�"� − "̂��d"̂�	 (8-17)

where

E3�y� =
∫ 1
0

e−y/ cos Z cos Z d�cos Z�

E2�y� =
∫ 1
0

e−y/ cos Zd�cos Z� = −dE3�y�/dy

(8-18)

and B̃� �T
∗
T � is evaluated including any attenuation above level zT for wavelength

�. The temperatures TG and T ∗
T correspond to the ground surface temperature

and the effective temperature at the model top (if z	→ �, then T ∗
T → 0�. In

Eq. (8-18), y of course can correspond to "G�
− "�, "� − "T�

, "̂� −"�, or "� − "̂�.
The total upward and downward radiative flux at level z is obtained by inte-

grating Eqs. (8-16) and (8-17) over all wavelengths, giving

R↑ =
∫ �
0

R�↑d� and R↓ =
∫ �
0

R�↓d�
 (8-19)

In principle, as pointed out by Liou (1980), Eq. (8-19) can be used to determine

the total irradiance from the integrated longwave spectrum. However, the opti-

cal thickness, "�, is a complicated and rapidly varying function of wavelength,

as illustrated in Figure 8-4. In the clear atmosphere, this complex distribution
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Fig. 8-4. (a) Monochromatic transmissivity t� of water vapor between wavelengths
31 (corresponding to 320 cm−1) and 26 �m (corresponding to 376 cm−1), and (b) CO2

between wavelengths 14.7 (corresponding to 680 cm−1) and 13.6 �m (corresponding to
736 cm−1). (From Liou 1980, as adapted from McClatckey and Selby 1972.)

of "� is caused by the absorption spectra of certain gases in the air. The tri-

atomic molecules, particularly carbon dioxide (CO2), water vapor, and ozone,

have numerous significant absorption lines in this portion of the electromag-

netic spectrum. Thus, as pointed out by Liou (1980:95), evaluation of Eq. (8-19)

would require the double integration using very small increments of � and "� to

properly represent the thousands of absorption lines within the infrared region.

To circumvent this problem, a transmission function, defined as

#�̄�"� =
1

��

∫ �2
�1

e−"d�	 �� = �2 − �1	 (8-20)

is used, where the interval is large enough so that several absorption lines are

included but small enough so that B��T � is approximately constant across the

interval [i.e., B�̄�T � � B��T �]. Equations (8-16) and (8-17) are then integrated

over ��, yielding

R�̄↑ =
∫ �2
�1

R�↑
d�

��
= 2� B�̄�TG�

∫ �2
�1

E2�"G�
− "��

d�

��

+ 2�
∫ "G

�̄

"�̄

B�̄�T �
∣∣∣
"̂�̄

∫ �2
�1

E3�"̂� − "��
d"̂�
��

d� (8-21)
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and

R�̄ ↓ =
∫ �2
�1

R�↓
d�

��
= 2� B̃�̄�T

∗
T �
∫ �2
�1

E3�"� − "T�
�
d�

��

+ 2�
∫ "�̄
"�̄T

B�̄�T �
∣∣∣
"̂�̄

∫ �2
�1

E2�"� − "̂��
d"̂�
��

d�
 (8-22)

The slab transmission function is then defined by

#s
�̄
�y� = 2

∫ �2
�1

E3�y�
d�

��
	 (8-23)

so that from Eq. (8-18), we have

d#s
�̄
�y�

dy
= −2

∫ �2
�1

E2�y�
d�

��

 (8-24)

Therefore, Eqs. (8-21) and (8-22) can be written as

R�̄↑ = �B�̄�TG�#
s
�̄
�"G�

−"�̄�−
∫ "G

�̄

"�̄

�B�̄�T �

∣∣∣∣
"̂�̄

d# s
�̄

d"̂�̄
�"̂�̄−"�̄�d"̂�̄ (8-25)

R�̄↓ = �B̃�̄�T
∗
T �#

s
�̄
�"�̄−"T�̄

�+
∫ "�̄
"�̄T

�B�̄�T �

∣∣∣∣
"̂�̄

d# s
�̄

d"̂�̄
�"�̄− "̂�̄�d"̂�̄
 (8-26)

(Note that by averaging over �, d"̂� becomes d"̂�̄.)
If a normal path length12 is defined as

u =
∫ z
0

�dz u� =
∫ �
0

�dz	 (8-27)

then Eq. (8-13) can be written as "� = ∫ u�
u

ka� du, by the change of variable

given by Eq. (8-27). In making this coordinate transformation, changes of k�
with u (e.g., because of temperature changes with height) are neglected.

Using this change of variable, Eqs. (8-25) and (8-26) can be written as

R�̄↑ = �B�̄�TG�#
s
�̄
�u�+
∫ u
0

�B�̄�T �

∣∣∣∣
û

d# s
�̄

dû
�u− û�dû (8-28)

and

R�̄↓ = �B̃�̄�T
∗
T �#

s
�̄
�uT − u�+

∫ u
uT

�B�̄�T �

∣∣∣∣
û

d# s
�̄

dû
�û− u� dû
 (8-29)

Integrating over all wavelengths and using Eq. (8-8) yields

R↑ = �T 4
Gt

s�u	 TG� =
∫ u
0

�T 4

∣∣∣∣
û

dts�u− û	 T �

dû
dû (8-30)



218 8 Averaged Radiation Flux Divergence

and

R↓ = B̃ +
∫ u
uT

�T 4

∣∣∣∣
û

dts�û− u	 T �

dû
dû	 (8-31)

where

ts�u	 T � =
∫ �
0

�B��T �#
s
��u�d�/�T

4 (8-32)

is called the broadband flux transmissivity, defined in terms of the transmission

function Eq. (8-23) when �2 = �1. B̃ is the longwave radiative flux reaching the

model top which has energy in the radiatively active wavelengths. In deriving

Eqs. (8-30) and (8-31), T is assumed to be constant within each differential

path length du so that B��T � can be incorporated within the derivative term in

the integrals of Eqs. (8-30) and (8-31).

The broadband emissivity is then defined as

�s�u	 T � = 1− ts�u	 T �	 (8-33)

from Eq. (8-9), since a� = �� for all wavelengths and r� = 0, as assumed by

Eq. (8-11).

To apply Eqs. (8-30) and (8-31) to a model, the integral given by Eq. (8-32)

is represented by one or more intervals, so that using Eq. (8-8), Eq. (8-33) can

be written as

�s�u	 T � =
I∑

i=1

�B�̄i
�T �
[
1− #s

�̄i
�u�
]
�i�/� T 4	 (8-34)

where �̄i is the average wavelength within the interval �i+1 − �i = �i�.
The emissivities given by Eq. (8-34) are also often written separately for the

major absorbers of infrared radiation in the atmosphere. Atwater (1974), using

data from Kuhn (1963), for example, suggests values of broadband emissivity

for water vapor, which can be written as

�q3�u	T ���q3��P�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
104log10�P+0
440	 −4< log10�P ≤−3

0
121log10�P+0
491	 −3< log10�P ≤−1
5

0
146log10�P+0
527	 −1
5< log10�P ≤−1
0

0
161log10�P+0
542	 −1
0< log10�P ≤0

0
136log10�P+0
542	 log10�P >0	

(8-35)

where �P is in grams per centimeter squared and

�P =
∫ z+�z

z
�q3 dz
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is the optical path length for water vapor between z and z+ �z. When �z → �
and z → zG	 �P → P , where P is called precipitable water. To use Eq. (8-35),

�P must be expressed in units of grams per centimeters squared. Since 1 g of

water is 1 cm deep (i.e., �q2
= 1 g cm−3), �P is also equal to the precipitable

water in centimeters within the path length. For the application of �q3 in the

parameterization of the heating associated with longwave radiation in models,

the dependence of �q3 on temperature is inconsequential compared to that of

water vapor. Figure 8-5(a) illustrates this relation between �q3 and �P as reported

by Liou (1980, Figure 4.8), along with the algorithm given by Eq. (8-35).

For the broadband emission for CO2, Kondratyev (1969) proposed the

formulation

��CO2
�u	 T � � ��CO2

��Hc� = 0
185�1− exp�−0
39 �H 0
4
c ��	

��Hc is in centimeters� (8-36)

where �Hc in centimeters is given by

�Hc = 0
252 �p0 − p� (8-37)

with pressure p in millibars at height z and p0 = p (at z = 0) = 1014 mb (i.e.,

sea-level pressure) used to obtain Eq. (8-37). Since CO2 is well mixed vertically

and horizontally above the planetary boundary layer in the troposphere and in

the stratosphere, the density of CO2 in the air [prescribed as 320 parts of CO2

to 1 million parts of air to obtain Eq. (8-37)] is assumed to depend only on

pressure in Eq. (8-36). This assumption permits an empirical formulation for

�Hc in terms of pressure below sea-level pressure.

Figure 8-5(b) illustrates ��CO2
as a function of �Hc. In contrast to the broad-

band emissivity for water vapor, the emissivity of CO2 depends on temperature

for larger values of �Hc. The empirical representation given Eq. (8-37), does

not consider this effect however.

Finally, before using �q3 and ��CO2
to represent �s�u	 T � in Eq. (8-34), it is

necessary to ensure that the emissivities are not double-counted in those portions

of the infrared spectrum where absorption by water vapor and CO2 overlaps. To

ensure that this does not occur, Eq. (8-34) can be written as

�s�u	 T � = �s�uq3
	 T �+ �s�uCO2

	 T �− ��f �uq3
	 uCO2

	 T �

� �q3��P�+ ��CO2
��Hc�− ��f �uq3

	 uCO2
	 T �
 (8-38)

However, work by Staley and Jurica (1970) shows that ��f is a small correc-

tion, on the order of 0.05–0.10 for a pathlength through an entire typical mid-

latitude atmosphere. Shorter pathlengths and lower temperatures have smaller

values of the overlap term. Tables 3–6 in Staley and Jurica (1970) provide
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Fig. 8-5. Broadband emissivity for (a) water vapor, �q3 
�P�, as a function of �P , and
(b) CO2 ��CO2


�Hc�, as a function of �Hc. (Adapted from Liou 1980.)

values of ��f as a function of pathlength and temperature, although for most

mesoscale model applications it seems appropriate to neglect this term. Ozone,

methane, and other trace gases could also be included in Eq. (8-34), using an

empirical representation for its broadband emissivity, such as that performed by

Sasamori (1968).
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For use in a model, Eqs. (8-30) and (8-31) are often written in a different

form. Integrating the integrals in these two equations by parts yields

R↑ = �T 4
G +
∫ u
0

� �u− û	 T �
d

dû
�T 4dû

R↓ = �T 4
T +
∫ u
uT

� �û− u	 T �
d

dû
�T 4dû	

(8-39)

where T �u = 0) corresponds to TG and Eq. (8-33) was used to replace the

broadband transmissivity, ts , with the broadband emissivity, �s .
Up to this point in the representation of longwave radiative fluxes, grid-

volume averaging, as described in Chapter 4, has not been introduced. As indi-

cated by Eq. (8-1), such averaged quantities are needed to represent the source-

sink term S�. Therefore, to use Eq. (8-39), the net upward irradiance over all

longwave wavelengths must be written as

R↑ − R↓ = �
(
T G + T ′′

G

)4 − �
(
T T + T ′′

T

)4
+
∫ u
0

�
(
u− û	 T + T ′′) d

dû
�
(
T + T ′′)4 dû

−
∫ u
T

�
(
û− u	 T + T ′′) d

dû
�
(
T + T ′′)4 dû	

where the assumption is made that � � �̄ can be used [see, e.g., Eq. (4-9)].

Subgrid-scale correlations of temperature with itself and with the broadband

emissivity are usually neglected in the parameterization of R↑ and R↓. Since
�T ′′� � T , in general, such an approximation seems reasonable, although under

what circumstances the correlation terms can be neglected must be quantitatively

assessed. Thus T and � in Eq. (8-39) are replaced by the grid-volume–resolvable

quantities T and �̄.13

The vertical gradients of R↑ and R↓ from Eq. (8-39), needed in Eq. (8-1),

thus can be written as

�R↑
�u

=
∫ u
0

d�
(
u− û	 T

)
du

d

dû
�T

4
dû

�R↓
�u

=
∫ u
uT

d�
(
û− u	 T

)
du

d

dû
�T

4
dû	

(8-40)

where Leibnitz’s rule [see Note 8 for Eq. (8-13)] and the requirement that

��0	 T � = 0 have been used.
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Sasamori (1972) suggested a simpler (and thus more economical) form for

Eq. (8-40). If the atmosphere between the top and the ground is assumed to be

isothermal at the height of interest, then the integrals in Eq. (8-40) reduce to

lim
u→0

∫ u
0

d�
(
u− û	 T

)
du

d

dû
� T

4
dû → �

d�
(
u	 T
)

du

[
T

4
�u�− T

4

G

]
and

lim
u→uT

∫ u
uT

d�
(
û− u	 T

)
du

d

dû
� T

4
dû → �

d�
(
uT − u	 T

)
du

[
T

4

T − T
4
�u�
]

using Riemann-Stieltzes integration (see, e.g., Lumley and Panofsky 1964:220),

where �d/du�� T
4
is 0 everywhere except infinitesimally close to the top

and ground, where its value is infinite (i.e., a discontinuous function). Thus

Eq. (8-40), using Sasamori’s (1972) isothermal approximation, neglecting

subgrid-scale quantities, and assuming that �̄ is constant over the interval du
(so that u can be replaced with z), can be written as

��R↑
�z

� �
d�
(
u	 T
)

dz

[
T

4
�z�− T

4

G

]
��R ↓
�z

� �
d�
(
uT − u	 T

)
dz

[
T

4

T − T
4
�z�
]
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The vertical derivatives of � are evaluated for ��R↑/�z and ��R↓/�z at a dis-

tance z above the ground. To use Eqs. (8-35) and (8-36) in Eq. (8-41), �P =∫ zT
z

�q3 dz and �Hc = 0
252�p − pT� cm must be used when the argument of

� is uT − u.
Equation (8-1) can also be written as

S̄� =
�T

�t

∣∣∣∣
rad

= − 1

�̄Cp

[
��R
�z

∣∣∣∣
lw

+ ��R
�z

∣∣∣∣
sw

]
	 (8-42)

where the subscripts “lw” and “sw” refer to the absorption of longwave and

shortwave irradiance, respectively. Equation (8-41), or the more complete form

in Eq. (8-40), can be used to represent ��R/�z �lw, where
��R
�z

∣∣∣∣
lw

= ��R↑
�z

− ��R↓
�z




Figure 8-6, calculated by R. T. McNider (1981, personal communication), illus-

trates the accuracy of using Eq. (8-41) in lieu of Eq. (8-40) to calculate temper-

ature change in Eq. (8-42) for the night of Day 33 of the Wangara Experiment

(see Figure 7-10 in Chapter 7 and associated discussion for a description of

the Wangara simulation). As evident from Figure 8-6, at least for this particular

simulation, Sasamori’s simplified form [Eq. (8-41)] yields very realistic results,
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Fig. 8-6. A comparison of a longwave radiational heating-cooling computation
obtained for the night of Day 33 during the Wangara Experiment using Sasamori’s
simplified parameterization [Eq. (8-41)] and a more complete parameterized form
[(Eq. 8.40)]. (Computed by R. T. McNider 1981, personal communication.)

although detailed small-scale variations of temperature changes from longwave

flux divergence are not reproduced.

In a clear atmosphere without pronounced temperature and water vapor dis-

continuities, Paltridge and Platt (1976:187) suggested a particularly simple for-

mulation for estimating longwave radiational cooling,

− 1

�̄Cp

��R
�z

∣∣∣∣
lw

= − [0
017T + 1
8
]

(8-43)

(in units of degrees Celsius per day, T in degrees Celsius, and −90�C ≤ T ≤
30�C), with a standard deviation of 0.33�C. With this relation, a temperature of

0�C yields a cooling rate of 1.8�C day−1.

Kuo (1979), using a more complete parameterization of longwave radiation,

reported that for clear air with a temperature and moisture profile approximat-

ing that of the U.S. standard atmosphere, the infrared cooling rate is about

1.2�C day−1, with a maximum at the surface and at 7.5 km and a minimum

at 2 km and the tropopause. However, as emphasized by Paltridge and Platt

(1976), representations such as that given by Eq. (8-43) are inappropriate when

significant vertical gradients of temperature or water vapor occur or when clouds

exist. In general, for clear air, a longwave radiation parameterization given by

Eqs. (8-40) or (8-41) appears to be appropriate for use in a mesoscale model.

The importance of longwave radiative fluxes relative to turbulent fluxes

in stable nocturnal boundary layers has been investigated by Gopalakrishnan
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et al. (1998). With weak winds, radiative flux divergence can dominate turbu-

lent fluxes for this situation. Jiang et al. (2000) use large-eddy simulations of

shallow cumulus convection to assess the relative importance of microphysics

and radiative fluxes.

8.3.2 Cloudy Air

When clouds are present, their water content strongly influences the optical

path length for infrared radiation. As reported by Stephens (1978a), a cumu-

lonimbus cloud with a liquid water content of 2.5 g m−3 has such a small path

length that it radiates as a blackbody beyond a depth of 12 m into the cloud. In

contrast, a thin stratus cloud with a liquid water content of 0.05 g m−3 requires

a depth of at least 600 m before it radiates as a blackbody. Liou and Wittman

(1979) have reported that cirrus, because of its relatively low amount of water

content (in the ice phase), is too shallow to be treated as a blackbody at any

depth. Charlock (1982) has suggested that changes of the liquid water con-

tent of the thinnest clouds have the most significant effect on climate. Wyser

et al. (1999) discussed the importance of the size of cloud droplets and ice

crystals.

The radiational cooling at the top of such cloud layers can be very substantial.

Roach and Slingo (1979), for example, found a cooling rate of 8.7�C h−1 from

the 1-mb layer at the top of nocturnal stratocumulus over England. Such cooling

can have a substantial impact on the entrainment rate of higher-level air into the

stratocumulus layer (see, e.g., Deardorff 1981) and on cold downward-moving

plumes within the cloud (see, e.g., Caughey et al. 1982).
Stephens and Webster (1981) have shown that vertical temperature struc-

ture (and, therefore, mesoscale dynamics) is highly sensitive to cloud height,

although it is sensitive only to water path for clouds that are shallow relative

to the infrared optical path length. They contend that high, thin clouds at low

and middle latitudes and all clouds at high latitudes tend to warm the surface

compared with a clear sky, whereas all other clouds cool. Platt’s (1981) results

suggest that cirrus clouds with an optical depth greater than 12 in the tropics

and about 5 in the midlatitudes will result in a cooling tendency below the

clouds. Mesoscale models (e.g., McCumber 1980; Thompson 1993) have often

treated clouds as blackbodies in the longwave portion of the spectrum, where

no infrared radiation is transmitted through the cloud.

Clouds consist of liquid and/or ice crystals in a range of distribution sizes,

and the details of their radiative properties are very complex, particularly for

ice crystals. Therefore, in the parameterization of infrared fluxes within clouds,

ice crystals are normally considered in terms of a particle with a radius defined

in terms of the surface area of the crystal (Paltridge and Platt 1976), since
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no analytic theory exists to describe the absorption and scattering of irregular

particles such as ice crystals. Moreover, scattering by both ice and water droplets

is generally ignored, because infrared scattering occurs predominantly in the

forward direction, so that the direction of the incoming radiation is essentially

unaffected (Paltridge and Platt 1976).

Stephens (1978a) suggested a useful parameterization for longwave radiation

within a water cloud given by

�R↑ = �RCB↑ �1− �↑ �+ �↑�T 4

�R↓ = �RCT↓ �1− �↓�+ �↓�T 4
	

(8-44)

where �RCT↓ and �RCB↑ are the clear-air irradiance at the cloud top zCT and cloud

base zCB, respectively, determined from a formulation such as Eq. (8-39).14 The

temperature, T , and the effective emissivity, �↓ and �↑, are evaluated at desired

levels within a cloud.

As reported by Stephens (1978b), these effective emissivities were obtained

by solving Eq. (8-44) for �↓ and �↑, using a detailed radiational model with

eight cloud types in a U.S. standard atmosphere to obtain �R↓	 �R↑, and T .
The values of �↓ and �↑ were then determined as a function of integrated liquid

water content (see Figure 8-7). The resultant empirical formulation is given by15

�↑ = 1− e−a↑W↑ and �↓ = 1− e−a↓W↓	 (8-45)

where a↑ = 0
130 m2 g−1 and a↓ = 0
158 m2 g−1 were found to give the best

fit to the data derived from Stephens’ (1978b) detailed theoretical model. The

integrated water content in the cloud above and below the level of interest (W↓
and W↑) was found to have the most pronounced influence on the effective

emissivity, a conclusion further substantiated from the observational study of

nocturnal stratocumulus in Great Britain by Slingo et al. (1982). A validation

and extension of Stephens’ (1978a) parameterized model is given by Chýlek

and Ramaswamy (1982), who conclude that emissivity is only a function of

integrated liquid water for wavelengths of 8–11.5 m, but maintain that it is

also a function of the droplet size distribution for wavelengths greater than 11.5

m. For typical drop size distributions for stratus, altocumulus, and cumulus

clouds, they stated that the effect on the flux emissivity in the 8- to 14-m band

is about ±35%. Liou and Ou (1981) also present a parameterization of infrared

radiative transfer in the presence of a semitransparent cloud layer and compare

their results to observations and a more detailed theoretical model. Liou and Ou

used a model with five broadband emissivity values to represent the five major

absorption regions in the infrared spectrum.

Stephens (1978a), however, concluded that cloud drop distribution, ambient

temperature, and water vapor distributions within the cloud are not important
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Fig. 8-7. Cloud emittance as a function of cloud water path for various parameter-
izations. The parameterization of Liou and Wittman (1979), Griffith et al. (1980), and
Paltridge and Platt (1981) included only ice, and the others were for liquid water clouds.
(From S. Ackerman, CSU, 1983, personal communication.)

in estimating this emissivity for water clouds. We use this result in the fol-

lowing discussion. It is implied from Paltridge and Platt (1976) that ice clouds

can be similarly represented by expressions such as Eqs. (8-45) and (8-44),

using the definition of integrated water content given in Note 15 to Eq. (8-45).

Figure 8-7 illustrates the emissivity as a function of cloud water path for several

parameterization schemes, demonstrating the uncertainty remaining in the rep-

resentation of emissivity in clouds. Those of Liou and Wittman (1979), Griffith

et al. (1980), and Paltridge and Platt (1981) are for ice clouds, and the rest are

for liquid water clouds.

For application to a mesoscale model, Eq. (8-44) can be used when a grid

volume is saturated with cloud material, and formulations such as Eq. (8-39)

can be used in a clear atmosphere. The vertical gradient of Eq. (8-44), needed

in Eq. (8-1), can be written as

��R↑
�z

= a↑�W↑
�z

e−a↑W↑
[
� T

4 − �R↑
CB

]
+ �↑ �

�z
� T

4

��R ↓
�z

= a↓�W ↓
�z

e−a↓W↓
[
� T

4 − �R↓
CT

]
+ �↓ �

�z
� T

4



(8-46)
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If the cloud layer is assumed to be isothermal at the height of interest [analo-

gous to the assumption used by Sasamori 1972 to derive Eq. (8-41)], then the

right-side terms in Eq. (8-46) can be neglected.

When a grid volume is only partially saturated by clouds (usually denoted as

a fractional coverage �c), ��R/�z�lw in Eq. 8.42 can be written using

��R
�z

∣∣∣∣
lw

= �c

[
��R↑
�z

− ��R ↓
�z

]
+ �1− �c�

[
��R↑
�z

− ��R ↓
�z

]
	 (8-47)

where, for example, the first term on the right side could be from Eq. (8-46)

and the second from Eq. (8-41).

If multiple cloud layers are present, then each clear and each cloudy region

can be treated separately using the adjacent regions as the vertical boundary

conditions, as illustrated schematically in Figure 8-8. For this example, the layer-

averaged upward and downward irradiances needed to calculate the longwave

heating-cooling in Eq. (8-42) are computed as follows:

G–1� �Rlw = [1− (�c1
+ �c2

+ �c3

)]
RA + �c2

(
1− �c1

)
RJ

+ �c1
RH + (1− �c1

) (
1− �c2

)
�c3

RF �

1–2� �Rlw = [1− (�c1
+ �c2

+ �c3

)]
RA + (1− �c1

)
�c2
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) (
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)
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Fig. 8-8. A schematic representation of a procedure for computing longwave irradi-
ance in a model grid mesh when multiple cloud levels covering various fractions of the
grid increment exist. The letters indicate the subregions outside of the clouds where a
formulation such as Eq. (8-39) is used to compute irradiance, with the temperature at
the ground replaced with T at the cloud top height in B, D, C, I, K, and E and the tem-
perature at the model top replaced with T at the cloud base height in J, D, E, F, I, and
H. Inside the clouds, irradiance is computed using a form such as given by Eq. (8-44).

where the subscripts indicate over which layer the irradiances are evaluated and

�c1
	 �c2

, and �c3
refer to the three clouds in Figure 8-8. Atwater (1974) used

a similar form to proportionally weight the upward and downward longwave

irradiances by the fractional coverage of a grid increment by clouds.

8.3.3 Polluted Air

Observations have shown that even naturally occurring aerosols significantly

affect the net radiation balance in the atmosphere (Alpert et al. 1998; Cautenet
et al. 2000). For example, Carlson and Benjamin (1980) found typical heat-

ing rates from the combined shortwave and longwave spectrum to exceed 1�C
for most of the atmosphere below 500 mb in a region of suspended Sahara

Desert dust. Ackerman and Cox (1982) determined that aerosols in the desert

air over Saudi Arabia approximately doubled the clear sky shortwave absorption

and may play an important role in the maintenance of the heat low over the

peninsula.

Human activities such as manufacturing, agriculture, and transportation input

large quantities of aerosols and gases into the atmosphere. For example, Wallace

and Hobbs (1977) note that a typical urban air mass may have 105 or more

aerosols per cm3, whereas an air mass over land far from developed areas
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typically has a concentration of aerosols on the order of 104 per cm3. Such

changes of concentration can have a significant effect on the infrared irradi-

ance. Saito (1981), for instance, has found that as visibility over central Tokyo

decreases from 20 to 10 to 2 km, the downward longwave radiation increases

by 1.3, 2.8, and 6.0%, respectively.

As with cloud droplets and ice crystals (as reported in Section 8.3.2),

scattering of infrared radiation by suspended pollution particles is generally

neglected, since scattering occurs predominantly in the forward direction

(Paltridge and Platt 1976:227). Moreover, since aerosols are usually smaller

than water droplets, they are less effective at absorbing and scattering electro-

magnetic radiation than an equal number of cloud water particles. Ackerman

et al. (1976) include scattering in their treatment of longwave irradiance in a

polluted atmosphere, although Viskanta et al. (1977a) conclude that scattering

increases the importance of absorption only slightly by increasing the path

length of the electromagnetic radiation.

Performing detailed calculations of the infrared extinction (i.e., absorption

plus backscatter) requires knowledge of the size distribution, composition, and

refractive indices of the aerosols. The refractive index � = �r + i� i (discussed

in detail by Liou 1980:78) is a complex number in which the real and imaginary

components correspond to the scattering and absorption properties, respectively,

of a particle. When no absorption occurs, the refractive index has no imaginary

component.

The representation of the scattering and absorption of radiation by aerosols

is expected to be more complicated than that by water droplets and ice crys-

tals. This results from the diversity of chemical species in an aerosol layer, as

contrasted with one chemical substance in a clean water cloud.

In parameterizing the influence of aerosols on the infrared irradiance, Paltridge

and Platt (1976:227) suggested that only a rough estimate of the absorption by

these particles is required. To determine this simple representation, a volume
absorption coefficient (in the S.I. system, the units are m−1),

�a� = ka���	 (8-48)

is defined, where ka� is the mass absorption coefficient specified by Eq. (8-13)

with �� as the density of the contaminant. Of course, this definition of an absorp-

tion coefficient can also be applied to a gaseous contaminant in the atmosphere.

For aerosol materials (or for water), Eq. (8-48) is also written as

�a� = �
∫ �
0

dn�r�

dr
r2 Ea� dr	 (8-49)

where dn�r�/dr is the number of particles per radius interval per unit volume

at radius r and Ea� is defined as the ratio of the absorption cross-section to

the geometric cross-section of a single spherical particle.16 As discussed by
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Paltridge and Platt (1976:78), when using a spherical representation for the

aerosols, one assumes that in a population of aerosols, their orientation is ran-

dom, so a spherical shape can be used to represent their integrated influence on

the flux of radiation. (Of course, such an assumption is invalid when irregular-

shaped aerosols have a preferential orientation; e.g., thin disks will tend to fall

with their long axis more or less parallel to the ground.)

From observations (e.g., Paltridge and Platt 1976, Figure A.4; Wallace and

Hobbs 1977), the distribution of aerosols are well approximated by the relation

dn�r�/dr = �b1/2
3� r
−�1+b2� (8-50)

in a size range of greater than 0.1 m or so, where b1 and b2 are constants (b1
has dimensions, whereas b2 is dimensionless). This function, called the Junge
distribution, is recommended by Paltridge and Platt (1976:281) as being partic-

ularly useful in radiation problems, at least in moderately polluted continental

atmospheres. (However, in clean maritime air masses, Paltridge and Platt state

that the Junge distribution is invalid, although for infrared radiation calculations,

the low numbers of aerosols in that environment imply that �a� will be very

small relative to the absorption from water vapor and CO2.) Modified gamma,

standard gamma, and lognormal distributions of aerosols, as summarized by

Paltridge and Platt (1976, Table A.1), have also been used in lieu of Eq. (8-50).

In addition, Abele and Clement (1980) discuss several functional forms, includ-

ing Chebyshev polynomials, to use in representing these distributions.

Equation (8-49) can also be written as

�a� �r1	 r2� = �
∫ r2
r1

r2 Ea��r�
dn�r�

dr
dr

= �b1
2
3

∫ r2
r1

Ea��r�r
1−b2 dr	

(8-51)

where �a� �r1	 r2� is the volume absorption coefficient resulting from aerosols

between radius r1 and r2, and Eq. (8-50) is used to represent dn�r�/dr . As sug-
gested by Paltridge and Platt (1976:227), based on observations, the absorption

efficiency Ea� can be decomposed into two parts,

Ea� =
{
b3r	 rmin < r < rm

1
0	 rm ≤ r < rmax	

so that

�a� = �b1b3
2
3

[∫ rm
rmin

r2−b2 dr

]
+ �b1

2
3

∫ rmax

rm

r1−b2 dr
 (8-52)

For a Junge distribution with � = 1
55− 0
1i, Paltridge and Platt give values of

rmin = 0
01 m, rm = 7 m, and rmax = 70 m. The constant b1 is proportional
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to the total number of aerosols in the distribution, whereas b3 is a function of

wavelength � and the refractive index of the aerosol particle. Obviously, the

greater the number of the same type of aerosols, the greater the absorption. The

exponent b2 has been found observationally in polluted air masses to have values

between 2 to 4 (Liou 1980:238), with b2 = 3 the most common (Paltridge and

Platt 1976:280). The value for b3 is determined from17

b3 =
dEa�

dr
=
(
2�

�

)
24�i�r[(

�2
r − �2

i + 2
)]2 + �2�i�r�

2
(8-53)

(from Paltridge and Platt 1976:227), where the right side of this relation

is derived using the concepts of refraction discussed by Paltridge and Platt

(1976:222, 227) and Liou (1980, App. D). Using representative values for

polluted air of b2 = 3 and b1 = 2
3× 10−11 [since b2 = 3, b1 is dimensionless

for this form of Eq. (8-51)] and a value of b3 of 1
34× 103 cm−1, as given by

Paltridge and Platt (1976:228), yields a value for Eq. (8-52) of

�q� = 3
24× 10−2 km−1
 (8-54)

Of course, other values of the complex index of refraction yield different

values of �a�. For example, Paltridge and Platt give a value of �a� = 1
9 ×
10−1 km−1 for a carbonaceous aerosol with a value of �i = 0
6.

When condensation occurs on dry hydroscopic aerosols, the refractive index

is assumed to approach a pure water droplet as it grows larger. Hänel (1971)

proposed the following empirical formulation for shortwave irradiance, which

is also equally applicable in the infrared region:

�r = �rq2
+ (�r − �rq2

)
/
(
rq2/r0
)3

� i = � iq2
+ (� i − � iq2

)
/
(
rq2/r0
)3
	

(8-55)

where �rq2
and � iq2

refer to the real and imaginary components of the refractive

index of liquid water and rq2/r0 is the ratio of the radius of the liquid droplet to

that of the dry aerosol [see Eq. (8-80)]. Equation (8-55) is also given by Nilsson

(1979) for aerosol extinction of longwave radiation.

In applying Eq. (8-52) or other analogous formulations to the atmosphere, it

is generally recognized that the absorption of infrared radiation by aerosols will

be important only within the wavelength band from 8 to 14 m. Elsewhere in

the longwave region, the absorption by CO2 and water vapor is assumed to be

dominant18 (see, e.g., Ackerman et al. 1976:33; Zdunkowski et al. 1976:2403;
Welch et al. 1978:140).
It is therefore necessary to integrate Eq. (8-52) over the wavelengths 8 to

14 m. As shown by Paltridge and Platt (1976, App. A), however, �r and � i can

vary substantially as a function of wavelength within even this small interval.
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Therefore, one procedure is to evaluate �a� over smaller intervals of wavelength

in which �r and � i can be assumed to be constant.

In a polluted atmosphere without clouds, the emissivities could then be com-

puted from19

��m ��za�=
M∑

m=1

�
∑
��

[
1−bsm exp

(−�
�m
a�̄
�za
)]

�8 m≤�≤14 m�	 (8-56)

where the sum
∑

�� (using a constant ��) is over as many wavelength

intervals as needed to represent �r and � i as constants within that interval.

The coefficient � is inserted to represent the average value of
� ��̄�T �

�T 4 within

the wavelength interval. Within each interval, �� for each chemical species,

�
�m
a�̄

is the average volume absorption coefficient. The parameter bsm is used

�bsm ≤ 1�
∑M

m=1 bsm = 1� to account for overlap in the wavelength of absorp-

tion of different pollutants. The use of bsm permits the parameterization of the

cumulative effect of absorption by each type of aerosol or gaseous contaminant

for each wavelength interval [see Note 19 to Eq. (8-56)]. The quantity �za is a
depth within an aerosol layer. It may also be necessary to define two separate

emissivities, ��m↓ and ��m↑, using the form given by Eq. (8-56), analogous to

that required for a water cloud [i.e., Eq. (8-45)], since the spectral composition

of the irradiance at the top and bottom of the aerosol clouds could be different.

To estimate the divergence of infrared irradiance caused by pollution needed

in Eq. (8-42), Eq. (8-56) can be used in an expression such as

�R↑
�z

=
∫ z
zAB

d��m �z− ẑ�

dz

d

dẑ
�T

4
dẑ

� R↓
�z

=
∫ z
zAT

d��m �ẑ− z�

dz

d

dẑ
�T

4
dẑ	

(8-57)

where zAB
and zAT

are the bottom and the top of the aerosol layer, respectively.

This formulation is analogous to Eq. (8-40). A simplified representation such

as Eq. (8-41) could also possibly be used with TG and TT replaced by the

temperatures at the base and top of the aerosols and u defined in terms of

distance from the base of the aerosols.

In actual parameterizations of polluted air masses, several methods have been

used to represent the absorption of infrared radiation by pollutants. For example,

Viskanta et al. (1977a, b) used ethylene, which has a strong absorption in the

8- to 12-m interval to represent the net effect of all pollutants. Atwater (1971a)

assumed a modified gamma distribution given by

n�r� = 5
7× 1019 r3 exp
(−45r0
25

)
to represent the size distribution of aerosols, and an imaginary part of the refrac-

tive index of 0.25 for infrared radiation. His distribution of aerosols assumed



8.4 Shortwave Radiative Flux 233

a concentration of 106 cm−3 with a modal radius of 0.005 m. The value of

the volume absorption coefficient that he used to represent the entire infrared

spectrum varied from 0 to 0.8 km−1 for his summer simulations and from 0

to 0.5 km−1 for his winter simulations over an urban area. The higher values

of the absorption coefficient were adopted to represent severe pollution condi-

tions. Atwater (1971b) stated that volume absorption coefficients greater than

0.1 km−1 cause changes in temperature that exceed those caused by water vapor.

Andreyev and Ivlev (1980) found that large aerosols (i.e., ≥ 0.5 m) tend to be

minerals and to absorb primarily between the 2- to 15-m wavelengths.

Welch and Zdunkowski (1976), Zdunkowski et al. (1976), and Welch

et al. (1978) used a parameterization developed by Korb et al. (1975) to

represent both the scattering and absorption of infrared radiation by aerosols

(and water vapor) in the atmospheric window. They used measured values for

dry aerosol parameters from the industrialized area of Mainz, Germany and

determined that, in general, � i increases with wavelength. For � = 10 m, they

found �r = 1
7 and � i = 0
34 for the dry aerosols with �a� = 4
04× 10−3 km−1

when the total particle concentration was 2262 cm−3. These investigators also

included the effect of relative humidity on �a�. They estimated the ratio of �a�

for a hydroscopic particle in a moist atmosphere to �a� of a completely dry

aerosol as 1.01, 1.54, 3.12, and 11.03 for relative humidities of 20, 75, 95, and

99%, respectively, with � = 10 m.

Ackerman et al. (1976) also included scattering, as well as absorption, in

their simulation of infrared irradiance within a polluted atmosphere, although

they neglected the dependence of aerosol properties on relative humidity. Using

aerosol data from 342 distributions measured in Los Angeles, for an observed

average concentration of 105 cm−3, they found excess cooling caused by aerosols

in the lowest 1 km of almost 1�C day−1. They also concluded that increasing

the concentration of aerosols tends to produce more isotropic scattering and to

increase the fraction of infrared energy absorbed. Additional discussion of the

effect of pollution on radiation is presented in Section 8.4.3 and Section 13.1.5

in Chapter 13.

8.4 Shortwave Radiative Flux

Shortwave irradiance is composed of two components: direct irradiance and

diffuse irradiance. Direct shortwave irradiance reaches a point without being

absorbed or scattered from its line of propagation by the intervening atmosphere.

The image of the sun’s disk as a sharp and distinct object represents that portion

of the shortwave radiation that reaches the viewer directly. In contrast, diffuse

irradiance reaches the observer after first being scattered from its line of prop-

agation. On an overcast day, for example, the sun’s disk is not visible, and all
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of the shortwave irradiance is diffuse. On such days, this diffuse solar radiation

may be nearly isotropic (Zdunkowski et al. 1980).
The direct downward solar irradiance reaching a horizontal surface of unit

area at the top of the atmosphere R↓
sw0

, can be written as

R↓
sw0

= �R↓
sw0

=
{
S0
(
a2/r2
)
cos Z	 �Z < 90��

0	 �Z ≥ 90�� 
 (8-58)

The ratio of the average distance of the earth from the sun to its location at any

time of the year can be calculated, from Paltridge and Platt (1976:57, 63), as

a2

r2
= 1
000110+ 0
034221 cos d0 + 0
001280 sin d0

+ 0
000719 cos 2d0 + 0
000077 sin 2d0	 (8-59)

with

d0 = 2�m/365
 (8-60)

The variable m is the day number, starting with 0 on 1 January and ending

on 31 December. The quantity S0 = 1376 W m−2 (Hickey et al. 1980) is the

irradiance from the sun on a surface of unit area perpendicular to the direction of

propagation of the sun’s electromagnetic energy at the semimajor axis distance

of the earth’s elliptical orbit from the sun a; S0 is called the solar constant. The
distance of the earth from the sun at any given time varies from r = 0
98324a
in early January to r = 1
01671a in early July [List 1971, Table 170 and from

Eq. (8-59)]. The variable Z is the zenith angle (see, e.g., Figure 8-1), defined

as 90� when the sun’s disk bisects the horizon and as 0� when it is overhead.

The zenith angle is defined by

cosZ = cos� cos �sun coshr + sin �sun sin�	 (8-61)

where � is latitude, �sun is the declination of the sun (which ranges between

+23
5� on 21 June to −23
5� on 22 December),20 and hr is the hour angle

(0� ≡ noon). Using Eq. (8-61), sunrise and sunset occur when Z = ±90� and

can be obtained from

hr = arccos �− tan �sun tan �� 


(When tan �sun tan � < −1, night occurs for the entire time, whereas for

tan �sun tan � > 1, the sun is up for the entire 24-hour period.)
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8.4.1 Clear Air

8.4.1.1 Direct Irradiance

In a clear, clean atmosphere, ozone, water vapor, and the gases given in Table

2.1 (particularly diatomic oxygen; see Kondratyev 1969:261) are the princi-

pal absorbers of shortwave irradiance. Of these atmospheric constituents, water

vapor is the major source of heating by shortwave absorption within the tropo-

sphere (e.g., List 1971:420; Paltridge and Platt 1976:94). Within the boundary

layer, heating as a result of shortwave absorption has been shown to be substan-

tial (e.g., Moores 1982). This water vapor absorption occurs at the near-infrared

portion of the solar spectrum.

Paltridge and Platt (1976:95) have suggested a formulation for fractional

absorption over the entire solar spectrum, based on Yamamoto’s (1962) study,

which is given by

aq3 = 2
9 �P/
[
�1+ 141
5 �P�0
635 + 5
925 �P

]
	

where �P in units of grams per centimeter squared is defined following

Eq. (8-35) using �z → �. The slight effect of CO2 and O2 absorption is also

included in this empirical formulation, which is accurate to within 1% over

values of �P ranging from 10−2 to 10 g cm−2. With �P = 10 g cm−2, for

instance, aq3 = 0
18. Note that the �P terms that appear in this expression

would need to be multiplied by �cos Z�−1 to account for slanted path lengths

of sunlight through the atmosphere.

Atwater (1974) also uses a similar representation to represent the absorp-

tion of shortwave irradiance. Obtained from McDonald (1960), this empirical

relation has been expressed by McCumber (1980) as21

aq3 = 0
077��P/ cos Z�0
3


With �P = 10 g cm−2, aq3 in this relation with Z = 0 is equal to 0.15. These

formulations for absorption are given in Eq. (8-42) as

��R ↓sw

�z
= � − a2

r2
�S0 cos Zaq3

�z
= −S0

a2

r2
cos Z

�aq3

�z

 (8-62)

Upward shortwave reflections from such surfaces as clouds, ground, and water

bodies can also influence radiative heating. Unfortunately, because of the small-

scale irregularities of these surfaces, the impinging solar radiation is generally

not reflected as in a mirror,22 but rather is reoriented to a wide range of vertical

directions. Such reorientation explains why, for example, except over water,

ground reflections when looking away from the sun are about as bright as those

when looking in the direction of the sun. Heating from these reflections has

not been included in mesoscale models, although its incorporation would be

straightforward, assuming isotropic reflection from the surface.
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The shortwave irradiance absorbed by the ground can be written as

�RswG
=
(�R↓

swG
+ �RD

swG

)
�1− A�	 (8-63)

where �RD
swG

is the diffuse irradiance at the ground (see Section 8.4.1.2), A is the

albedo23 (reflectance) of the ground, and �R↓
swG

is determined from a formulation

such as Eq. (8-62) by integrating through the depth of the atmosphere. Thus the

upward reflected irradiance from the ground is given by

�Rup
swG

= A
(�R↓

swG
+ �RD

swG

)



The albedo is discussed in more detail in Section 11.3.3.2 in Chapter 11. For

use in Eq. (8-42), the divergence of upward irradiance could be written as

��Rup
sw/�z = −�Rup

swG
�aq3

/�z
 (8-64)

8.4.1.2 Diffuse Irradiance

In a clear, clean atmosphere, scattering of shortwave irradiance occurs as this

electromagnetic energy propagates through the gases in the atmosphere. Dis-

cussed in detail in a number of texts (e.g., Liou, 1980, Section 3.7), this type of

multiple reflection is called Rayleigh scattering and is roughly inversely propor-

tional to the fourth power of wavelength. Rayleigh scattering, which accounts for

the blue color of the sky, occurs when the wavelength of the radiation is much

larger than the objects causing the scatter (e.g., visible light has a wavelength

much greater than the size of the molecules of gas in the air). The scattering of

shortwave irradiance increases its path length and thereby enhances the heating

of the atmosphere.

Atwater and Brown (1974) used an expression for fractional transmissivity

of shortwave irradiance at the ground that accounted for downward Rayleigh

scattering caused by O3, O2, and CO2, as well as the absorption from these

gases. Originally presented by Kondratyev (1969), this relation is given by

t = 1
03− 0
08
√
�9
49× 10−4p (in mb) + 0
051� / cos Z


Atwater and Ball (1981) present a similar formulation for t. For p = 1000

mb and Z = 0, this gives a value of t = 0
95; Z = 45� yields t = 0
93.
Equation (8-63) can then be written as24

�RswG
= (t − aq3

)
�1− A�R↓

sw0
	 (8-65)

where the absorption loss from water vapor is included. Above the surface,

�Rsw = �R↓
sw + �RD

sw = (t − aq3

)
R↓

sw0
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can be used, with t and aq3 evaluated at the pressure height p. The middle

expression in �Rsw is the direct plus diffuse radiation, and the righthand side

includes the astronomical effect [in R↓
sw0

; see Eq. (8-58)], the extinction from

water vapor absorption (in aq3), and the Rayleigh scattering effect (in t) as the
shortwave radiation is transmitted through the atmosphere. The derivative of �Rsw

with height yields the heating from direct plus diffuse solar radiation.

As reported by List (1971:420), as long as the scattering particles are small

in comparison with the wavelength of the incident light (i.e., Rayleigh scatter-

ing), half of the scattering is downward and half is upward. This simplifies the

incorporation of diffuse irradiance into t, such as described by List.

8.4.2 Cloudy Air

The influence of clouds on solar irradiance is significant. Gannon (1978), for

example, found that the sea-breeze circulation over south Florida was termi-

nated as the shading from cirrus clouds over land markedly reduced the solar

flux reaching the ground. Using a numerical model, Carpenter (1982b) demon-

strated that differential ground heating as a result of cloud shadowing by a bank

of altocumulus clouds can generate significant mesoscale ascent. This region

of upward motion apparently resulted in substantial thunderstorm activity over

England as the cloud bank moved eastward on the case study day that he exam-

ined. In a regional model (i.e., �x = �y � 58 km), Wong et al. (1983a) illus-
trated that large errors in precipitation and pressure fields can occur if cloud

influences on both longwave and shortwave radiative flux divergence are not

included. Sasamori (1972) concluded that when clouds are present, their effect

in the solar wavelengths is primarily to reduce shortwave radiation transmission

below clouds rather than cause heating within them. Transmission is reduced

as the radiation is reflected into space because of the relatively high albedo of

the top surfaces of water and ice clouds. Gu et al. (2001) found that a cumulus

cloud field can focus solar reflection from clouds to a sufficient degree so that

the surface insolation can occasionally exceed the solar input at the top of the

atmosphere. Using a model, Harrington et al. (2000) investigated the radiative

impacts on the growth of cloud droplets within Arctic stratus clouds.

In cloudy air (and in layers of aerosols), the radiative transfer of shortwave

electromagnetic energy is more complicated than in clear air, because scatter-

ing becomes much more important and involves a complex pattern of multiple

reflections when the wavelength of the radiant energy and particle size is about

the same. For longwave irradiance, scattering is generally of less importance,

as discussed in Sections 8.3.2 and 8.3.3.

The mathematical procedure used to represent this scatter is often referred to

as Mie scattering, after the first individual who solved the equations for radia-
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tive transfer when the wavelength and particle size are about equal. Described

in detail by Kondratyev (1969, Section 4.4) and Liou (1980, Chapter 5), the

formulation for this type of scattering (even for spherical particles) is much

more involved than for Rayleigh scattering. The term “Mie scattering” is used

when the incident wavelength is equal to or smaller than the particles that cause

the scatter. Qualitatively, as discussed by Liou (1980:7), particles tend to scat-

ter radiative energy preferentially in the forward direction but with complicated

side lobes25 when the particle size and wavelength of radiation are of the same

order. As particles become larger, their forward scatter becomes greater for the

same wavelength of irradiance.

As discussed by Paltridge and Platt (1976:103), multiple scattering of short-

wave irradiance within a cloud increases its absorption, since its path length

has increased. Although the imaginary component of the refractive index of

ice and water (which is proportional to the absorption) is very small at wave-

lengths less than 2 m, and the wavelengths of absorption of water vapor and

of ice and liquid water are similar, Paltridge and Platt (1976:105) have sug-

gested that cloud absorption by droplets and ice crystals may be a subtle but

important component in cloud dynamics. However, such an effect has not yet

been included in mesoscale models, although Stephens (1978a) presents one

such parameterization.

Stephens divides the solar spectrum into two intervals: 0.3–0.75 m, where

absorption is neglected, and 0.75–4.0 m, where absorption is included. Using

the definition of optical thickness given by Eq. (8-13), the volume absorption

coefficient given by Eqs. (8-48) and (8-49), with n�r� corresponding to a cloud

of liquid droplets, yields

"� = �
∫ z+�zc

z

∫ �
0

n�r�r2Ea� dr dz
 (8-66)

In this expression for optical thickness, �zc is a portion or all of the cloud

thickness. [In contrast to Eq. (8-13), this expressions for "� is not integrated to

the top of the atmosphere.] Since cloud droplets are large relative to shortwave

irradiance, Eq. (8-66) can be written as

" � 2�
∫ z+�zc

z

∫ �
0

n�r�r2 dr dz	 (8-67)

where the ratio of the scattering cross-section to the geometric cross-section

(i.e., Ea�) is 2, as determined from Mie theory. (The condition that Ea� = 2 is

called the large-drop assumption, since the wavelength of the electromagnetic

energy is presumed to be much smaller than the size of the cloud droplets.)

In addition, because Ea� is identically equal to 2, the wavelength dependence
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in " is removed. Stephens then defined an effective radius of the cloud droplet

distribution as

re =
∫ �
0

n�r�r3 dr

/∫ �
0

n�r�r2 dr	 (8-68)

so that, because volume = 4

3
�r3, Eq. (8-67) can be written as

" � 3

2
�pq2

/(
re�q2

)

 (8-69)

The importance of the effective radius in mesoscale models has been explored

by Wyser et al. (1999). They found, for example, that cloud droplet size infor-

mation has its largest effect on the shortwave radiative fluxes of thin clouds.

The quantity �pq2
, analogous to �Pq3

defined following Eq. (8-35), is given

by

�pq2
= 4

3
�
∫ z+�zc

z

∫ �
0

�q2
n�r�r3 dr dz


The integral
∫�
0

4

3
��q2

n�r�r3 dr is the liquid water content of the cloud at a

given level; �pq2
is in units of mass per unit area.

Grid-volume averages of Eq. (8-69) [see Eq. (4-6) in Chapter 4] or a more

general form for " or "� should be made, of course. However, essentially no

information is known regarding subgrid-scale fluctuations on the mesoscale

within clouds.

Using Mie theory, Stephens developed empirical formulations for " as a func-

tion of integrated liquid water content, given as

log10 " =
{
0
2633+ 1
7095 ln �log10 W� 	 0
30m ≤ � ≤ 0
75m

0
3492+ 1
6518 ln �log10 W� 	 0
75m ≤ � ≤ 4
0m	
(8-70)

where W = �pq2
is in units of grams per meter squared. For a value of W = 100

g m−2 (typical of an altostratus cloud), " = 28 for the shorter wavelengths and

" = 31 for the longer wavelengths. Twomey (1978) noted that when " ≥ 10,

all solar irradiance exiting from the bottom of the cloud is diffuse.

Assuming that the ground surface is nonreflective (i.e., A = 0) and any under-

lying cloud layer is nonreflective, Stephens writes

rc =
�1"/ cos Z

1+ �1"/ cos Z
	 tc = 1− rc �0
3m ≤ � ≤ 0
75m�

rc =
(
u2 − 1
)
�exp �"eff�− exp �−"eff��

/
Rc

tc = 4u/Rc	 ac = 1− rc − tc

⎫⎬⎭ �0
75m < � ≤ 4
0m� 	

(8-71)
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where

u2 = �1− �+ 2�2�� /�1− ��	

"eff = ��1− �� �1− �+ 2�2���
1/2 "/ cos Z	

Rc = �u+ 1�2 exp �"eff�− �u− 1�2 exp �−"eff� 


The � terms represent the fraction of incident radiation backscattered. Using

his theoretical model, Stephens (1978b) estimated values of �1	 �2, and �, as
given in Table 8-1.

With these two spectral region parameterizations, radiative heating in model

layers within and transmission of radiation through a cloud can be determined

using Eq. (8-71), Table 8-1, and Eq. (8-70). Shortwave heating within the cloud,

for use in Eq. (8-42), is obtained from

��Rswc
/�z = − (�R↓

sw + �RD
sw

)
CT

�ac/�z	 (8-72)

where
(�R↓

sw + �RD
sw

)
CT

is the incident direct and diffuse shortwave irradiance at

the top of the cloud. The amount of irradiance transmitted through the cloud

is given by Eq. (8-71). For a single cloud layer, the shortwave radiation at the

ground given by Eq. (8-65) is modified to

�RswG
= tc �1− A�

(�R↓
sw + �RD

SW

)
CT

	 (8-73)

where the scattering and absorption below the cloud has been neglected.26

For multiple cloud layers, the irradiance reaching each cloud top can be

estimated using a value corresponding to the irradiance that exited downward

from the next highest cloud base minus the extinction in the free atmosphere

below that cloud base. Since each cloud will absorb and backscatter shortwave

radiative energy, the free atmosphere irradiance reaching lower clouds will be

progressively smaller. When clouds are assumed to cover only a portion of

a grid mesh (such as sketched in Figure 8-8), a fractional weighting of the

clouds’ contribution to absorption and scattering can be performed, although

cloud shape (Welch et al. 1980; Welch and Zdunkowski 1981a) and shading

of adjacent clouds will influence the flux of shortwave radiation. The second

effect will be particularly important when the clouds are in close proximity to

one another (Gube et al. 1980). However, if backscatter is neglected from the

ground and overlying clouds and if shading and variations in cloud shape are

ignored, then the shortwave irradiance at the ground can be parameterized for

use in mesoscale models as

�RswG
=

d∏
i=1

[
1− �ci

(
1− tci
)]
�1− A�

(�R↓
sw + �RD

sw

)
CT

(8-74)
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TABLE 8-1

The Broadband Values of ���1, and �2 Used to Determine Eq. (8-71)

cosZ

" 1.0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Average values of 1− �

1 0.0225 0.0222 0.0218 0.0208 0.0199 0.0155 0.0109 0.0059 0.0017

2 0.0213 0.0200 0.0179 0.0176 0.0156 0.0118 0.0078 0.0038 0.0010

5 0.0195 0.0166 0.0146 0.0125 0.0096 0.0069 0.0043 0.0021 0.0005

10 0.0173 0.0138 0.0114 0.0093 0.0070 0.0049 0.0026 0.0013 0.0003

16 0.0156 0.0111 0.0090 0.0073 0.0052 0.0035 0.0019 0.0009 0.0002

25 0.0115 0.0088 0.0069 0.0052 0.0038 0.0026 0.0014 0.0007 0.0001

40 0.0104 0.0055 0.0042 0.0032 0.0023 0.0014 0.0008 0.0003 0.0001

60 0.0083 0.0050 0.0038 0.0028 0.0020 0.0013 0.0007 0.0003 0.0001

80 0.0069 0.0043 0.0035 0.0022 0.0018 0.0011 0.0006 0.0003 0.0000

100 0.0060 0.0043 0.0035 0.0022 0.0018 0.0011 0.0006 0.0003 0.0000

200 0.0044 0.0031 0.0025 0.0016 0.0011 0.0007 0.0004 0.0002 0.0000

500 0.0026 0.0018 0.0014 0.0010 0.0007 0.0005 0.0003 0.0001 0.0000

Average values of �1

1 0.0421 0.0557 0.0657 0.0769 0.0932 0.1111 0.1295 0.1407 0.1196

2 0.0472 0.0615 0.0708 0.0803 0.0924 0.1017 0.1077 0.1034 0.0794

5 0.0582 0.0692 0.0744 0.0782 0.0815 0.0812 0.0776 0.0680 0.0483

10 0.0682 0.0726 0.0737 0.0733 0.0723 0.0685 0.0626 0.0527 0.0359

16 0.0734 0.0738 0.0728 0.0707 0.0680 0.0631 0.0564 0.0465 0.0310

25 0.0768 0.0744 0.0723 0.0691 0.0653 0.0598 0.0526 0.0427 0.0281

40 0.0791 0.0749 0.0719 0.0680 0.0636 0.0575 0.0501 0.0402 0.0261

60 0.0805 0.0752 0.0717 0.0674 0.0627 0.0563 0.0488 0.0389 0.0251

80 0.0812 0.0754 0.0717 0.0672 0.0622 0.0558 0.0481 0.0382 0.0246

100 0.0820 0.0757 0.0717 0.0670 0.0619 0.0553 0.0475 0.0376 0.0241

200 0.0831 0.0763 0.0721 0.0672 0.0619 0.0552 0.0473 0.0374 0.0241

500 0.0874 0.0800 0.0755 0.0703 0.0647 0.0576 0.0494 0.0392 0.0262

Average values of �2

1 0.0477 0.0627 0.0734 0.0855 0.1022 0.1200 0.1379 0.1465 0.1207

2 0.0537 0.0690 0.0788 0.0886 0.1003 0.1090 0.1133 0.1065 0.0794

5 0.0660 0.0769 0.0817 0.0850 0.0871 0.0864 0.0801 0.0688 0.0474

10 0.0759 0.0793 0.0795 0.0781 0.0757 0.0705 0.0629 0.0516 0.0339

16 0.0801 0.0787 0.0766 0.0732 0.0689 0.0626 0.0543 0.0434 0.0277

25 0.0807 0.0759 0.0724 0.0678 0.0625 0.0555 0.0471 0.0368 0.0229

40 0.0770 0.0700 0.0656 0.0603 0.0545 0.0476 0.0396 0.0302 0.0184

60 0.0699 0.0621 0.0575 0.0522 0.0466 0.0401 0.0329 0.0248 0.0148

80 0.0634 0.0556 0.0510 0.0460 0.0408 0.0348 0.0283 0.0211 0.0125

100 0.0534 0.0461 0.0420 0.0376 0.0330 0.0279 0.0225 0.0166 0.0097

200 0.0415 0.0353 0.0319 0.0283 0.0246 0.0206 0.0165 0.0120 0.0068

500 0.0251 0.0208 0.0186 0.0163 0.0140 0.0115 0.0090 0.0064 0.0032

From Stephens (1982, personal communication).



242 8 Averaged Radiation Flux Divergence

(Atwater and Ball 1981), where, as in Eq. (8-73), the contributions to aq3 from

within the cloud layers should be excluded.

Newiger and Bähnke (1981) reported that aerosol particles incorporated into

clouds may be the main absorber of solar radiation in clouds in the visible

wavelengths, rather than the pure water in the cloud droplets. Knowledge of

the liquid water content alone is not sufficient for determining the absorption of

solar radiation within a cloud—the aerosol content (and type) within the cloud

must also be known. Feingold and Kreidenweis (2000), for example, discuss

whether the heterogeneous processing of aerosols increases the number of cloud

droplets.

8.4.3 Polluted Air

In contrast with infrared radiation, scattering of shortwave electromagnetic

radiation by aerosols is recognized by all investigators as an important compo-

nent in the transfer of this energy. This scattering is what causes the white or

yellow sky color usually associated with a polluted atmosphere. As discussed

by Cerni (1982) and Weber and Baker (1982), unless the air is exceptionally

clean, the ratio of diffuse to direct solar radiation is significantly affected by the

quantity of pollution and also is a strong function of zenith angle, particularly

when that angle is greater than 70� or so and the optical depth is large.

The absorption of shortwave energy by aerosols is also recognized as impor-

tant, although its magnitude, as represented by the imaginary index of refraction,

is not known except for a few specific substances. Hänel et al. (1982), for exam-

ple, have reported heating rates from absorption of solar radiation by aerosols

as large as about 0.5�C h−1 during the middle of the day under clear sky condi-

tions over Frankfurt, Germany. They concluded that such absorption “is of high

climatological importance, especially in industrial areas.”

The extinction (absorption plus net backscattering) of solar energy by aerosols

can be evaluated using an equation similar to that applied to estimate the absorp-

tion of longwave energy by aerosols (Section 8.3.3). In general, the optical

path length for aerosols in the visible wavelengths is about 10 times that in the

infrared (Paltridge and Platt 1976:215). An analogous equation to Eq. (8-52),

except for extinction, is given by

�e� �r1	 r2� =
�b1
2
3

∫ r2
r1

Ee��r�r
1−b2 dr	 (8-75)

where �e� is a volume extinction coefficient and Ee� defined as the ratio of

the extinction cross-section to the geometric cross-section of a single spherical

particle. As in Section 8.3.3, the Junge distribution of aerosols [Eq. (8-50)] is
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used over the size range r1 to r2. If the change of variable, given as  = 2�r/�,
is used in Eq. (8-75). Then

�e� �r1	 r2� =
�b1
2�

(
�

2�

)2−b2 ∫  2
 1

Ee� � �  
1−b2 d 

or

�e� �r1	 r2� � �e� �0	�� � �b1
2�

(
�

2�

)2−b2 ∫ �
0

Ee� � �  
1−b2 d (8-76)

if, as assumed by Junge (1963), particles smaller than r1 are too small and

particles larger than r2 are too few to contribute significantly to extinction. As

discussed after Eq. (8-50), the Junge distribution is a realistic representation of

the distribution of aerosols in polluted air masses. As discussed by Paltridge and

Platt (1976:217, 222), the refractive index of aerosols is essentially independent

of wavelength in the shortwave intervals, and since Ee�� � is a function only of

the refractive index, the integral in Eq. (8-76) is a function only of refractive

index. Therefore, Eq. (8-76) can be written as27

�e� = b4�
2−b2	 (8-77)

where b4 is a function of particle refractive index, which itself is a function of

radius and chemical characteristic of the aerosol. Thus, using b2 = 3 [see after

Eq. (8-53)], shortwave irradiance reaching the ground, as given by an expression

such as Eq. (8-65), is given by

�RswG
= (t − aq3

)
ta�1− A�R↓

sw0
	 (8-78)

where

ta =
M∑

m=1

∑
��

[
b5m exp

(−b4m�
−1 �za
)]
	 (8-79)

with b4m defined for each aerosol and gaseous contaminant. The quantity �za
is the depth of a layer within the aerosol cloud. The parameter b5m is included

to account for the overlap in attenuation when two or more contaminants are

present [see after Eq. (8-56)]. When using Eq. (8-79) in this form, however,

changes of the distribution of aerosol sizes and composition with height are

ignored.

The effect of humidity on the radius size (which will also, in general, change

b4m ) for a moderately polluted air mass can be estimated for relative humidities

below 90% or so, following Kasten (1969), as

r = r0
[
1− (q3/q3s )]−0
23

	 (8-80)
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where q3s is the saturation-specific humidity (100q3/q3s is the relative humidity).

According to Eq. (8-80), for a relative humidity of 50%, r � 1
17 r0, whereas at
a relative humidity of 90%, r � 1
7 r0. Zdunkowski and Liou (1976) examined

the effects of pollution on the absorption of shortwave irradiance and found

it inconsequential for relative humidities of 30–70%, although, as implied by

Eq. (8-80), a significant effect might be expected only for relative humidities

closer to 100%, where r and r0 become significantly different.

Although Eq. (8-79) provides the information to evaluate the extinction of

solar radiation caused by atmospheric pollutants, it does not permit determina-

tion of the effect of these materials on the flux divergence term in Eq. (8-42).

Performing this evaluation requires the amount of absorption of solar irradiance

by the aerosols. Absorption occurs when the imaginary component of the par-

ticle refractive index is nonzero. A volume absorption coefficient, analogous to

Eq. (8-77), can be written as

�a� = b6�
2−b2 = b6�

−1	 (8-81)

where b6 is a function of particle refractive index and the number of aerosols

but in general is different than b4. The shortwave heating within the aerosol

layer, for use in Eq. (8-42), can then be obtained from

��Rswa

�z
= − (�R↓

sw + �RD
sw

) �aa

�z
	 (8-82)

where �R↓
sw + �RD

sw in Eq. (8-82) is evaluated at the top of the aerosol layer and

aa =
M∑

m=1

∑
��

[
1− b7m exp

(−b6m�
−1 �za
)]

 (8-83)

The absorptivity, aa, is defined analogously to Eq. (8-79), with b7m included to

account for the overlap in absorptivities by different aerosols within the same

spectral interval (
∑M

m=1 b7m = 1) and b6m , a function of the refractive index for

each type of aerosol.

However, Paltridge and Platt (1976:222) question the use of Eq. (8-81) to

represent the absorption of solar irradiance by very small aerosol particles (r <
0
1m—called Aitken particles). From Mie theory, they present a value of

single-particle absorption efficiency given by

Ea� = −4

(
2�r

�

)
Im
[(
n2
c − 1
) /(

�2
c + 2
)]
	 (8-84)

where �c is the refractive index (�c = �r − i�i). Thus

�a� �r∗� = �3/4r∗� Ea�
 (8-85)
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Values of �c in the visible range are estimated as 1.8–0.5i for graphites,

soots, and coals (Twitty and Weinman 1971); 1.55–0.044i for fly ash (Grams

et al. 1972), and about 1.5–0.005i for dry atmospheric aerosol (Paltridge and

Platt 1976:287). Liquid water ranges from a value of 1.34–1.86 × 10−9i at

� = 0
4m to 1.33–1.25 × 10−7i at � = 0
8m (Paltridge and Platt 1976,

Table 1.4). In obtaining Eq. (8-85) for �a�, the aerosol cloud is assumed to

have only one radius size r∗ with the same value of Ea�. To use this expression,

one could define r∗ as the effective radius [see Eq. (8-68)] for aerosol particles

smaller than 0.1 m. The radiative heating from these Aitken aerosols could

then be estimated by Eq. (8-82), where

aa =
M∑

m=1

∑
��

[
1− b7m exp

(
− 3

4r∗m
Em

a� �za

)]
r∗ < 0
1m	 (8-86)

which is analogous to Eq. (8-83). The quantities Em
a� and r∗m could be defined

for each absorbing Aitken aerosol component (with b7m suitably defined) or a

representative value of r∗ and Ea�, with b7m = 1, used to represent the averaged

absorption characteristics.28 Since Ea� is proportional to radius, Em
a�/r∗m is inde-

pendent of radius in Eq. (8-86) as long as the refractive index is a constant for

all sizes of each Aitken aerosol type.

As discussed by Paltridge and Platt (1976:224), radiative heating by aerosols,

as given by Eq. (8-86), is most important for highly absorbent materials such

as carbonaceous aerosols (�i = 0
66). As �i decreases, the heating by sizes

larger than 0.1 m becomes dominant (although because of their large numbers

in polluted air, Aitken aerosols can still exert a significant effect on radiative

heating).

Parameterized versions of solar irradiance in a polluted atmosphere include

those reported by Welch and Zdunkowski (1976), Zdunkowski et al. (1976),
and Welch et al. (1978). Using a spherical harmonic representation for the Mie

equations of radiative transfer, as described by Zdunkowski and Korb (1974),

they represent multiple scattering and absorption separately for three intervals

in the solar spectrum: the water vapor region, where all absorption bands of

water vapor are included; the nitrous oxide (NO2) region, where absorption and

scattering by this gas can occur; and the remainder of the solar spectrum. All

three intervals include absorption and scattering by aerosols and the constant

gases. Their method, too detailed to present here, is discussed in Welch and

Zdunkowski (1976). Among their results, they found that solar irradiance can

cause heating in a polluted boundary layer in excess of 4�C h−1 with a zenith

angle of 45�. Welch et al. (1978), in their two-dimensional simulation of the

effects of polluted air on an urban-rural area, found temperatures at the ground in

the urban area during stagnant synoptic conditions to be reduced by 2�C because
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of low-level pollution sources and by up to 7�C when upper-level sources occur,

a result partially caused by the enhanced reflection and absorption of solar

radiation by suspended aerosols. (Changes in albedo and roughness over the

urban area also influenced these temperature changes.)

Viskanta et al. (1977a, b) and Viskanta and Daniel (1980) also used the

method of spherical harmonics (Bergstrom and Viskanta 1973a) to solve the

equations of radiative transfer. Using complex indices of refraction, as reported

by Bergstrom (1972), they divided the solar spectrum into 12 intervals. They

also concluded that the absorption of shortwave irradiance was an important

component of the heat budget in polluted air masses, of a magnitude on the

same order as for water vapor.

Atwater (1971a, b) used a simpler form to represent shortwave absorption and

scattering. To represent �a�, he used a modified gamma distribution and values

of Ea� for � = 0
485m, ignoring height dependence. In Atwater (1971b), he

found heating rates of 30�C day−1 for 1 ppm of NO2; 0.1–0.2�C day−1 for

1 ppm of SO2, 0.1 ppm ethyl nitrate, 0.1 ppm biacetyl, 0.1 ppm ozone, and

0.1 ppm methyl propenyl ketone; and less than 0.005�C day−1 for 1 ppm nitric

acid vapor, 0.1 ppm hydrogen peroxide, and 0.1 ppm ethyl nitrate.

Reck and Hummel (1981), using a model with both shortwave and longwave

radiative effects, concluded that aerosols can lead to heating or cooling at the

surface, depending on the surface albedo and on the imaginary part of the index

of refraction �i. For surface albedos above about 0.38, they found that the pres-

ence of absorbing aerosols (�i 	= 0) always resulted in heating at the surface.

They also concluded that the surface temperature is insensitive to its size dis-

tribution, although the chemical composition (and hence �i) depend on the size

spectra. Similarly, Porch and MacCracken (1982) determined that the aerosol

size distribution was relatively unimportant in determining the radiative heating

and cooling resulting from shortwave radiation in the Arctic. From an obser-

vational study over a specific region (St. Louis), Method and Carlson (1982)

concluded that the total radiative effects of aerosols over the city was negligible,

apparently because the aerosols had low absorptance (i.e., �i small).

It remains to be determined whether detailed treatments of radiative trans-

fer, such as those proposed by Welch and Zdunkowski (1976) and Viskanta

et al. (1977a, b), are required for accurate simulations of radiative heating and

cooling resulting from aerosols in a mesoscale model. Although a complete

treatment is of course desirable, the accuracy of any one parameterization in a
model need not be any more precise than the least accurate parameterization of
significant physical processes for the atmospheric system of interest. Additional
work is needed to test detailed, as opposed to simplified, parameterizations of

radiative transfer in mesoscale models.
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8.5 Examples of Parameterizations and
Level of Complexity

In three-dimensional mesoscale models, radiation physics has not yet received

the attention that has been given to planetary boundary-layer dynamics. How-

ever, the importance of longwave radiative flux divergence to such atmospheric

features as nocturnal mesoscale drainage flows and of both shortwave and long-

wave fluxes in polluted atmospheres over urban areas during the day suggests

that the accurate parameterization of radiation in mesoscale models is a fertile

area for future research.

8.5.1 Equation 8.43

This algorithm is a particularly simple representation of longwave radia-

tive flux divergence. It requires only T , which is one of the variables in the

conservation-of-heat equation. There are two adjustable (i.e., tunable) coeffi-

cients. This formula ignores CO2 and water vapor effects, so the coefficients

need to be altered for different humidities and other trace gas concentrations.

8.5.2 Equation 8.41

A more sophisticated algorithm for longwave radiative flux divergence is

given by Eq. (8-41). In this representation, the dependent variables are T 	 �̄	 q̄3,
and p̄. The coefficient, � , is the Stefan-Boltzmann constant, which is assumed

to be a fundamental quantity based on quantum mechanics. The emissivities, �q3
and ��CO2

, involve a set of observationally determined coefficients [Eqs. (8-35),

(8-36), and (8-37)]. The independent variable is z.

8.5.3 Equation 8.58

Equation 8.58 for direct solar radiation requires the specification of the solar

constant, S0, the day of the year [using Eq. (8-60)], and the latitude, declination

of the sun, and time of day from Eq. (8-61). This equation is based on astro-

nomical measurements to determine the coefficients in Eq. (8-59). Spherical

geometry is used to obtain Eq. (8-61).

Notes to Chapter 8

1. This variation occurs because the vertical gradients of such atmospheric properties as density,

carbon dioxide, and water vapor are generally much larger than their horizontal gradients. The only

major exception to this characteristic of the atmosphere occurs when clouds are present. In this

situation, however, horizontal gradients of irradiance have been neglected in mesoscale models, with



248 8 Averaged Radiation Flux Divergence

the justification that the horizontal resolution on the mesoscale generally is significantly less than

the vertical resolution. However, heterogeneities on the subgrid scale of clouds have been shown

to be important in radiative flux calculations (Tiedtke 1996; O’Hirok and Gautier 1998a, b). Over

tropical ocean regions (30�S–30�N), Tiedtke found that in a global weather forecast model, the net

downward shortwave radiative fluxes are increased about 10 W m−2 when subgrid-scale effects are

included.

2. The discussion of basic concepts presented in this section makes extensive use of Liou’s (1980)

excellent treatise on atmospheric radiation.

3. The zenith angle is also equal to 90� − E, where E is called the elevation angle.
4. Single wavelength.

5. Radiation that is not dependent on direction is called isotropic radiation.

6. Shortwave radiation consists of ultraviolet, visible, and near-infrared wavelengths.

7. Local thermodynamic equilibrium is defined in Note 2 in Chapter 2.

8. Using Leibnitz’s rule (see, e.g., Hildebrand 1962:360), d"� = −ka�� dz. Note that since k�
has units of area per mass, "a� is called the mass absorption coefficient.

9. See Spiegel (1967) or another introductory text on ordinary differential equations for discus-

sions of integrating factors.

10. In the real atmosphere, "T� would be set equal to 0 using Eq. (8-13) with z → �. Here,

however, the optical thickness "T� is not set equal to 0, since numerical model tops are generally

within the atmosphere.

11. The earth’s surface radiates in the infrared close to its blackbody value (see Tables 11-2

and 11-8 in Chapter 11). To make the same assumption for I� ↓ �zT , one can specify an effective

temperature at the model top to represent the infrared emission from above zT as if it were a

blackbody. More appropriately, of course, the actual values of I� ↓ �zT should be used.

12. Note that despite being referred to as a length, u has dimensions of mass per area. The value

of u increases monotonically with height z since � > 0, until z → �.

13. André et al. (1978) did include such fluctuations in their higher-order closure planetary

boundary-layer model, although such sophistication is prohibitively expensive for mesoscale applica-

tions. Moreover, as illustrated in Figure 7-10, accurate mean structure within daytime and nocturnal

nonpolluted boundary layers apparently do not require such a detailed representation. For notational

convenience, �̄ is replaced by � in the subsequent text.

14. In the absence of other cloud layers, the top part of Eq. (8-39) is used to determine �RCB↑,
and the bottom of Eq. (8-39) is applied to calculate �RCT↓.
15. W↑ = ∫ z

zCB
�iq̄1 dz +

∫ z
zCB

�lq̄2 dz and W↓ = ∫ zCT
z

�iq̄1 dz +
∫ zCT
z

�lq̄2 dz, where the con-

tribution from the presence of ice has been added to the Stephens representation and �i and �l

are the densities of ice and water. The appropriateness of including ice in this fashion needs to be

determined.

16. An absorption efficiency for the electromagnetic radiation of wavelength � is represented by

Ea�. In addition, the function n�r�, for mathematical clarity could also be written as n�r	 �r� to

indicate that the magnitude of n is also a function of the chosen radius interval, �r . In this chapter,

however, as is standard in publications on atmospheric radiation, this relation to �r is assumed when

the function form n�r� is used.

17. In deriving this expression, any variation of �i and �r with r is neglected.

18. The region of the electromagnetic spectrum between 8 and 14 m is called the atmospheric
window, since radiation is transmitted through the air relatively unattenuated at these wavelengths.

CO2 and water vapor do not have substantial absorption lines in this portion of the spectrum.

19. Equation (8-56) can be used with bsm = 1 only if the absorption of each different chemical

species is over different intervals. If not, the regions of overlap in absorption for these materials

must be corrected for (see, e.g., Eq. (8-38) for CO2 and H2O) to not include erroneous excessive

absorption. To the author’s knowledge, there has not been any work using a simple parameteri-
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zation such as Eq. (8-56) for use in a mesoscale model, although it appears to be a reasonable

representation.

20. �sun = 0
006918 − 0
399912 cos d0 + 0
070257 sin d0 −0
006758 cos 2d0 + 0
000907

sin 2d0 − 0
002697 cos 3d0 + 0
001480 sin 3d0; �sun is in radians (Paltridge and Platt 1976:63).

21. For large zenith angles, the influence of the earth’s curvature should also be considered.

For values of Z<̃80�, this expression for aq3 is very accurate. For larger values of Z, the ratio

1/ cos Z = sec Z gives a result that is too large because of the curvature of the earth and refraction

effects (see List 1971, Table 137).

22. The exception to this observation is over calm water bodies. Visible satellite imagery often

reveals the disk image of the sun over ocean areas in which the winds are very light.

23. Representative values of A are given in Table 11-4.

24. Note that aq3 can be subtracted from t in this fashion, because there is little spectral overlap

between absorption and scattering by the standard atmospheric gases and by water vapor. The

standard gases scatter predominantly in the shorter visible wavelength, whereas water vapor absorbs

mostly in the near-infrared spectrum.

25. Side lobes refer to local maxima in scattered radiation at various angles off of the original

line of propagation of the electromagnetic energy.

26. For thick, low clouds, neglecting the extinction of shortwave radiation by water vapor and

the other gases below clouds is reasonable. When the clouds are optically thin or at high levels,

however, the reduction of solar radiation as it propagates through the air below the clouds should

be included.

27. The total aerosol optical depth because of extinction "a = ∫ �
0

∫ �
zG

�e� dz d� is called the

turbidity (Liou 1980:238).

28. Paltridge and Platt (1976:225), however, caution against using mean absorption characteristics

of a range of different aerosol types to compute absorption.

Additional Readings
Several texts were particularly useful in preparing this chapter.

Kondratyev, K. 1969. “Radiation in the Atmosphere.” Academic Press, New York.

Although its format and notation are somewhat difficult to follow in places, this classic text

is a valuable source for a wide range of radiative transfer subjects. Particularly valuable is

the treatment of fundamental principles in radiation.

Liou, K.-N. 1980. “An Introduction to Atmospheric Radiation.” Academic Press, New York.

The discussion of fundamentals in radiative transfer and of representations of infrared irra-

diance were well written and clearly documented. A comprehensive mathematical treatment

of the Mie equations is included. A new version of Professor Liou’s book was published in

1992 entitled “Radiation and Cloud Processes in the Atmosphere: Theory, Observation and

Modeling” by Oxford University Press.

Paltridge, G. W., and C. M. R. Platt. 1976. “Radiative Processes in Meteorology and Climatology.”

Elsevier, Amsterdam.

These authors emphasize the physical explanation of radiative transfer. Their discussions of

shortwave and longwave irradiance in clouds and through aerosols was extensively used in

this chapter.

Stephens, G. L. 1984. Parameterization of radiation for numerical weather prediction models. Mon.
Wea. Rev. 112, 826–867.

Other valuable review references include Rockel and Raschke (1994) and Stephens (1994).
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Problems

1. Obtain a clear-sky longwave radiative flux divergence parameterization that is used in a model

of your choice. Write the dependent variables, universal constants, and tunable coefficients that are

used. Assess the differences that result with ±10% and ±25% changes in the values of the tunable

coefficients and the dependent variables.

2. Do the same as in problem 1, but for direct and diffuse solar radiation.

3. Repeat problems 1 and 2 for a cloudy atmosphere.

4. Repeat problems 1 and 2 for a polluted atmosphere.

5. Obtain a copy of the NCAR Community Climate Radiation Model (CRM) and decompose the

specific algorithms that are used for the radiative fluxes, using the same techniques as in problems 1–

4. The model version 2.0 is available at http://www.cgd/ucar.edu/cms/crm.



Chapter 9

Parameterization of Moist
Thermodynamic Processes

9.1 Introduction

In many mesoscale systems such as the sea breeze and squall line, phase

changes of water occur as mesoscale and/or subgrid-scale circulations lift air

above its condensation level and as water falls back out of or detrains from

clouds and begins to evaporate. The presence of water as solid, liquid, and

gas necessitates that the complete form of the conservation equations for water

substance [e.g., Eq. (4-25)] be included in a mesoscale model. In addition, the

proper representation of the source–sink term for diabatic heating [i.e., S� in

Eq. (4-24)] is required. This chapter discusses procedures to allow the effects of

the phase change of water to be included in grid-volume–averaged conservation

equations, such as given by Eqs. (4-24) and (4-25).

To parameterize the effects of phase changes in a mesoscale model, it is

helpful to catalog the grid-volume–averaged atmosphere in a vertical column

as convectively stable if ��̄E/�z > 0 everywhere above the condensation-

sublimation level of zcl, or convectively unstable if for at least one level above

zcl, ��̄E/�z ≤ 0. When a layer is convectively stable, forced lifting of the layer

must continue to sustain the conversion of water vapor to liquid or solid once

the specific humidity equals the saturation-specific humidity. If the layer is

convectively unstable, however, clouds continue to grow without further forced

lifting of the layer once saturation is reached. Convective instability is also

called potential instability, or layer instability.
The variable �̄E, the grid-volume–averaged equivalent potential temperature,

is used to determine grid-volume–averaged convective instability. This tem-

perature is derived as follows from the conservation-of-heat relation expressed

by Eq. (2-23). Let the contribution resulting from the first three terms in

251
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Eq. (2-24) for the source–sink term S� be written as

Cp

�
S∗
� = −(�fLf + �cLc

)
T −1
v

dqs
dt

= Cp

�

d�

dt
	 (9-1)

where qs is the saturation-specific humidity1 and Lc and Lf are the latent heats

of condensation and freezing, respectively (Lc = 2
5 × 106 J kg−1 and Lf =
0
33× 106 J kg−1 at 0�C).2 The parameters �f = 1 if freezing or melting occurs,

�c = 1 if condensation or evaporation occurs, �c = �f = 1 if deposition or

sublimation occurs, and 0 otherwise. Using Eq. (2-22), Eq. (9-1) can also be

written as

Cp

d�

�
= −LT −1

v dqs � −Ld
(
qs/Tv
)
	 (9-2)

where the approximation T −1
v

∣∣dqs∣∣ qsT
−2
v

∣∣dTv∣∣ has been used3 and L is equal

to either Lc or Lf + Lc.

If at low temperatures, qs/Tv → 0 (i.e., the saturation-specific humidity goes

to 0 faster than temperature approaches absolute 0 [see, e.g., Eq. (9-8)], then

Eq. (9-2) can be integrated to yield

Cp

∫ �ES
�

d ln �̂ = −L
∫ 0
qs/Tv

d
(
q̂s/T̂v
)
	

where Cp and L are treated as constants. The upper limit of integration �ES is

called the saturation equivalent potential temperature, since specific humidity

is given by its saturated value qs. The integrated form of this relation can then

be written as

�ES = � exp

(
L

Cp

qs
Tv

)
= � exp

(
Lqs
��

)
	 (9-3)

where the definition of � given after Eq. (4-36) is used. With L = Lc, �ES
represents the saturation equivalent potential temperature with respect to liquid

water, and with L = Lc +Lf , the temperature is defined with respect to ice. This

formulation for �ES is a measure of the change in potential temperature if all

of the moisture is condensed (L = Lc), or deposited, or condensed and frozen

(L = Lc + Lf ), with the heat released used to warm a parcel of air. Because

of the approximations made [e.g., Eq. (9-2)], the expression is not exact (see

Simpson 1978 and Bolton 1980 for a precise derivation of �ES); however, it is
in a suitable form for use in most mesoscale model calculations.4

The grid-volume–averaged form of Eq. (9-3) is defined by replacing the

instantaneous values of the dependent variables in Eq. (9-3) with their grid-

volume–averaged counterparts. Expressed formally,

�̄ES = �̄ exp
(
Lq̄s/CpT v

) = �̄ exp
(
Lq̄s/�̄�̄

)

 (9-4)
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When an air panel is not saturated, q̄s in Eq. (9-4) is replaced by the specific

humidity of the parcel q̄, yielding

�̄E = �̄ exp
(
Lq̄/�̄�̄

)
	 (9-5)

where �̄E is the equivalent potential temperature. A layer with ��̄E/�z ≤ 0 will

become less stable as it is lifted (as shown graphically by, e.g., Byers 1959:191),

whereas a layer with ��̄E/�z > 0 will become more stable. It is the vertical

distribution of �̄E that is used to assess convective stability.

Betts (1974) has demonstrated that vertical profiles of the difference �̄ES − �̄E
is a measure of convective regimes. Over Venezuela, he found that in the lowest

levels (i.e., the 10-mb layer nearest the ground) �̄ES − �̄E = 40�C or so on dry

days, and this difference was reduced by about half on disturbed days with

extensive cumulus connection.

9.2 Parameterization of the Influences
of Phase Changes of Water in a Convectively
Stable Atmosphere (��̄E/�z > 0)

If the atmosphere is convectively stable on the resolvable scale (i.e., ��̄E/�z >
0) everywhere in a column above the lowest saturation level,5 and if a layer is

lifted until saturation occurs, then one of the following will apply:

1. Only stratiform clouds will develop if ��E/�z is also greater than 0 every-

where within all of the grid volumes that are saturated.6

2. Some cumuliform clouds can develop if ��E/�z ≤ 0 locally within one

or more grid volumes that are saturated. The number, height, and vigor of these

clouds is expected to depend on the magnitude and distribution of these regions

of subgrid-scale convective instability.

Figure 9-1 illustrates examples, as seen from below the cloud base, of a

situation when only stratiform clouds develop and of a situation when some

cumulus convection develops in an otherwise layered stratiform cloud layer.

Sommeria and Deardorff (1977) discuss the use of a statistical model when

only a portion of a grid volume becomes saturated in a planetary boundary-

layer model. Vali et al. (1998) illustrate the observed variable spatial structure

of stratus clouds.

The mechanics of precipitation formation within these two categories of

equivalent potential temperature stratification are very different. As summarized

by Houze (1981), stratiform precipitation occurs with weak ascending motion

with precipitation particles forming near the top of the clouds and growing

as they fall. Convective precipitation is associated with strong updrafts, where
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Fig. 9-1. (a) A stratus cloud over northern Illinois, December 1, 1974, and (b) a stra-
tocumulus cloud over Gogebic, in the upper peninsula of Michigan, June 1972. (Pho-
tographed by Ron Holle.)
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cloud droplets are initiated near the cloud base and grow as they are transported

upward. Precipitation from convective systems falls to the ground when grav-

itational sedimentation exceeds the upward velocity within the cloud or when

the precipitation is advected to regions within or outside of the cloud where the

ascent is weak or negative.

9.2.1 Convectively Stable Everywhere Within a Column
Above the Saturation Level

9.2.1.1 Detailed Representation of the Microphysics

In an atmosphere that is convectively stable at all points within a grid vol-

ume, the conversion of water between its phases can be represented straight-

forwardly using formulations such as those developed for cloud models. The

degree of sophistication can involve a detailed simulation of the microphysics,

including nuclei activation and the growth to precipitation-sized liquid and ice

particles. Taylor and Ackerman (1999), for example, found that the microphys-

ical structure and cloud top of stratus clouds were significantly affected by

aerosol emissions from a ship into otherwise clean maritime clouds. To study

these types of effects, Clark (1973) incorporated a detailed representation of

warm cloud (i.e., T > 0�C everywhere in the cloud) microphysics in his cumu-

lus model. As pointed out by Orville (1980), the conservation-of-water equation

[e.g., Eq. (4-25)] can be broken into as many as 50–100 equations to repre-

sent the growth of cloud droplets to precipitation-sized particles. One equation

for each size category of liquid or ice particles is used. However, with present

computer limitations, such sophistication is not practical in a mesoscale model.

Interested readers who desire a thorough discussion of the procedure used to

represent the microphysics in detail are referred to Orville (1980, Section 3.1),

Pruppacher (1982), and Pruppacher and Klett (1978) for an extensive review of

this subject.

9.2.1.2 Bulk Representation of the Microphysics

An alternative to the detailed microphysical representation is called the

parameterized microphysical or bulk representation. With this procedure, liquid

water and ice can be categorized into the four classes:

� cloud liquid water

� cloud ice

� rain

� snow.
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Thus the equations for �q̄1/�t and �q̄2/�t in Eq. (4-25) need to be composed

into only two equations each. The reason for this particular form of categoriza-

tion is that rain and snow are assumed to have a size such that gravitational

sedimentation is appreciable (i.e., they have a significant fall velocity),7 whereas
cloud liquid water and cloud ice do not.

9.2.1.2.1 The Conservation Equations for Water and Potential Temperature.
With these decompositions and following Orville (1980), Eq. (4-25) can be

written as

�q̄ ci
1

�t
= −ūj

�

�xj
q̄ ci
1 −

1

�0

�

�xj
�0u

′′
j q

′′ci
1 +Sfreezing+Sdeposition−PS1−PS2	

�q̄ s
1

�t
= −ūj

�

�xj
q̄ s
1−

1

�0

�

�xj
�0u

′′
j q

′′s
1 −V s

T

�

�z
q̄ s
1

+ PS1+PS2+PS3+PS4−PS5	

�q̄ cw
2

�t
= −ūj

�

�xj
q̄ cw
2 − 1

�0

�

�xj
�0u

′′
j q

′′cw
2 +Scondensation+Sfreezing (9-6)

− PR1−PR2−PS3	

�q̄R
2

�t
= −ūj

�

�xj
q̄R
2 −

1

�0

�

�xj
�0u

′′
j q

′′R
2 −V R

T

�

�z
q̄R
2 +PR1+PR2+PS5−PR3	

�q̄3
�t

= −ūj

�

�xj
q̄3−

1

�0

�

�xj
�0u

′′
j q

′′
3 −Scondensation−Sdeposition−PS4+PR3	

where q̄ ci
1 , q̄

s
1 , q̄

cw
2 , and q̄ R

2 are the grid-volume–averaged values of specific

humidity for cloud ice, snow, cloud water, and rain, respectively. The notations

Sfreezing, Sdeposition, and Scondensation represent changes in q̄ ci
1 	 q̄

cw
2 , and q̄3 resulting

from freezing, deposition, and condensation [see after Eq. (2-34)], respectively,

and PR1	 PR2	 PR3	 PS1	 PS2	 PS3	 PS4, and PS5 represent different mechanisms for

the conversion of cloud ice and cloud water to snow and rain that are defined

in, for example, Section 9.4.1. The fall velocities of snow and ice are V s
T and

V R
T , respectively.

The vertical subgrid-scale flux terms in Eq. (9-6) (e.g., u′′
j q

′′ ci
1 ) can be repre-

sented by

w′′q′′ ci
1 = −K�

�q̄ ci
1

�z
	 w′′q′′s

1 = −K�

�q̄ s
1

�z
	

w′′q′′ cw
2 = −K�

�q̄ cw
2

�z
	 w′′q′′R

2 = −K�

�q̄ R

�z
	 and w′′q′′

3 = −K�

�q̄3
�z
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where K� could be evaluated using Eq. (7-57), except that with saturated air,

the gradient Richardson number should be redefined as

Ri =
g

�0

��̄ES
�z

/[(
�ū

�z

)2
+
(
�v̄

�z

)2]



The source–sink terms in Eq. (9-6) can be written as

Sdeposition = −�s w̄
�q̄si
�z

	 T V ≤ T s
0 � q̄3 = q̄si	 then �s = 1�

Scondensation = −�c w̄
�q̄sw
�z

	 T V > T s
0 � q̄3 = q̄sw	 then �c = 1�

Sfreezing = �f

�q̄ ci

�t
	 T V ≤ T f

0 � q̄ cw
2 > 0	 then �f = 1	

(9-7)

where q̄si and q̄sw are the saturation-specific humidities with respect to ice and

water, respectively, and �s = 1 when deposition or sublimation occurs8 but 0

otherwise. The threshold temperatures9 in Eq. (9-7) are defined as occurring

when the air is cold enough such that direct vapor to ice conversion occurs

(T s
0 ) and such that the liquid water freezes (T f

0 ). Equation (9-7) considers only

vertical gradients, because they are usually much larger, in general, than the

horizontal gradients of saturation-specific humidity. A similar assumption was

made in defining radiative flux divergence for use in mesoscale models [i.e.,

Eq. (8-1)]. The quantity �q̄ ci
1 /�t, which represents the freezing of cloud water,

could be defined such that complete glaciation from cloud water occurs within

one time step once T becomes less than or equal to T f
0 .

The saturation-specific humidity of water vapor with respect to liquid water

and to ice is determined using the Clausius-Clapeyron equation (see, e.g.,

Wallace and Hobbs 1977:95). This equation for liquid water and ice can be

written as

desw/esw = Lc dT /
(
RvT

2
v

)
� desi/esi = Ls dT /

(
RvT

2
v

)
	

where esw and esi are the saturation vapor pressures of water vapor with respect

to liquid water and ice, respectively. (See List 1971:351–364 for specific values

of esw and esi.) The gas constant for water vapor is Rv (Rv = 461 J K kg−1;

Wallace and Hobbs 1977), with Tv the virtual temperature.

Since saturation-specific humidity and vapor pressure are related by

qs = 0
622es/
(
p − 0
378es

) � 0
622es/p	 es � p	

we have

dqsi
qsi

= Ls

Rv

dT

T 2
v

and
dqsw
qsw

= LcdT

RvT
2
v
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if the change in saturation vapor pressure is assumed to occur isobarically (i.e.,

dp ≡ 0). As T approaches 0 K, qsw and qsi approach 0, since esw and esi
approach 0 at that temperature.

The saturation-specific humidities of water vapor with respect to liquid water

and ice for reasonable values of temperature and pressure within the troposphere

are then given by

qsi �
3
8

p̄
exp

[
21
9
(
T v − 273
2

)
T v − 7
7

]

qsw � 3
8

p̄
exp

[
17
3
(
T v − 273
2

)
T v − 35
9

] (9-8)

(where Tv is in degrees Kelvin), using the empirical formulas for esw and esi
given by Murray (1967). A similar formulation for qsw can be derived from

Bolton’s (1980) representation of esw. At p̄ = 1000 mb, the maximum differ-

ence between qsw and qsi occurs at T � 12�C and is equal to approximately

0.2 g kg−1. At all temperatures below 0�C, qsw > qsi.
The influence of these phase changes on the potential temperature in

Eq. (4-24) can be written as

��

�t
= −ūj

��̄

�xj
− 1

�0

�

�xj
�0 u

′′
j �

′′ − �̄

T vCp

[
�sLs

(
w̄
�q̄si
�z

− PS4

)

+ �cLc

(
w̄
�q̄sw
�z

+ PR3

)− �f Lf

(
�q̄ ci

1

�t
− PS5 + PS3

)]
(9-9)

using Eq. (9-1) with Lf + Lc = Ls. In Eq. (9-9), �̄/�T vCp) can be replaced with

1/�̄, using the definition of � given after Eq. (4-36).

However, using Eqs. (9-6) and (9-7) requires that changes of heat content

caused by the phase changes of water be considered, since from Eq. (9-8), q̄si
and q̄sw are functions of temperature. One procedure to account for this effect

in the absence of precipitation-sized particles is to use an algorithm given by

��̄

�t

∣∣∣∣n
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= 1

�̄
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−�sLsw̄
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�z
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(9-10)
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where n = 1	 2	 3	 � � � 	 N represents the number of iterations required

before the local changes in �̄	 q̄ ci
1 	 q̄

cw
2 , and q̄3 resulting from phase changes

approach 0.10 [Conversions to and from precipitation-sized particles are ignored

in Eq. (9-10), although it would be straightforward to add these effects if

equations for q̄ S
1 and q̄ R

2 from Eq. (9-6) were also included.]

During each iteration, Eq. (9-8) is used to determine a new saturation-specific

humidity and to evaluate the relation of the actual temperature to the threshold

temperatures in Eq. (9-7). The initial values of �̄	 q̄ ci
1 	 q̄

cw
2 , and q̄3 in the iteration

are evaluated from the first two terms on the right side of Eqs. (9-6) and (9-9).

The vertical velocity w̄ remains constant during the iteration. McCumber (1980),

in his determination of the appropriate values for potential temperature and

specific humidity for water vapor in a water cloud, used convergence criteria for

��̄/�t�npc and �q̄3/�t�npc of 0.05 K/120 s and 0.005 g kg−1/120 s. No more than

17 iterations were ever required in his three-dimensional mesoscale simulation

of rainfall over south Florida.

9.2.1.2.2 Simplified Forms for the Conservation of Water. In the past, most

mesoscale models have used a simpler form than Eq. (9-6) to represent phase

changes. For example McCumber (1980), using a procedure introduced by Asai

(1965), determines whether a grid volume has been supersaturated with respect

to liquid water. If it has, then temperature is adjusted using a formulation similar

to Eq. (9-10), with condensate formed so as to reduce the supersaturation to 0.11

All of the remaining condensate, which is assumed to be of precipitation size,

falls to the next grid level. If this layer is subsaturated, then some or all of

the precipitation will evaporate, causing cooling and moistening. If condensate

remains and the layer becomes saturated, then the precipitation falls to the next

level. This process continues until all of the precipitation either evaporates or

reaches the ground.

Nickerson (1979), in contrast, permitted only cloud water and excluded pre-

cipitation. Although not detailed in his paper, cloud water appears to be created

using a formulation such as given by Scondensation in Eq. (9-7) and advected with

an equation similar to �q̄ cw
2 /�t in Eq. (9-6) but ignoring the last three terms.

Colton (1976) used a somewhat more sophisticated parameterization for

clouds and precipitation. Although he only had one equation for liquid water

[i.e., he combined �q̄ cw
2 /�t and �q̄R

2 �t in Eq. (9-6), with none for ice], he

included terminal velocities, developed by Ogura and Takahashi (1971), which

are representative of rain and snow. When the temperature was at or below 0,

he used a terminal velocity representative of snow, and above freezing he used

a rainwater value. The expressions that he used are given as

V R
T =
{
31
2
(
�̄q̄ cw

2

)0
125
	 T > 0�C

5
9
(
�̄q̄ cw

2

)0
11
	 T ≤ 0�C	
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where to use these formulas as given, �̄ must be in grams per centimeters cubed.

V R
T then is in meters per second.

Colton permitted no supersaturation and used a direct method to compute the

amount of condensate given by

T v = T
∗
v + Lc�M1/Cp	

q̄2 = q̄∗
2 + �M1

(
q̄2 = q̄ R

2 + q̄ cw
2

)
	 (9-11)

q̄3 = q̄∗
3 − �M1	

where q̄∗
2 and q̄∗

3 are changes in specific humidity for liquid water and water

vapor resulting from advection and subgrid-scale fluxes; (that is, the first two

terms in each of the last three equations in Eq. (9-6). If �M = q̄∗
3 − q̄sw, then

�M1 = �M
[
1+ L2

c q̄sw/
(
CpRvT

∗2
v

)]−1



The temperature T
∗
v is computed from �̄∗, which is calculated from the first two

terms on the right of Eq. (9-9). Using the definition of � given by Eq. (2-48)

and the definition of � given after Eq. (4-36), T
∗ = �̄∗�̄/Cp. As shown by

Asai (1965) and used by Ogura and Takahashi (1973), this expression for �M1

provides an exact evaluation for the changes in temperature and water content

caused by moistening and warming caused by condensation. Evaporation can

also be determined using Eq. (9-11), since �M1 < 0 when q̄∗
3 < q̄sw (i.e., the air

is subsaturated). Colton apparently calculated precipitation rates at the surface

from the term V R
T q̄2, which is evaluated from values of these terms at the first

model level above the ground. As illustrated in Figure 9-2, Colton successfully

in predicted precipitation rates using his scheme.

Fig. 9-2. Model-predicted precipitation rates (solid line) and observed precipitation
rates (black dots) along a cross-section of the Sierra Nevada (dashed line) for December
21-22, 1964. (Adapted from Colton 1976.)
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9.2.2 Subgrid-Scale Regions of Convective Instability Above the
Saturation Level but with ��̄E/�z > 0

Up to this point in Section 9.2, only the situation ��E/�z > 0 everywhere

has been considered in the parameterization. When the atmosphere has subgrid

regions that are convectively unstable and in which condensation or sublima-

tion occur, the representations for phase change previously mentioned may be

unsatisfactory. This is particularly true if these regions of ��E/�z < 0 extend

through a significant depth of the atmosphere and cover a substantial portion

of the grid domain. To represent these regions in a mesoscale model, when

the grid-volume–averaged vertical gradient of equivalent potential temperature

is stable (i.e., ��̄E/�z > 0), will require innovative parameterization techniques.

Indeed, to accurately represent moist thermodynamics for such a situation, it

may be necessary to reduce the grid volume.

9.3 Parameterization of the Influences of Phase
Changes of Water in a Convectively
Unstable Atmosphere (��̄E/�z ≤ 0)

If the atmosphere is convectively unstable on the resolvable scale (i.e.,

��̄E/�z ≤ 0) somewhere in a column above the lowest saturation level and

saturation occurs where ��̄E/�z is less than or equal to 0, then (1) only cumuli-

form clouds will form if ��E/�z ≤ 0 everywhere within saturated grid volumes

in that column, or (2) some layer-form clouds can form if ��̄E/�z > 0 locally

within a grid volume, which is saturated. The extent and levels of such clouds

depend on the distribution of regions that are convectively stable.

Figure 9-3 illustrates examples, as seen from below the base, when only

cumuliform clouds develop and when some layered clouds form in a predom-

inantly cumuliform cloud mass. Johnson et al. (1999) suggests that there are

three distinct types of tropical convective clouds: shallow cumulus, cumulus

congestus, and cumulonimbus. Nair et al. (1998) used satellite imagery to deter-

mine the spatial patterning of cumulus cloud fields.

Cumuliform clouds also form when the top of the planetary boundary exceeds

the saturation level and the surface layer is superadiabatic. For this situation,

cumulus clouds are the visible manifestation of the turbulent eddies within the

planetary boundary layer. When such clouds occur with ��E/�z > 0 every-

where above the boundary layer, their growth into deeper cumulus clouds (e.g.,

cumulus congestus) will not occur. Sommeria (1976) investigated turbulent pro-

cesses in a tradewind boundary layer over water when such shallow cumulus
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Fig. 9-3. (a) A group of cumulus clouds over southern Florida at 0930 LST, August 15,
1978, and (b) a cumulus congestus complex with layered clouds on its periphery located
in southern Arizona at 1615 LST, October 23, 1974. (Photographed by Ron Holle.)



9.3 Parameterization of Phase Changes of Water in an Unstable Atmosphere 263

clouds formed, using an extension of Deardorff’s (1973) sophisticated planetary

boundary-layer model.

In contrast with stratiform cloud systems, cumulus clouds generally have

smaller spatial dimensions and more irregular patterns of updrafts and down-

drafts. Except for cumulonimbus-size systems, individual cumulus clouds have

smaller horizontal dimensions than can be resolved by a mesoscale model grid.

Moreover, the depth that a cumulus cloud attains depends more on the magni-

tude and vertical distribution of convective instability than on the intensity of

the mesoscale ascent, once saturation is attained. Along with such effects as

precipitation, downdrafts, ground shadowing, and cumulus-induced subsidence,

the accurate representation of the influence of cumulus clouds on the mesoscale

has been and will remain one of the more difficult problems in mesoscale

meteorology.

The ability to represent cumulus clouds accurately in a mesoscale model

requires that the mesoscale dynamic and thermodynamic structure control the

regions of initiation and development of this moist convective activity. There is

evidence that this situation occurs. As illustrated in Figure 9-4(b), for example,

Ulanski and Garstang (1978) found significant correlation between boundary-

layer convergence patterns and subsequent cumulus-produced rainfall over land.

This low-level convergence was found to precede cumulus rainfall by as much

as 90 minutes. They also found that the amount of rainfall was significantly

correlated with the duration of the precedent boundary-layer convergence, as

shown in Figure 9-4(a). Holle and Watson (1983) found from their dataset that

(defining an event period as the time between initial surface convergence and

complete dissipation) that the first visible cloud occurs at an average of about

1/6 into this period, with the most rapid cloud growth at around 1/3 of the event

lifetime. Doneaud et al. (1983) confirmed the relationship between antecedent

low-level convergence and subsequent cumulus convective activity over south-

eastern Montana, although Achtemeir (1983) found the relationship between

convergence and rainfall to be more complex over St. Louis based on summer

METROMEX 1975 data.

On a larger spatial scale, Pielke (1974a) also found qualitative agreement

between predicted sea-breeze convergence and the subsequent actual develop-

ment of cumulonimbus activity, and Simpson et al. (1980) obtained a large

positive correlation between merged thunderstorm complexes and sea-breeze

convergence for three case study days over south Florida. For a particular sum-

mer day over south Florida, Pielke and Mahrer (1978) obtained a 4-hour lag

between this predicted mesoscale convergence and thunderstorm activity. Pielke

et al. (1991) and Pielke (2001) summarized how mesoscale convergence pre-

conditions the environment for thunderstorm development. Most of the rainfall

in these sea-breeze events occurs in large cumulonimbus complexes (Simpson

et al. 1980).
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Fig. 9-4. (a) The relationship between the duration of boundary-layer convergence
and subsequent rainfall during a summer season over south Florida, and (b) the relation
between convergence area and rainfall amount. (From Ulanski and Garstang 1978.)
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In the 1974 GARP Atlantic Tropical Experiment (GATE), Ogura et al. (1979)
found low-level convergence to be present or enhanced before the develop-

ment of organized convective systems in all cases considered. Krishnamurti

et al. (1983) concluded from the GATE data that incorporating the influence

of mesoscale convergence is essential for successful cumulus parameterization.

Over Oklahoma, Sun and Ogura (1979) observed a well-defined band of low-

level convergence, apparently generated by a horizontal temperature gradient, to

precede the development of showers and thunderstorms for a particular day.

In considering methodologies to represent cumulus clouds in a mesoscale

model, it is useful to group them into the four classes:

� convective adjustment

� use of one-dimensional cloud models

� use of a cumulus field model, or set of equivalent observations

� explicit representation of moist thermodynamics.

9.3.1 Convective Adjustment

With the first method, as discussed by Kurihara (1973), Krishnamurti et al.
(1980), and others, the lapse rate is forced to be moist adiabatic over all or

part of the model grid when saturation occurs. This is the simplest and cheapest

form of cumulus parameterization, although unfortunately with this approach,

regions of potential instability are removed too quickly on the mesoscale. In

addition, this scheme provides poor vertical profiles of the averaged subgrid-

scale heating and moistening. For these reasons, more sophisticated param-

eterization schemes have been developed (Hong and Pan 1998). Haltiner and

Williams (1980) review convective adjustment schemes for use in larger-scale

models.

9.3.2 Use of One-Dimensional Cloud Models

In the second group, Kuo (1965, 1974), Krishnamurti and Moxim (1971),

Ooyama (1971), Arakawa and Schubert (1974), Yenai (1975), Kreitzberg and

Perkey (1976, 1977), Anthes (1977), Johnson (1977), Fritsch and Chappell

(1980a,b), Yamazaki and Ninomiya (1981), Molinari (1982), Hong and Pan

(1998), Gallus (1999) and others discuss or use one-dimensional cloud mod-

els to represent the feedback of cumulus scales to the larger scale. In using

one-dimensional models, it has often been assumed that in deep cumulonimbus

systems, the vertical distribution of heating on the cloud scale is essentially the

same as the vertical distribution of heating on the model grid scale (see, e.g.,

Anthes 1977), although such an assumption is certainly not true for shallow
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cumulus or when substantial downdrafts exist. Using this approach, Kuo and

Raymond (1980) concluded that the main heating from cumulus activity was

from latent heat release, although subsidence warming is also important, par-

ticularly close to cloud top. Yenai (1975) presented a review of these types

of cumulus representations, as did Hsu (1979), who also used an extension of

Kuo’s (1974) parameterization. An early but useful summary of cumulus param-

eterization is given by Ogura (1972). Cotton (1975) and Simpson (1976, 1983)

provide reviews of one-dimensional cumulus models. One-dimensional models

of clouds are also referred to as single-column models (see, e.g., Das et al. 1999;
Wu et al. 2000b).
The previous types of schemes achieve closure by assuming either that mois-

ture convergence in the lower troposphere supplied by the mesoscale or a larger

scale is necessary for cumulus development or that cumulus clouds develop

when sufficient thermodynamic instability is achieved on the mesoscale or a

larger scale. The effects of wind shear on precipitation efficiency are included

using data such as that shown in Figure 9-5. The relation of cumulus-caused

downdrafts to previous cumulus-caused updrafts has been developed using

observational data, such as that shown in Figure 9-6.

One of the most commonly used cumulus convection schemes is the Kuo

scheme, originally developed by Kuo (1974). A form of this scheme, as modified

by Molinari (1985), is as follows, as reported in Tremback (1990). The source

terms in the conservation-of-heat and conservation-of-water equations from deep

cumulus convection are written as

�S�
∣∣
cu

= L�1− b��−1 I Q1

/ ∫
Q1dz

and
�Sq3
∣∣
cu

= b I Q2

/ ∫
Q2 dz	

where I is the rate at which the resolvable scale supplies moisture to a model

grid column. Molinari and Corsetti (1985) suggest representing I as the resolv-

able vertical water vapor flux (i.e., w̄q̄3) through the lifting condensation level.

Kuo (1974) defined b as the fraction of I that increases the moisture of the col-

umn, while 1− b precipitates. The quantity 1− b is the precipitation efficiency,

which can be evaluated using Figure 9-5.

The quantities Q1 and Q2 represent the vertical profiles of heating and moist-

ening from the deep cumulus convection. Q1 is the difference between the

potential temperature outside the cloud, �̄e, and the potential temperature within

the cloud �̄c. This latter temperature is computed as a weighted average between

updraft and downdraft profiles. The updraft potential temperature corresponds to

the moist adiabat through the lifting condensation level. The downdraft potential

temperature is evaluated to begin at the altitude in the outside air where �̄E is a
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Fig. 9-5. Precipitation efficiency �p , defined as the ratio of rainout to water vapor
inflow as a function of the vertical shear of the horizontal wind in the layer between
cloud base and cloud top. (Reproduced from Fritsch and Chappell 1980a.) The data
sources are indicated.

Fig. 9-6. Average cumulus convective transports over a portion of south Florida on
days with substantial convective activity, where the dotted line indicates upward trans-
port and the solid line indicates downward transport. (Adapted from Cooper et al. 1982.)
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minimum, with the downdraft air temperature equal to the temperature outside

the cloud at that height. At the lifting condensation level, the downdraft air is

assumed to be 2�C cooler than the outside air. At the surface, the downdraft air

is assumed to be 5�C cooler. Other levels are linearly interpolated.

The fractional area covered by downdraft is assumed to be 1% where it is

initiated, 10% at the lifting condensation level, 20% at the height of maximum

downdraft mass flux, and 100% at the surface. The outside cloud temperature is

used instead of the updraft below the lifting condensation level. Knupp (1987)

discusses the observed kinematic structure of downdrafts in more detail.

For Q2, the layer below the lifting condensation level is dried at the rate I
(since this is the flux of water vapor through the lifting condensation level). The

anvil region of the cloud is defined as 2/3 of the height between the level with

the highest value of �̄E within 3 km of the ground and the cloud top, where

moistening is uniform at the rate bI .
The scheme is implemented so that the moist adiabat is never exceeded. If

it is exceeded, then I is arbitrarily reduced in magnitude. The Kuo scheme is

activated only if the lapse rate is convectively unstable and w̄ > wthreshold at the

lifting condensation level, where wthreshold is arbitrarily selected. Cloud top is

defined as the height at which the moist adiabat through the lifting condensation

level intersects the temperature outside the cloud (the equilibrium level). Pielke
(1995) summarizes the concepts of lifting condensation level and equilibrium

level and shows how they are computed.

The downdraft mass flux over land on days with extensive cumulus activity

tends to lag the equivalent updraft values by about 1/2 hour or so, at least until

midafternoon. Cooper et al. (1982) concluded that downdraft-induced conver-

gence sustains cumulus convection until the available buoyant energy is used

up. This available buoyant energy accumulates because of mesoscale horizontal

wind convergence (see, e.g., Pielke et al. 1991) during the earlier, pre-cumulus

portion of the day. This conclusion is consistent with the observation of Fritsch

et al. (1976) that the large scale typically requires many hours to generate poten-

tial buoyant energy, but once cumulus convection develops, this energy is much

more quickly removed.

9.3.3 Use of a Cumulus Field Model or Set of Equivalent Observations

With this approach, as described in Golden and Sartor (1978), two- or

three-dimensional cumulus field model simulations or sets of observations are

evaluated to determine the temporal and spatial response of cumulus clouds

to a particular set of mesoscale dependent variables, as well as their subse-

quent feedback to the mesoscale. Examples of possible models for such use

include Hill (1974), Miller and Pearce (1974), Pastushkov (1975), Cotton and
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Tripoli (1978), Klemp and Wilhelmson (1978a,b), Clark (1979), Schlesinger

(1980), and Simpson et al. (1982). Yau and Michaud (1982) have simulated the

evolution of a cumulus cloud field in three-dimensions using Hill’s method of

random surface heating as an initiation mechanism for convection. Schlesinger

(1982a) gives a summary of three-dimensional cumulus convection models.

Cumulus field models are also referred to as cloud resolving models or cloud
ensemble models (Tao et al. 1999, 2001). McNider and Kopp (1990) have

introduced an imaginative procedure to initiate cumulus convection in such

models where the boundary-layer parameterization in the model is used to

specify the spatial scale and intensity of the initial thermal perturbation that

produces the cumulus cloud. Cloud-resolving models have been used in both

two and three dimensions (Tompkins 2000). Other examples of cloud-resolving

simulations include Grabowski (2000) and Jiang et al. (2000).
Chang and Orville (1973), Cotton et al. (1976), Chen and Orville (1980),

Soong and Tao (1980), Tripoli and Cotton (1980), and Schlesinger (1982b), for

instance, have examined the response of cloud models to mesoscale convergence

and changes in the thermodynamic and wind structure by mesoscale circulations.

Fritsch and Chappell (1980a) justified their form for small-scale temperature

perturbations by using the result of Chen and Orville (1980) that thermals are

stronger and larger when low-level convergence is present, a result that has been

replicated by Soong and Tao (1980).

Beniston and Sommeria (1981) have used Deardorff’s (1973) fine-mesh

(50-m horizontal grid increment) planetary boundary-layer model, as modified

by Sommeria (1976), to test two cumulus parameterization schemes (e.g.,

those of Betts 1975, 1976 and Fraedrich 1976) using model-generated data,

as well as to develop specific empirical relations for the response of shallow,

nonprecipitating tradewind cumulus to larger-scale forcing. Among their results

are that these shallow clouds (less than 1 km in depth) have a cloud depth

to radius ratio of 0.4 ± 0.1 and that cloud base mass flux is related to cloud

volume with a correlation coefficient on the order of 0.8 by

Mu

(
zLCL
) = 3
204× 10−9s−1 kg m−5 Vc + 2
18 kg m−2s−1	

as illustrated in Figure 9-7(a). The variable Mu�zLCL� is the mass flux at cloud

base and Vc is the cloud volume, where Vc = 108m3 would correspond to a

spherical cloud with a radius of 288 m. Beniston and Sommeria also found that

the growth and decay times for individual modeled clouds were about equal and

positively related to the maximum area ac of the cloud at its peak of activity.

They estimated the lifetime of shallow tradewind cumulus as

"c = 3
17× 10−2 s m−2 ac + 173 s	
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Fig. 9-7. (a) Cloud volume Vc as a function of the mass flux at cloud base Mu
zLCL�,
and (b) cloud lifetime �c as a function of its maximum areal coverage ac. (From Beniston
and Sommeria 1981.)

as illustrated in Figure 9-7(b). Such a formulation for cloud lifetime, if extended

to larger cumulus clouds, could provide an improved value of cloud lifetime

used in cumulus parameterization schemes. Beniston and Sommeria also found

that thermodynamic fluxes in tradewind cumulus could be represented by a

single cloud mass-flux profile rather than by a complex cloud distribution (e.g.,

that of Arakawa and Schubert 1974). French et al. (1999) observed the actual

evolution and pulsation of small cumulus clouds in Florida.

The use of such cumulus models to parameterize the response of cumulus

clouds to the larger-scale environment is innovative and offers great hope for

improved parameterization schemes.
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9.3.4 Explicit Representation of Moist Thermodynamics

Rosenthal (1979a) has suggested that in tropical mesoscale models, cumu-

lus clouds should be represented explicitly in the same fashion as stratiform

clouds. He maintains that the successful implementation of cumulus param-

eterization schemes requires a strong coupling between the cloud and a larger

scale. Thus, although tropical cyclogenesis may be well represented with such

an approach, squall lines, such as reported by Zipser (1971), cannot. As dis-

cussed by Rosenthal (1978), these squall lines have a distribution of moist and

dry downdrafts such that convection is diminished near the center of the larger-

scale system with subsequent deep cumulus clouds forced to develop away from

the region of larger-scale vertical ascent. Zipser (1977) gave an example of

such destructive interference between the cumulus scale and the larger scale.

Weisman et al. (1997) examined the degradation of the simulation of squall

lines as the horizontal grid interval was changed from 1 km to 12 km.

Because of this limitation, Rosenthal (1978, 1979a) replaced one-dimensional

cumulus parameterizations with an explicit treatment of moist thermodynamics

on a grid with a 20-km horizontal grid mesh interval. With this approach, he was

able to simulate tropical storms that represent the constructive reinforcement

between the cumulus and mesoscales, as well as tropical squall lines in which

the larger-scale fields of dependent variables have little effect after the initiation

of the system. Studies by Yamasaki (1977) and Jones (1980) also show that

realistic hurricane simulations can be obtained when latent heat is released on

the resolvable grid scale in such convectively unstable atmospheres. The type

of system that develops (i.e., the tropical storm or squall line) depends on the

magnitude of the vertical shear of the horizontal wind and the dryness of the

middle atmosphere. Rosenthal (1979b) concludes that the further use of cumu-

lus parameterization schemes in hurricane simulations “seems to be of dubious

value.” He contends that an “experienced numerical experimenter can pick and

choose closures that will provide almost any desired result.”

Rosenthal (1978, 1980) included an explicit representation for moist thermo-

dynamics using equations for water vapor, rain, and cloud water similar to those

given by Eq. (9-6). Ice processes were neglected. His representation closely fol-

lowed the work of Kessler (1969), although a similar formulation, such as that

proposed by Orville (1980), presumably could also be used. Bhumralkar (1972,

1973) also obtained realistic results using an explicit representation of moist

thermodynamics in his two-dimensional model simulation of the airflow over

Grand Bahama Island during the day.
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Justification for the neglect of cumulus parameterization may occur when,

above the lifting condensation level,∣∣∣∣w̄ ��̄

�z

∣∣∣∣ 
∣∣∣∣w′′ ��

′′

�z

∣∣∣∣ and

∣∣∣∣w̄ �q̄n
�z

∣∣∣∣ 
∣∣∣∣w′′ �q

′′
n

�z

∣∣∣∣	
so that the vertical transport of heat and water is predominantly on the resolv-

able scale rather than on the subgrid scale. Such a condition may be true

in the saturated hurricane environment even for relatively coarse horizontal

resolution.

For instance, Black and Holland (1995), examining Hurricane Kerry off the

Australian coast, documented a peak in the spectrum of w� around a wave-

length of 20 km with values dropping by a factor of about 7 for wavelengths of

10 km. The use of a 20-km horizontal grid with a bulk parameterization of the

microphysics, as applied by Rosenthal (1978), although perhaps somewhat too

large (at least for a simulation of a storm such as Kerry), nevertheless may be

a reasonable approach to the realistic simulation of tropical storms. In contrast,

for mesoscale convective cluster development over land, Fritsch and Chappell

(1980a, b) introduced a subgrid-scale fluctuation temperature term to account

for the significant contributions by such subgrid-scale flux terms. Fritsch and

Chappell (1980b) also used a 20-km horizontal grid. Weisman et al. (1997)
investigated the effect of model resolution on the simulation of cumulus convec-

tive systems. Warner and Hsu (2000) provide a valuable analysis of the effects

of applying parameterized cumulus convection on the outer coarse grid of a

model and applying grid-volume–resolved cumulus convection on the inner fine

grid of a nested model.

The need to satisfy this inequality may determine the appropriate grid sizes

needed in a mesoscale model when the atmosphere is convectively unstable in

regions of saturation. Since at least four grid intervals or more in each spatial

direction are required to represent variables in a numerical model properly (as

discussed in Chapter 10), moist processes such as condensation and sublimation
should be predominantly realized on spatial scales at least this large.

9.3.5 Subgrid-Scale Regions of Convective Stability Above the
Saturation Level Within Saturated Grid Volumes
Where ��̄E/�z ≤ 0

When regions of convective stability (��E/�z > 0) occur within the grid

volume, layered clouds can form when saturation occurs. If the percentage areal

extent of such clouds is sufficiently large, then shortwave and longwave radiative

fluxes will be affected (see Figure 8-8), thereby altering subsequent cumulus

cloud activity and the mesoscale response. The influence of such layered clouds
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on the subgrid-scale fluxes and source–sink terms in mesoscale models has not

yet been investigated.

9.4 Examples of Parameterizations and
Level of Complexity

9.4.1 Conversion Terms for Use in Eq. (9-6)

There are a number of parameterizations for the conversion terms in Eq. (9-6)

(e.g., Rutledge and Hobbs 1983, 1984). In this section, the suggested forms

proposed by Orville (1980) and Lin et al. (1983) are used to illustrate one

possible technique for parameterization. A schematic of such conversion terms is

reported in Rotstayn (1999, Figure 1). Following the work of these investigators,

the conversion terms in Eq. (9-6) can be evaluated from

PS = conversion from cloud ice to snowflakes + accretion of cloud ice

crystals by snow + accretion of cloud droplets by snow + deposi-

tional growth of snow (or − sublimational loss of snow) − melting

of snow to form rain = PS1 + PS2 + PS3 + PS4 − PS5

and

PR = conversion of cloud droplets to rain + accretion of cloud droplets

by raindrops − evaporation of raindrops + melting of snow to form

rain = PR1 + PR2 − PR3 + PS5.

The dimensional unit of PS and PR is s−1. The formulations for the components

of PS and PR are defined by Orville (1980) and Lin et al. (1983) as follows for
rain and for graupel-like snow of hexagonal type. Other types of snow require

somewhat different values of the constants in these expressions.

1
 PS1 = �1

(
q̄ ci
1 − q̄ ci

∗
)
	 �1 = 10−3s−1 exp

(
0
025
(
T − 273K

))
	 T < 0�C	

where q̄ ci
∗ is a threshold value of specific humidity for cloud ice. In Lin

et al. 1983, this value is set as q̄ ci
∗ = 0
001. This formulation for PS1, based

on Kessler’s (1969) original work as modified by Chang (1977), is called

autoconversion, since no physical mechanism is included to explain why

precipitation-sized ice crystals form only after cloud ice concentrations exceed

a certain amount.

This algorithm requires the dependent variables q̄ ci
1 and T , and tunable coef-

ficients �1, and q̄ ci
∗ .

12

2
 PS2 =
0
79E ci

s n0scq̄
ci
1 #�3+ d�

b3+d
s

(
�̄zG

�̄

)1/2
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when T < 0�C, which represents the accretion of cloud ice by snow. In this

expression,

E ci
s = exp

[
0
025
(
T − 273 K

)]
is the collection efficiency of snow for cloud ice. The term ��̄zG

/�̄�1/2 was

included to account for changes of terminal velocity with height, where �̄zG
is

the density at ground level. The constants d and c were set at d = 0
25 and

c = 152
93 cm1−d s−1 = 152
93 cm0
75 s−1, which were suggested as being

representative for the graupel-like snow of hexagonal type.12

The values of n0s and bs are determined from

ns = n0s exp
(−bsDs

)
	

where Ds is the diameter of the snow particles and ns is their number per

unit volume per increment of diameter size. As listed by Orville, n0s = 3×
10−2 cm−4 = 3 × 106 m−4 from measurements by Gunn and Marshall (1958),

and

bs =
(
3
14�sn0s/�̄q̄

s
1

)1/4
	

with �s the density of the snow crystal, given as 0.1 g cm−3 for graupel-like

snow of hexagonal type. Other investigators use different values. Scott (1982),

for example, uses a value of n0s = 5× 107 m−4, although he reports on obser-

vational values ranging from n0s = 108 m−4 at the top of tropical cumulus

(Simpson and Wiggert 1969) to n0s = 3× 106 m−4 for precipitation water con-

centrations below 1.4 g m−3 and temperatures between −2 and −32�C (Houze

et al. 1979).
The equation for ns is called the Marshall-Palmer distribution, since these

investigators originated the concept for rain (Marshall and Palmer 1948).

3
 PS3 =
0
79E cw

s n0scq̄
cw
2 #�3+ d�

b3+d
s

(
�̄zG

�̄

)1/2
	

which represents the accretion of cloud water by snow. The collection efficiency

of snow for cloud water, E cw
s , is assumed to be unity. When the air temperature

is below 0�C, these cloud droplets will freeze and increase the amount of snow.

4
 PS4 =
6
28
(
Si − 1
)

�̄
(
a1 + a2

) n0s

[
0
78b−2

s + 0
31s1/3c #

(
d + 5

2

)
c0
5

×
(
�̄zG

�̄

)1/4
v−0
5 b−�d+5�/2

]
	

when T < 0�C, q̄ cw
2 + q̄ ci

1 + q̄ s
1 > 0, and q̄ ci

1 + q̄ s
1 	= 0. This expression repre-

sents the depositional growth or sublimation loss of snow. In this equation, Si
is the supersaturation of water vapor over ice, defined as q̄3/q̄si using Eq. (9-8).
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#�d + 5�/2� � 1
79 for d = 0
25. The variables v and sc are the kinematic

viscosity of air (v � 1
5× 10−5 m2 s−1) and the Schmidt number14 (sc � 0
8).
Also,

a1 = L2
s/
(
kaRvT

2)
and a2 = 1/�̄qsi!	

where ! is the molecular diffusivity of water vapor in air and ka is the thermal

conductivity of air. The formulation for PS4 is based on the work of Byers

(1965), with a modification for wind ventilation given by Beard and Pruppacher

(1971). Depending on the sign of Si, PS4 is positive or negative.

5
 PS5 = −6
28

�̄Lf

[
kaT �

�C�− Lc!�̄
(
qsi − q̄3

)]
n0s

×
[
0
78 b−2

s + 0
31s1/3c #

(
d + 5

2

)
c0
5

×
(
�zG

�̄

)1/4
v−0
5 b−�d+5�/2s

s

]
− CwT �

�C�
Lf

PS3

when T > 0�C. This expression, based on Mason (1956), represents the melt-

ing of snow to form rain. The specific heat of liquid water, Cw, is 4.187 ×
103 J kg−1 K−1.

6
 PR1 = �̄
(
q̄ cw
2 − q̄ cw

∗
)2

× [1
2× 10−4 + {1
569× 10−12 nR/
(
d0

[
q̄ cw
2 − q̄ cw

∗
])}]−1

	

which represents the conversion of cloud droplets by collision and collection

(i.e., coalescence) to form raindrops. Based on Berry (1967) and modified by

Orville (1980) and Lin et al. (1983), nR is the number concentration of droplets,

d0 is the dispersion of the droplets (i.e., their standard deviation around their

mean size), and q̄ cw
∗ is a threshold value of specific humidity for cloud water

required before there is a significant probability for the formation of raindrops.

Orville and Lin et al. reported a value of q̄ cw
∗ = 0
002.

7
 PR2 =
0
79E cw

R n0Rq̄
cw
2 #�3+ f �

b
3+f
R

This expression represents the accretion of cloud water by raindrops, with the

collection efficiency given by E cw
R = 1. The values of n0R and bR are determined

from

nR = n0R exp
(−bRDR

)
	

where DR is the diameter of the raindrops and nR the number per unit volume

per increment of diameter size. As given by Marshall and Palmer (1948), n0R =



276 9 Parameterization of Moist Thermodynamic Processes

8× 10−2 cm−4. Scott (1982), using Merceret (1975), suggests a value of n0R =
107 m−4. The value of bR is given by

bR = (3
14 �2n0R/�̄q̄
R
2

)1/4
	

where �2 is the density of liquid water (�2 = 1 g cm−3 = 103 kg m−3). Conden-

sational growth of raindrops is insignificant compared to growth by collision–

collection (see, e.g., Wallace and Hobbs 1977) and is neglected in PR2.

8
 PR3 = −6
28
(
sw − 1
)
n0R

[
0
78b−2

R + 0
31s1/3c #

[
f + 5

2

]
a0
5
3 v−0
5

×
(
�̄zG

�̄

)1/4
bR −
[
f + 5

2

]]
1

�̄

(
L2
c

kaRvT
2
+ 1

�̄qsw!

)−1

	 sw < 1	

where sw = q̄3/qsw. This term represented the evaporation of rainwater in a

subsaturated environment. The values of f and a3 are 0.8 and 2115 cm1−f

s−1 = 2115 cm0
2 s−1, respectively. With this value of f , #�3+ f � � 5
59 and

#��f + 5�/2� � 1
92

Orville (1980) and Lin et al. (1983) also present conversion terms for such

effects as the accretion of rain by cloud ice, the accretion of cloud ice by rain,

the accretion of snow by rain, raindrop freezing, and hail generation and growth.

Except for raindrop freezing (i.e., the creation of sleet), these other processes are

expected to be significant only when the atmosphere is convectively unstable.

Finally, the terminal velocities of snow and rain required in Eq. (9-6), given

by Orville and Lin et al. are15

V R
T = a3#�4+ f �

6
(
bR
)f ( �̄zG

�̄

)1/2
and

V s
T = c#�4+ d�

6
(
bs
)d ( �̄zG

�̄

)1/2



These velocities are the mass-weighted mean velocities, defined originally by

Srivastava (1971) as

V R
T = 1

q̄ R
2

∫ �
0

V R
T �D�q̄ R

2 �D�dD and V s
T = 1

q̄ s
1

∫ �
0

V s
T�D�q̄ s

1 �D�dD	

where V R
T �D� and V s

T�D� are terminal velocities or rain and snow for particu-

lar diameter particles. The quantities q̄ R
2 �D� and q̄ s

1 �D� represent the specific

humidity of raindrops and snow per unit increment of diameter sizes. Figure 9-8

illustrates the relationship between mass-weighted mean velocities and total rain

or snow content for several different values of atmospheric density. Values of
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Fig. 9-8. Mass-weighted mean terminal velocities for rain and snow as a function of
rain and snow water content. (Adapted from Orville 1980.)

the terminal fall velocity in meters per second for specific diameters in meters

can be estimated by

V R
T �D� = 130D0
5 (from Kessler 1969)

and

V s
T�D� =

⎧⎪⎪⎨⎪⎪⎩
2
71D0
206 aggregates of dendrites and plates

(from Jiusto and Bosworth 1971)

3
95D0
206 aggregates of columns

(from Jiusto and Bosworth 1971),

as summarized by Scott (1982). The values of q̄ R
2 �D� and q̄ s

1 �D� can be esti-

mated from q̄ R
2 �D�= 0
52n0R

(
�2/�̄
)
D3e−bRD and q̄ s

1 �D�= 0
52n0s

(
�1/�̄
)
D3e−bsD

using the Marshall-Palmer distribution for rain and snow and assuming that the

volume of a raindrop and snow crystal can be represented as 0
52D3.

Other forms of these conversion terms can be found in, for example, Meyers

et al. (1997), Zhao et al. (1997), Grabowski (1998), and Rotstayn et al. (2000).

9.4.2 The Kuo Scheme

The Kuo deep cumulus parameterization scheme requires the resolved vari-

ables, �̄ and q̄3, and several adjustable coefficients including b, the temperatures
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associated with the downdrafts, the height of initiation of the downdrafts, the

mixing (or lack thereof) of the updrafts, the fractional coverage of the cloud

area by downdrafts and its change with altitude, and the height of the anvil

and the manner in which moisture is distributed through this layer. As clearly

evident from this summary, several terms in the parameterization are tunable,

with several of them discontinuous (e.g., w̄threshold).

There are numerous comparison studies of cumulus convection parameteri-

zations including Molinari and Dudek (1992), Sun and Haines (1996), Wang

and Seaman (1997), Sud and Walker (1999a,b), Bélair et al. (2000), Ferretti
et al. (2000), and Vaidya and Singh (2000). Park and Droegemeier (1999) have

assessed the sensitivity of a one-dimensional representation of a cumulus cloud

to several model parameters. Seaman (1999, 2000) provides a very effective

summary, including an historical review, of cumulus cloud parameterizations.

He critiques several parameterizations, as listed in Appendix C.

Notes to Chapter 9

1. Specific humidity is defined as the ratio of the density of the gas or aerosol to the density of

the air including this gas or aerosol. Mixing ratio is defined as the ratio of the gas or aerosol to the

rest of the air excluding this gas or aerosol. At low concentrations (e.g., less than 5 parts per 100)

the two are almost equal, so that the two terms can be used interchangeably for that situation.

2. From Wallace and Hobbs (1977).

3. qsT
−2
v �dTv�/T −1

v �dqs� = �qs/Tv��dTv/dqs� is much less than unity for most reasonable atmo-

spheric conditions. For example, the ratio is about 0.07 at warm temperatures (i.e., Tv = 300 K,

qs = 0
02) and approximately 0.06 at cold temperatures (i.e., Tv = 250 K, qs = 0
0002), where

dTv�/�dqs� is evaluated over a 5� interval; qsi and qsw as a function of Tv are given by Eq. (9-8).

4. Betts (1982) introduced a concept called saturation point to represent the thermodynamic

properties of clear and nonprecipitation-sized cloudy air.

5. The saturation level is the height at which lifting of a parcel of air causes sufficient cooling

to generate condensation or deposition. The saturation level can of course vary spatially within a

grid volume. This level is also called the lifting condensation level. The height of this level will

vary depending on the height of origin of the air parcel.

6. �E is defined using the decomposition given before Eq. (4-3); that is, �E = �̄E + �′′
E, where �′′

E

is the subgrid-scale equivalent potential temperature.

7. Fall velocity is also referred to as terminal velocity.

8. In other words, �s = 1 when �c = �f = 1, as defined following Eq. (9-1).

9. The specific values of T s
0 and T f

0 depend on the activation temperature of the ice nuclei that

are assumed to be present.

10. Since Sdeposition and Scondensation are discontinuous functions at T s
0 , and Sfreezing is discontinuous

at T f
0 , there may be difficulty obtaining convergence when T is near these values. The practical

solution to this problem is to not permit the threshold criteria in Eq. (9-7) to occur more than once

during an iteration.

11. In some mesoscale applications, supersaturation has been arbitrarily defined to occur at less

than 100% relative humidity. McCumber (1980) used a value of 90%. Such a reduction in the
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saturation value, used in synoptic models, has been justified by assuming that although the grid-

volume–averaged specific humidity is unsaturated, a significant number of subgrid-scale values

will become saturated once the relative humidity exceeds a certain value. In a nonturbulent, stably

stratified atmosphere, such an approximation would be inappropriate, but is reasonable with q ′′
3 is

not identically equal to 0.

12. The determination of the dependent variables, tunable coefficients, and universal constants

(if any) for each of these conversion terms is left as an exercise in the problem section.

13. The gamma function #�3 + d� can be evaluated using standard mathematical tables (e.g.,

Selby 1967:461). Using those tables, #�3
25� � 5
44.

14. The Schmidt number is defined as v/!. At 0�C and p̄ = 1000 mb, ! � 1
875× 10−5 m2 s−1

(Beard and Prupaccher 1971).

15. For d = 0
25 and f = 0
8, #�4+ d� � 21
8 and #�4+ f � � 22
4.

Additional Readings

Orville, H. D. 1980. Numerical modeling of clouds. In “Lecture Notes, IFAORS Short Course 450

on Clouds: Their Formation, Properties, and Effects,” Williamsburg, VA, December 1–5, 1980.

Perhaps the best reference material for the explicit representation of moist processes, this

material, compiled for a workshop from theses and articles produced by the modeling group

of the Institute of Atmosphere Sciences at the South Dakota School of Mines and Tech-

nology, provides an effective summary of parameterized microphysics, as well as the more

detailed representation of the growth of different sizes of water and ice hydrometeors. Much

of the information in that workshop report also appears in Lin et al. (1983).

For the incorporation of moist processes using cumulus parameterization the following excellent

sources are available.

Cotton, W. R., and R. A. Anthes. 1989. “Storm and Cloud Dynamics.” Academic Press, San Diego.

This book provides in-depth reviews of a wide range of aspects of cloud physics and dynam-

ics.

Droegemeier, K. K. 1997. The numerical prediction of thunderstorms: Challenges, potential benefits,

and results from realtime operational tests. WMO Bull. 46, 324–336.
The article reviews the level of skill involved in the explicit prediction of thunderstorms.

The ability to predict thunderstorms using a model with an explicit representation of micro-

physics represents the best that could potentially be achieved with cumulus parameterization

schemes.

Frank, W. M. 1983. The cumulus parameterization problem. Mon. Wea. Rev. 111, 1859–1871.
A valuable summary of the difficulties of cumulus parameterization is given in this short

review article. Also included are references to more in-depth reports on the current status of

this difficult parameterization problem.

Haltiner, G. J., and R. T. Williams. 1980. “Numerical Prediction and Dynamic Meteorology.” 2nd

ed., John Wiley and Sons, New York.

Although written with respect to synoptic- and hemispheric-scale models, about 20 pages

are devoted to cumulus parameterization. Haltiner and Williams also provide a section on

convective adjustment (which is most relevant for scales larger than the mesoscale), as well as

a short but useful section (5 pages) dealing with the bulk parameterization of microphysics.

Ludlam, F. H. 1980. “Clouds and Storms.” Pennsylvania State University Press, University Park,

PA.
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This book surveys cloud physics and cloud dynamics. Included are discussions of shal-

low and deep cumulus convection, although cumulus parameterization is not discussed. An

appendix provides a series of excellent black and white photographs of different types of

clouds as viewed from the ground, aircraft, and satellites.

Other valuable reference resources include the following:

Foufoula-Georgiou, E., and W. Krajewski. 1995. Recent advances in rainfall modeling estimation,

and forecasting. U.S. National Report to the IUGG 1991–1994. Rev. Geophys., (Supp.) 33,
1125–1137.

Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton. 1997. New RAMS cloud micro-

physics parameterization. Part II: The two-moment scheme. Atmos. Res. 45, 3–39.
Mocko, D. M., and W. R. Cotton. 1995. Evaluation of fractional cloudiness parameterizations for

use in a mesoscale model. J. Atmos. Sci. 52, 2884–2901.
Straka, J. M. 1994. Representing moisture processes in mesoscale numerical models. In “Mesoscale

Modeling of the Atmosphere,” R. A. Pielke Sr. and R. P. Pearce, Eds., pp. 29–38. American

Meteorological Society, Boston, MA.

Tripoli, G. J., and W. R. Cotton. 1981. The use of ice-liquid water potential temperature as a

thermodynamic variable in deep atmospheric models. Mon. Wea. Rev. 109, 1094–1102.
Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington. 1995a. New RAMS cloud micro-

physics parameterization. Part I: The single-moment scheme. Atmos. Res. 38, 29–62.
Weissbluth, M. J., and W. R. Cotton. 1993. The representation of convection in mesoscale models.

Part I: Scheme fabrication and calibration. J. Atmos. Sci. 50, 3852–3872.

Problems

1. Using conversion relations for PS and PR in Section 9.4.1, determine the dependent variables,

turnable coefficients, and universal constants (if any). Calculate how the individual conversion terms

change with a ±10% and ±25% change in the tunable coefficients and the dependent variables.

2. Complete the exercise in #1, but use conversion equations from another model.

3. Program the Kuo model, and determine the sensitivity of the parameterization to ±10% and

±25% changes in the tunable coefficients and relationships.



Chapter 10

Methods of Solution

As was explained in Chapter 5, sets of simultaneous, nonlinear, partial differ-

ential equations cannot be solved using known analytic methods. Rather, their

solution requires numerical methods of computation where the equations are

discretized and solved on a lattice. This lattice corresponds to the grid volume

defined by Eq. (4-6) in Chapter 4.

Several broad classes of solution techniques are available to represent terms

involving the derivatives in the spatial coordinates of these differential equations,

including:

� finite difference schemes,1 which use a form of truncated Taylor series

expansion

� spectral techniques, in which dependent variables are transformed to

wavenumber space using a global basis function (e.g., a Fourier transform)

� the pseudospectral method, which uses a truncated spectral series to

approximate derivatives

� finite element schemes, which seek to minimize the error between the actual

and approximate solutions using a local basis function

� interpolation schemes, in which polynomials are used to approximate the

dependent variables in one or more spatial directions.

In mesoscale models, only the finite difference and interpolation schemes

have generally been used. The finite element techniques have been applied in

mesoscale models by only a few authors. Interested readers can refer to the first

edition of this book for the derivation of finite element algorithms. This chapter

gives an introduction to finite difference and interpolation schemes.

The spectral technique is highly accurate (e.g., Fox and Deardorff 1972;

Machenhauer 1979; Orszag 1971) and eliminates the fictitious feedback of

energy to the larger scale called aliasing (discussed in Section 10.5). However,

the mathematical expressions that result from the Fourier transformation are

281
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cumbersome and require periodic boundary conditions to make it work effec-

tively. Thus this scheme has not found acceptance among mesoscale models.

The pseudospectral technique was introduced by Fox and Orszag (1973) and

was contrasted with the spectral technique and conventional finite difference

methods by Christensen and Prahm (1976). A brief review of the pseudospectral

method was given in Merilees and Orszag (1979). Eliassen (1980) summarized

the uses of these and other representations in air pollution transport modeling.

Although the pseudospectral technique appears to be a viable tool for use in

mesoscale models, it has not been adopted [although several researchers, (e.g.,

Lee 1981; Patrinos and Leach 1982) have investigated its utility]. The major

reason why these spectral schemes have been neglected up to now may be

the interest in the interpolation approach, as well as the difficulty in handling

nonperiodic boundary conditions using either of the spectral techniques.

10.1 Finite Difference Schemes—An Introduction

10.1.1 Advection

Most mesoscale models use the finite difference method, because of its com-

parative ease of coding onto a computer and its conceptual simplicity. This

technique simply involves approximating the differential terms, including time,

by one or more terms in a Taylor series expansion. For example, the local ten-

dency and advective terms in the prognostic Eqs. (4-21) and (4-24)–(4-26) can

be approximated by

��̄

�t
= −ū

��̄

�x
� �"+1

i − �"
i

�t
= −u"

i

�"
i+1 − �"

i−1

2�x
	 (10-1)

where the overbar has been dropped to simplify the notation, " is used to indi-

cate the number of time steps taken, i indicates the grid point location in the

x direction (as illustrated in Figure 10-1), �t = t�" + 1� − t�"�, and �x =
x�i + 1�− x�i�. The dependent variable (�̄) refers to any one of the dependent

variables. Note that the tensor subscript notation is not used here, rather, a new

mathematical shorthand is introduced to represent the time and space locations

of the dependent variables. The equation on the right side of Eq. (10-1) is called

a difference equation.
In making such an approximation to a differential equation, several ques-

tions are asked concerning its ability to represent the actual differential equation

accurately, including:

� When �t and �x approach 0, does the approximate form converge to the

differential equation?
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Fig. 10-1. A schematic illustration of an x − t grid representation where 	x = x
i�−
x
i − 1� = x
i + 1�− x
i�, etc., and 	t = t
��− t
� − 1� = t
� + 1�− t
��, etc. (Here n and
m are integers greater than 2.)

� Is the numerical representation linearly stable to small perturbations?

� If the scheme is linearly stable, how well are the amplitudes and phases rep-

resented for waves of different wavelengths relative to the exact solution?

These three questions must be considered for all computational approximation

techniques.

The difference equation given by Eq. (10-1) appears to be a straightforward

and reasonable form for representing the corresponding differential equation.

However, as will be shown shortly, although the approximation does converge to

the correct representation when �t and �x approach 0 in the limit, the scheme

is linearly unstable to small perturbations and thus cannot be used.

To illustrate the first criterion, let the dependent variable � have the form

� = �̂ cos kx

(where �̂ has constant amplitude), so that

��/�x = −�̂k sin kx


One finite difference approximation to this term [as used in Eq. (10-1)] is

�i+1 − �i−1

2�x
= �̂

2�x

[
cos k�x + �x�− cos k�x − �x�

]
	 (10-2)

which, by expanding cos k�x + �x� and cos k�x − �x�, can be written as

�i+1 − �i−1

2�x
= − �̂

�x
sin kx sin k�x
 (10-3)

The ratio of the approximate to actual forms of this differential quantity is thus

given by

�i+1 − �i−1

2�x

/��

�x
= sin k�x

k�x

 (10-4)
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By a Taylor series expansion,

sin k�x = k�x −
(
k�x
)3

3! +
(
k�x
)5

5! − · · ·

Thus, when k�x � 1,2 Eq. (10-4) can be written as

�i+1 − �i−1

2�x

/��

�x
∼ k�x

k�x
= 1


Since k = 2�/L, writing L in terms of the grid spacing L = n�x, where n is

the number of grid points in one cycle of the cosine function, k�x � 1 requires

that 2�/n � 1 or n  1. In other words, the cosine wave must have a very

long wavelength for its derivative to be represented accurately by Eq. (10-2).

In contrast, if L = 2�x, then

�i+1 − �i−1

2�x

/��

�x
= sin�

�
= 0	

so that the representation given by Eq. (10-2) fails to resolve a feature that has

a wavelength of two grid increments. Examples of a longwave and a shortwave

are given in Figure 10-2.

Thus the representation of the derivative of a function using values at neigh-

boring grid points provides very poor representations of short waves relative

to the grid mesh �x, whereas longer waves are reasonably well resolved. The

ability, or lack thereof, of a numerical scheme to resolve features of differ-

ent wavelengths properly is a crucial consideration in the use of a numerical

approximation scheme.

The linear stability of Eq. (10-1) can be evaluated using the techniques for

representing waves in terms of complex variables introduced in Chapter 5.3 As

discussed there, a dependent variable �, for example, can be represented as

��x	 t� = �̂�k	 ��ei�kx+�t�	 (10-5)

where �̂	 k	 and � can be complex. In a numerical model, the spatial and

temporal independent variables can be written as

x = n�z and t = "�t	

so that Eq. (10-5) can also be written as

��x	 t� = ��n�x	 "�t� = �̂�k	 ��ei�kn�x+�"�t�
 (10-6)

As discussed in Chapter 5, to use the formulation given by Eq. (10-5) in a dif-

ferential equation, it is necessary to linearize the equation. As written, Eq. (10-1)
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Fig. 10-2. Centered finite difference representation using Eq. (10-2) for (a) a 16 	x
wave and (b) a 2	x wave.

is not in a linear form, since the right side involves products of dependent vari-

ables. The procedure, therefore, is to replace the advecting velocity u"
i with a

constant value U , so that the finite difference approximation becomes

�"+1
i − �"

i

�t
= −U

�"
i+1 − �"

i−1

2�x

 (10-7)

This difference equation has one unknown, �"+1
i , since it is assumed that values

of � at time " are known; therefore, the equation is well posed and solvable.

The finite difference representation given by Eq. (10-7) is called forward in
time, centered in space.
At this point, it is useful to comment on the standard procedure for examining

the computational linear stability of numerical schemes. As shown in Chapter 5,

even the linearized form of the conservation relations can produce complicated

solutions. Therefore, investigators generally examine subsets of the linearized

relations. Simple numerical approximations to advection, for example, such as

given by Eq. (10-7), are examined separately from the remaining terms in the

conservation relations. Numerical approximations to the subgrid-scale fluxes and
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the Coriolis terms are other portions of the conservation relations that we inves-

tigate later in this chapter. The basic assumption is that if the computational

approximation to the individual linearized subsets of the equations are accu-

rate, then they will also be accurate representations when used in the nonlinear

framework. However, as is discussed in Section 10.5, accuracy of the linear

differential equations is a necessary but not a sufficient condition to guarantee

satisfactory nonlinear solutions.

Using Eq. (10-6), Eq. (10-7) can be rewritten as

�̂�k	 ��ei�kn�x+�"�t�
[
ei��t − 1

] = −U �t

2�x
�̂�k	��ei�kn�x+�" �t�

[
eik �x − e−ik �x

]
or [

ei��t − 1
] = −U �t

2�x

[
eik �x − e−ik�x

]

 (10-8)

At this point, it is convenient to introduce a notational representation suggested

by Arthur Mizzi (1979, personal communication) in which

!1 = ei��t	 !1 = eik �x	 and !−1 = e−ik �x	

so that !1 − !−1 = 2i sin k�x. This is shown by expanding eik �x and e−ik �x in

terms of cos a+ i sin a, where a = k�x in the first exponential and a = −k�x
in the second.

With these definitions, Eq. (10-8) can be written as

�!1 − 1� = −U �t

�x
i sin k�x
 (10-9)

This mathematical shorthand is a versatile tool to examine linear computational

stability and is used throughout this chapter.

Equation (10-9) can then be rearranged, yielding

!1 = 1− U �t

�x
i sin k�x = 1− Ci sin k�x	 (10-10)

where C is called the Courant number. If C is greater than unity, then the

distance traveled in one time step because of advection is greater than the grid

separation, whereas the opposite is true if C is less than 1.

In the original differential [Eq. (10-1)], no sources or sinks of velocity appear;

however, in the difference representation, Eq. (10-7), damping or amplifying in

time of the result is possible because of the imprecise approximation for the

derivatives. To evaluate this effect, the frequency � is decomposed into real and

imaginary parts, given by

� = �r + i�i


Using this definition for �, Eq. (10-10) can be rewritten as

�ei�r�t = 1− Ci sin k�x	 (10-11)
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where � = ±e−�i�t and is called the amplitude change of the solution per time

step (�" is then the change in amplitude after " time steps). Since Eq. (10-1)

has no sources or sinks of velocity, � should be identically equal to +1.

To solve for �, ei�r�t is expanded into cos�r�t + i sin�r �t. The real and

imaginary parts of Eq. (10-11) must separately be equal4 so that Eq. (10-11)

can be written as

� cos �r�t = 1

� sin�r�t = −C sin k�x


Squaring both sides of these two expressions and adding yields

�2
(
cos2 �r �t + sin2 �r�t

) = �2 = 1+ C2 sin2 k�x	

or

� = ±
√
1+ C2 sin k�x
 (10-12)

Except when the wavenumber becomes very small (e.g., L → �), or as the grid

increment �x approaches 0, or for a 2�x wave, C2 sin2 k�x is greater than 0

and ��� is greater than 1.

The numerical representation given by Eq. (10-7) is thus linearly unstable,
since the solution amplifies each time step. No such amplification will occur in

the linear form of the differential equation given by the left side of Eq. (10-1)

(i.e., ��̄/�t = −U ��̄/�x). If a numerical scheme is linearly unstable, then its

use in approximating the nonlinear differential equation is rejected, since small

perturbations with such a representation will grow fictitiously.

The failure of the right-side equation in Eq. (10-1) to accurately approximate

the corresponding differential equation is surprising, because it appeared to be

the most natural choice. In examining solution techniques, therefore, intuition

is not sufficient, and stability analyses must be undertaken to determine the

accuracy of numerical approximations. The methodology for examining linear

computational stability introduced here will be used in the remainder of the

chapter to examine the fidelity of different numerical representation techniques.

10.1.1.1 Forward-Upstream Differencing

Another approximation to the advection equation, given on the left side of

Eq. (10-1), is

��̄

�t
= −ū

��̄

�x
� �"+1

i − �"
i

�t
=
{−u"

i

�"
i+1−�"

i

�x
	 ui ≤ 0

−u"
i

�"
i −�"

i−1

�x
	 ui > 0	

(10-13)

which is referred to as the forward-upstream scheme since the space derivative is

evaluated upwind from the grid point. Linearizing this approximation by setting
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u"
i equal to a constant advecting velocity U , then for U > 0, the representation

of this relation in terms of wave number and frequency is5

!1 = 1− C
(
1− !−1

)
or, equivalently,

�ei�r�t = 1− C�1− cos k�x + i sin k�x�


Equating real and imaginary components,

� cos�r�t = 1− C�1− cos k�x�

� sin�r�t = −C sin k�x	
(10-14)

squaring and adding yields

�2 = �1− C�1− cos k�x��2 + C2 sin2 k�x


After expanding and rearranging, this expression can be written as

� = ±√1+ 2C�cos k�x − 1��1− C�


In contrast to the forward-in-time, centered-in-space scheme, the upstream rep-

resentation is linearly stable ���� ≤ 1� as long as

−1 ≤ 2C�cos k �x − 1��1− C� ≤ 0


Since cos k�x ≤ 1, the quantity inside the left parentheses is always less than or

equal to 0, and the inequality holds as long as C ≤ 1. Numerical approximation

techniques that must satisfy certain criteria to have linearly stable results are

called conditionally stable schemes. When C = 1 or k � 0 (i.e., L → �),

� = 1 and the solutions neither damp nor amplify. Other values of �, displayed
in Table 10-1 as functions of wavelength L = n�x and C, the Courant number,

show that except for the longest waves and C = 0 or 1, the scheme damps the

solution with the most error at C = 0
5. With this latter value of C, wavelengths
of 2�x are completely eliminated—a result that can be seen most easily by

rewriting the linear form of Eq. (10-13) as

�"+1
i = �1− C��"

i + C�"
i−1 �for U > 0�


Since a 2�x wave can be represented as �"
i = �−1�ia1 + a0, where a1 and a0

are constants and i is the spatial index counter, then for C = 0
5	 �"+1
i = 0


The predicted phase speed as a function of wavenumber can also be obtained

from Eq. (10-14) by dividing the imaginary components by the real components,

yielding

sin�r�t/ cos �r�t = tan�r�t = −C sin k�x/�1+ C�cos k�x − 1��	
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or since the phase speed c is equal to the negative of the frequency divided by

the wavenumber [see, e.g., the text preceding Eq. (5-32)],

c̃� = −1

k�t
tan−1

[ −C sin k�x

1+ C�cos k�x − 1�

]



Since the actual solution6 to the differential equation

��̄

�t
= −U ��̄

�x

is
�

k
= −c̃� = −U	

the ratio of the computational solution to the true solution of the phase speeds is

c̃�

U
= 1

kU�t
tan−1

[
C sin k�x

1+ C�cos k�x − 1�

]



The accuracy of a linear numerical solution depends on how well the cal-

culated values of � and c̃� approximate the exact solutions of the differential

equation: �exact and c�exact, where in this case, �exact = 1 and c̃�exact = U . If

��� > 1 for any possible wavelength, then the solution technique is linearly
unstable. If it is not linearly unstable but the absolute value of �/�exact is less

than unity for any wavelength, then the scheme is damping, and if � is identi-

cally equal to �exact, then the technique yields the correct amplitude. (Note that

�exact can be less than 1, such as for the diffusion equation; see Section 10.1.2.)

When c̃� 	= c�exact, the approximation representation is erroneously dispersive.
(The exact solution, of course, is dispersive if c�exact is a function of k.)

It is also important to determine the damping over a specified time period,

such as the time it takes the wave to travel one grid increment. This means that

a scheme could be only slightly damping for each time step, but if the time

step were small, the accumulated damping over time could be quite large. For

example, from Table 10-1, in Scheme I for 4�x and C = 0
1, after 10 time steps

(the time required for the exact solution to travel �x), the wave would be 37%

of its correct amplitude (i.e., �10 = 0
34). With C = 0
5, while the amplitude

change per time step is greater than with C = 0
1, the amplitude change after

the wave travels one �x��2� is 0.5.
Values of c̃�/U are given in Table 10-1 for various combinations of C and

k. As with the amplitude, a wavelength of 2�x generally has the poorest repre-

sentation of the proper phase speed. Only at C = 1 and at C = 0
5 (where the

amplitude of a 2�x wave is eliminated in one time step) is the phase accurately

represented for all wavelengths. When 0
5 < C < 1
0, waves travel faster in the

finite difference representation than the true solution, whereas they travel more

slowly when 0 < C < 0
5.
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TABLE 10-1

Values of the Amplitude �1 and Phase Error c̃�/U per Time Step as a Function of Wavelength for Different Computational
Approximations to the Advection Equation ��/�t = −U ��/�x

C

Scheme Wavelength 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

I. Forward-in-time � 2�x 0.998 0.980 0.800 0.600 0.400 0.200 0.000 0.200 0.400 0.600 0.800 1.000 ��� > 1

linear interpolation 4�x 0.999 0.990 0.906 0.825 0.762 0.721 0.707 0.721 0.762 0.825 0.906 1.000

upstream 10�x 1.000 0.998 0.983 0.969 0.959 0.953 0.951 0.953 0.959 0.969 0.983 1.000

20�x 1.000 1.000 0.996 0.992 0.990 0.988 0.988 0.988 0.990 0.992 0.996 1.000

c̄�/U 2�x 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.667 1.429 1.250 1.111 1.000

4�x 0.637 0.643 0.704 0.780 0.859 0.936 1.000 1.043 1.060 1.055 1.033 1.000

10�x 0.936 0.937 0.953 0.968 0.981 0.992 1.000 1.005 1.008 1.008 1.005 1.000

20�x 0.984 0.984 0.988 0.992 0.995 0.998 1.000 1.001 1.002 1.002 1.001 1.000

II. Centered-in-time � 2�x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ��� > 1

centered-in-space 4�x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(leapfrog) 10�x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

20�x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

c̄�/Uphysical mode 2�x 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4�x 0.637 0.637 0.638 0.641 0.647 0.655 0.667 0.683 0.705 0.738 0.792 1.000

10�x 0.935 0.935 0.936 0.938 0.940 0.944 0.950 0.956 0.964 0.974 0.986 1.000

20�x 0.984 0.984 0.984 0.984 0.985 0.986 0.988 0.989 0.991 0.994 0.997 1.000
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III. Forward-in-time � 2�x 1.000 0.999 0.944 0.792 0.568 0.296 0.000 0.296 0.568 0.792 0.944 1.000 1.000

upstream spline 4�x 1.000 1.000 0.997 0.989 0.981 0.975 0.972 0.975 0.981 0.989 0.997 1.000 0.888

interpolation 10�x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996

20�x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

c̄�/U 2�x 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4�x 0.955 0.955 0.958 0.967 0.979 0.980 1.000 1.007 1.009 1.008 1.005 1.000 1.042

10�x 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.001

20�x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

IV. Adam-Bashford � 2�x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Computational mode is

centered-in-space2 4�x 1.000 1.000 1.000 0.999 0.997 0.991 0.977 0.950 0.893 unstable for at least

10�x 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.994 0.990 one of the wavelengths

20�x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

c̄�/Uphysical mode 2�x 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Computational mode is

4�x 0.637 0.637 0.637 0.637 0.638 0.642 0.642 0.661 0.674 unstable for at least

10�x 0.935 0.935 0.935 0.936 0.936 0.937 0.938 0.941 0.945 one of the wavelengths

20�x 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984

1It should be noted that in an approximate scheme which is damping (i.e., ��� < 1), reducing �t for the same �x does not necessarily result in less total damping after

a period of time. This results because the solution technique is used more frequently during that time because of the smaller �t. Therefore, for improved accuracy and

computational efficiency, as large a �t as permitted by the linear stability criteria, should be chosen when an approximation scheme has computational damping (computed

by Charlie Martin and Jeff McQueen).
2The values for the Adams–Bashford scheme were computed by Alex Costa and Sue van den Heever.
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The damping characteristics of upstream differencing can be examined in a

different fashion using a truncated Taylor series approximation to Eq. (10-13),

where

�"+1
i � �"

i +
��

�t
�t + 1

2

�2�

�t2
��t�2

�"
i−1 � �"

i −
��

�t
�x + 1

2

�2�

�x2
��x�2	

where it is understood that the derivative terms are evaluated at " and i. These
two forms are substituted into the right-side equation in Eq. (10-13) (with the

advecting velocity u"
i set equal to the constant velocity U�U > 0), yielding

�"
i +

��

�t
�t + 1

2

�2�

�t2
��t�2 − �"

i = −C

[
�"

i − �"
i +

��

�x
�x − 1

2

�2�

�x2
��x�2
]

or, after subtracting identical terms and rearranging,

��

�t
+ U

��

�x
+ 1

2

�2�

�t2
�t − 1

2
U
�2�

�x2
�x = 0
 (10-15)

The first two terms on the left side are in the same form as the original linear

differential equation [i.e., the left side of Eq. (10-13), with ū = U ], and the

right side represents the computational diffusion, which results from using for-

ward, upstream differencing. As �t and �x approach 0 in the limit, Eq. (10-15)

reduces to the proper differential equation.

This diffusion can be written in another form by differentiating in time the

left-side equation in Eq. (10-13) with ū = U , resulting in

�2�

�t2
= −U

�

�t

��

�x
= −U

�

�x

��

�t
= −U

�

�x

(
−U

��

�x

)
= U 2 �

2�

�x2
	

so that the two terms on the right side of Eq. (10-15) can also be written as

1

2

�2�

�t2
�t − 1

2
U
�2�

�x2
�x = 1

2
U�x

(
U

�t

�x
− 1

)
�2�

�x2
= vc

�2�

�x2
	

where vc is called the computational diffusion coefficient. This coefficient has

no physical significance and is simply an artifact of the computational scheme.

Forward-in-time, upstream differencing has been used extensively in

mesoscale numerical modeling. Its characteristic damping and failure to pre-

serve the proper phase have generated serious criticisms of this technique,

however. It is now generally believed that this method is appropriate only if

advection and wave propagation are not dominant in the conservation relations

for a particular mesoscale feature. Furthermore, if subgrid-scale mixing is

important, then vc must be less than the corresponding physically relevant

turbulent exchange coefficient. However, it may be possible to modify this

numerical approach to improve its accuracy. Smolarkiewicz (1983), for instance,
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presents a scheme to reduce the implicit diffusion of upstream differencing by

adding a corrective step to the calculation. Brown and Pandolfo (1980) provide

a discussion of upstream differencing. Wang (1996) describes an extension

of forward-in-time, upstream differencing for nonuniform and time-dependent

advection that achieves better accuracy.

10.1.1.2 Leapfrog Centered-in-Space Differencing Scheme

A third finite difference representation to the advection equation is

�"+1 − �"−1

2�t
= −u"

i

�"
i+1 − �"

i−1

2�x
	 (10-16)

where the right side is in the same form as the difference representation given

in Eq. (10-1) and the left side is centered in time. This scheme is often called

leapfrog, because �"
i does not appear in Eq. (10-16). As will be shown shortly,

using a centered-in-time representation permits Eq. (10-16) to be linearly stable

under certain conditions.

Assuming that uj = U , Eq. (10-16) can be rewritten as a function of

wavenumber and frequency as

!1 = !−1 − i�	 (10-17)

where � = 2C sin k�x. From the definitions of !1 and !−1 (i.e., !1 = �ei�r�t

and !−1 = �−1e−i�r�t) Eq. (10-17) can be rewritten as

!2 + i�!1 − 1 = 0	 (10-18)

where the identity !2 = �!1��!1� = �!1�2 has been used. Since the solution of

a quadratic equation ax2 + bx + c = 0 is x = �−b ±√
b2 − 4ac�/2a, we have

!1 = (−i�±√�i��2 + 4
)
/2 = (−i�±√

4− �2
)
/2


Rewriting !1 in terms of its real and imaginary components yields

� cos�r�t = ±√
4− �2/2

� sin�r�t = −�/2

}
if �2 ≤ 4

and

� cos�r�t = 0

� sin�r�t = (−�±√
�2 − 4
)
/2

}
if �2 > 4


When �2 ≤ 4, squaring the real and imaginary components gives

�2 = 1

4
�2 + 1− 1

4
�2 = 1	 or � = ±1	

so that the amplitude is preserved for all wavelengths and the scheme is said to

be neutrally stable.
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When �2 > 4, cos�r�t = 0, so that the imaginary component can be writ-

ten as

� = −1

2
�± 1

2

√
�2 − 4


To ascertain whether this quantity is less than or greater than unity, let

� = 2+ �	

where � > 0, so that

� = −1− 1

2
� ± 1

2

√
4� + �2


Since either root is possible,

� = −1− 1

2
� − 1

2

√
4� + �2 < −1	

���� > 1�, so that when �2 > 4, the leapfrog scheme is linearly unstable. Since

�2 = 4C2 sin2 k�x, stability is retained only when

C2 sin2 k�x ≤ 1	

or since the maximum value of sin2 k�x is unity for a 4�x wave (k�x = �/2),

�C� ≤ 1

is a necessary and sufficient condition for the linear stability of the scheme.

The ratio of the predicted phase speed to the advecting velocity for this

technique can be obtained by dividing the imaginary component by the real

component for �2 ≤ 4 and solving for the phase speed. However, since ��� = 1,

it is also possible to use either the imaginary or the real components separately

to obtain the phase speed. Using the imaginary part, therefore, gives the ratio

of the calculated to analytic phase speeds as

c̃�

U
= 1

Uk�t
sin−1

(
±�

2

)



Because of the quadratic form of Eq. (10-18), two wave solutions occur. One

solution moves downstream (c̃� > 0, when U > 0) and is related to the real

solution of the advection equation, and the other travels upstream and is called

the computational mode.7 The computational mode occurs because the leapfrog

is a second-order difference equation. Such separation of solutions by the

centered-in-time leapfrog scheme can be controlled by occasionally averaging

in time to ensure that the even and odd time steps remain consistent with

one another. As long as the time steps are consistent, the amplitude of the

computational mode is small.
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Values of � and c̃� for the physical solution for different values of C and

wavelength are displayed in Table 10-1. There is also the computational solu-

tion, which is shown for the phase of the leapfrog scheme in the first edition of

this book. Although the leapfrog scheme preserves amplitudes exactly as long

as �C� ≤ 1, the accuracy of the phase representation deteriorates markedly for

the shorter wavelengths. Because the numerical representation of these waves

travels more slowly than the true solution, the scheme is said to be disper-
sive, since when waves of different wavelengths are linearly superimposed, they

travel with different speeds relative to one another even if the advecting veloc-

ity is a constant. Retention of these dispersive shorter waves in the solution

can cause computational problems through nonlinear instability, as discussed

in Section 10.5.8 The important conclusion obtained from the analysis of the

leapfrog scheme is that the exact representation of the amplitude does not by
itself guarantee successful simulations, since the fictitious dispersion of waves
of different lengths can generate errors. Baer and Simons (1970), for exam-

ple, have reported that in approximating nonlinear advection terms, individual

energy components may have large errors when the total energy has essentially

none. They further conclude that neither conservation of integral properties nor

satisfactory prediction of amplitude is sufficient to justify confidence in the

results—one must also assure the accurate calculation of phase speed.

Smolarkiewicz and Margolin (1998) summarize how the error characteristics

of a finite difference scheme can be used to improve the accuracy of the solution.

They show, for example, how using the successive iterative application of the

positive definite9 properties of the upstream difference scheme can compensate

for the residual truncation error. More iteration results in smaller truncation

errors. This numerical technique is also discussed in Wortmann-Vierthaler and

Moussiopoulos (1995).

10.1.1.3 Adams–Bashford Differencing Scheme

A fourth representation of advection is the Adams–Bashford algorithm (Dur-

ran 1991) as used in, for example, the Song and Haidvogel (1994) ocean model.

The analysis of this scheme was completed by Alex Costa and Sue van den

Heever as part of a class at Colorado State University on mesoscale modeling.

The scheme can be written as

�"+1 − �"

�t
= 1

12
�23F ��"�− 16F ��"−1�+ 5F ��"−2��	 (10-19)

where in one dimension,

F ��"� = −U
��

�x
= −U

�"
i+1 − �"

i−1

2�x
(10-20)

is used.



296 10 Methods of Solution

Substituting Eq. (10-20) into Eq. (10-19) yields

�"+1
i = �"

i − U
�t

�x

1

24

[
23
(
�"

i+1 − �"
i−1

)− 16
(
�"−1

i+1 − �"−1
i−1

)
+ 5
(
�"−2

i+1 − �"−2
i−1

)]

 (10-21)

Substituting !1, !0, !−1, and !−2 into Eq. (10-21) yields

!3 −
(
1− 23

12
i�

)
!2 − 4

3
i�!1 + 5

12
i� = 0	 (10-22)

where � = U �t
�x

sin k�x.
The amplitude and phase for the physical solution of !1, as computed by

Alex Costa and Sue van den Heever, are given in Table 10-1. The solutions for

the two computational amplitudes and phases can be obtained from the solution

of Eq. (10-22). A surprising result of the analysis for the computational modes

is that for one of the modes, the computational values of � are greater than

unity for values of C larger than about 0.72 (for a 4�x wavelength). For this

reason, all values of the physical solution are left out of Table 10-1 for these

values of C, even though the physical solution itself is not linearly unstable.

As soon as a computational mode develops, if C > 0
72 and 4�x waves occur,

then the computational mode will quickly swamp the solution of the advection

equation.

In both the forward-upstream and leapfrog schemes that we have examined,

the time step must be less than or equal to the time that it takes for changes at

one grid point to be translated by advection to the next grid point downstream.

With the Adams–Bashford scheme, the time step must be even smaller. When

we generalize this result to all types of wave propagation, the need to filter

rapidly moving waves, which are not considered important on the mesoscale,

is apparent. This is the reason that scale analysis is used to derive simplified

conservation relations [e.g., the anelastic conservation-of-mass equation (3-11)

in Chapter 3], so that sound waves can be eliminated as a possible solution, as

discussed in Section 5.2.2.

10.1.1.4 Flux Correction10

Using the characteristic of the numerical solution to improve the accuracy

of the representation of advection has been proposed. This technique, called

“flux correction,” is described in this section. However, although this technique

improves the accuracy of the results, it cannot be analyzed using the linear

stability analysis discussed in the previous section, since the flux correction

scheme has a nonlinear formulation (Smolarkiewicz 1989).

The original form of the flux correction technique was introduced by Bott

(1989). In that paper, the numerical representations of the advective fluxes
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reported in Tremback et al. (1987) are normalized to reduce phase speed

errors. Negative values are redistributed across wavelengths, so that the result

of the advection is positive definite. Bott’s solution procedure is discussed and

improved on in Easter (1993) and Costa and Sampaio (1997).

The simplicity and acceptable computational cost of most flux-limitation pro-

cedures makes this technique attractive because of its physical basis. Most of

the flux-corrected advection schemes maintain, by construction, the positive

definiteness (e.g., Smolarkiewicz 1983; Bott 1989) or the monotonicity (e.g.,

Grabowski and Smolarkiewicz 1990; Bott 1992) of the advected variable. How-

ever, not only positive definiteness is required for accurate solutions, but also

the conservation-of-mass and higher-order moments of the advected distribution

function are needed to achieve an accurate solution. Therefore, it is useful to

examine potential errors from flux correction.

In this section, Bott’s positive definite scheme is used in simple numerical

experiments to investigate the errors associated with flux correction. The anal-

yses show that, although case dependent, errors related to energy partitioning

among individual waves might indeed be significant.

The scheme discussed here is the third-order version of Bott’s positive defi-

nite scheme described by Easter (1993). As pointed out by Costa and Sampaio

(1997), depending on the case, the modified third-order and the fifth-order

schemes exhibit the most appropriate balance between accuracy and computa-

tional cost. The third-order algorithm was chosen for simplicity.

The amplitude and phase errors for the modified third-order Bott’s scheme,

assuming constant grid spacing and not applying flux constraints, are given in

Tables 10-2 and 10-3. Note that the scheme exhibits small damping, especially

for 8�x and broader modes. For 2�x wavelengths (and, since the damping is

cumulative, also for 4�x waves), numerical diffusion is often significant. Except

for the 2�x mode, the phase errors are small.

As flux correction is introduced, one should expect changes in the propa-

gation of the individual modes. Flux correction is based on the calculation of

coefficients that physically limit the value of the fluxes, to avoid the appearance

of spurious negative values of the advected variable. Since such a calculation

involves the actual value of the advected function, which includes all of the

distinctive waves, the propagation of an individual mode becomes dependent

on the other modes. (A detailed description of the flux-limiting procedures for

positive definiteness can be found in Bott 1989 and Chlond 1994.) One might

expect such a mode interaction to lead to amplitude (and also phase) errors that

are distinct from those related to the noncorrected scheme. This is verified for

two particular cases.

Two numerical experiments were performed to assess the errors associated

with the flux-limiting procedures. In both cases, one-dimensional advection by a
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TABLE 10-2

Amplitude Errors as a Function of the Wavelength and Courant Number for the
Third-Order Bott’s Scheme Without Flux Correction

Wavelength

Courant number 2�x 4�x 6�x 8�x 10�x

0.01 0.986468 0.998338 0.999793 0.999959 0.999989

0.1 0.848000 0.983972 0.998091 0.999622 0.999896

0.2 0.664000 0.970045 0.996568 0.999330 0.999817

0.3 0.456000 0.959285 0.995465 0.999123 0.999761

0.4 0.232000 0.952495 0.994799 0.999000 0.999728

0.5 0.000000 0.950175 0.994576 0.998959 0.999718

0.6 0.232000 0.952495 0.994799 0.999000 0.999728

0.7 0.456000 0.959285 0.995465 0.999123 0.999761

0.8 0.664000 0.970045 0.996568 0.999330 0.999817

0.9 0.848000 0.983972 0.998091 0.999622 0.999896

1.0 1.000000 1.000000 1.000000 1.000000 1.000000

From Costa et al. 2000.

TABLE 10-3

Phase Errors as a Function of the Wavelength and Courant Number for the
Third-Order Bott’s Scheme Without Flux Correction

Wavelength

Courant number 2�x 4�x 6�x 8�x 10�x

0.01 0.000000 0.955992 0.999319 1.001065 1.000714

0.1 0.000000 0.965610 0.999584 1.000851 1.000559

0.2 0.000000 0.976014 0.999780 1.000604 1.000391

0.3 0.000000 0.985548 0.999898 1.000368 1.000235

0.4 0.000000 0.993684 0.999963 1.000162 1.000103

0.5 0.000000 1.000000 1.000000 1.000000 1.000000

0.6 0.000000 1.004211 1.000024 0.999892 0.999931

0.7 0.000000 1.006194 1.000044 0.999842 0.999899

0.8 0.000000 1.005996 1.000055 0.999849 0.999902

0.9 0.000000 1.003821 1.000046 0.999905 0.999938

1.0 0.000000 1.000000 1.000000 1.000000 1.000000

From Costa et al. 2000.

uniform flow is considered. The Courant number in both numerical experiments

is 0.8.

Experiment 1: Superposition of Short Waves. In this experiment, the advec-

tion of superposed waves ranging from 2�x to 8�x is evaluated in an integration

domain of 32 grid points with periodic boundary conditions. The analytical form
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of the advected function is given by

� = a+ b cos��x�+ c cos

(
�x

2

)
+ d cos

(
�x

4

)
	 (10-23)

where a = 1, b = −�2−√
2�/�2+√

2�, c = 2
√
2/�2+√

2�, and d = 4/�1+√
2�. � is depicted in Figure 10-3. The choice of this set of coefficients makes

� a positive definite function, with major contributions from the 4�x and 8�x
components.

The results obtained with the noncorrected and the corrected schemes after

displacement of 80�x, which corresponds to 100 time iterations, are shown in

Figures 10-4 and 10-5, respectively. The exact solution is obviously identical to

the initial condition, depicted in Figure 10-3. The existence of negative values

in Figure 10-4 is obvious, but these are completely suppressed in Figure 10-5.

Of course, the corrected solution is globally superior. Not only is it physically

consistent, while the noncorrected solution is not, but also the root mean square

error is smaller for the corrected solution (0.453) and larger for the solution

without correction (0.505).

In both solutions mass is conserved, which is valid in general for flux-form

advective schemes by construction. However, higher-order moments, such as

the “energy” (second-order moment of the distribution), are not conserved. The

“energy ratio,” defined as �
∑

�2�numerical�/�
∑

�2�exact� for the two numerical

solutions, is 0.813 (noncorrected) and 0.666 (corrected).

Since the corrected solution is “less energetic,” more dissipation might be

occurring at certain modes. To require positive definiteness, flux correction

forces (in at least some degree) maintenance of the smaller-scale structure; the

extra damping apparently occurs at the coarser modes.

Fig. 10-3. Initial condition and exact solution for Experiment 1. (From Costa et al.
2000.)
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Fig. 10-4. Numerical solution without flux correction for Experiment 1. (From Costa
et al. 2000.)

Such a hypothesis can be verified by evaluating the Fourier spectrum of the

numerical solutions. Figure 10-6 shows the amplitude of the individual Fourier

model for the exact solution and the two numerical solutions. The noncorrected

solution essentially preserves the amplitude of the 8�x mode, while the 4�x
mode is drastically damped. On the other hand, the 4�x component has an

amplitude about four times larger in the corrected solution, while the 8�x wave

is damped by a factor of 14%. These results suggest not only that the energy of

the 4�x mode is maintained at the expense of the 8�x mode, but also that part

of the energy that downscales is actually dissipated.

Experiment 2: Exponential Function. To evaluate how the redistribution of

energy operates in a more complex case, one must use a more complex function,

for which a wide range of scales must be superposed. Since the exponential

function has a very simple Fourier transform, the distribution used in this test

Fig. 10-5. Numerical solution with flux correction for Experiment 1. (From Costa
et al. 2000.)



10.1 Finite Difference Schemes—An Introduction 301

Fig. 10-6. Coefficients of the Fourier transform for the exact and numerical solutions
as a function of wavelength for Experiment 1. (From Costa et al. 2000.)

follows the relation

� =
{
e−�L/2−x� if x < L/2

e−x if x > L/2	
(10-24)

where L is the length (number of grid points) of the integration domain, which

was set to 128 in this experiment. The coefficients of the Fourier modes for

the exact solution are proportional to �n�x�2/��n�x�2 + 1�, where n�x is the

wavelength.

As in the previous experiment, periodic boundary conditions were used.

Advection was evaluated for one full revolution (160 time steps for a Courant

number of 0.8). Figure 10-7 shows the exact and numerical solutions for this

case. The most obvious deficiency of both numerical solutions is the attenua-

tion of the prominent peak in the initial condition, which suggests significant

dissipation at the smallest scales.

The coefficients of the Fourier transform for the numerical solutions are

depicted in Figure 10-8. Both the corrected and noncorrected solutions damp

out most of the very short waves (≤4�x). Nonetheless, the same feature as

observed in the previous experiment occurred. The corrected solution contains

more energy at the shortwave range, while the coarse modes present a smaller
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Fig. 10-7. Initial conditions, exact solutions, and numerical solutions for Experiment 2
(with only the portion of the domain 48 ≤ x ≤ 80 shown.) (From Costa et al. 2000.)

Fig. 10-8. Coefficients of the Fourier transform for the exact and numerical solutions
as a function of wavelength for Experiment 2. (From Costa et al. 2000.)



10.1 Finite Difference Schemes—An Introduction 303

amplitude than in the noncorrected case. Again, the results suggest that flux cor-

rection tries to preserve the shortwave components by consuming energy from

coarser scales and that extra dissipation occurs as the scheme redistributes the

energy among the modes.

The results of simple numerical experiments lead to significant conclusions

on how flux-corrected advective techniques operate in terms of modifying the

propagation of individual waves. Flux-corrected numerical solutions represent

a valuable numerical solution technique. Nonetheless, flux correction can intro-

duce errors, as shown in the two experiments.

In general, flux-corrected solutions contain less energy, which implies that

extra dissipation is introduced in association with the flux-limiting procedure.

To maintain positive definiteness (in the case of a positive definite scheme),

energy must be supplied to the smaller scales, which is done at the expense

of the larger scales. In fact, in such a process, energy not only is redistributed

toward the shortwave range, but is also dissipated. This process is shown in

Figure 10-9.

Without flux correction, the advection scheme is linear, and the individual

modes are independent from one another. Dissipation occurs mostly at the

smaller scales, while the coarse modes do not exhibit significant damping. When

flux correction is introduced, the individual waves start to interact, and energy

is supplied to the small scales from the large scales. Such a transfer of energy

is accompanied by dissipation. As a consequence, the global energy content of

the numerical solution, as well as the energy content of the large scales, are

reduced when flux correction is applied.

Fig. 10-9. “Energy diagrams” for the numerical schemes (a) without correction and
(b) with correction. See text for comments. (From Costa et al. 2000.)
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Other investigators have also suggested improved techniques to conserve

mass. These include Galperin and Kastrel (1998), Walcek and Aleksic (1998),

and Walcek (1999a, b). The latter papers provided their Fortran code, a publi-

cation procedure that should be encouraged.

10.1.2 Subgrid-Scale Flux

As shown by Eq. (7-7), the subgrid-scale correlation terms can be represented

as the product of an exchange coefficient and the gradient of the appropriate

dependent variable. This relation can be written as, for example,

��̄

�t
= �

�z
K
��̄

�z
� �"+1

i − �"
i

�t

= Ki+ 1
2

�"
i+1 − �"

i

��z�2
− Ki− 1

2

�"
i − �"

i − 1

��z�2
	 (10-25)

where �z = z�i + 1�− z�i� = z�i�− z�i − 1� and � represents any one of the

dependent variables. This equation is often referred to as the diffusion equation.
To study the linear stability of this scheme, the exchange coefficient is assumed

to be a constant �Ki+1/2 = Ki−1/2 = K� and Eq. (10-25) is written as

�"+1
i = �"

i + K
�t

��z�2

(
�"

i+1 − 2�"
i + �"

i−1

)

 (10-26)

The exact solution to the diffusion equation [the left side of Eq. (10-25) with

K equal to a constant, i.e., ��̄/�t = K �2�̄/�z2] can be determined by assuming

�̄ = �0e
i�kz+�t� = �0e

−�itei�krz+�r t�	

where damping in the z direction is not permitted (i.e., ki ≡ 0). Substituting

this expression into the linearized diffusion equation and simplifying yields

i�r − �i = −Kk2	

where the subscript “r” on k has been eliminated to simplify the notation. Equat-

ing real and imaginary components shows that �r ≡ 0, so the exact solution can

be written as

�̄ = �0e
−Kk2teikz


Expressing the dependent variables as a function of frequency and wavenum-

ber, Eq. (10-26) can be rewritten as

!1 = 1+ ��!1 − 2+ !−1� = 1+ 2��cos k�z− 1�	
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where � = K�t/��z�2 and !1 + !−1 = 2 cos k �z. The nondimensional param-

eter � is called the Fourier number. Equating real and imaginary components

yields

� cos�r�t = 1+ 2��cos k�z− 1�

� sin�r�t = 0


Since sin�r�t must be identically equal to 0, �r�t and thus the phase speed are

also equal to 0. Thus the solution to Eq. (10-26) does not propagate as a wave,

but rather amplifies or decays in place. Since cos�r�t = 1, the real part can be

divided by the analytic solution,11 �a = e−Kk2�t = e−��2��2/n2 , and rewritten as

�

�a

= 1+ 2��cos k�z− 1�

e−��2��2/n2

where n is the number of grid points per wavelength. For very long waves

�n → ��, �a = 1 and � = 1, since cos k�z = cos�2�/L��z = 1, and thus no

damping or amplification occurs. For the shortest waves that can be resolved

(L = 2�z� n = 2),

� = 1− 4�


To ensure that the magnitude of � is less than unity and thus computationally

stable, 4� must be less than or equal to 2, or

� ≤ 1

2



The condition � = 1

2
, however, causes � to switch between +1 and −1 with

each application of Eq. (10-26), but the analytic solution is �a = e−4
95 =
0
00719. This unrealistic response of 2�z wavelength features can cause com-

putational problems in a nonlinear model, as discussed in Section 10.5. To

eliminate 2�z waves at each application of Eq. (10-26), � can be set to 0 for a

2�z wave, resulting in � = 1

4
. Thus the standard requirement specified in using

this scheme is that

� = K�t/��z�2 ≤ 1

4
	

with the expectation that � is close to 1

4
so that the presence of 2�z waves is

minimized.

Up to this point, the approximations to the advective and subgrid-scale flux

terms have always been defined at the current time step (i.e., �"
i ). The pre-

dicted dependent variable �"+1
i enters only through the time tendency term.

Such schemes are referred to as explicit and can be written in general as

�"+1 = f ��"�	
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where the function f can include spatial derivatives of �" as well as the variable

itself.

In contrast, an implicit scheme uses information from the future time step, as

well as present values. For this case,

�"+1 = f ��"+1	 �"�


In general, the use of an implicit representation permits longer time steps than

the explicit form without causing linear instability. An implicit form of the left

side of Eq. (10-25) for variable �z (e.g., Paegle et al. 1976) can be written as

�"+1 − �"

�t
= 1

�zj

[
Kj+ 1

2

�"

(
�"

j+1 − �"
j

)+ �"+1

(
�"+1

j+1 − �"+1
j

)
�zj+ 1

2

−Kj− 1
2

�"

(
�"

j − �"
j−1

)+ �"+1

(
�"+1

j − �"+1
j−1

)
�zj− 1

2

]
(10-27)

where �" + �"+1 = 1, �zj = zj+ 1
2
− zj− 1

2
, �zj+1 = zj+1 − zj , and �zj−1 =

zj − zj−1. The use of �" and �"+1 weights the current and future contributions

to the numerical approximation of the left side of Eq. (10-25). Note that when

�"+1 = 0 and �zj = �zj+1 = �zj−1 = �z, the scheme reverts back to the

explicit scheme given by the right side of Eq. (10-25). Linearizing Eq. (10-27)

by setting Kj+ 1
2
and Kj− 1

2
equal to a constant, using a constant grid interval �z,

and representing the dependent variable in terms of wavenumber and frequency

results in

!1 = 1+ �
[
�"�!1 − 2+ !−1�+ �"+1�!

1
1 − 2!1 + !1

−1�
]
	

where, as with the explicit scheme, � = K�t/��z�2. Since !1
1 = !1!1 and

!1
−1 = !1!−1,

!1 = 1+ ��"

(
!1 − 2+ !−1

)+ ��"+1!
1
(
!1 − 2+ !−1

)
	

or

!1 = �1+ ��"�!1 + !−1 − 2��

�1− ��"+1�!1 + !−1 − 2��
= 1+ 2��"�cos k�z− 1�

1− 2��"+1�cos k�z− 1�
= �	

where, as with the analysis of the explicit representation, the imaginary part is

0, so that � = !1.

Values of the ratio of the computational approximation of the damping to the

analytic damping �/�a are presented in Table 10-4 as a function of wavelength

and �" . For a given value of �, the 2�z wave is the most poorly represented.

In addition, the 2�z wave is always insufficiently damped, and the value of �
is often negative, yielding a wave whose amplitude reverses (flip-flops) at each

time step. The solutions become more accurate as � becomes smaller, and the
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TABLE 10-4

Values of the Ratio of the Computational to Analytic Damping as a Function of Wavelength for Different Forms of the
Forward-in-Time, Centered-in-Space Approximation to the Linearized Diffusion Equation 
��/�t = K = �2�/�z2�

�

Scheme Wavelength 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Forward-in-time,

centered-in-space

diffusion

Explicit 2�x 1
610 1
440 −3
863 −31
094 <− 100

4�x 1
024 0
983 0
839 0
537 0
0

�" = 1 10�x 1
001 0
999 0
997 0
992 0
986 � > 1 for a 2�z wave

20�x 1
000 1
000 1
000 1
000 0
999

Implicit 2�x 1
725 2
554 2
272 −4
202 −34
761 <− 100 <− 100 <− 100 <− 100 <− 100

4�x 1
038 1
053 1
030 0
952 0
792 0
517 0
079 0
584 −1
555 −2
948

�" = 0
7 10�x 1
001 1
001 1
001 1
000 0
998 0
996 0
992 0
988 0
982 0
975

20�x 1
000 1
000 1
000 1
000 1
000 1
000 1
000 0
999 0
999 0
999

2�x 1
789 3
085 4
829 5
758 0
00 −33
91 <− 100 <− 100 <− 100 <− 100

4�x 1
047 1
092 1
129 1
150 1
145 1
099 0
993 0
800 0
485 0
00

�" = 0
5 10�x 1
001 1
003 1
004 1
005 1
006 1
007 1
007 1
008 1
008 1
008

20�x 1
000 1
000 1
000 1
000 1
000 1
000 1
000 1
001 1
001 1
001

2�x 1
845 3
507 6
718 12
711 23
17 38
97 54
11 33
16 <− 100 <− 100

4�x 1
055 1
126 1
211 1
307 1
414 1
529 1
648 1
766 1
875 1
965

�" = 0
3 10�x 1
002 1
004 1
006 1
009 1
013 1
017 1
021 1
026 1
031 1
037

20�x 1
000 1
000 1
000 1
001 1
001 1
001 1
001 1
002 1
002 1
003

2�x 1
916 3
999 8
779 19
93 46
35 >100 >100 >100 >100 >100

4�x 1
067 1
170 1
310 1
491 1
717 1
998 2
344 2
769 3
290 3
931

�" = 0
1 10�x 1
002 1
005 1
010 1
016 1
023 1
031 1
040 1
050 1
062 1
074

20�x 1
000 1
000 1
001 1
001 1
002 1
002 1
003 1
004 1
004 1
005

Computed by C. Martin.
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implicit representation gives reasonable results for large wavelengths even when

the explicit form is linearly unstable for all spatial scales.

Equation (10-27) can be written in the following form:

− �tKj− 1
2
�"+1

�zj�zj− 1
2

�"+1
j−1 +
[
1+ �tKj+ 1

2
�"+1

�zj�zj+ 1
2

+ �tKj− 1
2
�"+1

�zj�zj− 1
2

]
�"+1

j

− �tKj+ 1
2
�"+1

�zj�zj+ 1
2

�"+1
j+1

= �"
j +

�t

�zj

[
Kj+ 1

2
�"

(
�"

j+1 − �"
j

)
�zj+ 1

2

− Kj− 1
2
�"

(
�"

j − �"
j−1

)
�zj− 1

2

]
(10-28)

and solved for nonperiodic boundary conditions using a procedure described

in Section 10.2. Its solution for periodic boundary conditions is given in

Appendix A.

When �" = �"+1, this representation is called the Crank–Nicholson scheme.

Paegle et al. (1976) have presented results showing that �"+1 = 0
75 provides

a representation as accurate as the explicit scheme but with a much longer per-

missible time step. Figure 10-10, reproduced from Mahrer and Pielke (1978a),

illustrates predictions of the growth of a heated boundary layer using both the

explicit representation of diffusion given by Eq. (10-25) and the implicit form

[Eq. (10-27)] with �"+1 = 0
75. As reported in that paper, use of the implicit

Fig. 10-10. Vertical profiles of the potential temperature for Wangara Day 33 with
(a) the implicit scheme (��+1 = 0�75) and (b) the explicit scheme (��+1 = 0), where the
darkened squares are at 0900, the darkened circles at 1200, the darkened triangles at
1500, and the open circles at 1700. (From Mahrer and Pielke 1978a.)
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form permitted a much longer time step, so the calculation ran 17 times faster

than when the explicit form was used.

10.1.3 Coriolis Terms

The implicit scheme can also be shown to be a necessity for the Coriolis

terms. The terms dealing with the earth’s rotation [see Eq. (4-21)] are already

in linear form and with Lz � Lx can be written as

�ū/�t = f v̄ and �v̄/�t = −f ū
 (10-29)

If these relations are approximated using an explicit representation, they are

written as

�u"+1
i − u"

i �/�t = fv"i and �v"+1
i − v"i �/�t = fu"

i 
 (10-30)

Rewriting the dependent variables in terms of frequency and wavenumber, and

rearranging yields

û�!1 − 1�− v̂�tf = 0

and

ûf�t + v̂�!1 − 1� = 0	

where û and v̂ are functions of � and k. In matrix form, these equations can be

written as [
!1 − 1 −�tf
�tf !1 − 1

] [
û
v̂

]
=
[
0

0

]



As shown preceding Eq. (5-31), this homogeneous set of algebraic equations

has a solution only if the determinant of the coefficients is equal to 0, thus

�!1 − 1�2 + ��t�2f 2 = !2 − 2!1 + 1+ ��t�2f 2 = 0


Using the formula for the solution of a quadratic equation,

!1 = [2±√4− 4
(
1+ ��t�2f 2

)]/
2 = 1± i�t f 


Equating real and imaginary components,

� cos�r�t = 1

� sin�r�t = ±�tf 	

and then summing and squaring yields

�2 = 1+ ��t�2f 2	 so � = √1+ ��t�2f 2 ≥ 1
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Thus except when �t = 0 or f = 0 (at the equator) the explicit representation

of the Coriolis terms given by Eq. (10-30) is linearly unstable.12 The analytic

solution of course requires that � = 1.

A second representation of Eq. (10-29) is to use an implicit form given by

�u"+1
i − u"

i �/�t = fv"i and �v"+1
i − v"i �/�t = −fu"+1

i 	 (10-31)

so that the updated value of u is used in the v equation. Rewriting Eq. (10-31)

in terms of frequency and wavenumber, rearranging, and writing in matrix form

results in [
!1 − 1 −�tf
!1f �t !1 − 1

] [
û
v̂

]
=
[
0

0

]



Setting the determinant of the matrix of coefficients to 0 gives the equation

!2 + !1���t�2f 2 − 2�+ 1 = 0	

which, using the quadratic formula and rearranging, has the solution

!1 = 1− ��t�2f 2

2
± ��t�f

√
��t�2f 2 − 4

2

 (10-32)

Two forms of this relation need to be examined. If ��t�2f 2 > 4, then the entire

expression is real and �r�t = 0. Thus if ��t�2f 2 = 4 + �2, where � > 0 but

�2 � 4, then

!1 = � � 1− 4+ �2

2
± � = 1− 2− �2

2
± �


Since both roots are possible,

� � −1− �2

2
− � < −1 �i.e., ��� > 1�	

so that when ��t�2f 2 > 4, the representation is linearly unstable.

If ��t�2f 2 ≤ 4, then Eq. (10-32) can be rewritten as

!1 = 1− ��t�2f 2

2
± i��t�f

√
4− ��t�2f 2

2



Equating real and imaginary parts yields

� cos�r�t = 1− ���t�2f 2/2�

� sin�r�t =
[±�tf
√
4− ��t�2f 2

]
/2


Squaring the two expressions and adding results in

�2 = 1− ��t�2f 2 + 1

4

[
��t�2f 2

]2 + ��t�2f 2 − 1

4

[
��t�2f 2

]2 = 1
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The scheme is, therefore, neutrally stable as long as ��t�2f 2 ≤ 4. Since the

maximum value of f on the earth is 1.45 ×10−4 s−1, time steps shorter than

13,793 seconds ensure linear stability of this term.

10.1.4 Pressure Gradient and Velocity Divergence

To investigate different approximations to the pressure gradient force and

velocity divergence terms, it is useful to use the linear form of the one-fluid

tank model introduced in Chapter 5, Section 5.2.1.1. The linear equations (5-22)

and (5-23) developed in that chapter are given by

�u′

�t
= −g

�h

�x
and

�h

�t
= −h0

�u′

�x

 (10-33)

As expressed by Eq. (5-32), the analytic solution to Eq. (10-33) corresponds to

a wave traveling with a speed of
√
gh0. Since the amplitude of this wave is

unchanging, a computationally accurate scheme will have � = 1 in the stability

analysis.

In a forward-in-time, centered-in-space explicit representation, these equa-

tions can be approximated by

u"+1
i − u"

i

�t
= −g

h"
i+1 − h"

i−1

2�x

h"+1
i − h"

i

�t
= −h0

u"
i+1 − u"

i−1

2�x



Representing these two finite difference equations in wavenumber and frequency

space yields the algebraic equations

�!1 − 1�û+ g�t

2�x
�!1 − !−1�ĥ = 0

�!1 − 1�ĥ+ h0�t

2�x
�!1 − !−1�û = 0	

which, after substituting for !1 − !−1 and rearranging, can be written in matrix

form as [
�!1 − 1� g�t

�x
i sin k�x

h0
�t
�x
i sin k �x �!1 − 1�

] [
û

ĥ

]
=
[
0

0

]



For a nontrivial solution, the determinant of the coefficients must be 0, so that

!2 − 2!1 + 1+ gh0

(
�t

�x

)2
sin2 k�x = 0	



312 10 Methods of Solution

and, using the quadratic formula,

!1 =
2±
√
4− 4
(
1+ gh0��t/�x�

2 sin2 k�x
)

2

or

!1 = 1±
√
−gh0��t/�x�

2 sin2 k�x = 1± i
√
gh0��t/�x� sin k�x


The real and imaginary components of this expression are

� cos�r�t = 1

� sin�r�t = ±√gh0��t/�x� sin k�x	

Squaring and summing the two equations results in

�2 = 1+ gh0��t/�x�
2 sin2 k�x	

so that ��� > 1, and the explicit representation is linearly unstable.
Since the Coriolis terms are linearly unstable for an explicit scheme, but

stable when an implicit representation is used, it seems reasonable to examine

a similar form, in which dependent variables are updated to their " + 1 values

in the second equation of the simultaneous set. Equation (10-33) thus can be

approximated13 by

u"+1
i − u"

i

�t
+ g

h"
i+1 − h"

i−1

2�x
= 0

h"+1
i − h"

i

�t
+ h0

u"+1
i+1 − u"+1

i−1

2�x
= 0


(10-34)

When programming this system of equations on a computer, the choice of ini-

tial conditions will determine the initial amplitude and phase. Using u"=0 =
�g/h�1/2h"=0, for example, with h"=0 = cos kj�k will result in an amplitude

change for the first time step of � = 1+ � 1
2
tan�kj�x� sin k�x� defining g/h = 1

for simplicity. The following stability analysis is valid only after this time.

Rewriting this expression in terms of frequency and wavenumber yields

�!1 − 1�û+ g �t

2�x
�!1 − !−1�ĥ = 0

�!1 − 1�ĥ+ h0

2

�t

�x

(
!1
1 − !1

−1

)
û = 0

or, in the equivalent matrix form, substituting for !i − !−1	 �!
1
1 − !1

−1 =
!1�!1 − !−1��, [

�!1 − 1� g �t

�x
i sin k�x

h0 �t

�x
i sin k�x �!1 − 1�

] [
û

ĥ

]
=
[
0

0

]
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The determinant of the coefficients must equal 0 for this system of equations to

have a nontrivial solution, so that

!2 + !1��2 − 2�+ 1 = 0	

where �2 = gh0��t/�x�
2 sin2 k�x is the resultant quadratic equation. Solving

for !1 gives

!1 = [�2− �2�± �
√
�2 − 4
]
/2
 (10-35)

Two possible situations arise: �2 ≤ 4 and �2 > 4. For the first situation, !1

can be rewritten as !1 = ��2− �2�± i�
√
4− �2�/2, so that equating real and

imaginary components yields

� cos�r �t = �2− �2�/2

� sin�r �t =
(±�
√
4− �2
)
/2


Squaring and summing these two expressions results in

�2 = 1

4

(
4− 4�2 + �4 + 4�2 − �4

) = 1


Since ��� = 1, the scheme is neutrally stable, and the phase speed as a function

of wavelength c can be obtained from either the imaginary or real components.

Using the imaginary component, the ratio of the calculated to analytic phase

speeds is

c

ca
= c

±√gh0

= 1

±k�t
√
gh0

sin−1

(
�
√
4− �2

2

)



From this expression, if �2 = 4, then the calculated phase speed c is 0, which is

undesirable, of course, because the analytic solution is
√
gh0. Table 10-5 gives

values of c/ca for selected values of k and �.
When �2 > 4, the real and imaginary components of Eq. (10-35) are given by

� cos�r �t =
1

2

[
2− �2 ± �

√
�2 − 4
]

� sin�r �t = 0


Since there is no nonzero imaginary contribution, cos�r �t = 1 ��r = 0, so the

wave has no phase speed) and

� = 1− 1

2

[
�2 ± �

√
�2 − 4
]
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TABLE 10-5

Values of the Amplitude and Phase Error per Time Step as a Function of Wavelength and
√
gh0	t/	x for the Centered-in-Space,

Implicit, Forward-in-Time Approximation to the Linearized Tank Model Equations√
gh0�t/�x

Wavelength 0
001 0
01 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 1
0 1
5 2
0

� 2�x 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0

4�x 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0

10�x 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0

20�x 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0

c/ca 2�x 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0

4�x 0
637 0
637 0
637 0
638 0
639 0
641 0
643 0
647 0
650 0
655 0
660 0
667 0
613 0
0

10�x 0
935 0
935 0
936 0
936 0
937 0
938 0
939 0
940 0
942 0
944 0
947 0
950 0
969 1
0

20�x 0
984 0
984 0
984 0
984 0
984 0
984 0
985 0
985 0
986 0
986 0
987 0
988 0
993 1
0

Calculations performed by S. Weidman.
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If �2 = 4+ �2, where � > 0, then with � > 0,

� = −1− 1

2
�2 − � < −1	

so the scheme is linearly unstable.

Thus, obtaining stable results with the implicit finite difference representation

to the tank model equations requires that

�2 = gh0��t/�x�
2 sin2 k�x < 4


Since sin2 k�x = 1 when the wavelength is 4�x�k = 2�/4�x�, the stability

condition is ∣∣±√gh0�t/�x
∣∣ < 2


Sun (1980) has investigated the linear stability of finite difference approxi-

mations to equations of the form given by Eqs. (5-37) and (5-39)–(5-41) with

f = 0, �′/�0 = �′/�0, and �2 = 0. As shown in Section 5.2.2, this system of

equations has internal gravity waves as the solution. Using approximate solution

techniques, Sun showed that when the hydrostatic assumption is used (�1 = 0),

the dependent variables are staggered in space, updated velocities are used in

the potential temperature equation, and the pressure gradient is approximated

by a centered-in-space scheme, a computationally stable solution results. This

sequence of calculations discussed by Sun is called the forward-backward time-

integration scheme and has been adopted in a number of mesoscale models

(e.g., Bhumralkar 1972, 1973; Jones 1973; Pielke 1974a, b). Bhumralkar (1972)

similarly found that unless updated values of velocity were used in the com-

putation of potential temperature, the results would be linearly unstable. Also,

as he and others have concluded, the time step must be less than or equal to

the time that it takes a disturbance to propagate between grid points, or else the

solutions will be unstable.

It is also interesting to note that the approximation to the pressure gradient

force [e.g., g�h/�x in Eq. (10-33)] uses what closely corresponds to a first-

order Taylor series approximation to this gradient. As shown by Eq. (2-31)

in Chapter 2, however, such a representation to the pressure gradient force is

only valid in the limit as the spatial distance over which this force is evalu-

ated approaches 0. Since this distance is not 0 in a numerical model, it should

be investigated as to whether the inclusion of higher-order terms in the series

expansion [i.e., Eq. (2-31)] and their representation by approximate solution

techniques would produce improved representations of phase speed.

Finally, other finite difference representations for these and other terms can

be examined in the same fashion as presented in this section. At this point,

however, we investigate other forms of representation for these terms.
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10.2 Upstream Interpolation Schemes—An
Introduction

A second category of approximation schemes is the interpolation technique.14

With this method, dependent variables at grid points are used to derive inter-

polation formulae for the spaces between as well as at the grid points. Such

schemes have been used in mesoscale models to represent advection. The finite

difference method is one form of interpolation, of course, since upstream dif-

ferencing, for example, assumes a piecewise continuous function, as sketched

in Figure 10-11(a), that is linear between grid points.

In the general category of interpolation schemes, however, all of the grid

points in the domain, or at least all of the grid points in one coordinate direc-

tion, are used to approximate the dependent variables. Figures 10-11(b) and

(c) illustrate two such functions, where one requires that the function equal the

dependent variables at the grid point [Figure 10-11(b)] and the other to mini-

mize overshoot does not make such a requirement. Texts such as Nielsen (1964)

discuss the various types of interpolation formulas, and Goodin et al. (1981)
provide an effective, concise discussion of the use of weighted interpolation.

When using these formulae to represent advection, the change in a dependent

variable at time " + 1 caused by advection is determined by going upstream

for a distance u"
i �t and using the resultant interpolated value at that point to

represent the change.

In this section, we examine one particular interpolation function (reported

by Ahlberg et al. 1967) that has been used effectively in mesoscale mod-

els. The technique outlined can be used for any desired interpolation scheme.

Rüshøjgaard et al. (1998), for example, describe a different procedure to repre-

sent the second derivation of the interpolation scheme.

Let S�x� be the interpolation function and require the following:

� S�x�	 S ′�x�, and S ′′�x� are continuous.

Fig. 10-11. Schematic examples of interpolation formula that can be used to represent
dependent variables on a one-dimensional grid: (a) a piecewise, continuous, linear fit;
(b) a polynomial fit with grid point values defined exactly by the interpolation formula;
and (c) a polynomial fit that limits the curvature of the interpolation formula.
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� S�x� is a cubic polynomial over the interval xi−1 ≤ x ≤ xi [i.e., S�x� =
ax3 + bx2 + cx + d; S ′′�x� = 6ax + 2b].

� S�xi� = �i.

Here �i is the value of the dependent variable � at the grid point xi. If we

define

Mi−1 = S ′′�xi−1� and Mi = S ′′�xi�	

then

S ′′�x� = Mi−1

xi − x

hi

+Mi

x − xi−1

hi

	 (10-36)

where hi = xi − xi−1 [Eq. (10-36) is of the form S ′′�x� = 6ax + 2b, where
6a = �Mi −Mi−1�/hi and 2b = �Mi−1xi −Mixi−1�/hi).]

Integrating Eq. (10-36) with respect to x gives

S ′�x� = −Mi−1

�xi − x�2

2hi

+ Mi�x − xi−1�
2

2hi

+ E	

and integrating again yields

S�x� = Mi−1

�xi − x�3

6hi

+ Mi�x − xi−1�
3

6hi

+ Ex + F 
 (10-37)

Since S�xi−1� = �i−1 and S�xi� = �i, we have

S�xi−1� = Mi−1

�xi − xi−1�
2

6
+ Exi−1 + F = �i−1 (10-38)

and

S�xi� = Mi

�xi − xi−1�
2

6
+ Exi + F = �i
 (10-39)

Subtracting Eq. (10-38) from Eq. (10-39) gives

�i − �i−1 = Mi

h2
i

6
−Mi−1

h2
i

6
+ E�xi − xi−1�	

so that

E = �i − �i−1

hi

− hi

6
�Mi −Mi−1�


To obtain the constant F , multiply Eq. (10-38) by xi and Eq. (10-39) by xi−1

and subtract Eq. (10-39) from Eq. (10-38), resulting in

�i−1xi − �ixi−1

hi

= Mi−1xihi

6
− Mixi−1hi

6
+ F 	
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so that

F = �i−1xi − �ixi−1

hi

+ hi

6
�Mixi−1 −Mi−1xi�


Equation (10-37), after rearranging, can thus be written as

S�x� = Mi−1

�xi − x�3

6hi

+Mi

�x − xi−1�
3

6hi

+
(
�i−1 −

h2
i

6
Mi−1

)
�xi − x�

hi

+
(
�i −

h2
i

6
Mi

)
�x − xi−1�

hi

	

with the first derivative given by

S ′�x� = −Mi−1

�xi − x�2

2hi

+ Mi�x − xi−1�
2

2hi

+ �i − �i−1

hi

− Mi −Mi−1

6
hi
 (10-40)

In using the spline to approximate advective terms, use is made of the slope

S ′�x� rather than the second derivative term S ′′�x�. To do this, let

Ni = S ′�xi� =
Mihi

2
+ �i − �i−1

hi

− Mi −Mi−1

6
hi (10-41)

and

Ni−1 = S ′�xi−1� = −Mi−1

hi

2
+ �i − �i−1

hi

− Mi −Mi−1

6
hi
 (10-42)

Adding the equations for Ni and Ni−1 and rearranging yields

Mi −Mi−1

6
hi = Ni + Ni−1 −

2��i − �i−1�

hi

	

so that Eqs. (10-41) and (10-42) can be rewritten as

Ni =
Mihi

2
+ 3��i − �i−1�

hi

− Ni − Ni−1

Ni−1 = −Mi−1hi

2
+ 3��i − �i−1�

hi

− Ni − Ni−1


Solving these equations for Mi and Mi−1,

Mi =
1

hi

[
4Ni + 2Ni−1 −

6��i − �i−1�

hi

]
Mi−1 =

1

hi

[
−4Ni−1 − 2Ni +

6��i − �i−1�

hi

]
	

gives the relation between the first and second derivatives at the grid points.
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Substituting these expressions for Mi and Mi−1 back into Eq. (10-40) and

prodigious rearranging yields

S ′�x� = Ni

h2
i

�xi−1 − x��2xi + xi−1 − 3x�+ Ni−1

h2
i

�xi − x��2xi−1 + xi − 3x�

+ 6��i − �i−1�

h3
i

�xi − x��x − xi−1�
 (10-43)

Integration of S ′�x� yields S�x� in terms of the first derivatives,

S�x� = −Ni

h2
i

�x − xi−1�
2�xi − x�+ Ni−1

h2
i

�xi − x�2�x − xi−1�

+ �i−1

h3
i

�xi − x�2�2�x − xi−1�+ hi�

+ �i

h3
i

�x − xi−1�
2�2�xi − x�+ hi�	 (10-44)

and differentiating Eq. (10-43) and rearranging yields

S ′′�x� = −2Ni

h2
i

�xi + 2xi−1 − 3x�− 2Ni−1

h2
i

�xi−1 + 2xi − 3x�

+ 6��i − �i−1�

h3
i

�xi + xi−1 − 2x�
 (10-45)

This last equation for S ′′�x� is used to obtain the values of Ni and Ni−1 required

in the spline interpolation, Eq. (10-44).

Since the second derivatives’ spline interpolations must be continuous at grid

points, the value of S ′′�x� approaching xi from the x ≥ xi side [denoted by

S ′′�x+
i �] must equal S ′′�x� approaching xi from the x ≤ xi side [denoted by

S ′′�x−
i �]. From Eq. (10-45), after setting x = xi and rearranging,

S ′′�x−
i � =

4Ni

hi

+ 2Ni−1

hi

− 6��i − �i−1�

h2
i




By replacing i − 1 with i and i with i + 1, S ′′�x+
i � can be obtained from

Eq. (10-45), giving, after rearranging,

S ′′�x+
i � = −2Ni+1

hi+1

− 4Ni

hi+1

+ 6��i+1 − �i�

h2
i+1

	

where hi+1 = xi+1 − xi.
Since continuity is required,

S ′′�x+
i � = S ′′�x−

i �	
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so that

3��i+1 − �i�

h2
i+1

+ 3��i − �i−1�

h2
i

= Ni−1

hi

+ 2Ni

hi

+ 2Ni

hi+1

+ Ni+1

hi+1


 (10-46)

Put in a simpler form, let

�i = hi+1/�hi + hi+1� and i = 1− �i = hi/�hi+1 + hi�


Using these definitions and multiplying Eq. (10-46) by hihi+1/�hi + hi+1� yields

3i

hi+1

��i+1 − �i�+
3�i

hi

��i − �i−1� = �iNi−1 + 2Ni + iNi+1
 (10-47)

In matrix form, for nonperiodic boundary conditions, this equation can be writ-

ten as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 0 0 0 ··· 0 0 0

�2 2 2 0 0 ··· 0 0 0

0 �3 2 3 0 ··· 0 0 0

0 0 �4 2 4 ··· 0 0 0





















 ··· 













0 0 0 0 0 ··· �D−1 2 D−1

0 0 0 0 0 ··· 0 bD−1 bD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

N2

N3

N4





ND−1

ND

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

d4





dD−1

dD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
	

(10-48)

where D is the number of grid points in the x direction. For i not equal to

1 or D,

di =
3i

hi+1

��i+1 − �i�+
3�i

hi

��i − �i−1�	 for i = 2	 3	 � � � 	 D − 2	 D − 1


The matrix of coefficients in this system of equations is called tridiagonal,
because only elements along the three central diagonals are nonzero.

The values of b1, b2, bD−1, and bD are determined from the form of the

assumed boundary conditions.15 One type of boundary condition is obtained

from S ′′�x+
1 � and S ′′�x−

D�, so that

�′′
1 = S ′′�x+

1 � = −2N2

h2

− 4N1

h2

+ 6��2 − �1�

h2
2

and

�′′
D = S ′′�x−

D� =
4ND

hD

+ 2ND−1

hD

− 6��D − �D−1�

h2
D




If �′′
1 , �

′′
D, �1, and �D are specified, then

2N1 + N2 =
3��2 − �1�

h2

− �′′
1

2
h2
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and

ND−1 + 2ND = 3��D − �D−1�

hD

− �′′
DhD

2
	

so that in the matrix equation,

d1 =
3��2 − �1�

h2

− �′′
1

2
h2 and dD = 3��D − �D−1�

hD

− �′′
DhD

2

and

b1 = 2	 b2 = 1	 bD−1 = 1	 and bD = 2


In specifying �′′ and � at the boundaries, larger-scale information (if available)

could be used, or data from one or more grid points inside the grid domain

could be interpolated to the boundaries. Boundary conditions are discussed in

more detail in Chapter 11.

The determination of the first derivatives from the matrix equation (10-48) is

performed by the method of Gaussian elimination (see, e.g., Hadley 1962:51).16

With this technique, the first row is multiplied by �2/b1 and subtracted from

the second row, giving the values of

�0	 2− �b2�2/b1�	 2	 0	 0	 � � � 	 0� = �0	 P2	 2	 0	 0	 � � � 	 0�

on the left side and

d2 − �d1�2/b1� = G2

on the right side. This row of coefficients is used to replace the second row of

Eq. (10-48).

Next, this new second row is multiplied by �3/P2 and subtracted from the

third row, yielding

�0	 0	 2− �2�3/P2�	 3	 0	 0	 � � � 	 0� = �0	 0	 P3	 3	 0	 � � � 	 0�

on the left side and

d3 − �G2�3/P2� = G3

on the right side. This row of coefficients is then used to replace the third row

of Eq. (10-48). This same type of operation continues for the rest of the rows.

The object of these algebraic operations on the matrix equation is to create

all 0’s on the left side of the diagonal of the matrix. As will be seen shortly,

rewriting the matrix equation in this form creates an efficient algorithm for

solving for the first derivative of the spline.
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With these operations of the matrix equation and using b2 = bD−1 = 1 and

b1 = bD = 2, Eq. (10-48) can be rewritten as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 · · · 0

0 P2 2 0 · · · 0

0 0 P3 3 0 · · · 0

0 0 0 P4 4 · · · 0





















 · · · 
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ND
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GD−1

GD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
	

where

Pi = 2− �i−1�i/Pi−1�

Gi = di − �Gi−1�i/Pi−1�	

with i = �2	 � � � D�, Gi−1 = i−1 = 0, and Pi−1 	= 0 for i = 1. In the method of

Gaussian elimination, the algebraic operations required to create 0’s to the left

of the diagonal is called the forward sweep.
With the matrix in this form, the slopes of the spline at the grid points are

determined by a backward sweep starting with ND and continuing until N is

determined. Expressed algebraically,

ND = GD/PD �i = D�	

Ni = �Gi − iNi+1�/Pi �i = 1	 2	 
 
 
 	 D − 1�


To eliminate the need to compute Gi, these expressions are often written in an

equivalent fashion as

ND = RD �i = D�	

Ni = Ri − �iNi+1/Pi� �i = 1	 2	 
 
 
 	 D − 1�	
(10-49)

where

Ri = �di − Ri−1�i�/Pi �with Ri−1 = 0 for i = 1�


With these expressions for Ni, it is possible to compute S�x� from Eq. (10-44)

for any point in the domain. In the interpolation scheme, estimating changes

caused by advection at time level " + 1 are performed by evaluating the value

of the spline (or other approximation formula) a distance of �u"
i ��t upstream

from the grid point of interest. The assumption is that the value of the dependent

variable at �u"
i ��t upstream of grid point i at time level " is equal to its value

at " + 1 at the grid point. This distance can also be written as �u"
i ��t = Chi,

where C is the Courant number defined using the absolute value of the velocity

at a grid point (C = �u"
i ��t/hi).
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One could also be tempted to use the values of Ni directly in the conser-

vation relations to approximate the spatial derivatives. Experience has shown

(e.g., Price and MacPherson 1973), however, that this method can cause unde-

sirable growth of short wavelength noise for a nonlinear problem if used without

smoothing.

To determine the value of the spline at xi − Chi for the case of u"
i ≥ 0, the

value of x in Eq. (10-44) is replaced with xi − Chi, yielding

S�xi − Chi� = Ni−1�xi − xi + Chi�
2�xi − Chi − xi−1�/h

2
i

− Ni�xi − CHi − xi−1�
2�xi − xi + Chi�/h

2
i

+ �−i−1�xi − xi − Chi�
2�2�xi − Chi − xi−1�+ hi�/h

3
i

+ �i�xi − Chi − xi−1�
2�2�xi − xi + Chi�+ hi�/h

3
i 


Expanding this relation and rearranging yields

S�xi − Chi� = �"
i − CNihi + C2�Ni−1hi + 2Nihi + 3��"

i−1 − �"
i ��

− C3�hiNi−1 + hiNi + 2��"
i−1 − �"

i �� �u
"
i ≥ 0�
 (10-50)

For the case where u"
i < 0, the spline must be evaluated between grid points

xi and xi+1. An expression for the spline, analogous to Eq. (10-44) [Eq. (10-44)

is for application between grid points xi−1 and xi], is obtained by replacing i− 1

by i and i by i + 1 in Eq. (10-44), yielding

S�x� = −Ni+1

h2
i+1

�x − xi�
2�xi+1 − x�+ Ni

h2
i+1

�xi+1 − x�2�x − xi�

+ �i

h3
i+1

�xi+1 − x�2�2�x − xi�+ hi+1�

+ �i+1

h3
i+1

�x − xi�
2�2�xi+1 − x�+ hi+1�


Substituting xi + Chi+1 for x in this expression and rearranging gives

S�xi + Chi+1� = �"
i + CNihi+1 − C2�Ni+1hi+1 + 2Nihi+1 + 3��"

i − �"
i+1��

+ C3�hi+1Ni + hi+1Ni+1 + 2��"
i − �"

i+1�� �u"
i < 0�
 (10-51)

Equations (10-50) and (10-51) are thus used to determine the changes in the

dependent variable due to advection from

�"+1
i

∣∣ advective changes = S�xi − Chi� �u"
i ≥ 0� (10-52)

�"+1
i

∣∣ advective changes = S�xi + Chi+1� �u"
i < 0�
 (10-53)
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To determine the linear computational characteristics of this scheme, let u"
i =

U ≥ 0 and hi = hi+1 = �x, so that �i = i = 1/2. The equation for the slope

of the spline [Eq. (10-47)] interior to the boundaries for this situation is given by

�3/�x�
(
�"

i+1 − �"
i−1

) = Ni−1 + 4Ni + Ni+1


Expressing the values of � and N in terms of frequency and wavenumber yields

�3�̂/�x��!1 − !−1� = N̂ �!−1 + 4+ !1�


Solving for N̂ in terms of �̂ gives

N̂ = 3�̂�!1 − !−1�

�x�!−1 + 4+ !1�
= 3i�̂

�x

sin k�x

�cos k�x + 2�
= Gi�̂

�x

 (10-54)

For notational convenience, G is defined to be equal to 3 sin k�x/�cos k�x+ 2).

Equation (10-52), where the right side is determined from Eq. (10-50), can

be similarly rewritten in terms of frequency and wavenumber as

�̂!1 = �̂− C�xN̂ + C2
[
�x!−1N̂ + 2N̂ �x + 3�̂�!−1 − 1�

]
− C3
[
�xN̂!−1 + �xN̂ + 2�̂�!−1 − 1�

]



Substituting for N̂ from Eq. (10-54) and rearranging results in

!1 = 1+ C2�G sin k�x + 3 cos k�x − 3�+ C3�2−G sin k�x − 2 cos k�x�

+ i�−GC + C2�2G+G cos k�x − 3 sin k�x�

+ C3�2 sin k�x −G cos k�x −G��
 (10-55)

Clearly, when the Courant number goes to 0, !1 = 1, so that the spline upstream

interpolation scheme is a consistent representation of the advective equation.

However, the evaluation of amplitude and phase characteristics from

Eq. (10-55) when C 	= 0 is not as straightforwardly performed as was pos-

sible with the finite difference representations. Equating real and imaginary

components of Eq. (10-55),

� cos�r�t = 1+ C2�G sin k�x + 3 cos k�x − 3�

+ C3�2−G sin k�x − 2 cos k�x�

and

� sin�r�t = −GC + C2�2G+G cos k�x − 3 sin k�x�

+ C3�2 sin k�x −G cos k�x −G�


To compute � and c̃�/U�c̃� = −�r/k� k is real) from these equations, it is

most convenient to substitute particular values of C and k into these relations

and solve for � and �r on the computer. This is done either by using complex
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arithmetic, which is routinely available on most computers, or by simply per-

forming the squaring, summing, and division of the imaginary component by

the real component numerically.

Table 10-1 presents values of � and c̃�/U for this scheme. In contrast to the

leapfrog technique, the amplitude is not preserved for all wavelengths, and 2�x
waves are eliminated completely when C = 0
5. The phase for the 2�x wave is

also incorrectly represented, because it remains stationary. This latter problem

with 2�x waves is not particularly severe, however, especially with values of C
between 0.2 and 0.8, because features with this wavelength are rapidly damped

with time (e.g., at C = 0
2, the amplitude is reduced by 90% after 10 time steps;

�10 = 0
097). At 4�x, the spline provides a much more accurate representation

of the advection. At C = 0
5, for example, which is the worst case17 in terms

of amplitude, � = 0
972 and c̃� = U . The leapfrog scheme, in contrast, has a

value of � = 1
0 at C = 0
5 for a 4�x wave, but c̃�/U = 0
67, or a 33% error

in phase.

Thus, although the leapfrog preserves amplitude exactly, it does a poor job of

representing the phase characteristics of the shorter waves. Thus the amplitude

conservation of leapfrog becomes a liability since the presence of 2�x waves

in the wrong location can create erroneous results through nonlinear interac-

tions when physical forcings (e.g., condensation) occur. The spline technique, in

contrast, has the desirable feature of damping wavelengths in which the phase

characteristics are poorly represented. Therefore, in choosing a computational

scheme, it appears desirable to select one in which the accuracy of � and c̃�/U
are closely correlated (i.e., ��� much less than unity when the numerical phase

accuracy is poor).

The most substantial problem with the spline is its tendency to overshoot. If,

for example, a field has a string of 0’s followed by nonzero values, then the

spline can create small values less than 0 near the interface with the 0’s because

of its cubic form. Although not a serious source of error, it is nonphysical to

have negative values in such fields as specific humidity. Requiring values to

exceed or equal 0 is one correction for this inconsistency.

In using schemes such as the spline in numerical models, the interpolation

formula could be derived in terms of more than one spatial direction (e.g., as a

two-dimensional spline in x and y). Krishnamurti et al. (1973) used a bilinear

interpolation scheme (Krishnamurti 1962; Mathur 1970) defined in two space

dimensions in his synoptic tropical prediction model.

Unfortunately, however, most interpolation schemes become very complicated

and expensive if more than one spatial coordinate is used. An alternate approach

is to use the spline separately in each spatial direction. This approach of eval-

uating each coordinate direction separately is called splitting18 (e.g., Long and

Hicks 1975; Mesinger and Arakawa 1976) and is used to represent the spline in

the mesoscale model reported by Mahrer and Pielke (1978a). Using this tech-
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nique with the spline in a two-dimensional model, for instance, where i and k
are the grid points in x and z and u"

i ≥ 0 and w"
k ≥ 0,

�"+1∗
i	 k � changes caused by advection in x = Su�xi − Cuhi�	 (10-56)

where Cu = �u"
i ��t/hi, with values of � at time " used in Su, is determined for

all i; then

�"+1
i	 k � changes caused by advection in z = Sw�zk − Cwhk�	 (10-57)

where Cw = �w"
i ��t/hk, with values of � at " + 1∗ determined from Eq. (10-56)

used in Sw, is calculated for all k. Pepper et al. (1979) have shown that splitting

does not degrade the accuracy of the solutions.

Other interpolation schemes besides the spline could also be used to repre-

sent advection. The methodology would be developed in an analogous fash-

ion to that of the spline. Bates and McDonald (1982) provide a useful study

of the application of such upstream interpolation techniques to atmospheric

models. Smolarkiewicz and Margolin (1997) contrast the use of interpolation

and centered-in-time and space-finite difference schemes. Benoit et al. (1997a)
describe the use of an interpolation scheme in the Canadian MC2 model. Other

examples of the use of interpolation schemes to represent advection include

Janjić (1995), Pinty et al. (1995), Böttcher (1996), Héreil and Laprise (1996), Li

and Bates (1996), Makar and Karpik (1996), Ritchie and Tanguay (1996), Sun

et al. (1996), Lin and Rood (1997), Sun and Yeh (1997), Caya et al. (1998),
Finkele (1998), Qian et al. (1998), McDonald (1999), and Xiao (2000). Laprise

and Plante (1995) discuss the use of the interpolation solution technique both

upstream and downstream.

Tremback et al. (1987) provides a detailed analysis of the extension of the

forward-in-time upstream advection approach to a higher-order accuracy. A

sixth-order scheme was found to have the best balance between efficiency and

accuracy. Finkele (1998) describes the accuracy of a third-order interpolation

advection scheme for use in her simulation of sea breezes. Another paper that

discusses this solution technique is Pellerin et al. (1995).

10.3 Diagnostic Equations

Up to this point, only the solution of prognostic conservation equations have

been considered. However, as discussed in Section 3.1 in Chapter 3, scale

analysis arguments allow removal of the explicit derivative of time from the

conservation-of-mass relation when density fluctuations are much less than the

mean value of density. Thus a diagnostic equation for mass conservation [e.g.,
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Eq. (3-11)] results. In addition, pressure must be evaluated from a diagnostic

relation [e.g., as given by Eq. (4-35)] if the prognostic equation for density has

been removed. A diagnostic equation for pressure can be of the form given by

Eq. (4-33) when the hydrostatic approximation is valid or by Eq. (4-35) when

it is not.

When a diagnostic relation does not involve derivatives, all of the dependent

variables are defined at the same grid point, and it is straightforward to solve

by algebraic rearrangement. One example is the approximate form of the gas

law given by Eq. (4-19). If derivatives are involved, however, it is necessary

to integrate the diagnostic relation. For example, with the hydrostatic equation

and the anelastic conservation-of-mass relation [e.g., Eqs. (4-33) and (4-23)],

pressure and vertical velocity are obtained by vertical integration,

p′
z = p′

z+�z + g
∫ z+�z

z

�′
�z+��z/2��

�2
0�z+��z/2��

dz

w̄z = w̄z−�z −
∫ z
z−�z

(
�ū

�x
+ �v̄

�y

)
dz


One form of the numerical approximation to these terms is given by

p′
i	 j	 k = p′

i	 j	 k+1 + g
�′
i	 j	 k+ 1

2

�2
0
i	 j	 k+ 1

2

�z

w̄i	 j	 k = w̄i	 j	 k−1 −
(
ūi+ 1

2
	 j	 k− 1

2
− ūi− 1

2
	 j	 k− 1

2

�x
+ v̄i	 j+ 1

2
	 k− 1

2
+ v̄i	 j− 1

2
	 k− 1

2

�y

)
�z	

where a centered-in-space representation is used and the subscripts i, j , and k
refer to the grid points in the x, y, and z coordinate directions, respectively. To

solve these two relations, the pressure at the top (i.e., pi	 j	K) and vertical velocity

at the bottom (i.e., wi	 j	 0) must be specified as the constants of integration, as

discussed in Sections 11.3.2 and 11.3.3 in Chapter 11.

However, when a diagnostic equation for pressure, such as Eq. (4-35) (or

other equation of this form, such as vorticity) is used, the integration must be in

more than one coordinate direction. As an example, Eq. (4-35) can be written

for a shallow atmospheric circulation (�′/�0 � �′/�0) in a two-dimensional

model in finite difference form for a constant grid as

p′
i+1	 j − 2p′

i	 j + p′
i−1	 j

��x�2
+ p′

i	 j−1 − 2p′
i	 j + p′

i	 j+1

��z�2
= F 	 (10-58)

where F refers to the finite difference approximation to the right-side terms in

Eq. (4-35); F includes approximations to derivatives and is a function of grid
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location. To make a consistent set of the approximate representations to the

conservation relations, the formulation of derivative terms in F must be defined

consistently with the numerical approximation form of the conservation-of-

motion equations from which it was derived. In other words, the divergence of

Eq. (4-21), used to obtain Eq. (4-35), must be performed on the finite difference

(or other approximate) form of that equation, so that two different approximate

representations of the same terms do not occur.

Several solution techniques exist to evaluate Eq. (10-58), and only the most

straightforward procedure is introduced here.19 This diagnostic equation for

pressure can be rearranged to give

Pi	 j − p′
i	 j −H = �	 (10-59)

where

Pi	 j =
(
p′
i+1 + p′

i−1

)
��z�2 + (p′

j+1 + p′
j−1

)
��x�2

2���z�2 + ��x�2�

H = F ��x�2��z�2

2���z�2 + ��x�2�
	

(10-60)

with � = 0 if the finite difference is an exact representation of the differential

equation. [In Eq. (10-59), � is referred to as the residual.] In general, � 	= 0 at

most or all of the grid points in a domain. To require that � = 0 at one grid

point, subtract � from both sides of Eq. (10-59) and define

P ∗
i	 j = Pi	 j − �
 (10-61)

If the domain had only one interior grid point, then only one iteration would

be necessary. However, with more interior grid points, the change of Pi	 j by a

residual at a grid point affects Eq. (10-59) at surrounding grid points. Subse-

quently, the iteration must be repeated at all interior grid points until the values

of � at each grid point are arbitrarily small. The pressure at each location is

updated according to Eq. (10-61), where, for example, for the second guess,

P ∗∗
i	 j = P ∗

i	 j − �. This repeated substitution for Pi	 j is called relaxation.
In practice, convergence to a solution (which is defined when all the residuals

are less than an arbitrary value) is found to be more rapid when

P ∗
i	 j = Pi	 j − ��	 (10-62)

where � is a constant. When � > 1, Eq. (10-62) is referred to as overrelax-
ation, with �� used in lieu of � alone in Eq. (10-59). Convergence to a solu-

tion is also enhanced when guess values computed by Eq. (10-62) are inserted
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in Eq. (10-59) as soon as they become available. This operation is referred

to as sequential relaxation. Convergence to a solution is usually very rapid

as long as grid point values at and next to the grid point of interest are the

only ones involved in the diagnostic equation. (For a more detailed discus-

sion of relaxation, see Thompson 1961.) Clark (1977) presents what he calls a

double-iteration scheme to solve a more general form of the diagnostic pressure

equation. A solution approach suggested by Brandt (1977), in which sequen-

tial relaxation is evaluated on widely different but interactive mesh sizes, is a

versatile calculation tool with which to solve general forms of the diagnostic

pressure equation. Smolarkiewicz et al. (1997) discuss when convergence of the

anelastic pressure equation is adequate.

10.4 Time Splitting

In Chapter 5, Section 5.2.2, it was shown that the neglect of local variations

in density in the conservation-of-mass relation eliminates rapidly propagating

sound waves as a possible solution. Therefore, use of the resultant anelastic

(soundproof) conservation-of-mass equation in atmospheric flows, limits the

fastest wave speeds to gravity waves. As implied from the results presented

in this chapter, time steps must be selected such that the distance traveled by

a wave in one time step is less than or equal to the appropriate grid spac-

ing; that is, c�t ≤ �, where c is the propagation speed of the fastest travel-

ing wave where, for instance, c = U and � = �x in the advection equation,

c = √gh0 and � = 2�x in the tank model, and, by analogy, c = √RT0�cp/cv�
and � = 2�x when sound waves are present. If these criteria are not attained,

then either the approximate solutions are linearly unstable or the representation

is very inaccurate.

If, however, the anelastic equation is used to represent mass conservation, and

thus to eliminate sound waves, then the solution of a complex elliptic partial

differential equation for pressure [e.g., Eq. (4-35)] is required. To eliminate the

need to compute pressure from such an equation, but still retain stable and accu-

rate solutions in a nonhydrostatic model, one can compute the time tendency of

the terms that generate the sound waves separately from the remainder of the

dynamic equations. Thus a very short time step is used for the relatively few

terms that generate sound, and a much more economical time interval can be

selected for the features considered more important on the mesoscale. Klemp

and Wilhelmson (1978a, b), and Tripoli and Cotton (1982) used this approach

in three-dimensional cloud models, and Tapp and White (1976) used it in their

mesoscale model. Daley (1980) discussed the splitting of fast gravity wave com-

putations from slower gravity and Rossby waves using a procedure called model

normal mode expansion for the fast waves.
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Using the analysis of the forms of wave motion discussed in Section 5.2.2,

the equations and terms that give rise to sound waves can be written in the form

�ūi

�t
+ 1

�̄

�p̄

�xi
= fui 	

��̄

�t
+ �

�xj
�̄ūj = f�	

��̄

�t
= f�	

p̄ (in mb) = C
Cp/Cv
p R

Cp/Cv

d (1000 mb)
−Rd/Cv ��̄�̄�Cp/Cv = fp	

(10-63)

where fui , f�, f�, and fp contain the terms in these conservation relations that

are not written explicitly here. These six equations in the six unknowns ui, �̄, p̄,
and �̄ can then be written in an appropriate numerical approximation form and

evaluated quickly and efficiently for short time steps where fui , f�, f�, and fp are
kept fixed for a specified time period (e.g., equal to 10 times the time step used

to represent the sound waves). With this approach, sound waves are simulated

in an accurate fashion, and a longer time step can be used to update values

of fui , f�, f�, and fp. Alternatively, the sound waves can be evaluated using

an implicit differencing scheme such that longer time steps are used although

the accuracy of the representation of the sound waves themselves are degraded

by the implicit scheme. Recent discussions of the time-splitting schemes are

reported in Saito (1997) and Wicker and Skamarock (1998). The first reference

to this very effective time-splitting approach appeared in Derickson (1974).

10.5 Nonlinear Effects

10.5.1 Aliasing

There has been little discussion in this text on the influence of products of

dependent variables on the approximated solutions of the conservation relations.

This neglect, of course, results from the inability of existing mathematical tech-

niques to provide analytic solutions to nonlinear differential equations, except

for idealized specific cases. Thus, even though the conservation relations are

nonlinear, most of Chapter 5, for example, concentrated on solutions to linear

equations, with previous sections of this chapter emphasizing linear analysis

tools in the investigation of solution techniques to be used in nonlinear models.

In this section, the actual and computational results of nonlinear interactions are

discussed.

In the atmosphere on the mesoscale there are spatial scales in which kinetic

energy is being produced (e.g., the scale of the horizontal temperature gradient

associated with a seacoast, such as illustrated in Figure 13-3 in Chapter 13) and

scales in which this kinetic energy is being dissipated into heat by molecular

interactions. In the first case, scales of motion are on the order of 100 m to

100 km, for example, whereas the sizes of motion significantly affected by
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molecular interactions are 1 cm or smaller. Somewhere in between exist scales

of motion that are not directly influenced by either molecular dissipation or the

forces generating the kinetic energy in the first place.

Thus it is expected that in this region, the kinetic energy per unit wavenum-

ber per unit mass as a function of wavenumber E�k� is proportional to only

the spatial scale of the motion (as specified by its wavenumber) and by the

rate at which energy is being removed at the much smaller scales. Moreover,

since kinetic energy does not accumulate once the larger-scale forcing is termi-

nated, the energy must be transformed with time into smaller and smaller sizes

until they are 1 cm or smaller and can be removed by molecular interactions.

From dimensional arguments, if E�k� is dependent only on wavenumber and

dissipation rate, then

E�k� = a�2/3k−5/3	 (10-64)

where a is a proportionality constant and � has units of energy per unit time per

unit mass. This region, in which kinetic energy is independent of the original

forcings of the motion and of its dissipation by molecular viscosity, is called the

inertial subrange. This name arises because the advective terms (in this context

these terms are also called the inertial terms) transfer kinetic energy among the

three components of velocity, and also generate smaller and smaller sizes of

circulations. Lumley and Panofsky (1964) have provided a detailed discussion

of the transfer of kinetic energy by turbulence. Tennekes (1978), Gage (1979),

Lilly (1983), and Moran (1992) discussed the observed occurrence of such a

k−5/3 relation in mesoscale and larger atmospheric features.

In contrast, in a numerical mesoscale model this cascade of energy to smaller

scales cannot occur, because the smallest feature that can be resolved has a

wavelength of two times the grid spacing.20 If, for example,

�1 = �0 cos k1�x and �2 = �0 cos k2�x

represent two waves in a model with equal amplitudes �0, then a nonlinear

interaction between the two can be represented by

�1�2 = �2
0 cos k1�x cos k2�x

or, using trigonometric identities,

�1�2 =
1

2
�2

0�cos�k1 + k2��x + cos�k1 − k2��x�
 (10-65)

Thus two waves result from this interaction with wavenumbers k1 + k2 and

k1 − k2.
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As an example, suppose that a 2�x and a 4�x wave interact (k1 = 2�/2�x,
k2 = 2�/4�x), the resultant waves are given by

�1�2 =
1

2
�2

0

(
cos 2�

(
6

8

)
�x + cos 2�

(
1

4

)
�x

)
	

which corresponds to a 1
33�x and a 4�x wave. Of course, the latter size wave

can be resolved, but the 1
33�x wave cannot! Instead, it will be fictitiously

seen as a 4�x, since that size is the first integer multiple of 4

3
�x equal to n�x,

where n is also an integer and n ≥ 2. Waves that appear erroneously in this

fashion are said to have aliased or folded to longer wavelengths. As seen from

Eq. (10-65), to have aliasing, one of the waves must be less than 4�x in length

to generate physical solutions less than 2�x.
Table 10-6 lists examples of wave–wave interactions that will produce aliased

waves. Figure 10-12 illustrates how a 1
33�x wave would be misinterpreted

as a 4�x wave on a computational grid. Even if no 2�x waves were initially

present, they would be created, since the interaction of two 4�x waves gener-

ates a 2�x wave, whereas longer wave–wave interactions produce 4�x waves.

Two interactive waves each with a 2�x wavelength will not produce a wave

of 1�x, because identical values will result at each grid point. In this case, the

energy in the 1�x wave will be seen fictitiously as the addition of a constant

value of energy to the model.

Thus when wave interactions occur in the real world, smaller and larger

wavelengths result. Eventually the smaller waves attain a size in which molec-

ular dissipation can eliminate motion. In a numerical model, however, which

has a discrete grid, waves smaller than 2�x are erroneously seen as larger-

scale waves. These erroneous larger-scale waves interact and again transfer their

energy to larger and smaller scales. Because the proper cascade of energy to

smaller and smaller scales is interrupted, a fictitious energy buildup occurs as

energy is added to the model through the forcing terms, but with its dissipation

improperly represented.

TABLE 10-6

Examples of Wave–Wave Interactions That
Will Produce Aliased Waves

Interactive Should Will produce

wavelengths produce due to aliasing

2�x and 2�x 1�x Add a constant to
the entire model

2�x and 4�x 1
33�x 4�x

2�x and 6�x 1
5�x 3�x

2�x and 8�x 1
6�x 8�x

2�x and 10�x 1
67�x 5�x
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Fig. 10-12. Schematic illustration of how a physical solution with a wavelength of
1�33	x, caused by the nonlinear interaction of waves of 2	x and 4	x in length, is seen
as a computational 4	x wave in the computational grid.

Therefore, even if a computational solution technique is linearly stable, the

results can degrade into physically meaningless computational noise. Indeed,

with many computational solution schemes, this erroneous accumulation of

energy can cause the model-dependent variables to increase in magnitude with-

out bound—an error referred to as nonlinear instability.21

Wavelengths smaller than 4�x are required for aliasing to occur. As shown

previously in this chapter, such short waves are inadequately resolved on a

computational grid and even in the linearized equations are poorly represented

in terms of amplitude and/or phase. For these reasons, and because they are

expected to cascade to even smaller scales anyway, it is desirable to remove

these waves.

Two methods can be used to accomplish this task:

� proper parameterization of the subgrid-scale correlation terms (i.e., u′′
i u

′′
j ,

�′′u′′
j , etc.), so that energy is extracted from the averaged equations in a

manner consistent with reality

� the use of a spatial smoother (also referred to as a filter), which removes

the shortest waves but leaves the longer ones relatively unaffected.

The first method is the most attractive, of course, because it is based on

fundamental physical concepts. Unfortunately, however, as shown in Chapter 7,

only the vertical subgrid-scale correlation terms are reasonably well known and

can be parameterized accurately in terms of the dependent variables. In contrast,

horizontal subgrid mixing in mesoscale models can be estimated only crudely,

since the horizontal averaging scale in such models is typically larger than the



334 10 Methods of Solution

vertical scale [i.e., �x � �y  �z in Eq. (4-6)]. Moreover, few theoretical or

observational studies have been conducted on the structure of horizontal mixing

over heterogenous ground surfaces.

Therefore, the forms used in the representation of the horizontal subgrid

correlation terms, have been chosen to control nonlinear aliasing, not to repre-
sent actual physical processes accurately. One form of horizontal mixing used

(which has the appearance of a physical parameterization but in a mesoscale

model is not) is

−u′′
i u

′′
j = KH�ūi/�xj �i = 1	 2�	 (10-66)

where

KH = ���x�2
[
1

2

(
�v̄

�x
+ �ū

�y

)2
+
(
�ū

�x

)2
+
(
�v̄

�y

)2]1/2
	

with the coefficient � arbitrarily adjusted until 2�x wavelengths do not appear

to degrade the solutions significantly. This procedure, which is completely ad

hoc, permits solutions to be changed in magnitude simply by changing the value

of �. Tag et al. (1979) provided a useful discussion of several forms of these

variable-eddy coefficient formulations. Laprise et al. (1998) gave a very useful

analysis of different forms of KH .

The alternative to an explicit diffusion equation is to formally apply a filter,

such as discussed by Shapiro (1970). Cullen (1976) compared solutions in a sim-

plified synoptic-scale model using several types of filters and explicit diffusion

representations and showed that selective filters can be used more effectively

in finite element representations than with finite difference techniques because

of the greater accuracy of the first method. The use of optimal filters is also

discussed by von Storch (1978). Jones (1977a) outlines a smoothing technique

to control computational noise as information is transferred between coarse and

fine grids in a hurricane model.

When a terrain-following coordinate system is used (see, e.g., Figure 6-3 and

associated text in Chapter 6), a modeler must ensure that the explicit horizontal

diffusion or the smoother is applied on the x − y plane, since x̃1 and x̃2 are

not in general horizontal. If an intended horizontal filter is mistakenly applied

to the x̃1 − x̃2 surface, then diffusion will be inadvertently input into the z
direction. This smoothing is not desirable if a physically realistic representation

of vertical diffusion is included in the model and if the vertical component of

the computational diffusion, erroneously evaluated on the x̃1 − x̃2 surface, is of

the same order as the physical vertical mixing.

Smoothers can be explicit or implicit. With implicit smoothing, computa-

tional techniques that involve inherent damping, such as upstream differencing

or the cubic spline interpolation, are chosen (see, e.g., the values for � in
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Table 10-1). Explicit smoothers, in contrast, require the addition of an opera-

tion to the prognostic equations to generate smoothed dependent variables from

the original predicted dependent variables. The ideal smoother is one that elim-

inates wavelengths smaller than 4�x at each time step but leaves the larger

sizes unaffected. Such smoothers are called low-pass filters and are said to be

selective.
Pepper et al. (1979) reported on a highly selective filter of the form

�1− ���∗
i+1 + 2�1+ ���∗

i + �1− ���∗
i−1 = �i+1 + 2�i + �i−1	 (10-67)

where � and �∗ are the dependent variables to be smoothed and the smoothed

value and � is an arbitrarily chosen weighting parameter for the smoothed val-

ues. As shown later, this filter eliminates 2�x waves at each application, and its

smoothing of longer waves is dependent on the value of �.
Let

�∗
i+1 = !1

1�	 �∗
i = !1�	 and �∗

i−1 = !1
−1�	 (10-68)

which is similar to the form used in the section on linear stability analysis

except here,

!1 = �

corresponds to the change in magnitude of the solution per application of the

filter. One application of the filter, performed at each time step, can also be

written as

� = e−Kk2�t = e−��2��2/n2	

where � = K �t��x�2. Thus when � is known, it is possible to compute a value

of K that will give the same smoothing when the linear diffusion equation22 is

used as when Eq. (10-67) is applied.

Using the decomposition of the dependent variable given by Eq. (10-68),

Eq. (10-67) can be rewritten as

�1− ��!1
1 + 2�1+ ��!1 + �1− ��!1

−1 = !1 + 2+ !−1


Solving for !1 = � gives

� = cos k�x + 1

�1− �� cos k�x + 1+ �
	 (10-69)

and the equivalent value of K (Long 1979, personal communication) can be

determined from

K�k	 �� = −�1/k2�t� ln �
 (10-70)

As is evident from these expressions, � = 0 (K = �) for a 2�x wave

[cos�2�/2�x��x = cos� = −1]. For a very long wave, cos k�x approaches
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1 and � � 1 (K � 0), as it should. For wavelengths between these two values,

the amount of damping is dependent on the value of �. Table 10-7 illustrates

the damping by Eq. (10-67) for several selected values of wavelength and �.
As is evident from this table, for small values of �, the formulation given by

Eq. (10-67) is highly selective, and its influence on longer wavelengths is very

small. It should be noted, however, that in separately applying the filter to more

than one spatial direction (i.e., splitting), application of this filter to the second

direction can reintroduce 2�x wavelengths into the first direction of application.

This can be controlled to some extent (as suggested by Xubin Zeng, personal

communication) by alternating the order of the direction of smoothing between

time steps (i.e., at the n time, filter x then y; at the n+ 1 time, filter y then x).
All mesoscale models use some sort of horizontal filtering to control nonlinear

aliasing. Either explicit smoothers, such as Eq. (10-67), are used, or implicit

computational diffusion inherent to the numerical approximation, such as with

upstream differencing or the cubic spline, provide the necessary removal of the

shortest wavelengths.

The use of a smoother can also prevent linear instability as long as the mag-

nitude of � for the smoother times � of the linearly unstable numerical scheme

is less than or equal to unity. For example, if∣∣∣∣( cos k�x + 1

�1− �� cos k�x + 1+ �

)(√
1+ C2 sin2 k�x

)∣∣∣∣ ≤ 1	

where Eq. (10-69) gives � for the smoother and the positive root of Eq. (10-12)

is used for � resulting from the forward-in-time, centered-in-space repre-

sentation to the advection equation, then the solutions can be made stable.

Unfortunately, however, in a mesoscale model, without performing a Fourier

decomposition it is impossible to determine the wavelengths of all the features

at each time step to select the proper value of the smoother to counteract the

TABLE 10-7

Values of � per Application of Eq. (10-67) as a Function
of Wavelength and �.

�

Wavelength 0
001 0
005 0
10 0
50

2�x 0 0 0 0

4�x 0
999 0
995 0
090 0
667

6�x 1
000 0
998 0
968 0
857

8�x 1
000 0
999 0
988 0
945

10�x 1
000 0
999 0
990 0
950

12�x 1
000 1
000 0
993 0
966

14�x 1
000 1
000 0
995 0
974
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linear instability of the difference scheme. Thus, in general, using Eq. (10-67)

to control the linear instability of a scheme will create a damped system, and,

even more importantly, the phase characteristics of such a scheme will be poor.

Thus this approach should not be used in numerical models.

10.5.2 A More Accurate Method for the Numerical Solution of
Nonlinear Partial Differential Equations

In this section, originally reported in Weidman and Pielke (1983), a general

two-step method is introduced that reduces the computational error by par-

tially solving the equations analytically rather than totally numerically. LeVeque

(1982) and LeVeque and Oliger (1981) discuss in detail the additive splitting

of hyperbolic partial differential equations to solve such equations. This tech-

nique is applied to a simple model to illustrate the value of solving at each time

step part of the system analytically and then using this result in the numerical

computation needed to complete the time step.

As a concrete example of the method, the tank model equations

�u

�t
= −u

�u

�x
− g

�h

�x

�h

�t
= −u

�h

�x
− h

�u

�x
	

(10-71)

as derived in Section 5.2.1.1, are used. The linearized version of Eq. (10-71) is

�u′

�t
= −g

�h

�x
	

�h′

�t
= −h0

�u′

�x

(10-72)

[Eqs. (5-22) and (5-23)].

The initial conditions are

h′�x	 0� = cos�kx� and u′�x	 0� = �g/h0�
1/2h′�x	 0� (10-73)

with periodic boundary conditions (i.e., no reflection). The linear solution can

be written as

h′�x	 t� = cos�kx − �t� and u′�x	 t� = �g/h0�
1/2h′�x	 t�
 (10-74)

Here k = 2�/�n�x� is the wave number (where n�x is the wavelength) and

� = 2�/P , where the period P is the time required for a wave to traverse the

distance n�x.
The finite difference version of Eq. (10-72) is analyzed in Section 10.1.4. The

finite difference approximation does not introduce any amplification factor, but
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does exhibit a pronounced phase error. As shown in Section 10.1.4, phase error

is expressed as the ratio of calculated (c) to exact (ca) wave speeds,

c/ca =
(±k�t�gh0�

1/2
)−1

sin−1
(
��4− �2�1/2/2

)
	

where �2 = gh0��t/�x�
2 sin2 k�x. This error can be appreciable, as shown in

Table 10-5. For the parameters used in the following numerical experiments,

this ratio is 0.901.

As a numerical experiment, the initial conditions given by Eq. (10-72) are

used with g = 1 and h0 = 1
6, a �t/�x ratio of 0.125 �gh0�
−1/2 unless other-

wise stated, and a wavelength of 8�x. For notational convenience, the primes

are dropped from u′ and h′.
To evaluate the accuracy of separately solving the linear and nonlinear com-

ponents of Eq. (10-72) vis-a-vis a totally numerical technique, the exact solution

is needed. This is calculated as closely as possible using a spectral method.

To perform this evaluation, u and h are expressed in terms of truncated

Fourier series. The periodicity of 8�x dictates the form

u =
3∑

n=1

�an cos nx + bn sin nx�+ a4 cos 4x + b4 cos 8x	 (10-75)

where a number of the trigonometric terms are skipped because they add no

new information on the eight grid points; h is expressed analogously.

For use in the spectral scheme, Eq. (10-71) becomes

u"+1 = u" − �t

(
u" �u

�x

"

− g
�h

�x

")
(10-76)

h"+1 = h" − �t

(
u"+1 �h

�x

"

− h" �u

�x

"+1)

 (10-77)

At each time step, we calculate u"+1 and h"+1 for the eight grid points, then

fit these new values to a series of the form given by Eq. (10-75) to obtain new

coefficients, thus always working with an eight-term series at each step.

For increased accuracy, the time step is reduced by a factor of five compared

to what is used in the finite difference solution method. These exacts results are

graphed in Figure 10-13.

The finite difference approximation to Eq. (10-71) is given by the following

equations:

u"+1
i = �t

�x

[
−u"

i

(
u"
i − u"

i−1

)− g

2

(
h"
i+1 − h"

i−1

)]+ u"
i 	 if u"

i > 0

= �t

�x

[
−u"

i

(
u"
i+1 − u"

i

)− g

2

(
h"
i+1 − h"

i−1

)]+ u"
i 	 if u"

i ≤ 0 (10-78)
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Fig. 10-13. Wave amplitude h as computed by the compared methods (wave speed u
behaves similarly) after (a) 20 times steps and (b) 40 time steps. (From Weidman and
Pielke 1983.)
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and

h"+1
i = �t

�x

[
−u"+1

i

(
h"
i −h"

i−1

)− h"
i

2

(
u"+1
i+1 −u"+1

i−1

)]+h"
i 	 if u

"+1
i >0

= �t

�x

[
−u"+1

i

(
h"
i+1−h"

i

)− h"
i

2

(
u"+1
i+1 −u"+1

i−1

)]+h"
i 	 if u

"+1
i ≤0
 (10-79)

The solution as computed by Eqs. (10-78) and (10-79) is also plotted in

Figure 10-13.

In the two-step method of solution, first, the linear system is solved analyt-

ically. The result is Eq. (10-74), which is propagated by one time step, giving

the intermediate solution values denoted by h∗ and u∗,

h∗ = cos�kx − ��t� and u∗ = �g/h0�
1/2h∗
 (10-80)

At the second step, the intermediate solution is used in the numerical computa-

tion necessary to complete the time step. Analogous to Eqs. (10-78) and (10-79),

u"+1
i = �t

�x

[−u"
i

(
u"
i − u"

i−1

)]+ u∗	 if u"
i > 0

= �t

�x

[−u"
i

(
u"
i+1 − u"

i

)]+ u∗	 if u"
i ≤ 0 (10-81)

and

h"+1
i = �t

�x

[
−u"+1

i

(
h"
i −h"

i−1

)− h"
i

2

(
u"+1
i+1 −u"+1

i−1

)]+h∗	 if u"+1
i >0

= �t

�x

[
−u"+1

i

(
h"
i+1−h"

i

)− h"
i

2

(
u"+1
i+1 −u"+1

i−1

)]+h∗	 if u"+1
i ≤0
 (10-82)

Note that except for u∗ and h∗, all of the terms on the right sides of Eqs. (10-81)

and (10-82) are nonlinear.

The solution as computed with Eqs. (10-80)–(10-82) is also displayed in

Figure 10-13. It is apparent that the two-step solution eliminates much of the

phase error found in the straight finite difference solution. Both the finite dif-

ference and two-step solutions show an asymmetry (overshoot of positive peak

and spreading in the trough) that is not true to the exact solution. The two-step

method is also competitive with the straight numerical computation in terms of

computer time, as discussed in Weidman and Pielke (1983).

The two-step procedure outlined previously is valid for a large class of prob-

lems. Suppose that a system of the form

��y�x1 � � � 	xn	 t�
�t

= A�y�x1 � � � 	xn	 t� (10-83)



10.5 Nonlinear Effects 341

exists where A is some operator on a �n+ 1�-dimensional complex-valued vec-

tor space and �y�x1	 � � � 	xn	 t� is an n+ 1 vector. Split A into the sum of operators

L and N , where L is such that

��y/�t = L�y	 (10-84)

which with chosen initial and boundary conditions can be solved analytically.

Interpret L�y as being the linear terms from A�y, while N �y consists of the non-

linear terms. Thus Eq. (10-83) becomes

��y/�t = L�y + N �y
 (10-85)

This type of equation can be studied with functional analysis techniques (see,

e.g., Schechter 1977). Equation (10-85) can be formally solved with a variation

of parameters argument.

First, solve homogeneous equation (10-84) with the given initial and boundary

conditions. In the two-step method, deliberately choose L such that Eq. (10-84)

has an analytic solution, which may be denoted by �ya�t�. Equation (10-80) then

corresponds to �ya�t + �t�, which is defined as �y ∗.
Also, solving Eq. (10-84) formally,

�ya = e�t−t0�L �y0	 (10-86)

where t0 is some initial time and �y0 is the solution at t0.
Following the lead of the classic variation of parameters derivation, replace

�y0 with �y0�t� and use Eq. (10-86) in Eq. (10-85). The resulting expression for

the particular solution is

�yp =
∫ t
t0

e�t−"�LN ��y�"��dt
 (10-87)

This is well defined whenever N �y is an integrable function. Thus the total

solution to Eq. (10-85) may be written as

�y�t� = �ya�t�+
∫ t
t0

e�t−"�LN ��y�"��d"
 (10-88)

In a given time step, compute �y�t0 + �t� as

�y�t0 + �t� = �y ∗ +
∫ t0+�t

t0

e�t0+�t−"�LN ��y�"��d"
 (10-89)

The two-step scheme is, therefore, approximating the foregoing integral by

��t�N ��y�t0��, then computing the term numerically; compare Eqs. (10-81) and

(10-82). Of course, this is just the simplest such approximation of the integral

in Eq. (10-89); one could, for example, evaluate N �y at some midpoint rather

than at t0, or approximate the integral with three points.

This two-step scheme improves accuracy in the numerical solution of non-

linear partial differential equations. In a simple experimental case, this method
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reduced the error of a basic numerical scheme with no appreciable increase

in computing time. As a next step, it would be very illuminating to try an

experiment, such as performed here, on a solvable nonlinear partial differential

equation (such as the Long model derived in Chapter 5, Section 5.3); that is, one

for which the exact solution is known in closed form. In that case, we would

be able to see very clearly how well the two-step version works compared to a

straight numerical scheme for a variety of such equations. Work is also needed

to ascertain what difficulties occur in implementing a two-step scheme with

more involved nonlinear equations.

Mathematically much analysis remains to be done, complicated by the fact

that most of it is nonlinear analysis. The sources and magnitudes of errors

with the two-step scheme must be known and optimum approximations for the

integral in Eq. (10-89) applied to minimize errors. There are also questions of

convergence of the method. It may be that with certain approximations to the

integral in Eq. (10-89), the size of the time steps can be significantly increased.

The method proposed here may have utility for a wide range of geophysi-

cal problems, including numerical weather prediction. By computing a linear
solution at each time step and evaluating only the nonlinear components numer-
ically, a major source of computational error may be avoided.

10.6 Summary

This chapter has introduced the concepts of linear and nonlinear stability and

presented examples of specific computational solution techniques. The conclu-

sions of relevance to mesoscale modeling that are implied from the chapter

include the following:

1. When advection is considered an important component of the mesoscale

circulation, the advection terms should be approximated with formulations that

provide accurate predictions of phase and amplitude for wavelengths of 4�x
and longer. The interpolated schemes are examples of solution techniques that

have this attribute.

2. When vertical turbulent diffusion is considered an important component

of a mesoscale circulation, it is desirable to use a scheme that provides accurate

solutions yet is economical to apply, such as the implicit formation.

3. When the pressure gradient force is an important component of a

mesoscale circulation, a forward-in-time, centered-in-space representation is

an accurate representation. This result is implied from the linear tank model

solutions. The gradient terms that appear in the conservation-of-mass equation

similarly can be accurately represented by a centered-in-space approximation.
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To obtain these accurate solutions, however, an implicit formulation between

the pressure gradient and conservation-of-mass relation must be used.

4. In a nonlinear representation, aliasing causes the fictitious accumulation

of energy on wavelengths shorter than 4�x. To eliminate this problem, horizon-

tal diffusion must be applied either through an explicit representation, such as

a smoother, or implicitly as part of the computation scheme.

5. The approximation of advection, pressure gradient force, and subgrid-

scale diffusion can only be reasonably well represented for spatial scales of at

least four grid increments in each spatial direction. The term model resolution,
therefore, should be used only for spatial scales that are four grid increments

or larger (Pielke 1991; Grasso 2000). This conclusion also applies to spectral

models (Laprise 1992b).

6. The separation of a nonlinear model into its linear and nonlinear com-

ponents may provide improved solution accuracy. The linear portion could be

computed analytically. Only the remaining nonlinear portion would need to be

solved numerically.

7. Parameterizations (from Chapters 7–9, for example) should be inserted

appropriately in a model so that their spatial scale is at least four grid increments

in each direction. Otherwise, the approximate forms of the advection, subgrid-

scale mixing, and pressure gradient force will produce significant errors in the

computational solution.

Notes to Chapter 10

1. Finite difference schemes can be written in what is called a finite volume form, where fluxes

across the grid volume interface are calculated (Derickson 1992). The mathematical formulation of

finite volume techniques, however, can be described in terms of a Taylor series expansion.

2. If �x approaches 0 in the limit then k�x also approaches 0, so that Eq. (10-3) is a consistent
representation of the derivative quantity. If �x 	= 0, however, then it is clear that the accuracy of

the approximation is a function of wavenumber.

3. This technique is often referred to as the Von Neumann method. A second method, called the

matrix method of stability, includes boundary conditions in the analysis. This latter methodology,

however, is more difficult to apply. It is generally preferable to show the stability, or lack of it, of

a numerical scheme using the Von Neumann method, and this approach is adopted in this chapter.

4. The real and imaginary parts of a complex number can be considered a vector with two

perpendicular components. In an equation, the real and imaginary components must separately be

equal.

5. A similar analysis can be performed for U < 0, and the result will be of the same form.

6. To obtain this result, simply replace �̄ with �̄ = �̂+ ei�kx+�t� in the differential equation and

solve for �/k.

7. To determine the quadrant of the sin−1�± �
2
� requires assessing which solution propagates in

the same direction as the physical solution. For the leapfrog scheme, the physical mode is quadrant

1 of the sine function, while the computational mode is in quadrant 3 �� to 3�/2).
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8. The retention of 2�x features in a model is undesirable since they are poorly resolved and

can create nonlinear instability. The challenge is to eliminate this wavelength but leave the longer

waves relatively unaffected.

9. “Positive definite” means that the finite difference solution never produces negative values.

10. This section is adapted from Costa et al. (2000).
11. The exact damping per time step is �a .

12. From a practical viewpoint, however, � � 1 since ��t�2f 2 is very small for commonly found

values of �t and f in a mesoscale model (e.g., for �t = 100 s and f = 10−4 s−1, � = √
1+ 10−6).

13. Note that since the second difference equation requires u"+1
i+1 and u"+1

i−1 , it is necessary to

compute all of the values of u"+1 before beginning the computations for h"+1.

14. The term “semi-Lagrangian scheme” is also used for this technique.

15. The solution of Eq. (10-47) with periodic boundary conditions is described in Appendix A.

16. Modern computers also have standard algorithms for efficiently solving such tridiagonal

matrix equations (e.g., Adams et al. 1975).
17. The spline has its worst representation of phase speed in Table 10-1 for a 4�x wave �c̃�/U =

0
955) at C = 0
001.

18. Splitting is also referred to as the Marchuk method (Mesinger and Arakawa 1976).

19. Haltiner and Williams (1980) discuss in detail the solution of diagnostic equations of the form

given by Eq. 10-58 using direct, as well as iterative methods such as described in the remainder of

this section.

20. As discussed in Section 4.1, because of computer resource limitations, the grid intervals in

meteorological models cannot be made small enough to represent molecular processes and yet still

simulate mesoscale atmospheric phenomena.

21. Unbounded growth of nonlinear instability can be controlled by requiring conservation of

energy in the selected differencing scheme. However, even with these schemes, the solution can

degrade into small-scale noise. Initial conditions that contain considerable shortwave features can

cause more rapid development of nonlinear instability.

22. ��̄/�t = K�2�̄/�x2.

Additional Readings

Derickson, R. 1992. Finite difference methods in geophysical flow simulations. Ph.D. dissertation,

Dept. of Civil Engineering, Colorado State University.

This Ph.D. dissertation provides a thorough detailed analysis of the minimum resolution

possible as a function of the number of grid points. Derickson uses the computational error

characteristics of the solution techniques to produce more accurate solutions.

Foufoula-Georgiou, E., and P. Kumar (Eds.). 1994. “Wavelets in Geophysics.” Academic Press,

New York.

This book discusses a procedure called “wavelet analysis” that uses a localized transform in

space and time with which to analyze geophysical signals, including atmospheric features.

Haltiner, G. J., and R. T. Williams. 1980. “Numerical Prediction and Dynamic Meteorology,” 2nd ed.

John Wiley & Sons, New York.

Although this text is oriented toward synoptic-scale numerical weather prediction, the dis-

cussion in Chapters 5 and 6 on numerical solution technique complements the material

discussed in this chapter.

Jacobson, M. Z. 1999. “Fundamentals of Atmospheric Modeling,” Cambridge University Press,

Cambridge, England, 656 pp.

This recent book describes meteorological modeling including an emphasis on air pollution

modeling.
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Krishnamurti, T. N., and L. Bounoua. 1995. “An Introduction to Numerical Weather Prediction

Techniques.” CRC Press, Washington DC.

This book provides an introduction to finite difference techniques as well as information on

parameterizations in larger-scale models.

Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder Haar, and W. R. Cotton. 2001.

Systematic biases in the microphysics and thermodynamics of numerical models that ignore

subgrid-scale variability, J. Atmos. Sci., 58, 1117–1128.
This paper discusses errors that result when subgrid-scale variability is ignored.

Mesinger, F. 1997. Dynamics of limited-area models: Formulation and numerical methods. Meteor.
Atmos. Phys. 63, 3–14.

This paper provides a valuable perspective on regional and mesoscale modeling. Mesinger

is one of the pioneers in this field and an innovator in the use of these models in operational

weather forecasting, so this is a must read.

Mesinger, F., and A. Arakawa. 1976. Numerical methods used in atmospheric models. GARP Publ.
Ser. 17, 1–64.

This publication provides a useful discussion of finite difference techniques. Volume 2 of

this GARP series (published in 1979) presents summaries of the spectral, pseudospectral,

and finite element techniques.

Moran, M. D. 2000. Basic aspects of mesoscale atmospheric dispersion. Chapter 2 in: Mesoscale
Atmospheric Dispersion, Z. Boybeyi, Ed., WIT Press, London, Great Britain, 27–120.

This book chapter presents observational data on the magnitude of real-world horizontal

dispersion.

Pielke, R. A., and R. W. Arritt. 1984. A proposal to standardize models. Bull. Amer. Meteor. Soc.
65, 1082.

A recommendation to develop plug-compatible components of models is proposed.

Pielke, R. A., L. R. Bernardet, P. J. Fitzpatrick, S. C. Gillies, R. F. Hertenstein, A. S. Jones, X. Lin,

J. E. Nachamkin, U. S. Nair, J. M. Papineau, G. S. Poulos, M. H. Savoie, and P. L. Vidale.

1995b. Standardized test to evaluate numerical weather prediction algorithms. Bull. Amer.
Meteor. Soc. 76, 46–48.

Students who completed a mesoscale modeling class using the first edition of this book

summarize recommended procedures to evaluate modeling algorithms.

Richtmyer, R. D., and K. W. Morton. 1967. “Difference Methods for Initial-Value Problems.” Inter-

science Publishers, New York.

Although somewhat dated, this text provides a valuable fundamental discussion of numerical

solution techniques.

Sun, W.-Y. 1993b. Numerical experiments for advection equation. J. Comput. Phys. 108, 264–271.
This article provides a concise, effective summary of two additional computational repre-

sentations of advection.

Problems

For problems 1–4, calculate the analytic solution using the solution techniques for difference

equations given in Section 10.1. Since the exact solution of the advection equation (��/�t =
U�/��/�x) is �act = 1 and c� = U , tabulate the ratios of the analytic to exact solutions for Courant

numbers of 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, and for wavelengths of

2�x, 4�x, 10�x, and 20�x for the following finite difference equations.

1.

�"+1
i − �"

i

�t
= − U

6�x
��"

i+2 − 2�"
i+1 + 9�"

i − 10�"
i−1 + 2�"

i−2�	 U > 0
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(Reference: Kawamura, T., H. Takami, and K. Kuwahara. 1986. Computation of high Reynolds

number around a circular cylinder with surface roughness. Fluid Dyn. Res. 1, 145–162.)
2.

�"+1
i − �"

i

�t
= − U

6�x
�2�"

i+1 + 3�"
i − 6�"

i−1 + �"
i−2�	 U > 0

(Reference: Agarwal, R. K. 1981. A third-order–accurate upwind scheme for Navier–Stokes solu-

tions at high Reynolds numbers. Paper No. AIAA-81-0112, AIAA 19th Aerospace Sciences Meet-

ing, January 12–15 1981, St. Louis, MO.)

3.

�"+1
i − �"

i

�t
= − U

�x
�b1��

"
i+1 − �"

i−1�+ b2��
"
i+2 − �"

i−2��	 U > 0

b1 = 0
785398 b2 = −0
155076

(Reference: Derickson, R. 1992. Finite difference methods in geophysical flow simulations. Ph.D.

dissertation, Department of Civil Engineering, Colorado State University.)

4.

�"+1
i − �"−1

i

�t
= − U

�x

[
4

3
��"

j+1 − �"
j−1�−

1

6
��"

j+2 − �"
j−2�

]
which is a fourth order in space, leapfrog differencing scheme.

5. Program the difference equation (10-7) using cyclic boundary conditions. Compare your

amplifying solution with that of Eq. (10-10). Why do the results differ after only a few time steps?

6. Program the difference equation (10-13) for U > 0. Using the cyclic boundary conditions,

integrate the model forward for 100 time steps. Evaluate the change of amplitude with time and the

phase speed of your results for the values of Courant number and wavelength given in Table 10-1.

Compare the numerically computed values with the analytic results. They should be identical.

7. Perform problem 6 but with Eq. (10-16). Note that leapfrog has two solutions, only one of

which is physical.

8. Program Eq. (10-27) with cyclic boundary conditions and constant K, and calculate the

change of amplitude after integrating for 100 time steps with �" = 1 and �" = 0
5. Refer to

Appendix A with respect to how to solve an implicit equation. Use the same values of � and

wavelength as in Table 10-2, and compare your numerical results with the solutions tabulated in

Table 10-2.

9. Program Eq. (10-34) with cyclic boundary conditions and calculate the change of amplitude

and phase after 100 time steps. Use the same values of
√
gh0�t/�x and wavelength as shown in

Table 10-3. Compare your numerical results with the analytic results.

10. From problem 4 in Chapter 6, write the approximate form for each term (for flat terrain).

Describe the phase and amplitude change per time step for the linear form of each term.

11. Obtain the text by Porte-Agel et al. (2000; their Appendix) and confirm the error that

is introduced when a finite difference algorithm is used to compute the vertical gradient of the

horizontal velocity. Then assess the error when a nonneutral surface layer is presented (using the

theory for the surface layer developed in Section 7.2).



Chapter 11

Boundary and Initial Conditions

Chapter 10 provided an introduction to methodologies for obtaining solu-

tions to the conservation relations. In that discussion it was shown that, for

example, certain approximate representations of the differential equations pro-

duce more accurate solutions than others. Linear forms of the conservation

equations (e.g., one-dimensional advection, one-dimensional diffusion, Corio-

lis terms) were examined independently of one another with the assumption

that a necessary requirement for satisfactory solutions to the nonlinear partial
differential equations is an accurate approximation for the linearized version.
Moreover, these components of the conservation equations were studied inde-

pendently from one another, even in the linear version, with the presumption

that each portion of the relations must separately be accurate.

Once optimal approximate forms of the equations are selected, however, it is

still necessary to define the domain and grid structure over which the equations

will be evaluated. In addition, boundary and initial conditions are required to

provide unique solutions for any set of differential equations. The modeler has to

also ask whether the boundary is independent of what occurs in the atmosphere

or is interactive with the atmosphere. When the latter condition occurs, the

boundary is more appropriately called a flux interface.

11.1 Grid and Domain Structure

The selection of the domain size and grid increments in a mesoscale model

are dictated by the following constraints:

� What is the dimensionality of the forcing?

� What are the spatial scales of the physical response to this forcing?

� What are the available computer resources?

347
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Mesoscale models can have either two or three independent spatial coordi-

nates. In addition, models have been developed in which either the dependent

variables are evaluated at specific grid points or averages of the resolvable

dependent variables are obtained over a layer. With the second methodology,

the averaging operation can be defined as

��� =
∫ z+�h

z
�̄dẑ/�h	

where �̄ is defined by Eq. (4-6) and �h is the depth of the layer average.

The following are examples of mesoscale models and their spatial

representation.

� x-y layered representation (e.g., Lavoie 1972, 1974; Lee 1973). In these

formulations, the dependent variables are averaged over discrete layers,

such as the planetary boundary layer, so that the explicit vertical depen-

dency in the conservation relation is removed. Such a layered representation

is also often used in oceanographic models (e.g., O’Brien and Hurlburt

1972).

� x-� representation1 (e.g., Estoque 1961, 1962). This formulation has been

used to provide horizontal and vertical resolution of mesoscale structure,

but without the added cost of a second horizontal coordinate. The x-�
coordinate form is appropriate only for those mesoscale features that

are predominantly forced by two-dimensional features (e.g., a uniform

mountain ridge) and for the theoretical analysis of the conservation rela-

tions. In addition, an axisymmetric formulation in which radius r replaces

x as the horizontal coordinate has also been used to better simulate

circular atmosphere features. Examples of such axisymmetric models

include hurricane models (e.g., Rosenthal 1970), circular lake and island

circulations (e.g., Neumann and Mahrer 1974, 1975), and cumulus clouds

(Murray 1970).

� x-y-� representation (e.g., McPherson 1970; Pielke 1974a). This is the

most general form of spatial coordinates and should provide the best rep-

resentation of actual mesoscale features.

The spatial scales of the forcings and of the resultant perturbation fields

determine the necessary domain size of the model as well as its grid spacing.

To represent mesoscale systems properly, (1) the meteorologically significant

variations in the dependent variables caused by the mesoscale forcing must be

contained within the model, and (2) the averaging volume used to define the

model grid spacings must be sufficiently small so that the mesoscale forcings

and responses are accurately represented.



11.1 Grid and Domain Structure 349

Fig. 11-1. (a) Schematic of a nocturnal drainage flow in the absence of synoptic winds
where the replacement air at a ridge crest comes both from aloft and from the same level.
(b1) A simulation with an open lateral boundary at a ridge top, and (b2) a simulation
with a closed lateral boundary at a ridge top; ��0/�z > 0 is assumed.

Figure 11-1 schematically illustrates one problem that can arise from inap-

propriate domain selection. In this example, the actual drainage flow on a clear

night with synoptic winds is expected to originate along both slopes of a moun-

tain ridge, as discussed in more detail in Chapter 13, Section 13.1.3. However,

to save money, a modeler elects to truncate the domain at the ridge crest, so that

only one slope is represented. Because of this constraint, downslope air to the

east of the ridge line in a model with ��0/�z > 0 will be predominantly replaced

by air from the left lateral boundary (if it is an open boundary2) or from aloft (if

it is a closed boundary). In other words, the lateral boundary will determine the
solutions. In the real atmosphere, in contrast, downslope winds can develop on

both eastern and western slopes, so that the origin of the replacement air needed

to preserve mass will depend only on such physical factors as the magnitude

of the overlying thermodynamic stability. To represent this fundamental physi-

cal interaction correctly, it is thus necessary to include the complete mesoscale

variations within the model.
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11.1.1 Horizontal Grid

11.1.1.1 Grid Size

The grid size used in a numerical model depends on the anticipated or, if

available, observed spatial sizes of the mesoscale feature of interest. If surface

topography is considered to be the dominant forcing, then the ragged landscape

of Grand Teton National Park obviously will require a smaller grid interval than

the undulating Flint Hill region of central Kansas, for example.

The representation of surface topography as a function of wavelength can be

used to determine the characteristic scales of the terrain. Figure 11-2 illustrates

the contribution of topographic features of different horizontal scales to the total

Fig. 11-2. The variance of topography plotted as a function of horizontal wavelength
for a cross-section across a portion of the Blue Ridge Mountains in central Virginia.
(From Pielke and Kennedy 1980.)
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variations in ground surface elevation for a northwest–southeast cross-section

of the Blue Ridge Mountains of central Virginia. A one-dimensional Fourier

transformation, as shown by Panofsky and Brier (1968) and given by

zG�xj� = z̄G +
Ix/2∑
n=1

�an sin�2�nj�x/Dx�+ bn cos�2�nj�x/Dx��

�j = 1	 2	 � � � 	 Ix�	

was used, where

an = 2

Ix

�Ix/2�−1∑
n=1

z′G�xj� sin�2�nj�x/Dx�	 aIx/2
= 0

bn = 2

Ix

�Ix/2�−1∑
n=1

z′G�xj� cos�2�nj�x/Dx�	 bIx/2 = −z′G�xj�/Ix


In this expression, Ix is an even integer number of grid points of separation, �x,
used to represent the terrain height within the interval, Dx. The variable n is

referred to as the number of the harmonic. The quantity �a2
n + b2

n�
1/2 represents

the contribution of each wavelength of size 2�x	 3�x	 4�x	 � � � 	 up to Ix�x/2
to the function z′G�xj�. The domain-averaged terrain height is given by z̄G, with
z′G denoting the variations from this value.

Ideally, one would prefer to use a two-dimensional Fourier transformation, but

such programs are not routinely available for large amounts of data. The two-

dimensional terrain data from which the information used to compute Figure 11-

2 was derived had 61-m intervals over a 200- by 200-km area. Using this number

of grid points (about 10 million) in a two-dimensional transform is expensive to

process. If only one-dimensional transforms are calculated, then it is necessary

to perform a series of cross-sections through the regions of most rapidly varying

terrain.

The cross-section shown in Figure 11-2 demonstrates that most of the ter-

rain features vary significantly over scales substantially larger than 2 km. The

predominant horizontal scales for this cross-section are at 40 and 10 km, with

95% of the variance3 of topography having horizontal wavelengths greater than

6 km. Therefore, for this example, a horizontal grid increment of 1.5 km or

smaller is a necessary condition to resolve 95% of the terrain irregularities with

a resolution of 4�x or larger. Pielke and Kennedy (1980), Young and Pielke

(1983), Young et al. (1984), Steyn and Ayotte (1985), and Salvador et al. (1999)
have discussed the spatial analysis of terrain scales in more detail. McQueen

et al. (1995) investigated the influence of grid increment size with respect to

the resolution of terrain in an operational mesoscale model. Gollvik (1999)

explored the capabilities of different horizontal grid increments (22 km, 11 km,

and 5.5 km) and resolution of topography in model simulations of precipitation
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in a regional model. Salvador et al. (1999) used two-dimensional spectral anal-

ysis to determine the needed spatial resolution of mesoscale model simulations

for a portion of the east coast of Spain.

Salmon et al. (1981) have discussed the implications of high-wavenumber ter-

rain features in a model and concluded that such features cause noisy solutions

that tend to overemphasize the real impact of these small-scale terrain varia-

tions. Unfortunately, since the horizontal gradient of a pressure perturbation is

proportional to horizontal wavenumber [see, e.g., following Eq. (5-43), where

�p′/�x = ikxp̃ after the Fourier transform] as well as the spatial scale of terrain

variations [see, e.g., Eq. (6-57), where the pressure gradient force contains a

term with �zG/�x); the relative contribution of short wavelength terrain features

to velocity accelerations would be expected to be larger than that implied from

a decomposition of terrain variations alone (Walmsley et al. 1982).
Observational studies, including Lenschow et al. (1979) and Mahrt and Heald

(1981), show that terrain slope and small-scale three-dimensional features exert

substantial influence on surface temperature distribution and boundary layer

structure over even mildly irregular terrain. From observations of drainage wind

fluctuations in the Geysers area of California, Porch (1982) found that a cor-

respondence may exist between prominent spectral peaks of wind velocity and

characteristic variations in complex terrain, as represented by a two-dimensional

Fourier transform of the terrain relief. Thus the approach of analyzing sur-

face inhomogeneities (whether they are terrain features, land-water contrasts,

or whatever) is a necessary (although not a sufficient) tool in establishing the

horizontal grid size required in a mesoscale model.

If the conservation relations were linear, the spatial scale of the forcing would

equal the spatial scale of the resultant atmospheric circulation, as illustrated for

sea and land breezes in Section 5.2.3.1, and the use of Fourier transforms of ter-

rain by itself could yield the minimum spatial grid resolution required. As shown

in Figure 11-3, however, for two separate nonlinear sea-breeze simulations (with

maximum surface temperature amplitudes, TGmax
, of 1�C and 10�C, respectively),

when the terrain forcing becomes sufficiently strong (i.e., for TGmax
= 10�C), the

nonlinearity of the conservation relations acts to decrease the horizontal spatial

scale of the circulation Lx from that of the forcing. In practice, the only way

to ensure that the correct spatial scales are simulated in a nonlinear model is

to perform integrations with progressively finer resolution. When the results do

not significantly change for a given scale of forcing with further reduction of

the grid mesh, the model has achieved sufficient spatial resolution.

11.1.1.2 Grid Mesh

When setting up a horizontal grid, one can keep grid increments constant or

allow them to stretch. The advantages of a constant grid include the relative
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Fig. 11-3. The horizontal velocity field 6 hours after sunrise (at the time of maxi-
mum heating), calculated with the nonlinear analog to Defant’s sea-breeze model intro-
duced in Section 5.2.3.1. The large-scale vertical gradient of potential temperature was
1 K km−1, and the horizontal scale of heating was Lx = 100 km with a maximum surface
temperature perturbation M of (a) 1�C and (b) 10�C. Defant’s analytic results, discussed
in Section 5.2.3.1, were used to initialize the model runs. (From Martin 1981.)

ease of coding such a framework onto the computer, as well as the comparative

simplicity of inputing geographic features into the model. Disadvantages arise

in using an economically feasible number of grid points, however, including the

close proximity of the sides of the model to the region of interest as well as the

difficulty of properly incorporating large- and small-scale features within the

same model domain.

Two different horizontal grid representations have been developed that are

designed to reduce the problems associated with the constant grid. These are

the stretched grid and the technique of grid meshing.
With a stretched grid, one can remove the boundaries of the model as far

from the area of interest as one would like, so a much larger domain can be

simulated than with the constant grid with the same number of grid points. In

practice, either stretched grids are simply specified by assigning values to the
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grid locations (e.g., x1 = 0	 x2 = 50 km, x3 = x2 + 40 km, x4 = x3 + 30 km,

x5 = x4 + 20 km, � � � 	 xIx−1 = xIx−2 + 40 km, xIx = xIx−1 + 50 km) or the

independent spatial coordinates are transformed by a mathematical relation.

Lee (1973), for example, in his simulation of the airflow over the island of

Barbados, uses a normalized transformation4 adapted from Schulman (1970),

given by

s�x� = c�ax + tanh��x − x0�/��+ b��

b = tanh x0/�	 x0 = 0
5	 a = 0
5	 � = 0
044�

c = �a+ b + tanh�1− x0�/��
−1

and Anthes (1970) offers an example of a stretched horizontal grid in two

dimensions (Figure 11-4). Fox-Rabinovitz et al. (1997) discuss the stretched grid
approach, including the problems that it introduces, and recommend solutions

including the introduction of diffusion-type filters and uniformly-stretched grids.

Applications of their stretched grid formulation are reported in Fox-Rabinovitz

(2000) and Fox-Rabinovitz et al. (2001).

In Lee’s formulation, � is a stretching scale factor, and s�x = 0� = 0 and

s�x = 1� = 1. With this type of representation, the chain rule of calculus is

used to replace the spatial derivatives in the conservation relations with terms

such as

ds

dx

�

�s
= �

�x
and

(
ds

dx

)2
�2

�s2
+ d2s

dx2

�

�s
= �2

�x2

 (11-1)

In the stretched horizontal coordinate system, �s = si+1 − si is a constant. How-
ever, this constant grid interval is not found to be superior to simply specifying

the stretched grid in terms of the original independent variable x, since the
advantage of a constant grid �s is nullified by the need to compute extra terms,
as given in Eq. (11-1). The term ds/dx, for example, must be computed as the

average value over the particular interval �x to which �s corresponds. Since

ds/dx itself is a function of x and thus varies over �s, no advantage is gained

by using this mathematical transformation. Simply specifying the grid locations

of xi is adequate.
In addition, the number of grid points between an interior location and the

boundary is of equal importance to the size of the grid spacing. Irrespective of
the size of �s (or �x), for example, a location one grid length inside a boundary
will be influenced by the boundary after only one time step.
Using a fine-mesh grid inserted inside of a coarse grid is an alternative to

the stretched grid approach.5 In this case, a constant grid representation with

grid increments � is surrounded by a grid with separation n� = �, where
n > 1. In contrast to the stretched grid, where changes in grid size are defined

by a continuous function, the meshed grid approach requires a discontinuity



Fig. 11-4. The northern half of a two-dimensional variable horizontal stretched grid with a minimum grid separation of 20 km. (From Anthes
1970.)
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Fig. 11-5. A fine mesh with a grid increment of approximately 37 km, inserted inside
of a coarse mesh with grid lengths of approximately 74 km. Variables within the fine
mesh are defined as the small dots and x’s, as well as the darkened circles. (From Mathur
1974.)

between the fine and coarse grids. Figure 11-5, reproduced from Mathur (1974),

illustrates such a grid mesh representation in a hurricane model. Using this

approach, Mathur was able to accurately simulate the fine structure of the hur-

ricane near the eye wall as well as the larger-scale environment influencing the

storm intensity and movement. More recent applications of the nested grid rep-

resentation are described in Clark and Farley (1984), Pielke et al. (1992), and
Walko et al. (1995b).
The meshed grids (as well as the stretched and constant horizontal grids)

can also be defined to move relative to the earth’s surface. Schlesinger (1973)

has used a movable grid to prevent a simulated thunderstorm from exiting his

domain, and Jones (1977b) used three meshed grids of lengths 10, 30, and

90 km to simulate the dynamics of a moving hurricane, with the smaller two

grids moving with the storm.

Problems arise in using stretched or grid mesh representations, however. As

shown in Chapter 10 (e.g., Table 10-1), waves with lengths that are short rela-
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tive to the model grid size propagate erroneously relative to the exact analytic

solution. Thus a wave in a fine mesh with a wavelength of 8� would have a rep-

resentation of 2� in the coarser grid if the grid separation were four times larger

in the coarse grid (� = 4�). Thus the wave would be poorly represented in the

coarse grid. Moreover, as this wave travels from one grid region to another, the

change in grid resolution can cause reflection and refraction of the wave (Morse

1973) in much the same fashion as occurs when electromagnetic waves travel

from one physical medium to another (e.g., as light travels from air into water).

Thus, although stretched and nested grids increase the domain size, another

source of computational error is introduced. For meshed grids, minimization of

these errors is best accomplished by judicious use of filtering near the boundary

between the coarse mesh and the fine mesh; see Perkey and Kreitzberg (1976)

and Jones (1977a) for specifics concerning their schemes. Another discussion

of procedures for nested grids is provided in Panin et al. (1999).
In applying boundary conditions between coarse and fine meshes, modelers

can choose to permit perturbations to enter and leave the fine mesh (i.e., two-
way interaction) or to prevent waves in the fine-grid mesh from exiting the fine

mesh, but permitting coarse waves to enter (i.e., parasitic grid representation)
(Perkey and Kreitzberg 1976; Baumhefner and Perkey 1982). The use of nested

grids to obtain higher spatial resolution in a region is referred to as downscaling.
Cionco (1994) was among the first to introduce this concept.

11.1.2 Vertical Grid

As for the horizontal grid, the vertical grid of a mesoscale model is selected

to have the most resolution in and near the region of interest. Uniform grid

spacing at all levels generally is not feasible, because of limitations of computer

storage and of cost. The concept of a representative vertical scale length of the

circulation can be used to estimate the required resolution, since, as discussed

in Chapter 10, as many as 10 or more grid increments may be needed to resolve

the atmospheric system adequately (see, e.g., Tables 10-1 and 10-4).

If vertical turbulent mixing is an important component of the circulation, then

its characteristic length scale provides a measure of the needed grid resolution.

As discussed in Chapter 7, Section 7.3, for example, the turbulent length scale

when the surface layer is stable is a function of height above the ground near the

surface and a prescribed length scale, or function of local shear and temperature

gradients above that level. The definition of l� by Eq. (7-64) gives one form

of this length scale. In contrast, when the surface layer is neutral or unstable,

the representation for the length scale remains a function of distance above the

ground even well removed from the surface, as implied by the form of the

exchange coefficient indicated by Figure 7.8. For this reason, mesoscale models
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in general have the smallest grid increments near the ground, with the grid mesh

expanding upward.

Modelers who use such an expanding grid generally attempt to make the

transition from fine to coarse resolution as smooth as possible. Levels of the

vertical grid are either arbitrarily selected or output from a functional form.

Orlanski et al. (1974), for example, tested two forms,

s = ln

(
z+ 30
5

30
5

)/
ln

(
S + 30
5

30
5

)
and s = z

1600
+ 1

17
9
ln

z+ 15

15
	

for representing his vertical grid. In the first formulation, S is the top of

the model (they used S= 20 km). With the left-side expression for s, using
70 levels, the grid resolution was 3 m near the ground and 1700 m near the top,

whereas using 80 levels, the right-side form varied more slowly from 3.7 m

near the surface to an approximately constant grid of 175 m from 4000 m to the

top (which was set at 10.16 km in that representation). Orlanski et al. (1974)
rejected the left-side form for s because the extremely coarse resolution in

the upper levels produced a significant distortion of gravity waves, which

propagated upward from the active lower layers. This problem was much less

apparent when the second coordinate stretching was used, despite the lower top.

Orlanski et al. (1974) used a large number of levels in their two-dimensional

model simulation. In a three-dimensional simulation, the use of 70 or 80 vertical

levels is computationally expensive. Pielke (1974b) examined the amount of

vertical resolution needed in a two-dimensional model to properly resolve a sea-

breeze circulation. Such an evaluation appears to be necessary if the investigator

is to establish whether the numerical grid separation rather than the physics

determines the form of the solution.

In the study reported in Pielke (1974b), a sea-breeze simulation was per-

formed as a control. Two separate experiments were performed, one in which

the depth of the model was doubled but the same resolution below 4.22 km was

retained, and another in which the vertical grid spacings were halved but the

initial model depth was the same as the control experiment. The predicted sea-

breeze patterns 8 hours after simulated sunrise, shown in Figure 11-6, illustrate

that for this particular situation, the results were not forced by the grid spacing.

In those experiments, the sea-breeze convergence zones remained below 3 km

with about the same vertical length scale, regardless of the grid resolution. Sen-

sitivity experiments such as this are required to establish the needed vertical

resolution.

Two examples of observationally determined vertical and horizontal scales

of mesoscale motion are shown in Figures 11-7 and 11-8. In Figure 11-7, the

sea and land breezes were observed to have relatively shallow vertical depth

(consistent with the results given in Figure 11-6). Forced airflow over rough

terrain creates a deep tropospheric perturbation, as illustrated in Figure 11-8.
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Fig. 11-6. (a) The vertical motion field in a two-dimensional sea-breeze model with 7
vertical levels and an initial top of 4.22 km, (b) with 13 vertical levels and an initial top
of 12.02 km, and (c) with 13 vertical levels and an initial top of 4.22 km. Grid point levels
4 km and below are indicated by darkened circles. (From Pielke 1974b.)

11.1.3 Definition of Grid Points

In setting up the model grid, the locations at which the dependent variables

are defined must be specified. In the differential representation no such problem

arises, of course, since all variables are defined at every point. Although the

dependent variables could be defined at the same grid point, in general the

variables are staggered with respect to one another. Lilly (1961), for example,

presented a staggered grid representation that helps preserve such properties as

total kinetic energy6 within a model domain. Batteen and Han (1981) examine

the use of different spatial distributions of dependent variables on a rectangular

grid in ocean models.
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Fig. 11-7. The z–t variations of land and sea breezes normal to the coast from 1800 CST on June 9 to 1855 CST on June 10, 1966, at
three stations perpendicular to the Texas coast. The average top of the sea breeze during the day was 570 m, and the average height of
the return flow was 1800 m. (From Hsu 1970.)
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Fig. 11-8. The x–z structure of (a) isentropes and (b) winds observed across a portion
of central Colorado during a downslope wind storm. (From Lilly and Zipser 1972.)
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Fig. 11-9. A schematic of (a) a staggered grid and (b) a nonstaggered grid for the
computation of ū and w̄. The symbols u0 and w0 represent the boundary values. The
braces indicate which values are used in the computation of w from the continuity
equation, (11-2) for (a) and (11-3) for (b). In (a), the horizontal velocity is defined at the
× points and the vertical velocity at points with blackened circles, whereas in (b) both
velocities are defined at the × points.

The need for a staggered grid is motivated by the differential nature of the

conservation relations. In the two-dimensional form of the incompressible con-

tinuity equation [e.g., Eq (4-23) with �v̄/�y = 0], for example, it is convenient

to stagger the vertical and horizontal velocities w̄ and ū. The numerical finite

difference approximation for a constant horizontal and vertical grid can then be

written as

w̄i	 k = w̄i	 k−1 −
ūi+ 1

2
	 k− 1

2
− ūi− 1

2
	 k− 1

2

�x
�z	 (11-2)

where ū is defined to be located halfway between the grid points at which w̄ is

defined, instead of a form such as

w̄i	 k = w̄i	 k−1 −
ûi+ 1

2
	 k− 1

2
− ûi− 1

2
	 k− 1

2

�x
�z	 (11-3)

where

ûi+ 1
2
	 k− 1

2
= (ūi+1	 k + ūi	 k + ūi+1	 k−1 + ūi	 k−1

)
/4

and

ûi− 1
2
	 k− 1

2
= (ūi	 k + ūi−1	 k + ūi	 k−1 + ūi−1	 k−1

)
/4


It is found that staggering the dependent variables as given by Eq. (11-2)

increases the effective resolution by a factor of two, since derivatives are defined

over an increment �x, for instance, rather than 2�x, yet without requiring
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averaging as in Eq. (11-3). The horizontal and vertical pressure gradient term

[e.g., in Eq. (4-21)], is also effectively represented by such staggering.

Anthes (1971, personal communication) has also reported that staggering the

horizontal and vertical velocities in the mass-continuity equation, such as done

in Eq. (11-2), can minimize the direct influence of the lateral boundaries on

the computation of vertical velocity. As illustrated in Figure 11-9, for example,

Fig. 11-10. Illustration of the Arakawa and Lamb grid stagger for a two-dimensional
grid for the variables ū, v̄, and �̄ for a two-dimensional grid. (Adapted from Arakawa
and Lamb 1977.)
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using Eq. (11-2), w̄ must be computed using only interior values of ū. As sug-
gested by Anthes and replicated by others (e.g., Pielke 1974a), elimination of the

lateral boundary values of ū (and v̄) from the computation of vertical velocity

in the continuity equation generally provides much better-behaved solutions.

Winninghoff (1968) and Arakawa and Lamb (1977) introduced classes of grid

staggering that are referred to extensively today (Figure 11-10). The mesoscale

models presented in Appendix B usually refer to the types of grid stagger that

are presented in Figure 11-10.

Once the domain size, vertical and horizontal grid increments, and locations

at which the variables are defined are established, the temporal and spatial

boundary conditions for the conservation relations must be specified. Tempo-

ral boundary values are required because the differential conservation equations

represent an initial value problem, and spatial boundary information is needed

because the domain size is finite, yielding a boundary value problem. The pro-

cedure for determining the values of the dependent variables required to com-

mence the integration of the model equations is called initialization, and the

values assigned to the perimeter of the model domain are termed boundary
conditions.7

11.2 Initialization

The dependent variables that appear in a model representation require initial

values before integration of the equations can begin. For instance, values of

ū	 v̄	 w̄	 �̄	 �̄	 q̄n and �̄m are required at the start up of the simulation.8

In terms of initialization of the wind and temperature fields, mesoscale and

synoptic models are very different. Recall from Chapter 3, Section 3.3.2, that

for the synoptic and larger scales, the Rossby number R0 is much less than

unity. Hence the wind is seldom far from gradient wind balance, indicating that

the mass field dominates the response of the wind field. Thus for these scales,

it is more important to measure the temperature distribution horizontally and

with height than to measure the wind field. The temperature field is used to

obtain the mass field through the hydrostatic equation, with the distribution of

mass represented by the pressure field (i.e., �p̄/�z = −�̄g, so that � ln p̄/�z =
−g/RT ). A useful approximation to the winds can then be diagnosed from the

mass field.

As the horizontal scales of the circulation are reduced, however, the relation

between the wind and temperature (i.e., mass) fields becomes more complex.

The ratio of the advective to the horizontal pressure gradient terms, given in

Table 3-1 in Chapter 3, can be used to estimate whether the velocity or the mass

field dominates the structure of the mesoscale circulation.
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Using the scale analysis for the advection and horizontal pressure gradient

force presented in Table 3-1, their ratio can be defined as

I0 = U 2
/
R�T 
 (11-4)

Thus when I0  1, the velocity field is expected to be dominant, whereas the

temperature distribution should be more important for I0 � 1. When I0 � 1,

both fields are equally significant in determining the form of the mesoscale

system.

Over heated land under light synoptic flow, for example, I0 would be much

less than unity, and the temperature distribution will dominate the development

and evolution of the sea breeze. The model simulation depicted in Figure 11-3

illustrates such a circulation, where the sea-breeze pattern was determined pre-

dominantly by the horizontal temperature gradient, even though advection was

important in determining its detailed structure. Further demonstration of the

importance of a proper temperature initialization, as opposed to an accurate

wind initialization, in a mesoscale sea-breeze model is given by Carpenter and

Lowther (1982). Wind speeds are lower for atmospheric systems near the ground

than aloft because of ground friction (see, e.g., Chapter 7, Section 7.2), so that

the mass field would be expected to exert a substantial control on the wind

field at low levels (D. Keyser 1980, personal communication). Conversely, if

the winds are strong, I0 can be much larger than unity, and the wind field will

dominate the temperature pattern.

Hoke and Anthes (1976) performed experiments to evaluate the relative need

to determine the winds as opposed to the temperatures in a two-dimensional

simulation of a jet stream with a north–south extent of approximately 700 km

[Figure 11-11(a)]. The first experiment attempted to generate the jet using

the observed winds, but ignored the observed temperatures and instead lin-

early interpolated the temperatures inside the domain from values on the side

boundary. This assumed temperature distribution gave a horizontally uniform

geostrophic speed with a maximum value of 34 m s−1. Figure 11-11(b) presents

the errors produced for the two fields. A second experiment was then performed

in which the temperature field was forced to agree with the observations at each

stage of the initialization process,9 but the first guess of the wind field used the

geostrophic wind at each grid point. The error field for this experiment is given

in Figure 11-11(c).

Comparing Figures 11-11(b) and (c) shows that the wind velocity errors

are smaller and thus the jet core is better represented when the wind field

is known. That is, the maximum error in the wind field exceeds 10 m s−1 in

Figure 11-11(c) but is substantially less in Figure 11-11(b).

Calculation of the root mean square error (RMSE) is a convenient tool for

quantitatively comparing these two results. RMSE is calculated for the velocity
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Fig. 11-11. (a) North–south cross-section through Manawski, Ontario of the observed
winds (solid lines, m s−1) and geostrophically balanced potential temperature field
(dashed line, K) for 0700 EST, October 16, 1973. (b) The same as (a) except for the differ-
ence field between actual and computed winds and temperature where assumed fields
had perfect initial winds [i.e., as given in (a), but with erroneous initial temperatures].
(c) The same as (b) except with perfect initial temperature [i.e., from (a)] but erroneous
initial winds. (From Hoke and Anthes 1976.)
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and temperature from

RMSEu =
Ix∑
i=1

Kz∑
k=1

(
uobs − upred

)2/
IxKz

RMSET =
Ix∑
i=1

Kz∑
k=1

(
Tobs − Tpred

)2/
IxKz	

(11-5)

where Ix and Kz are the number of grid points in the horizontal and verti-

cal directions, respectively, and the subscripts “obs” and “pred” refer to the

observed and predicted values of east–west velocity and temperature. For the

experiment in which the observed winds were used [Figure 11-11(b)], RMSEu =
2
8 m s−1 and RMSET = 1
1 K, and when the observed temperatures were used

alone [Figure 11-11(c)]10 RMSEu = 6.9 m s−1 and RMSET = 0
2 K. Thus in

mesoscale circulations where I0  1, it appears to be much more important to

measure winds than temperature when initializing a model simulation. In con-

trast, the initialization of the other dependent variables in a mesoscale model is

similar to that for a synoptic model.

11.2.1 Initialization Procedures

The methodology for initializing a mesoscale model can be grouped into four

categories:

� objective analysis

� dynamic initialization

� normal mode initialization

� the adjoint method.

Initialization of the model involves dependent variables in the atmosphere and

at the surface interface (Liston et al. 1999; Pielke et al. 1999a). Model solutions

are often very sensitive to initial conditions. Park and Droegemeier (2000), for

example, illustrated the sensitivity of the simulation of deep cumulus convection

to errors in the water vapor field.

With objective analysis, available observational data are extrapolated to grid

points by using either simple weighting functions, in which the initial dependent

variables are a function of the distance from the observation, or by applying

a variational analysis routine (O’Brien 1970a; Sasaki 1970a, b, c; Sasaki and

Lewis 1970; Sinha et al. 1998), in which one or more conservation relations

are applied to minimize the variance of the difference between the observations

and the analyzed fields. This technique uses concepts of variational calculus,

in which the fundamental equations along with specified constraints as to the

amount of agreement between the observations and analysis are given (e.g., the
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local time derivative must be very small to remove high-frequency motions).

An explanation of this approach is beyond the scope of the text, and the reader

is referred to Sasaki (1970a) for a detailed discussion of the technique.

The dynamic initialization technique offers an alternative to objective analy-

sis. With this approach, the model equations are integrated over a period of time,

so that values in the observed fields that are not representative of mesoscale

resolution data are minimized.11 By using the model equations, an approximate

dynamic balance among the dependent variables is achieved, since computa-

tional features generated by data inconsistency will be removed through damp-

ing or outward propagation through the side boundaries of the model as it adjusts

toward equilibrium. As shown by Hoke and Anthes (1976), this propagation

will appear as gravity, inertial, or inertial-gravitational waves but will have no

physical significance. If large inconsistencies in the measurements occur, how-

ever, then large computational adjustments will result in completely erroneous

solutions.

One form of dynamic initialization suggested by Hoke and Anthes (1976)

involves performing an initialization integration, in which terms are added to

the conservation relations to nudge the solutions toward the observed conditions.

For example, the conservation-of-motion equation in the x direction can be

rewritten to include this term as
�ū

�t
= −ūj

�ū

�xj
− 1

�0

�

�xj
�0u

′′
j u

′′ − �0
��̄

�x
+ fv + f̂ w̄ +Gu

(
uobs − ū

)
	

where Gu is called the nudging coefficient. The other prognostic equations can

be written in a similar fashion. By integrating the model equations for a period

of time (say 12 hours), where the geostrophic wind may be the first guess, the

imbalances in the solutions are reduced and large unrealistic accelerations will

not occur when the simulation experiment actually commences.

Nudging coefficients added to each prognostic equation can be assumed to

be a function of observation accuracy, of the distance between an observation

and the grid point, of the variable nudged, and of the typical magnitudes of

the other terms in the prognostic equations. By using dynamic initialization,

the conservation relations themselves are used to distribute initial values of the

dependent variables throughout the model in a physically consistent fashion.

The major disadvantage of this approach is the cost in computer resources of an

extended initialization integration, which could be 12 hours or so in a mesoscale

model simulation, whereas the model experiment may be only 24 hours long.

Examples of dynamic initialization include those of Temperton (1973), Anthes

(1974a), Hoke and Anthes (1977), Kurihara and Tuleya (1978), Kurihara and

Bender (1979), and Kuo and Guo (1989). Douville et al. (1999) discuss the

use of nudging and an optimal interpolation scheme to insert soil moisture into

models. Liston et al. (1999) describes a procedure to more effectively insert

snow cover into regional and mesoscale models.
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Nonlinear normal mode initialization provides a useful and efficient alterna-

tive to dynamic initialization. As summarized by Daley (1981), this approach

eliminates the integration time period needed by the dynamic initialization

method to remove inconsistencies in the input data. This approach, which is dis-

cussed in Daley’s review paper, has been adopted by the Canadian government

weather service and by the European Centre for Medium Range Forecasts for

use in their synoptic models.

The nonlinear normal mode initialization scheme involves segregating high-

frequency and low-frequency components of the initial input data using hori-

zontal and vertical structure functions12 for the initial atmosphere. By removing

the high frequencies, which are assumed to have no meteorological signif-

icance, only relevant low-frequency information is assumed to remain. This

scheme offers promise as an effective initialization scheme provided that suffi-

cient observation data are available. Kasahara (1982) has presented a method-

ology in which the normal mode initialization procedure can be used in limited

area numerical weather prediction models. Figure 11-12, reproduced from Daley

(1981), illustrates the reduced period of initialization required using the normal

mode method as contrasted with the dynamic initialization scheme.

Intensive interest in the normal mode initialization technique continues.

Brutsaert (1982), for example, presented a scheme that uses concepts in normal

model initialization (but without explicitly calculating the modes) as part of a

type of dynamic initialization procedure. Wergen (1981) discusses nonlinear

normal model initialization in the presence of a 2000-m mountain with a hori-

Fig. 11-12. The variation of vertical motion with time near Labrador, Canada for a
synoptic model prediction (a) without and (b) with nonlinear normal mode initialization.
(From Daley 1979.)
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zontal grid interval of 63.5 km and a slope of up to 1 to 63. Lipton and Pielke

(1986) evaluated the vertical normal modes for the type of terrain-following

coordinate system discussed in Section 6.3.

The adjoint method is overviewed in the following discussion, provided by

Vukićević and Hess (2000) and Vukićević et al. (2001). The time rate of change

(i.e., the evolution) of mesoscale flow can be represented by the following gen-

eral governing equation:

� �X
�t

= M �X + �F �t�	 (11-6)

where �X is a vector of the physical quantities studied (e.g., surface temperature,

wind, and CO2 flux as a function of time and space in general), t is time, M is a

physical/dynamic model, and �F �t� is time-dependent forcing (e.g., precipitation

and radiation for the land-surface processes). The solution of Eq. (11-6) depends

on the initial condition vector ( �X0), the boundary condition vector ( �Xb), and a

set of free physical parameters denoted by ��.
We are interested in the system’s response measured by the change of a

diagnostic function, defined in general form as

J �x� =
∫ T
0

∫
�
g� �X�d�dt	 (11-7)

where �0	 T � is time interval, � is the spatial domain, and g� �X� is a diagnos-

tic operator [e.g., g� �X� = �X or g� �X� = flux of moisture]. It is obvious that

the change of J can occur when either the control parameters or the forcing

are varied. The dependence of the change of J on the control parameters is

expressed as

�J = �J

� �Y � �Y + O
(
� �Y 2
)
	 (11-8)

where, for brevity, �Y is defined as a vector of variations of the control parame-

ters, � �Y = �� �X0	 � �Xb	 ���.
Assuming that second- and higher-order terms are small,

O
(
� �Y 2
)� O�� �Y �	 (11-9)

and using the theory of variations, Eq. (11-8) becomes

�J =
∫ T
0

∫
�
%�t	 ��M ��� ��d�dt −

∫
�
�%�t	 ��� �X�T0

−
∫ T
0

�%�t	 ��� �X�O���	 (11-10)
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where % is the solution of an adjoint system associated with the system

[Eq. (11-6)] and M �� is a portion of the model in Eq. (11-6) that depends on

the parameters only.

Also, from Green’s function theory of solutions for partial differential equa-

tions (e.g., Roach 1970), the solution of the system [Eq. (11-6)] for the given

(i.e., fixed) set of control parameters can be expressed as a function of the

adjoint solution and the forcing �F ,

x�t� =
∫ t
0

∫
�
%�t	 "� �F �"� d"d�
 (11-11)

Substitution of Eq. (11-11) in Eq. (11-7) gives the relationship between J and

the adjoint solution and forcing.

Because the adjoint solution multiplies variations of the control parameters

and the forcing function in Eqs. (11-10) and (11-11), respectively, these expres-

sions show that to know the sensitivity of the diagnostic function J to the

variation of control parameters or the forcing, one can compute the solution of

the adjoint system (%). The adjoint system is readily derived from the homoge-

neous part of the original system [Eq. (11-6)] (e.g., Roach 1970). The adjoint

solution is a function of time and space and represents a map in phase space

of the influences of the controlling factors on the system studied. From this

map, we can learn, for example, about the physical mechanisms of interactions

between different components of the mesoscale system.

The adjoint sensitivity analysis is exact for the linear systems [i.e., when M
in Eq. (11-6) is linear, implying that O�� �Y 2� = 0.] For the nonlinear systems

(i.e., M is nonlinear), this analysis is exact under the assumption that variations

of the controlling factors are small. In the nonlinear case, therefore, the adjoint

analysis produces a first-order sensitivity. Consequently, the adjoint analysis of a

mesoscale system examines the first-order interactions between the components

of the system. Understanding the first-order interactions is beneficial, as shown

in the studies where the adjoint analysis has been used to examine nonlinear

systems (e.g., Zou et al. 1993; Vukićević 1998).

The system’s sensitivity to control parameters can also be studied by pertur-

bation sensitivity experiments whereby the value of a parameter within one of

the model’s parameterizations is changed by a small amount and the new model

solution is computed. However this method is inefficient for systems where the

number of parameters is large. Moreover, this method can be very inefficient

in computing the influence functions associated with the forcing (i.e., Green’s

functions). In contrast, only one adjoint model solution is required to evaluate

the sensitivity of the given J to all controlling factors.

Detailed examples of the use of the adjoint method can be found in Rabier

et al. (1992), Robertson (1992), Marchuk (1995), Vukićević and Raeder (1995),
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Kaminski et al. (1997), Vukićević (1998), and Vukićević and Hess (2000). The

adjoint method is also applied by Uliasz et al. (1996).

11.2.2 Initialization With Sparse Data

The objective analysis, dynamic, adjoint, and nonlinear normal model initial-

ization routines are effective when observational data are available (see, e.g.,

Seaman et al. 1995; Jones et al. 1998a, b; Michelson and Seaman 1999). On the

smaller spatial scales, however, extensive measurements, particularly of vertical

structure, are the exception, and usually only one or two radiosonde sites with

soundings made twice a day are present in a domain region. Barnes and Lilly

(1975), for example, suggest that sufficient variance exists on the mesoscale such

that upper air stations must be spaced about 100 km apart to detect important

severe thunderstorm-triggering mechanisms. Moreover, the initialization prob-

lem is complicated even further if terrain is present, since one ascent is even

less likely to be representative of the initial conditions over the entire domain

area. Satellite sounding data at high spatial and temporal resolution continues to

offer promise for improving mesoscale model initialization data, but the satel-

lite resolution still suffers from either high spatial but low temporal resolution

coverage (i.e., lower earth-orbiting satellites, such as polar orbiters) or high

temporal but low spatial coverage (i.e., geostationary satellites) of the needed

dependent variables (e.g., ūi	 �̄	 q̄n).
When observations are this sparse over level ground, the advantages of a

dynamic or normal mode initialization scheme are likely to be negligible when

compared with an objective analysis routine, since small-scale data inconsisten-

cies will not be introduced by widely spaced measurements. For this situation,

an objective initialization, such as that suggested by Segal and Pielke (1981), is

useful. With this approach, when two radiosonde sites are available, values of

the dependent variables at each grid point can be determined from13

�p =
(
�1

1

r21p
+ �2

1

r22p

)(
1

r21p
+ 1

r22p

)−1

	 (11-12)

where �1 and �2 are the observed values from the two radiosonde ascends

at a distance of r1p and r2p from the grid point being determined. After this

objective analysis is applied, the model can be integrated for a short time. Segal

and Pielke (1981) used 3 hours to generate a consistent set of the dependent

variables (i.e., a simplified form of dynamic initialization). Since only long-

wavelength phenomena will be introduced into the model using Eq. (11-12),

this short period of dynamic initialization does not excite large-amplitude, high-

frequency gravity or inertial gravity waves such as those reported by Hoke and

Anthes (1976), where much higher spatial resolution initial data were provided.
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One drawback of using Eq. (11-12), however, is that there is no coupling in the

vertical, which is the reason for the 3-hour initialization period.

Figure 11-13 illustrates the use of Eq. (11-12) to obtain the wind fields over

the Chesapeake Bay region at 0700 LST on July 21, 1978 using the Dulles and

Wallops Island standard radiosonde soundings. If only the Dulles sounding were

Fig. 11-13. An initial wind field at 5 m obtained using Eq. (11-12) with the morning
Dulles and Wallops radiosonde soundings. (From Segal and Pielke 1981.)
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used, then southwesterly winds would be analyzed over the entire region at the

initial time, whereas with the Wallops Island sounding included, northwesterly

winds result over the eastern portion of the domain. The integration of the model

for this day, reported in Segal and Pielke (1981) produced a superior forecast

when both soundings were included.

In applying this type of objective analysis scheme to radiosonde data, how-

ever, it is not always certain that the measured values are representative of

the atmosphere near the ground throughout the domain. For example, if the

radiosonde ascents are made during the early morning from an island, then radi-

ational cooling over land will result in a sounding near the ground, which is not

representative of the ocean areas. For this type of situation, an alternative pro-

cedure for estimating the low-level winds is available using a one-dimensional

boundary layer model. Such an approach is a form of one-dimensional dynamic

initialization. This method is used at the radiosonde observing sites, and the

results are extrapolated to the remaining grid points by Eq. (11-12), as per-

formed by Segal and Pielke (1981).

The equations for computing the wind profile in the planetary boundary layer

can be calculated from

�uR

�t
= �

�z
u′′w′′∗ + f

(
vR − vgR

)
�vR
�t

= �

�z
v′′w′′∗ + f

(
uR − ugR

)



(11-13)

where uR, vR and ugR	 vgR are the components of velocity and of geostrophic

wind, respectively, at the radiosonde site. The overbar with an asterisk over the

subgrid-scale term indicates that the term is defined for a grid-sized volume

centered at the radiosonde site. The subgrid-scale flux terms, for example, can

be evaluated using one of the methods given in Section 7.3. These equations

are integrated until the changes in uR and vR (i.e., �uR/�t and �vR/�t) become

arbitrarily small (about six inertial periods are sufficient, as reported by Mahrer

and Pielke 1976, where one inertial period equals 2�/f ). Figure 11-14 illus-

trates the convergence of Eq. (11-13) to an equilibrium solution for a latitude

of � = 38�N and a first-guess profile of ū = ug = 5 m s−1 and v̄ = vg = 0.

The subgrid-scale fluxes are estimated for a neutrally stratified surface layer

using Eq. (7-7), a profile form of the vertical exchange coefficient above the

surface layer suggested by O’Brien (1970b), and zi = 0
33u∗/f . The surface

layer fluxes are evaluated using the Businger (1973) parameterization.

Over rough terrain, determination of the initial fields of the dependent vari-

ables is not so straightforward, because one or two vertical soundings is sel-

dom, if ever, representative of conditions over a mesoscale-sized area. Three

procedures have been developed to accomplish the initialization over irregu-
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Fig. 11-14. The convergence of Eq. (11-13) to a steady solution with ug = 5 ms−1

and vg = 0 for a latitude of 38�N. A neutrally stratified planetary boundary layer is
assumed (i.e., ��0/�z = 0�, so zi is computed from zi = u∗/3f . (Calculations performed
by R. Kessler, 1982.)

lar terrain. With the first procedure, the terrain is assumed to be initially flat,

and either an objective analysis routine, dynamic initialization, nonlinear normal

mode, or adjoint initialization can be used to generate analyzed fields of the

dependent variables. Using a terrain-following coordinate system such as that

discussed in Chapter 6, topography is then permitted to grow to its assigned

height in a specified period. The model equations are integrated forward in

time as the terrain grows, with the requirement that no time-dependent forcing

terms other than the growing terrain are permitted to occur. This procedure,

called diastrophism,14 and is a form of dynamic initialization. Mahrer and Pielke

(1975, 1977b), Deaven (1976), and Klemp and Lilly (1978) used this technique

in their simulation of airflow over an isolated mountain ridge. The mountain

was permitted to grow to its maximum height over a period of a few hours.

Unfortunately, using this approach, it is not possible to assign a particular

lapse rate of temperature along a mountain slope such as might be available

from surface observations. Moreover, the diastrophism tends to create a potential

temperature distribution that parallels the ground surface at low levels, such as

illustrated in Figure 11-15(a). To circumvent this problem, Mahrer and Pielke

(1977b) reported an initialization methodology for inputting irregular terrain

at its full height without resorting to diastrophism. With this procedure, the

horizontal distribution of potential temperature at the initial time is assumed

to be flat [as illustrated schematically in Figure 11-15(b)]. The grid-volume–

averaged form of the hydrostatic equation (6-62) is used to evaluate the vertical
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Fig. 11-15. (a) A schematic of the evolution of isentropes over growing terrain in a
mesoscale model where the bottom surface is a � level. Note that the perturbation of
the � contours from their initial horizontal orientation will cause a horizontal pressure
gradient and resultant circulation owing to this forced uplift. In (b), the mountain is
present initially, and hence the � surfaces remain horizontal as long as the horizontal
and vertical pressure gradient relations given by Eqs. (11-14) and (11-15) are consistent.

pressure distribution from
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where to reduce notation y variations have been ignored, x̃3 has been written as

z∗, and the subscripts i and j denote grid location. To remain consistent with

this approximated form of the hydrostatic equation, the pressure gradient term

in Eq. (6-57) is written as
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This particular form is used to account for uneven vertical grid staggering

when �̄ is defined at intermediate vertical grid levels to �̄. For a case of

zero large-scale flow, Mahrer and Pielke (1977b) found erroneous accelerations

resulting from the imbalance between the approximate forms of −�̄��̄/�x̃1 and

�g/s��z∗ − s� �zG/�x to be only 5 cm s−1 h−1 for a 1-km bell-shaped mountain

with a half-width of 15 km.

As discussed by Janjić (1977), Mahrer and Pielke (1977b), Sundqvist (1979),

Mihailović (1981), Tomine and Abe (1982), Johnson and Uccellini (1983), and

others, it is essential to make the approximate form of the hydrostatic equation

consistent with the representation of the horizontal pressure gradient terms; oth-

erwise, large fictitious accelerations will result. The sensitivity of a model to the

horizontal pressure gradient force in irregular terrain results from the need to

accurately compute the difference between two large terms [e.g., �̄��̄/�x̃1 and

�g/s��z∗ − s� �zG/�x]. Unfortunately, the establishment of a velocity field over

this terrain at the initial time still generates large imbalances in the system of

conservation equations. This imbalance occurs because the wind field is signif-

icantly out of balance with the temperature field at the start of the integration.

As the velocity increases [so that I0 from Eq. (11-4) becomes larger], the need

to properly initialize the wind field becomes more critical.

A third alternative for initializing a mountain in a mesoscale model is to

include the topographic relief initially, but input the horizontal velocity linearly

with time, starting with ū = v̄ = 0, everywhere. With this approach, the imbal-

ance between the velocity and temperature fields during the initialization should

be minimized. Also, the use of an exact solution (see, e.g., Section 5.3) for a

particular terrain configuration may be a useful form of initialization.

In using initialization procedures, the question arises as to whether the depen-

dent variables are in equilibrium. Usually, modelers are satisfied if a quasi-

equilibrium exists in which dependent variables are changing only slowly with

time.15 The length of time required to attain this quasi-equilibrium is dependent

on such features as the complexity of the first-guess fields, the terrain char-

acteristics, and latitude. In the real world, such quasi-equilibrium may occur

only infrequently, because the larger-scale environment is seldom static for long

periods, particularly when strong synoptic winds occur. Thus in the applica-

tion of mesoscale models to practical situations, it may be more appropriate to

analyze the fields of dependent variables objectively using the data generally

available and integrate forward in time, including all time-dependent forcing

terms, without requiring that a quasi-equilibrium occur first. For example, strong

wind flow that develops over mountainous terrain after a synoptic cold front

passage often develops abruptly and probably would not be well represented by

a quasi-equilibrium initial condition in a model.

A complete equilibrium where the local changes of the dependent variables

are identically 0 is even less likely on the mesoscale. If, for instance, the
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winds above the planetary boundary layer are perturbed from gradient balance,

then inertial oscillations in the wind speed are established. Before the balanced

conditions can be reestablished [which required six inertial periods near the

ground when substantial vertical mixing was present, as discussed following

Eq. (11-7); more time is required if the subgrid-scale mixing is less], the air

would exit the mesoscale model domain.16

Using synthetic data to initialize a model has also been proposed. With this

approach, an atmospheric circulation that closely corresponds to the available

observational data is inserted into the model. This circulation can be made so

that it is dynamically consistent in the three spatial dimensions and in time. For

example, Davidson and Weber (2000) used this approach to insert a tropical

cyclone into the Australian Bureau of Meteorology’s Tropical Cyclone Limited

Area Prediction System.

From the discussion in this section, the most effective initialization procedure

in mesoscale models appears to be the following:

1. Where initial data are sparse, objectively analyze the available observa-

tional data to generate values of the dependent variables at grid points. Synthetic

data can be applied to provide a dynamically consistent initial meteorological

field.

2. If extensive observational data are available, then a nonlinear normal

mode initialization or adjoint procedure should be used. Greater weight should

be placed on the horizontal wind field than on the temperature field if I0 
1, whereas the converse should be applied if I0 � 1. If I0 � 1, then both

fields should have equal weight. The nonlinear normal mode procedure could

be used to eliminate small-scale data inconsistencies and should be performed

with terrain features present (Lipton and Pielke 1986).

3. A quasi-equilibrium initialization is desirable only if the large-scale con-

ditions have been persistent for about the same time as is required to achieve

such an equilibrium in the model simulation.

4. As satellite observations of the temperature field (and, therefore, the

pressure field) achieve better resolution, it may become possible to obtain

high-resolution initial velocity fields on the mesoscale if the time evolution

of the pressure field is known. Unfortunately, as inferred from Table 11-1

and discussed further in Section 11.3.1, as the resolution of the pressure field

increases, the required measurement accuracy must also improve significantly.

On a relatively large scale (i.e., �x = 67 km), Mills and Hayden (1983) have

used high-resolution satellite imagery to initialize a numerical prediction model.

Rogers and Gentry (1983) have used rapid-scan geostationary satellite imagery

to obtain high spatial resolution (�x = �y � 44 km) wind fields. However,

mesoscale model initializations require horizontal grid increment data of 10 km

or smaller.
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11.3 Spatial Boundary Conditions

Since the mesoscale model domain is artificially enclosed with sides, it is

necessary to specify the values of the dependent variables at this perimeter

surface of the model. Such values, called boundary conditions, are required to

integrate in time the approximate forms of the conservation relations.

In discussing boundary conditions in mesoscale models, it is convenient to

discuss the top, lateral, and bottom sides separately. Because of the finite domain

of these models, the top and lateral perimeters are incorporated only because of

computational necessity and have no physical meaning. The bottom, however, is

a real boundary, and the transfer of such physical properties as heat and moisture

across this interface plays a fundamental role in most mesoscale meteorological

circulations.

The number of boundary conditions that can be applied in a model depends

on the form of the differential equations used. Model equations that have the

correct number are said to be well posed; those that use more than are required

are said to be overspecified. As maintained by Oliger and Sundström (1976), dis-

cussing in detail the mathematical properties of boundary conditions of initial-

spatial boundary value problems, conservation relations that are represented by

nondissipative approximate solutions (e.g., leapfrog) and are overspecified gen-

erate physically erroneous shortwave features that travel across the model grid

at the fastest wave speed permitted in the model. Such waves are generated at

the boundary. Oliger and Sundström have argued that models that are hydro-

static are ill-posed for any choice of local17 boundary conditions (except for the

unlikely case where the exact solution is known on the boundary without error),

and thus erroneous wave motions are expected to be created at the boundaries

in such a model. Chen (1973) also reports that overspecification of boundary

conditions can excite computational modes, but that smoothing at points next

to the boundaries suppresses these erroneous perturbations. Oliger and Sund-

ström (1976) contend that the anelastic nonhydrostatic form of the conservation

relations can be written in a well-posed form.

In their three-dimensional nonhydrostatic cloud model, which uses the com-

pressible form of the conservation equations, Klemp and Wilhelmson (1978a, b)

suggested, based on the work of Oliger and Sundström (1976), that all prognos-

tic variables but one should be specified on the inflow boundary of the model,

whereas only one such boundary conditions should be applied at the outflow

boundary. Such boundary conditions, they maintain, are required to retain a

well-posed set of differential equations.

As a practical problem, erroneous solutions generated at the boundaries are

only serious when they propagate from the boundary into the region of signifi-

cant mesoscale perturbation of the flow from the larger-scale environment. Since

these are shortwave features, they can be effectively removed by a selective
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low-pass filter such as Eq. (10-67). Larger-scale trends in the model variables

caused by the boundaries can also introduce very serious errors, as discussed in

Section 11.3.1.

A serious problem also arises when modelers differentiate the conserva-

tion relations so as to permit additional boundary conditions (Neumann and

Mahrer 1971). For example, the incompressible conservation-of-mass relation

[Eq. (4-23)] can be written as

�w̄

�z
= −
(
�ū

�x
+ �v̄

�y

)

 (11-16)

Integrating Eq. (11-16) with respect to z permits one boundary condition from

this relation. To add an additional boundary condition, some investigators (e.g.,

Estoque 1961; Vukovich et al. 1976) have differentiated Eq. (11-16) with respect

to z, yielding

�2w̄

�z2
= − �

�z

(
�ū

�x
+ �v̄

�y

)

 (11-17)

With this form, two boundary conditions are required. Such an equation has

been used to specify a rigid boundary at the bottom and top of a model. As

shown by Neumann and Mahrer (1971), however, integrating Eq. (11-17) with

respect to z yields ∫ �2w̄

�z2
dz = �w̄

�z
+ F �x	 y	 t�	 (11-18)

where F �x	 y	 t� is the constant of integration. Unless the limits of the inte-

gral on the left side are properly specified, so that F �x	 y
t� is identically 0,

mass is not conserved. Thus Eq. (11-17) generally is not a proper form of the

conservation-of-mass relation and should not be used. A similar criticism, of

course, can be applied to any differential operation on the original conservation

relations if the proper integration constants are not applied.

11.3.1 Lateral Boundary Conditions

As already mentioned, the lateral boundaries of a mesoscale model are

required only because the simulated domain must be limited in horizontal

extent because of constraints in computer resources. However, because it is

impossible to specify values on this boundary properly, at least in a hydrostatic

model (and even in compressible models, physically accurate values generally

are difficult to find), it is desirable to remove this boundary as far from the

region of interest as possible. Expanding the grid horizontally is one available

mechanism to minimize the effect of the lateral boundary, as discussed in

Section 11.1.1.2.
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Anthes and Warner (1978) have demonstrated the serious errors in mesoscale

model results that can occur if the lateral boundary conditions are incorrectly

specified. Following the procedure introduced by Anthes and Warner, the

sensitivity of a mesoscale model to erroneous values on the boundaries can be

illustrated using the east–west component of Eq. (4-21), written as

�ū

�t
= − �

�x

(
ū2

2

)
− �0

�p′

�x
+ R	 (11-19)

where R represents the remaining terms. Integrating Eq. (11-19) using the

domain-volume average given by Eq. (4-12), where Dx and Dy correspond

exactly to the domain size of the model, and assuming symmetry in the y direc-

tion to simplify the analysis, yields

�u0

�t
= ū2

W − ū2
E

2Dx

− �0

p′
E − p′

W

Dx

+
∫ x+Dx

x

∫ y+Dy

y
Rdxdy/DxDy
 (11-20)

The quantity �u0/�t represents the average acceleration of the entire model

domain at level z, and the subscripts “E” and “W” refer to the model’s east and

west boundaries.

From Eq. (11-20), it is evident that an error in the specification of the values

of ū and p′ at either boundary will introduce a fictitious acceleration of the entire

model domain at that level. The error is inversely proportional to the size of

the domain Dx. Table 11-1 illustrates values of velocity and pressure difference

across a model domain that will generate a domain acceleration of 1 m s−1 h−1

for three values of Dx. In Table 11-1, the eastern velocity component ūE is

written in terms of the western component ūW as ūE = ūW + �u, so that(
ū2
E − ū2

W

)/
2 = ��uūW�+

[
��u�2
/]


 (11-21)

TABLE 11-1

The Values Needed in Eq. (11-20) to Generate a Domain-Averaged Acceleration at
Level z of 1 m s−1 h−1. The Velocity Difference 	u Can be Determined from Eq. (11-21)

Using the Quadratic Equation (i.e., 	ū = −ūW ±√ū2
W + 2F , where F = ū2

E − ū2
W/2).

The Value �0 = 1 m3 kg −1 was Used in Computing the Pressure Gradient Force

�u in m s−1 for ūW in m s−1 of
�ū2

E − ū2
W�/2 �0�p

′
E − p′

W� p′
E − p′

w

Dx (km) �m2 s−2� �m2 s−2� 0 10 20 (mb)

1000 278
0 278
0 23
6 15
6 10
9 2
78

100 28
0 28
0 7
5 2
5 1
4 0
28

10 2
8 2
8 2
4 0
3 0
1 0
03

Adapted from Anthes and Warner 1978.
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The analysis of Eq. (11-20), as tabulated in Table 11-1, shows that for small

domain sizes, small errors in the prescription of wind speed at the lateral bound-

aries can cause a significant acceleration within the model domain. This effect

becomes more serious for higher wind speeds because of the quadratic form of

the advective term in Eq. (11-20). The model results are even more sensitive to

specification of the mesoscale pressure perturbation on the lateral boundaries.

Even a fraction of a millibar of error in pressure on one of the boundaries can

generate substantial accelerations throughout the smaller domain sizes. Pielke

et al. (1989) discuss the significance of those errors in the context of mesoscale

observational networks.

Unfortunately, there has been little quantitative discussion in the literature

of techniques to control such erroneous acceleration. Most recent work has

concentrated on minimization of the backward reflection into the model domain

of outward-propagating advective and gravity waves.

11.3.1.1 Types of Lateral Boundary Conditions

Lateral boundary conditions can be open (i.e., mesoscale perturbations can

pass into and out of the model domain) or closed (i.e., such perturbations are not

permitted to exit or enter).18 There are several types of these lateral boundary

conditions, some of which are designed to minimize the reflection of erroneous

information back into the model domain, yet still permit input of larger-scale

flow into the region. Types of boundary conditions include the following.

Constant Inflow, Gradient Outflow Conditions. With this procedure, air

entering the model is assumed to be unaffected by the downstream mesoscale

perturbation to the flow, so that the dependent variables remain unchanged at

inflow boundaries (i.e., a closed boundary). Air exiting the model, however,

is assumed to instantaneously have the same value as is found one grid point

upstream (hence the term gradient boundary condition, since, for example,

��/�x � ��N − 1� − ��N� = 0, where � is any one of the dependent

variables and N is the outflow boundary). Inflow and outflow are defined in

terms of the wind direction at the boundaries. Unfortunately, this procedure

cannot properly handle disturbances that propagate upstream (e.g., internal

gravity waves) and simultaneously correctly handle changes to the downstream

boundary as advection and wave propagation move information at a finite speed

from the last interior grid point to the boundary.

Mason and Sykes (1979) use a modification to this scheme applied to the

velocity components as u"+1
N = 1
5 u"

N−1 − 0
5 u"
N−3. This condition is applied

at outflow points. They concluded that this representation, although resulting in

some reflection at boundaries, is not only extremely simple, but also stable and

effective. (In testing this outflow boundary condition, u"
N−2 produced improved

results compared to the use of u"
N−3.)
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Radiative Boundary Conditions. With this procedure, the variables at the

lateral boundaries are changed in value so as to minimize reflection of outward-

propagating perturbations to the flow, back into the model domain. Several

procedures have been introduced to implement radiative boundary conditions

using, for the east–west boundary, an equation of the form

�ū/�t = −c�ū/�x


The other prognostic conservation equations can be similarly evaluated at the

boundary from ��̄/�t = −c ��̄/�x, where �̄ is any one of the prognostic

dependent variables. These methods include those of Orlanski (1976), Klemp

and Lilly (1978) and Klemp and Wihelmson (1978a), and Hack and Schubert

(1981).

In Orlanski (1976),

c = −�u

�t

/
�u

�x

is evaluated at the last grid point immediately in from the boundary with the

requirement that 0 ≤ c ≤ �x/�t. Miller and Thorpe (1981) proposed improve-

ments to Orlanski’s method, including the use of an upstream formulation rather

than a leapfrog scheme. Carpenter (1982a) describes how the Miller and Thorpe

scheme can be generalized to include changes introduced at the boundary from

a larger-scale model.

In the method of Klemp and Lilly (1978) and Klemp and Wilhelmson

(1978a), c is a constant, equal to the model domain height times the Brunt–

Väisälä frequency19 divided by �, chosen to represent the dominant phase

velocity of an internal gravity wave.

With the technique of Hack and Schubert (1981), c is evaluated separately

for individual phase speeds for all of the internal gravity wave modes near the

model boundary. The resultant change of the dependent variable at the boundary

is evaluated by the summation of the changes resulting from each wave. The

advantage of the method of Hack and Schubert over that of Orlanski is that

the evaluated wave speeds are determined from atmospheric structure through

the depth of the model, whereas Orlanski’s condition is determined separately

at each vertical level. Hack and Schubert reported on a comparison of results

for a hurricane model using these and other more reflective lateral boundary

conditions. Using their results as a control, Orlanski’s condition was nevertheless

found to be very effective, even though it used information at one level.

Lilly (1981) has sought to explain the importance of lateral radiative condi-

tions using an idealized linear model of convection. In the context of a convec-

tive storm simulation, he concluded that the effect of this boundary condition

on the mass flow into or out of the model produced by the convection is more

important than the avoidance of wave reflection at the boundary. However, he
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found that a boundary condition designed to minimize reflection is also nearly

optimal to control the mass flow. Tripoli and Cotton (1982) offered an approach

in which both backward reflection and domain-averaged acceleration are con-

trolled using a larger-scale compensation region external to the primary model

domain.

Sponge Boundary Conditions. Enhanced filtering near the lateral boundaries

can be used to damp advective and wave disturbances as they move toward the

periphery of the model domain. These filters are added either by increasing the

value of a horizontal exchange coefficient in an explicit diffusion formulation20

near the boundary (e.g., Deaven 1974) or by applying larger smoothers21 in

that region (e.g., Perkey and Kreitzberg 1976; Jones 1977a). Alternatively, the

prognostic equations can be written in the form

��̄

�t
= −ū

��̄

�x
− r
(
�̄− �0

)
	

where r is called a relaxation coefficient (Davis 1983) and �0 is the desired

value of �̄ at the boundary. The relaxation coefficient is defined to become

nonzero within some distance of the boundary, reaching a maximum at the

boundary. Durran (1981) used such a formulation to represent an absorbing

layer22 at the top of his model flow simulation.

As implied by the results of Morse (1973), the increased filtering cannot be

applied abruptly at some selected distance from the lateral boundary because

erroneous reflection back into the center of the model domain will result. As

stated in Section 11.1.1.2, such reflections are analogous to those found in the

study of optics, when electromagnetic radiation travels from a material of one

index of refraction to another.

The sponge boundary condition is a form of radiative boundary condition in

which increasingly greater explicit viscosity is applied close to the lateral sides

of a model. In contrast to the types of radiative boundary conditions discussed

previously, however, the sponge condition requires a number of grid points near

the boundary to permit the smoothing to increase gradually. These added grid

points contribute to the computational cost of a model simulation.

Sponge boundary conditions are frequently used in meshed models, such

as those discussed in Section 11.1.1.2. In the parasitic form of grid meshing

reported by Perkey and Kreitzberg (1976), for example, a sponge boundary

condition is applied near the exterior of the fine mesh to prevent disturbances

generated within that region from propagating to the coarse grid. Since the

sponge is a low-pass filter, longer wave features are permitted to move from the

coarse grid into the interior of the fine mesh.

Periodic Boundary Conditions. The values of the dependent variables at one

boundary of the model domain are assumed identically equal to the values at the
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other end [e.g., ��xD� = ��x0�]. Although of considerable value in comparing a

numerical model with an exact analytic solution, realistic mesoscale simulations

generally do not permit the reintroduction of perturbations to the flow into the

inflow region of the model after they have exited the boundary. The application

of periodic boundary conditions to selected approximations to the advection

equation and to the diffusion equation is given in Appendix A.

Larger-Scale Model or Analyzed Boundary Conditions. Davis (1983) has

provided a more complete summary of lateral boundary conditions including an

analysis of their advantages and disadvantages. Among his results, he concluded

that Oliger and Sundström’s (1976) analysis regarding the ill-posed character-

istic of any local boundary condition in a hydrostatic model does not result

in serious errors in such models when the relaxation form of lateral boundary

condition is used. Anthes (1983) also presented an overview of lateral boundary

conditions, including a discussion of the use of nested models for regional-scale

forecasting. The use of analyzed large-scale fields by the National Center for

Environmental Prediction (NCEP), as reported in Kalnay et al. (1996), has been
found to be very useful in providing initial and lateral boundary conditions to

regional and mesoscale models (see, e.g., Liston and Pielke 2000).

11.3.1.2 Summary of Lateral Boundary Conditions

A necessary test to apply to any selected lateral boundary condition is to

enlarge the model domain progressively (i.e., by adding grid points) until suc-

cessive enlargements have no appreciable changes on the solutions within the

region of interest. Smaller domain sizes would result in mesoscale circulations

that are significantly altered as the lateral boundaries are moved.

In summary, the main recommendations concerning lateral boundary condi-

tions are as follows:

1. Remove the lateral boundaries far enough from the region of interest so

that a subsequent further enlargement has no appreciable change to the solutions

within the interior. Enlarging the model requires that the number of grid points

as well as the grid spacing be increased in the vicinity of the lateral boundary.

2. The radiative lateral boundary condition appears to be the form that per-

mits the least expansion of the model domain. Several forms of the radiative

boundary condition exist, and each modeler will probably need to test them

individually for their particular applications. Orlanski’s (1976) form has been

reported by several investigators (e.g., Clark 1979; Hack and Schubert 1981) to

perhaps have a general utility.

3. The sensitivity of the mesoscale model domain to grid-volume–averaged

accelerations also indicates that the model domain must have as large a hori-

zontal scale as possible. Although changes in the large-scale field can be input
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through these boundaries, the sensitivity of the results for mesoscale domain

sizes to even small variations in pressure and velocity (see Table 11-1) makes

the acquisition of observational input with suitable accuracy difficult to obtain

(Anthes and Warner 1978).

An early example of a successful incorporation of larger-scale information

into a mesoscale model is that of Carpenter (1979), who has succeeded in chang-

ing boundary conditions to represent a varying synoptic regime in his simulation

of the sea breezes over England for a case study day. He found that his simulated

sea-breeze fronts were very sensitive to the position of synoptic-scale features.

Ballentine (1980) has been equally successful in applying synoptic tendencies

to a simulation of New England coastal frontogenesis. In both of these studies,

however, the mesoscale systems were forced primarily by the underlying terrain,

rather than by input through the side walls of the models (i.e., terrain-induced

mesoscale systems, as discussed in Section 13.1).

In more recent work, Seth and Giorgi (1998) discuss the role of lateral domain

size with respect to accurate regional atmospheric model simulations. A sum-

mary on issues associated with lateral boundary conditions is given in Warner

et al. (1997). Another paper that discusses the role of lateral boundary condi-

tions is Fukutome et al. (1999).

11.3.2 Top Boundary Conditions

The top of the mesoscale model, as with the lateral boundaries, should be

removed as far as possible from the region of significant mesoscale disturbance.

Ideally, this would place the top at p̄ = 0, so that the density of air is 0.

It is not necessary to go this high in mesoscale models, however, because

of the deep layer of stable thermodynamic stratification, which always exists

throughout the stratosphere and in much of the upper troposphere. Such layers,

almost always stable even to the lifting of saturated air, inhibit vertical advec-

tion and tend to generate circulations that have larger horizontal than vertical

scales. As shown by, for example, Pielke (1972), increased stratification causes

shallower circulations to develop and makes the hydrostatic assumption more

applicable, since the characteristic horizontal length scale, Lx, becomes larger

and the vertical length scale, Lz, becomes smaller. Only through vertical prop-

agation by wave motion can information from near the surface be propagated

upward through this stable region.

Using this characteristic of the earth’s atmosphere, modelers have placed the

tops of their domains (1) deep within the stratosphere (e.g., Klemp and Lilly

1978; Peltier and Clark 1979), (2) at the tropopause (e.g., Mahrer and Pielke

1975), or (3) within the stable layer of the troposphere (e.g., Estoque 1961;

Pielke 1974a). Selection of these levels is based on numerical experimentation
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with different depths for a model, as well as from linear models, suggesting

the depth in the atmosphere to which the mesoscale circulation will extend. In

sea-breeze models over flat terrain, for example (see Figure 11-6), the simu-

lation results are essentially unaffected by increasing the depth of the model

from 4.2 km to 12 km. With strong airflow over rough terrain, however, Peltier

and Clark (1979) maintain that the lower stratosphere must be resolved to rep-

resent turbulence at those levels properly. They concluded that the turbulence

can reflect upward-propagating internal gravity waves, thereby causing large

amplifications in the flow over the mountain near the ground.

The form of the top is also important. Modelers have used rigid tops

(e.g., Estoque 1961, 1962), impervious material surfaces (e.g., Pielke 1974a),

porous lids (e.g., Lavoie 1972), and absorbing layers (e.g., Anthes and Warner

1978; Klemp and Lilly 1978; Mahrer and Pielke 1978b). In the past, rigid tops

were used since they purportedly eliminated rapidly moving external gravity

waves from the solutions, thereby permitting longer time steps in the explicit

finite difference schemes that were used.

With a rigid top, the vertical velocity is set to 0 and pressure is adjusted to

account for mesoscale perturbations at that level. As can be expected, however,

unless the solutions would naturally approach 0 at that level, the solutions are

arbitrarily constrained. Estoque (1973) performed a set of equivalent experi-

ments using a sea-breeze model with and without a rigid lid. When the rigid

lid was used, pressure was changed on the top boundary to compensate for the

restrictive requirement on vertical velocity, whereas in the second experiment,

pressure was set equal to a constant at that level and vertical velocity changes

were permitted. Solutions from these two experiments, given in Figure 11-16,

are significantly different. It is not certain, of course, whether either solution

is realistic, yet it is clear that if a rigid lid is to be imposed, it must be located

well above the region of significant mesoscale disturbance.

The impervious material surface lid was introduced to remedy some of the

criticisms of the rigid top assumption. The form of this lid used by Pielke

(1974a) illustrates this approach. Assuming that the incompressible form of

the conservation-of-mass relation is valid [i.e., Eq. (4-23)], that expression is

integrated between the highest fixed grid level in the model zt and a material

surface s�, yielding

w̄s = w̄zt
−
∫ s�
zt

(
�ū

�x
+ �v̄

�y

)
dz	

where w̄zt
and w̄s are the vertical velocities at zt and of the material surface. In

the absence of diabatic effects at these levels, the material surface corresponds

to a surface of constant potential temperature—hence the use of the subscript

“�” on s.
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Fig. 11-16a. The vertical motion (in centimeters per second) owing to airflow over an
island having a roughness length of 100 cm (between grid points 6 and 10, inclusive), and
initial wind speed of 10 ms−1; �̄ at the surface and at 1 km is 303 and 309 K, respectively.
The horizontal grid spacing is 50 m. In run (a), the pressure of the top is kept fixed at
900 mb while vertical motion at that level varies. In run (b), the top is made rigid and
pressure varies. (From Estoque 1973.)

Defining w̄s = ds�/dt and using the chain rule of calculus with s� = s��t,
x�t�	 y�t��, we have

�s�
�t

= −ū
�s�
�x

− v̄
�s�
�y

+ w̄zt
−
∫ s�
zt

(
�ū

�x
+ �v̄

�y

)
dz
 (11-22)

In contrast to the rigid top, the material surface moves in response to divergence

below and is considered a more realistic representation of conditions at the

top of the model. This material surface is usually defined coincident with a

surface of constant potential temperature and is placed at the tropopause level.

If diabatic changes and vertical subgrid-scale mixing at this level are small

relative to changes at a location because of advection, such a representation

should closely correspond to the movement of the tropopause.
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Fig. 11-16b

With the assumption that s� is a potential temperature surface, �̄ is kept con-

stant on it. The remaining dependent variables must be estimated, however. One

procedure is to use the initial values of these variables at whatever height is

predicted for s�. But this method assumes that changes below s� have no influ-

ence on the variables, other than �̄, at s� and above. Another possibility, as yet

untested, is to insert several additional potential temperature layers above s� and
to integrate an adiabatic form of the conservation relations at those levels in an

isentropic coordinate representation to permit dynamic adjustment of the depen-

dent variables on s�. Another alternative is to treat s� as an interface between

fluids of two different densities and thereby include a pressure gradient force

on s� analogous to that derived for the two-layer tank model in Section 5.2.1.2,

where h corresponds to s�.
The use of a porous model top differs from the impervious lid in that mass

transport is permitted across s�. Lavoie (1972) used such an approach, since the

lid of his model was the top of the planetary boundary layer, and he needed

to entrain mass into it as it grew. Deardorff’s (1974a) prognostic equation for
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the depth of the planetary boundary layer [i.e., Eq. (7-50)] is of the same form.

Other than using such a level as a cap on the boundary layer, such an approach

has not been used in mesoscale models.

The use of an absorbing layer with multiple levels to represent the top of

the model was introduced by Klemp and Lilly (1978) in their simulation of

airflow over rough terrain. As they maintained in that paper, and based in part

on results that they reported in earlier (1975) linear model results, vertically

propagating internal gravity wave energy can be erroneously reflected downward

by a single level top. From Klemp and Lilly’s linear theory, some downward

reflection is expected when discontinuities of temperature and wind occur, but

the bulk of the energy is usually expected to propagate into the stratosphere and

there to be dissipated by small-scale turbulence. In a linear model, incorporation

of a radiation boundary condition that permits this wave energy to leave is

straightforward, but in a nonlinear model, Klemp and Lilly (1978) argued that

local boundary conditions were unable to handle this effect properly.

Klemp and Lilly stated than an absorbing layer must be placed above the main

portion of the model domain. In this region, horizontal filtering is increased

from the base of the absorbing layer to the top of the model to prevent energy

from being erroneously reflected downward. To prevent reflections caused by

the smoothing, the filter must be increased gradually. This approach is analogous

to the sponge method used to minimize lateral boundary effects, as discussed

in Section 11.3.1.1.

Figure 11-17, reproduced from Klemp and Lilly (1978), shows the depth

of absorbing layer required as a function of the vertical wavelength of the

mesoscale disturbance in the lower portion of the model domain, using a par-

ticular form of viscosity in the absorbing layer, as given in the figure caption.

As Klemp and Lilly discussed in their paper, large reflection at low viscosity

results from reflection off of the upper boundary because of insufficient damp-

ing; excessive damping in the absorbing layer also causes reflection. In addition,

an absorbing layer with a depth greater than the vertical wavelength of the

mesoscale disturbance is required.

Bougeault (1983) and Klemp and Durran (1983) have suggested a local upper

boundary condition (called a radiative boundary condition) that eliminates the

need for a computationally expensive absorbing layer. In their formulation, if

the mesoscale pressure perturbation (expressed in terms of �̂ ′) is computed from

�̂ ′ = ŵ′ 1

kH�
3/2
0

(
g
��̄

�z

)1/2
	 (11-23)

where �̂ ′ and ŵ′ are expressed as functions of horizontal wavenumber kH, then
downward reflection into the computational domain from the top is minimized

when � ′ is determined by summing over all horizontal wavenumbers in the

model. Klemp and Durran showed that although derived from a linear model
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Fig. 11-17. Reflectivity, from the absorbing layer as a function of a nondimensional
inverse Reynolds number, 1/ReA

, for several nondimensional viscous layer depths (Dv =
0.5, 1.0, 1.5, and 2.0). A value of r = 1�0 corresponds to complete reflection. The nondi-
mensional numbers are defined as ReA

= V0/kxvT and Dv = 	za/lz, where kx is the
horizontal wavenumber of the atmospheric disturbance, V0 is the large-scale horizontal
wind speed assumed to be constant with height in the absorbing layer, 	za is the depth
of the absorbing layer, and lz is the vertical wavelength of the mesoscale disturbance.
The vertical wavelength is defined as lz = 2�V0/�
g/�0���0/�z�1/2, where the denominator
is the Brunt–Väisälä frequency. The viscosity in the absorbing layer is defined by v =
vT sin

2�� ln
�̄/�1�/2 ln
�T/�1��, where �1 and �T are the values of potential temperature at
the bottom and the top of the absorbing layer, respectively. (From Klemp and Lilly 1978.)

in the absence of Coriolis effects, this economical top boundary condition to

also be effective for nonlinear problems when Coriolis effects are included.

Appendix A of their paper provides a procedure to implement this boundary

condition in a numerical model.

Based on the studies of top boundary conditions, the following conclusions

are made:

1. If the vertical propagation of internal gravity wave energy is equal to

or more important than advective properties in a mesoscale model, then an

absorbing layer [or a boundary condition such as Eq. (11-23)] is required.
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2. Otherwise, a material surface top placed along an isentropic surface well

removed from the region where advective changes are significant is sufficient.

3. Use of a rigid top in a mesoscale model is inappropriate unless advective

effects are dominant and the depth of the model is much greater than the region

of mesoscale disturbance. In this case, the precise form of the top (e.g., material

surface, rigid top, absorbing layer) is unimportant, since perturbations that reach

that level will be inconsequential for any of the dependent variables.

11.3.3 Bottom Boundary Condition

In a mesoscale atmospheric model, the bottom is the only boundary that has

physical significance. Moreover, it is the differential gradient of the dependent

variables along this surface that generates many mesoscale circulations (i.e.,

surface boundary-forced mesoscale systems, see Chapter 13, Section 13.1) and

that has a pronounced influence on the remaining mesoscale flows (i.e., initial

value/lateral boundary-forced mesoscale systems, see Section 13.2). Changes in

this lower boundary over time (from, e.g., anthropogenic activity or overgraz-

ing by animals) can cause substantial climatic changes such as desertification

(Otterman 1975; Idso 1981). Because of this boundary’s crucial importance in

mesoscale atmospheric systems, it must be represented as accurately as possible.

In discussing this component of mesoscale models, it is convenient to consider

the land and water surfaces separately. This is done because water is translucent

to solar radiation and overturns much more easily than land.

11.3.3.1 Water Bodies

To represent the surface of water bodies such as lakes, bays, and oceans

properly in a mesoscale atmospheric model, dynamic and thermodynamic inter-

actions between the air and the water must be permitted (Pielke 1981). Such a

connection can involve small-scale boundary layer interactions, such as gaseous

interchanges between the water–air interface, or larger-scale transports of heat

by wind-driven currents. Since these interactions generally involve complex non-

linear processes, it is necessary to use an oceanographic model to simulate these

interactions properly and to provide appropriate bottom boundary conditions

over water for the meteorological model.

Clancy et al. (1979) have attempted some simulations using a coupled sea-

breeze and upwelling oceanographic model to study the interactions between

these two geophysical phenomena. In their model, the sea-surface temperature

generated by upwelling was used as a bottom condition in the sea-breeze part of

the model, and the wind shearing stress at the sea surface was used to influence

the intensity of upwelling. Mizzi (1982), and Mizzi and Pielke (1984) continued

this work, using a more complete atmospheric model. Both studies determined
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that the interaction between upwelling and sea-breeze intensity was weak for

this particular region of the Oregon coast. The direction of the synoptic flow

is important, however. Hawkins and Stuart (1980), for example, reported that

northerly flow along the Oregon coast is associated with upwelling and strong

sea breezes, whereas southerly synoptic flow results in a cessation of upwelling

and weak sea breezes.

Avissar and Pan (2000) used the Regional Atmospheric Modeling System

(RAMS) to simulate summer hydrometeorological processes of Lake Kinneret

(Sea of Galilee) in Israel as a first step in developing a coupled atmosphere–

lake modeling system. Costa et al. (2001) has coupled RAMS to the Princeton

Ocean Model to investigate deep cumulus cloud–ocean interactions in the west-

ern tropical Pacific Ocean. Xue et al. (2000a) describe results from a coupled

mesoscale atmospheric–water body modeling system.

Over the Gulf Stream, Sweet et al. (1981) have shown that the large horizontal
sea-surface temperature gradient on the north side of that well-defined current

generates lines of low-level cloud paralleling the edge of the Gulf Stream. In

addition, the sea state is significantly affected by the difference in stability

across the Gulf Stream boundary with rougher seas and stronger low-level winds

on the warm side of the boundary and calmer, more humid conditions north

of the current. In the area off the west coast of Africa, Brown et al. (1982a,
b) have used an air–sea interaction model to show the close coupling between

the depth of convective mixing in the ocean and in the atmosphere. Jacobs and

Brown (1974) performed preliminary three-dimensional simulations of the air–

lake interactions over Lake Ontario. Zeng et al. (1999a) uses observed data to

describe the relation between sea-surface skin temperature and wind speed and

a sea-surface bucket temperature.

Other past work has documented a number of effects of wind on ocean

dynamics, including the following:

1. An increase in wind speed produces a deepening of the ocean-mixed

layer (Marchuk et al. 1977; Chang and Anthes 1978; Elsberry and Randy 1978;

Kondo et al. 1979).
2. An increase in wind speed produces small-scale wave breaking. This

change over from an aerodynamically smooth to a rough water surface occurs

over a rather narrow velocity range (u∗ � 23 cm s−1) (Melville 1977).

3. Spatial and temporal variations in wind velocity cause currents in coastal

waters (Emery and Csanady 1973; Blackford 1978; Sheng et al. 1978; Svendsen
and Thompson 1978).

4. Changes in wind speed and direction along a coastline alter the

upwelling–downwelling pattern (Csanady 1975; Knowles and Singer 1977;

Hamilton and Rattray 1978; Allender 1979).
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5. Changes in wind speed alter the circulation in estuaries and harbors

through mixing and the resultant creation of horizontal gradients of temperature

and salinity in the water (Hachey 1934; Weisberg 1976; Long 1977; Wang

1979).

6. Wind energy absorbed by coastal waters is a function of the wind’s

spectral energy (Lazier and Sandstrom 1978).

7. Wind velocity affects the drift of coastal pack ice (McPhee 1979).

8. The wind velocity field influences the movement of pollutants in the

water (Pickett and Dossett 1979).

9. The wind causes the formation of helical circulation patterns in the

water, with the resultant accumulation of surface debris in lines parallel to the

surface wind direction (Gross 1977).

10. The orientation of the coastline and ocean bathymetry influence wind-

induced upwelling (Hua and Thomasset 1983).

11. The wind profile near the ocean surface is significantly influenced by

blowing sea spray and rain during strong winds (Pielke and Lee 1991).

12. Diurnal variations of the sea-surface temperature can result in significant

variations of surface turbulent fluxes (Zeng and Dickinson 1998).

The effects of mesoscale circulations on the coastal waters, therefore, often

include diurnal changes in the vertical gradients of temperature, of salinity, and

of other gaseous and aerosol materials in the upper levels of the water caused

by changes in the temporal and spatial fields of the atmospheric-dependent vari-

ables over the water surface. Pielke (1991) suggested that mesoscale resolution

of ocean upwelling is needed to properly simulate the ocean uptake of carbon

dioxide. The advection of aerosol may also affect the temperature of the coastal

waters (through changes in the turbidity of the water) and hence feedback to

the intensity of mesoscale circulations, as well as to local baroclinic circulations

in the water. In general, however, the most significant influence of mesoscale

atmospheric circulations on ocean dynamics is a result of the low-level wind

that, through surface shearing stresses, influences currents and vertical turbulent

mixing in the water. The water body, in contrast, primarily influences atmo-

spheric mesoscale circulations through its surface temperature, including its time

and space variability. Pielke (1981) discussed the interactions between coastal

waters and the atmosphere in more detail. A relatively recent overview of air–sea

interactions is given in Rogers (1995).

11.3.3.2 Land Surfaces

The representation of land surfaces as a bottom boundary requires different

types of models than those required to properly represent the water interface.

In contrast to water, the ground is opaque and does not readily overturn. To
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represent land as a bottom surface, it is convenient to consider bare soil sep-

arately from vegetated ground. The former characterization is much easier to

simulate, and mesoscale models have become increasingly more sophisticated

in its representation. Vegetation effects, in contrast, are very complex. A vari-

ety of field campaigns have been performed to develop improved understanding

of land–atmosphere interactions (Rango et al. 1998; Hall 1999 and references

therein; LeMone et al. 2000). An overview of land–atmosphere interactions is

given in Avissar (1995), Bales and Harrington (1995), Dickinson (1995), and

Entekhabi (1995).

Bare Soil As discussed in Chapter 7 [see after Eq. (7-19)], the mesoscale

horizontal velocity is 0 at a roughness height z0. Micrometeorological obser-

vations have shown the value of z0 generally to be very small over bare soil,

because rocks, stones, and grains of soil are usually small and offer relatively

little resistance to the wind. A tabulation of representative values of z0 was

given in Chapter 7, Table 7-2, for bare soils as well as for various vegetative

surfaces. The mesoscale vertical velocity perpendicular to the ground surface is

also equal to 0, so that the velocity and vertical subgrid momentum flux at the

ground surface can be approximated by23

u�z0� = v�z0� = w�z0� = 0	 u′′w′′ = −u2
∗ cos	

v′′w′′ = −u2
∗ sin


(11-24)

The specification of potential temperature, �̄, water substance, q̄n, other

gaseous and aerosol atmospheric materials, �̄m, and pressure, �̄, at the land

surface are not as simple to estimate as are ū, v̄	 and w̄. The variables �̄, q̄n, and
�̄m generally depend on fluxes of these quantities into and out of the ground.

For example, Walko et al. (2000a), based on the work of Garratt (1992), show

that T �z0� = TG + 2�∗/k over bare soil.

The pressure at level z0 can be diagnosed from Eq. (4-32) or (4-41) if the

hydrostatic representation is used and if the pressure at some arbitrary level

above z0 is known. Equations (4-32) and (4-41) can then be integrated down-

ward from that level. In an anelastic or a compressible model, local hydrostatic

equilibrium between the first grid point above the ground and the surface has

often been assumed to diagnose pressure at the surface.

The need to introduce a boundary condition on Eq. (4-41) [or (4-32)] intro-

duces a problem in the integration of these relations, however. If the top of

the model s� [defined by Eq. (11-22)] is the level where the pressure boundary

condition is needed, then a method to estimate pressure at that level must be

devised. Defining it as a constant is not satisfactory, since net warming in a

column must initially result in its expansion so that the pressure at s� will rise

while remaining a constant at z0 (Nicholls and Pielke 1994a).
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To illustrate the problem, Eqs. (4-32) and (4-41) can be differentiated with

time and integrated between z0 and s�, yielding
24

��̄

�t

∣∣∣∣
s�

− ��̄

�t

∣∣∣∣
z0

= g
∫ s�
z0

1

�̄2

��̄

�t
dz	 (11-25)

�p̄

�t

∣∣∣∣
s�

− �p̄

�t

∣∣∣∣
z0

= −g
∫ s�
z0

�p̄

�t
dz
 (11-26)

Using the definition of �̄ [after Eq. (4-36)] of potential temperature [Eq. (2-48)]

and the ideal gas law [Eq. (2-49)], Eqs. (11-25) and (11-26) are related by

��̄

�t
= 1

�̄�̄

�p̄

�t
	

so that Eq. (11-25) can be rewritten as

��̄

�t

∣∣∣∣
s�

− ��̄

�t

∣∣∣∣
z0

= g
∫ s�
z0

1

�̄2

��̄

�t
dz = −g

�̄�̄

∫ s�
z0

��̄

�t
dz
 (11-27)

As evident in Eq. (11-27), for a fixed s�, a change in the heat content of a

column is equivalent to a change of the mass in that column for a hydro-

static atmosphere. Such changes in heat could occur from physical mechanisms

such as radiative flux divergence [i.e., see Eq. (8-1)]. With fixed pressure on s�
(i.e., ��̄/�t�s� ≡ 0), the result of heating, as represented by the middle term in

Eq. (11-27), would be a drop in surface pressure.

In contrast, in the real atmosphere, net heating in a column would result in a

thickness adjustment such that in the absence of advection or wave propagation

in the horizontal,

−g
∫ s�
z0

1

�̄
dz = C	 (11-28)

where C is a negative constant (since �̄s�
< �̄z0

). In the atmosphere, such a

thickness adjustment can be performed by compressibility (Nicholls and Pielke

1994a), which is not permitted in the model if either of the conservation-of-mass

relations given by Eq. (4-23) are used. Equation (11-28) is obtained by inte-

grating Eq. (4-41) between z0 and s�. Differentiating Eq. (11-28) with respect

to time and using Leibnitz’s rule (see, e.g., Hildebrand 1962:360) yields∫ s�
z0

1

�̄2

��̄

�t
dz− 1

�̄s�

�s�
�t

= 0	

where �̄s� is the value of potential temperature on s�. Solving for �s�/�t gives

�s�
�t

= �̄s�

∫ s�
z0

1

�̄2

��̄

�t
dz	 (11-29)
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so that net heating increases the thickness of the layer (i.e., �s�/�t > 0),

whereas cooling generates a decrease in the thickness. Feliks and Huss (1982)

discussed the need to include this effect in mesoscale models. The change

in thickness caused by expansion or contraction in Eq. (11-29) should be

added to the expression for s� in Eq. (11-22) [i.e., �s�/�t = �s�/�t� from

Eq. (11-22) + �s�/�t� from Eq. (11-29)].

Surface Temperature. At the surface, early mesoscale models prescribed

potential temperature as a periodic heating function and permitted no feedback

between the mesoscale circulation and the ground surface temperature. Pielke

(1974a) used such a representation, given as

�̄�z0� = �̄0�z0�+ ��̄max sin
2�t

day
	 (11-30)

where day was equal to twice the length of daylight, t is the time after sunrise,

�̄0�z0� the potential temperature at z0 at sunrise, and ��̄max the maximum tem-

perature attained during the day. Downward-looking radiometer measurements

from aircraft were used to estimate ��̄max.

A more general periodic form was used by Neumann and Mahrer (1971) and

Mahrer and Pielke (1976), in which observed temperature data were fitted to

a series of periodic functions of the form suggested by Kuo (1968). Such a

periodic form can be written following Panofsky and Brier (1968) as

�̄�z0� = �̄T �z0�+
N/2∑
n=1

(
an sin

2�nt

T
+ bn cos

2�nt

T

)
	 (11-31)

where

an = 2

N

�N/2�−1∑
n=1

�̄+�z0� sin
2�nt

T
	 aN/2 = 0

bn = 2

N

�N/2�−1∑
n=1

�̄+�z0� cos
2�nt

T
	 bN/2 = − �̄+�z0�

N
	

(11-32)

with T usually chosen as 1 day (i.e., to correspond to the diurnal cycle), with

t = 0 corresponding to midnight and N an even integer number of observa-

tions. The value of �̄T �z0� corresponds to the average temperature over T and

is assumed to be constant within T . The quantity �̄+�z0� is the deviation of

potential temperature at time t from �̄T �z0�. In practice, a different temperature

than �̄+�z0� is often used to obtain an and bn. Neumann and Mahrer (1971), for

example, used a series expansion equivalent to Eq. (11-31) with N = 4 and val-

ues of temperature from Kuo (1968, Figure 6) at a soil depth of 0.5 cm. Mahrer
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and Pielke (1976) applied an expansion with N = 8 for use in Eq. (11-31) using

radiometer data collected over Barbados in 1969 and analyzed for the diurnal

temperature wave by Holley (1972). Estoque et al. (1976) used a representation

of the form given by Eq. (11-31), with t defined in terms of hours after 0700

LST using infrared measurements of surface temperature from aircraft flights

over Lake Ontario.

Although simple to apply, such formulations imply an infinite reservoir of

heat and permit no feedbacks between the ground and the atmosphere.

Surface Heat Energy Budget. Physick (1976) developed the first mesoscale

model that permitted feedbacks between the temperature of the ground sur-

face and the atmosphere. He used a heat budget technique in which the ground

surface was assumed to have zero heat storage. Similar approaches were sub-

sequently adopted by Mahrer and Pielke (1977a, b), Estoque and Gross (1981),

and others.

With the heat budget method, the conductive QG, convective QC, and radiative

QR contributions of heat to the ground surface are balanced, resulting in an

equilibrium surface temperature. Written more formally,

−QG +QC +QR = 0


In the soil, in general,

�QG�  �QC� and �QG�  �QR�	
so that only ground conduction is retained as the principal contribution to the

heat balance. (When rain falls or snow melts and percolates into the soil, sub-

stantial heat can be transferred, so these inequalities may not be satisfied.)

In the atmosphere, the inequalities are reversed, that is,

�QC�  �QG� and �QR�  �QG�	
since molecular transfers of heat in turbulent air are ineffective compared to radi-

ation and convection [as discussed in Section 5.1 for convection; i.e., e2ui /S
2 

v/LS in Eq. (5-2)].

Retaining the symbol QG to refer to ground heat conduction, the convective

and radiative heat transfers in the atmosphere can be written as

QC = −�̄Cpw
′′�′′ − �̄Lvw

′′q′′
3

and

QR = QN = �1− A�� �R↓swG
+ �RD

swG
�+ �R↓LWG

− �R↑LWG
	

where the formulations for the turbulent sensible and latent heat fluxes QC are

obtained using expressions such as Eq. (7-29) and QR is composed of direct

and diffuse shortwave radiation [such as from Eq. (8-63)] and of upward and
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downward longwave radiation [such as from Eq. (8-39) evaluated at the ground

level]. The quantity QN is called the net radiation. An example of this balance

of heat fluxes,

+QG + �̄Cpw
′′�′′ + �̄Lvw

′′q′′
3 − �1− A�� �R↓swG

+ �RD
swG

�

− �R↓lwG
+ �R↑lwG

= 0	 (11-33)

is illustrated in Figure 11-18 for a location in Saudi Arabia. The length of the

arrows plotted in the figure represent examples of the relative magnitudes of

these fluxes, where the vector sum is 0 since the interface is assumed to be

infinitesimally thin and to have no heat storage.

An additional term can be added to Eq. (11-33) if anthropogenic or natural

sources and sinks of heat exist (Grimmond and Oke 1999; Masson 2000). When

Fig. 11-18. Average heat fluxes at 1300 LST observed over the Empty Quarter of Saudi
Arabia. A positive value represents a loss to the surface and a negative value is a gain.
The sum of the fluxes equals 0. Over the Empty Quarter, the latent heat flux is essen-
tially 0. (From Eric Smith, CSU 1982, personal communication.)
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this is important, the heat budget should be written as

+QG + �̄Cpw
′′�′′ + �̄Lvw

′′q′′
3 − �1− A�� �R↓swG

+ �RD
swG

�

− �R↓lwG
+ �R↑lwG

+Qm = 0	 (11-34)

where Qm > 0 could refer to waste heat from heating or air conditioning in a

city, heat from a forest fire or volcano, etc. Ichinose et al. (1999), for example,

found that Qm in central Tokyo, Japan exceeded 400 W m−2 in the daytime in

the winter, with a maximum value of 1590 W m−2.

Since at the ground, u = 0, in the expression for the grid-volume average for

R↑lw in Eq. (8-39), �R↑lwG
= ��T 4

G if a ground emissivity of �G = 1 is assumed.

The temperature of the ground surface, �TG, is called the equilibrium surface
temperature. If �G < 1, then the upward longwave flux from the ground should

be written as

�R↑lwG
= �G��T 4

G + �1− �G� �R↓lwG

 (11-35)

The second term on the right side of Eq. (11-35) is the reflection of downward

longwave radiation when �G 	= 1. In this situation, the ground does not radiate

as a blackbody [the definition of which is given after Eq. (8-6)]. Most ground

surfaces, however, radiate close to a blackbody, as shown in Table 11-2. As

discussed by Lee (1978:71), values of �G = 0
95 and �TG = 25�C and an effective

radiating temperature of the air above the surface25 of 20�C results in a relative

error of −1% when Eq. (11-35) is used with �G = 1.

Some modelers (e.g., Estoque and Gross 1981) have used an empirical rela-

tion to estimate the net longwave radiation reaching the ground. However, such

formulas use only data that can be derived from the surface and neglect the

overlying moisture stratification. Kondratyev (1969) cautions against using such

formulas for time periods shorter than monthly averages.

One formulation (given by Idso and Jackson 1969 and Lee 1978) used to

estimate monthly averaged net longwave radiation at the ground is

�R↓lwG
− �R↑lwG

= �
[
�Ea�1− c�+ c��T 4

a − �T 4
G

]
	

where

Ea = 1− 0
261 exp
(−7
77× 10−4

(
273− �Ta

)2)



The constants in this expression are empirically derived and are needed to

account for the absorption of radiation by CO2 and O3 at the measurement sites

used to derive this expression. The temperature �Ta is determined at Stevensen

screen height (∼1.5 m), and c is the fraction of the sky covered by clouds.
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TABLE 11-2

Emissivities of Longwave Radiation for Representative
Types of Ground Covers

Ground cover �

Fresh snow 0.99a

Old snow 0.82a

Dry sand 0.95b , 0.914c

Wet sand 0.98b , 0.936c

Dry peat 0.97b

Wet peat 0.98b

Soils 0.90–0.98a

Asphalt 0.95a, 0.956c

Concrete 0.71–0.90a, 0.966c

Tar and gravel 0.92a

Limestone gravel 0.92b

Light sandstone rock 0.98b

Desert 0.84–0.91a

Grass lawn 0.97b

Grass 0.90–0.95a

Deciduous forests 0.97–0.98a, 0.95b

Coniferous forests 0.97–0.98a, 0.97b

Range over an urban area 0.85–0.95a

Pure water 0.993c

Water plus thin film of petroleum oil 0.972c

aFrom Oke (1973:15, 247).
bFrom Lee (1978:69).
cFrom Paltridge and Platt (1976:135).

Soil Heat Flux. The rate of conduction of heat within the soil, QG =
v �T /�z�G, can be evaluated from a one-dimensional diffusion equation26 within

the soil,

�T

�t
= �

�z

v

�c

�T

�z
	 (11-36)

where v, c, and � are the thermal conductivity, specific heat capacity, and soil

density, respectively. The v/�c = ks is called the thermal diffusivity.27 The

quantity ks determines the speed of penetration of a temperature wave into the

soil, and v indicates the rate of heat transport. The temperature gradient at

ground level is �T /�z�G. Examples of values of these parameters for different

types of soils are given in Table 11-3.

Soil conductivity depends on a number of factors, including the conductivity

of the individual soil particles, their sizes, the compaction of the soil as mea-

sured by porosity, and the soil moisture. Soil particle size, for example, can vary

widely from on the order of 1 m for clay to 100 m for sand. In addition,
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TABLE 11-3

Representative Values of Thermal Conductivity v, Specific Heat Capacity, c, Density, ,
and Thermal Diffusivity, ks, for Various Types of Surfaces

Concrete 4
60a 879a 2.3a × 103 2.3a × 10−6

Rock 2
93a 753a 2.7a × 103 1.4a × 10−6

Ice 2
51a 2093a 0.9a × 103 1.3a × 10−6

2100b 0.92b × 103 1.16b × 10−6

Snow

New 0
14a 2093a 0.2a × 103 0.3 ×10−6

0
08b 2090b 0.10b × 103 0.1b × 10−6

Old 1
67a 2093a 0.8a × 103 1.0a × 10−6

0
42b 2090b 0.48b × 103 0.4b × 10−6

Nonturbulent air 0.03a, 0.02c , 1005 0.0012a × 103 21a × 10−6

0
025b

Clay soil (40% pore space)

Dry 0
25b 890b 1.6b × 103 0.18b × 10−6

10% liquid water 0
63a 1005a 1.7a × 103 0.37a × 10−6

20% liquid water 1
12a 1172a 1.8a × 103 0.53a × 10−6

30% liquid water 1
33a 1340a 1.9b × 103 0.52b × 10−6

40% liquid water 1
58b 1550b 2.0b × 103 0.51b × 10−6

Sand soil (40% pore space)

Dry 0
30b 800b 1.6b × 103 0.24b × 10−6

10% liquid water 1
05a 1088a 1.7a × 103 0.57a × 10−6

20% liquid water 1
95a 1256a 1.8a × 103 0.85a × 10−6

30% liquid water 2
16a 1423a 1.9a × 103 0.80a × 10−6

40% liquid water 2
20b 1480b 2.0b × 103 0.74b × 10−6

Peat soil (80% pore space)

Dry 0
06b 1920b 0.3b × 103 0.10b × 10−6

10% liquid water 0
10a 2302a 0.4a × 103 0.12a × 10−6

40% liquid water 0
29a 3098a 0.7a × 103 0.13a × 10−6

70% liquid water 0
43a 3433a 1.0a × 103 0.13a × 10−6

80% liquid water 0
50b 3650b 1.1a × 103 0.12b × 10−6

Light soil with roots 0
11c 1256c 0.3c × 103 0.30c × 10−6

Liquid water 0.63a, 0.57b 4186a 1.0a × 103 0.15 ×10−6

aFrom Lee (1978:87).
bFrom Oke (1973:38).
cFrom Rosenberg (1974:66).

although it is not considered here, heat can be transferred by the percolation

of water and change of phase of water. The freezing and thawing of soils, for

example, contributes significantly to the heat budget within the soil (see, e.g.,

Viterbo et al. 1999).
When water is present in the soil, its heat capacity, density, and thermal

conductivity vary depending on the amount of water present. As reported in
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McCumber (1980),

�c = �1− �s��ici + ��wcw	 (11-37)

where �s is the saturation moisture content (its porosity), � is the volumetric

moisture content (cm3 cm−3), and �ici is the product of the density and heat

capacity of the dry soil type i (� and �s are discussed in more detail shortly).

The density and specific heat capacity of water �wcw are given in Table 11-3.

Equation (11-37) is simply a weighting of the contributions to the volumetric

heat capacity of the dry soil and of the liquid water that is present. The heat

capacity of air has been omitted, since it is negligibly small compared to the

other two terms.

The thermal conductivity varies over several orders of magnitude as soil

dries out. McCumber (1980), referring to empirical date of Al Nakshabandi and

Kohnkes (1965), expresses v in units of J/(m s �C) as

v =
{
419 exp−��Pf + 2
7��	 Pf ≤ 5
1

0
172	 Pf > 5
1	

where Pf is the base-10 logarithm of the magnitude of the moisture poten-

tial & . [Moisture potential is defined after Eq. (11-46).] Figure 11-19 illustrates

the strong dependence of heat diffusivity on moisture potential. As shown by

Al Nakshabandi and Kohnke (1965), moisture potential is virtually independent

of the soil type, so that it is convenient to express v in this form.

Equation (11-36) is of the same form as discussed in Chapter 10,

Section 10.1.2 and can be solved on a vertical grid lattice by the implicit finite

difference solution technique given by Eq. (10-27). Since the largest gradients

in the diurnal variation of temperature are observed within 50 cm or so of

soil surfaces (see, e.g., Figure 11-20), very fine resolution is required in such

representations. McCumber (1980) and McCumber and Pielke (1981) used

vertical grids of 0, 0.5, 1.5, 3, 5, 8, 12, 18, 26, 36, 48, 62, 79, and 100 cm in

simulations of heat and moisture fluxes within various types of soils.

If the thermal diffusivity is a constant, then an analytic solution to Eq. (11-36)

is possible. Rewriting Eq. (11-36) as

�T

�t
= ks

�2T

�z2
	 (11-38)

let the temperature at the surface at time t be given by T �0	 t� = T0 cos�t,
where � is the frequency of the heating. Also require that the temperature

always be finite. Similar to the substitution used in the solution of the sea-breeze

model given in Chapter 5, Section 5.2.3.1, let

T �z	 t� = T̂ �z�ei�t	
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Fig. 11-19. Dependence of soil thermal conductivity on moisture potential. The mag-
nitude of the base-10 logarithm of the moisture potential in centimeters is Pf [i.e., Pf =
log10 � (cm)]. The thermal conductivity v is plotted in units of J/(m s �C). This diagram
corresponds to Figure 4 in Al Nakshabandi and Kohnke (1965). (From McCumber 1980,
Figure 2.)

so that a periodic solution is assumed in time but not with depth. Substitut-

ing this relation for T �z	 t� into Eq. (11-38) yields the ordinary differential

equation

d2T̂ �z�

dz2
− i�

ks
T̂ �z� = 0


As can be shown by substitution, this differential equation has a solution of the

form

T̂ �z� = a1 exp
(−√�i�/ks�z)+ a2 exp

(√
�i�/ks�z

)
	

where a1 and a2 are constants of integration. Since
√
i = �i + 1�/

√
2,28 this

expression can also be written as

T̂ �z� = a1 exp
[−�i + 1�

√
��/2ks�z

]+ a2 exp
[
�i + 1�

√
��/2ks�z

]





11.3 Spatial Boundary Conditions 405

Fig. 11-20. Average diurnal temperature variations at various depths (in centimeters)
in the ground, based on the University of Texas observations from 0.5 to 5.5 cm and the
Johns Hopkins University observations below 10 cm taken at O’Neill, Nebraska in the
summer of 1953. The dash–dot curve represents the locus of the temperature maxima.
(From Kuo 1968.)

From the requirement that T �z	 t� be finite, a2 is identically equal to 0. Thus

the temperature as a function of depth is given by

T �z	 t� = a1 exp
(−√��/2ks�z) exp i[��t −√��/2ks�z�]


Since only the real portion of this solution has physical significance, the desired

solution is

T �z	 t� = a1 exp
[−√��/2ks�z] cos(�t −√��/2ks�z)	 (11-39)

where the identity ei� = cos � + i sin � has been used. Using the boundary

condition at z = 0,

T �0	 t� = a1 cos�t = T0 cos�t	
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so that a1 = T0. The final desired solution is thus

T �z	 t� = T0 exp
[−√��/2ks�z] cos (�t −√��/2ks�z)


The properties of this solution are that (1) the temperature within the soil

varies in time with the same frequency as at the surface, (2) the amplitude

is a maximum at the surface and decreases exponentially downward, and (3)

there is a phase shift in the solution with depth. These aspects of the solution

are illustrated in Figure 11-20. In addition, (1) the greater the frequency of

heating and cooling at the surface, the more rapidly the temperature perturbation

diminishes with depth (i.e., diurnal heating dampens more rapidly with depth

than seasonal temperature changes), and (2) the larger the diffusivity, ks, the
more slowly the temperature perturbation diminishes with depth.

Soils generally are not homogeneous with depth. Nonetheless, this simple

model provides a useful theoretical framework for understanding the rate of

transfer of heat into the ground, as illustrated in Figure 11-20.

An integrated form of Eq. (11-36) can also be used to compute the soil heat

flux QG. Assuming that � and c are constant with depth, Eq. (11-36) can be

rewritten as

c�
�T

�t
= �

�z
v
�T

�z
= �

�z
Qs	 (11-40)

where Qs is the heat flux within the soil. Integrating Eq. (11-40) between the

surface and a depth �z sufficiently deep so that Qs ≡ 0 yields

QG = �c
∫ 0
−�z

�T

�t
dz
 (11-41)

Integrating the temporal temperature changes within the soil using this expres-

sion could provide a more accurate estimate of the soil heat flux at ground level

than computing QG from QG = v�T /�z�G. The quantity QG is also called the

heat storage term.

Albedo. The amount of solar radiation impinging on a horizontal surface is a

function of such factors as latitude, cloud cover, and time of year and of day

(see Section 8.4). In this discussion, the only additional information required is

the effect of terrain slope �zG/�x and �zG/�y, albedo A, and ground wetness.

This latter input is needed, for example, to estimate the relative partitioning

between latent and sensible turbulent heat fluxes in Eqs. (11-33) and (11-34).

The albedo of a surface is the fractional reflectance of radiation that reaches

it. Although albedo is a function of wavelength, in mesoscale meteorology it

usually refers to the reflectance of solar radiation, both direct and diffuse. Exam-
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ples of representative albedos for a range of characteristic soils and other bare

surfaces are given in Table 11-4, which shows that, for instance, fresh snow can

reflect up to 95% of the solar radiation that reaches it, whereas dark soil (e.g.,

wet peat) reflects only 5%.

The albedo is not a constant at a given location, even with a uniform surface,

but rather varies as a function of sun zenith angle as well as soil wetness (e.g.,

McCumber 1980). As reported in McCumber (1980), the variability of albedo

with zenith angle, Z, has been estimated empirically, based on the work of Idso

et al. (1975a), and the influence of wetness has been given by Idso et al. (1975a)
and Gannon (1978). The effect of zenith angle and wetness on albedo can be

represented mathematically as

A = AZ + As	 (11-42)

where

AZ = [ exp (0
003286Z1
5
)− 1
]
/100

and As is a function of the ratio of the volumetric moisture content �, and poros-

ity �s, of the soil. Figure 11-21 plots the functional form of AZ. The functional

form of As is not available for all soil types; Idso et al. (1975a) gives its value
for Avondale loam soil as

As =
{
0
31− 0
34�	 � ≤ 0
5

0
14	 � > 0
5	

with � = �/�s. For Florida peat, Gannon gives

As =
{
0
14�1− ��	 � ≤ 0
5

0
07	 � > 0
5

(11-43)

Using these expressions for AZ and As in Eq. (11-42), it is evident that albedos

are larger when the sun is lower in the sky and for drier soils. For example,

as given by As for Avondale loam, the albedo is 0.31 for dry soil (i.e., � = 0)

but decreases by more than 50%, to 0.14, for wet soils (i.e., � > 0
5). Idso
et al. (1975b) have provided additional details on the influence of soil moisture

on albedo and other components of the surface energy budget. Otterman (1974),

Berkofsky (1977), and others have argued that changes in albedo can have a

profound influence on average vertical motion, with increased albedo (caused

by overgrazing, for example) causing subsidence and a tendency toward deser-
tification in arid areas. Viterbo and Betts (1999) demonstrated the improvement

in synoptic weather prediction accuracy when a more accurate representation of

the albedo of snow in the boreal forest is included.
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TABLE 11-4

Albedo of Shortwave Radiation for Assorted Types of Ground Covers

Ground cover A

Fresh snow 0.75–0.95b , 0.70–0.95c , 0.80–0.95d , 0.95e

Fresh snow (low density) 0.85f

Fresh snow (high density) 0.65f

Fresh dry snow 0.80–0.95g

Pure white snow 0.60–0.70g

Polluted snow 0.40–0.50g

Snow, several days old 0.40–0.70b , 0.70c , 0.42–0.70d ,0.40e

Clean old snow 0.55f

Dirty old snow 0.45f

Clean glacier ice 0.35f

Dirty glacier ice 0.25f

Glacier 0.20–0.40e

Dark soil 0.05–0.15b , 0.05–0.15g

Dry clay or gray soil 0.20–0.35b , 0.20–0.35g

Dark organic soils 0.10f

Clay 0.20f

Moist gray soils 0.10–0.20g

Dry clay soils 0.20–0.35d

Dry light sand 0.25–0.45b

Dry light sandy soils 0.25–0.45g

Dry sandy soils 0.25–0.45d

Light sandy soils 0.35f

Dry sand dune 0.35–0.45b , 0.37c

Wet sand dune 0.20–0.30b , 0.24c

Dry light sand, high sun 0.35f

Dry light sand, low sun 0.60f

Wet gray sand 0.10f

Dry gray sand 0.20f

Wet white sand 0.25f

Dry white sand 0.35f

Peat soils 0.05–0.15d

Dry black coal spoil, high sun 0.05f

Dry concrete 0.17–0.27b , 0.10–0.35e

Road, blacktop 0.05–0.10b

Asphalt 0.05–0.20e

Tar and gravel 0.08–0.18e

Long grass (1.0 m) 0.16e

Short grass (2 cm) 0.26e

Wet dead grass 0.20f

Dry dead grass 0.30f

Typical fields 0.20f

Dry steppe 0.25f , 0.20–0.30g

Continued
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TABLE 11-4

Continued

Ground cover A

Tundra and heather 0.15f

Tundra 0.18–0.25e, 0.15–0.20g

Meadows 0.15–0.25g

Cereal and tobacco crops 0.25f

Cotton, potato, and tomato crops 0.20f

Sugar cane 0.15f

Agricultural crops 0.18–0.25e, 0.20–0.30d

Rye and wheat fields 0.10–0.25g

Potato plantations 0.15–0.25g

Cotton plantations 0.20–0.25g

Orchards 0.15–0.20e

Deciduous forests, bare of leaves 0.15e

Deciduous forests, leaved 0.20e

Deciduous forests 0.15–0.20g

Deciduous forests, bare with snow

on the ground 0.20d

Mixed hardwoods in leaf 0.18f

Rain forest 0.15f

Eucalyptus 0.20f

Forest

Pine, fir, oak 0.10–0.18c

Coniferous forests 0.10–0.15g , 0.10–0.15d

Red pine forests 0.10f

Urban area 0.10–0.27, with an average of 0.15e

Water –0.0139 + 0.0467 tan Z 1 ≥ A ≥ 0
03h

aThe smaller number is for high solar zenith angles, while the larger albedo is more representative for low sun

angles.
bFrom Sellers (1965:21).
cFrom Munn (1966:15).
dFrom Rosenberg (1974:27).
eFrom Oke (1973:15, 247).
f From Lee (1978:58–59).
gFrom de Jong (1973).
hFrom Atwater and Ball (1981:879).

Soil Moisture Flux Representation. Determination of � and �s requires a

model of the flux of moisture into and out of the soil. Detailed relationships

for computing the temporal fluctuations in soil moisture content are available

(e.g., Philip 1957) and have been used in atmospheric models such as those

of Sasamori (1970) and Garrett (1978). Beljaars et al. (1996) and Viterbo and

Betts (1999) demonstrated the importance of accurate soil moisture values in

the context of numerical weather prediction. In this section, we explore the

approach used by McCumber. Other useful discussion of the parameterization
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Fig. 11-21. Albedo as a function of zenith angle Z. The enhancement to the surface
albedo is expressed as a fractional increase relative to its value when the sun is directly
overhead. (From McCumber 1980.)

of heat and moisture flows in and at the surface of soils are given in Camillo and

Schmugge (1981), Sievers et al. (1983), Lee and Pielke (1992), and Mihailovic

et al. (1993, 1995, 1999a). Shao and Irannejad (1999) compare the impact of

four soil hydraulic models on land-surface processes.

The derivation of equations for soil moisture flux is presented in most courses

in hydrology. For use in mesoscale meteorological models in which the deter-

mination of the soil moisture at the surface WG is required, the following form

(McCumber 1980) can be used.

In Chapter 2, the conservation-of-motion relation for the atmosphere was

derived. A similar expression can be derived for the conservation of motion

of water within the soil. For short-term (∼24 hours) mesoscale atmospheric

applications, the vertical transport of water in the soil is usually much more

significant than horizontal transport, so that only the vertical equation-of-water

movement need be considered. The neglect of horizontal advection within the

ground on these time periods arises because the movement of water through soil

is usually relatively slow relative to atmospheric transports, and the horizontal

gradients of water are generally assumed to be much less than vertical gradients.

For longer time periods, however, as shown by Walko et al. (2000a), surface and
subsurface flow over water can significantly alter the amount of water available

for evaporation and transpiration into the atmosphere. In this section, however,

we retain the short-term mesoscale focus of this book.
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Therefore, using only the vertical equation of motion and assuming horizontal

homogeneity,

�w

�t
+ w

�w

�z
= − 1

�w

�p

�z
− g + Fw	

where Fw is the dissipation of water motion by viscous forces. In the atmosphere,

as discussed after Eq. (3-29), scale arguments were used to show that, away

from the ground, molecular dissipation of air motion was much smaller than the

advective transport of air. This is not generally the case in soil.

If it is further assumed that local changes in vertical velocity are small relative

to the other terms, the Reynolds number is much less than unity, and Fw can be

parameterized29 by

FW = w

�w

� 2w	

(where �w and w are the density and the dynamic viscosity of water, respec-

tively), then the vertical equation-of-water movement is given by

0 = − 1

�w

�p

�z
− g + w

�w

� 2w
 (11-44)

As with the atmospheric equations (as discussed in Chapter 4), this differ-

ential equation is averaged over a grid volume. The need for averaging in the

soil, however, is different than the reason for performing this operation in the

atmosphere. In a mesoscale atmospheric model, averaging is required because

sufficient computer resources are unavailable to solve the conservation relations

at intervals of 1 cm or so. In the soil, however, averaging is needed because

otherwise, the conservation relation for vertical water movement would have to

be evaluated separately for each grain of soil and interconnecting air space.

The averaging volume is defined as

�V =
∫
�v

dv =
∫
�s�V

dv +
∫
�1−�s��V

dv	 (11-45)

where �V = �x�y�z and �s (the porosity) is the fraction of the soil volume

containing air space (also called void space). Because the transfer of water is

much more rapid through the air spaces between soil grains than through the

soil material itself, Eq. (11-44) is averaged using the first integral on the right

side of Eq. (11-45).

The first term on the right side of Eq. (11-44), after averaging, becomes∫
�s�V

1

�w

�p

�z
dv = 1

�w

�p

�z
�s�V = 1

�w

�p̄

�z
�s�V 	



412 11 Boundary and Initial Conditions

where �p/�z = �p̄/�z because the averaging volume is not a function of depth.

The gravitational acceleration term is straightforward and becomes∫
�s�V

g dv = g�s�V 


The third term on the right side of Eq. (11-44) is rewritten as

w

�w

� 2w = �
w

�w

ud

d2
	 (11-46)

where d is a length scale, ud is a velocity scale (called the Darcian velocity)

representing the mean velocity of water flow through the soil, and � is a propor-

tionality factor. This formulation is based on the dimensions of the component

terms in � 2w. Assuming that each term in Eq. (11-46) except � is constant in

the averaging volume, the integrated form of this expression is given as∫
�s�V

w

�w

�
ud

d2
dV = w

�w

�̄
ud

d2
�s�V 


Equation (11-44) can now be written as

0 = − 1

�w

�p̄

�z
�s�V − g�s�V + w

�w

�̄
ud

d2
�s�V

or, after rearranging,

g + 1

�w

�p̄

�z
= w

�w

�̄
ud

d2



Solving for ud yields

ud = g
�wd

2

w�̄

�

�z

(
z+ p̄

g�w

)
or

ud = K�

�

�z
�z+&�	

where K� = �gd2/w�̄��w is called the hydraulic conductivity and & =
−p̄/g�w is called the moisture potential. The exchange coefficient K� accounts

for the influence of gravity drainage in the viscous soil, and & represents the

potential energy needed to extract water against capillary and adhesive forces

in the soil.

The soil moisture flux is thus given as

Ws = �wud = �wK�

�

�z
�z+&�
 (11-47)
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With the specification of the soil moisture flux, the local time rate of change

of the volumetric moisture content � is given by

��

�t
= 1

�w

�Ws

�z
	 (11-48)

where, consistent with the derivation of Eq. (11-44), advection of water is

neglected. In addition, sources and sinks of water, such as from rainfall, are

neglected.

Equation (11-47) can also be written as

Ws = D��w

��

�z
+ K��w	 (11-49)

where the chain rule of calculus has been used to write D� = K��&/��.
The parameters of K�, D�	 and & are related to � using a set of empirical

relations reported in Clapp and Hornberger (1978) and given as

& = &s

(
�s

�

)b
	 K� = K�s

(
�

�s

)2b+3

	 and D� = −bK�s
&s

�

(
�

�s

)b+3

	

where &s and K�s
refer to the saturated soil values. McCumber (1980) listed a

table of these parameters (reproduced here as Table 11-5) as a function of 11

U.S. Department of Agriculture (1951) soil textural classes plus peat.

Another option uses the work of van Genuchten (1980). In his work, as

reported in Walko et al. (1998, 2000a),

K� = K�s
�0
5
e �1− �1− �1/m�m�2

& = 1

a1

���e�
−1/m − 1�1/n

with

�e =
� − �r

�s − �n




The variable �n is the minimum possible value of �, and a, m	 and n are

empirical parameters given by Carsel and Parrish (1988).

In these formulations, K�s
can be assumed to decrease exponentially, based

on the work of Beven (1982, 1984),

K�s
�z� = K0e

f ẑ	

where f −1 is the e-folding depth of K�s
. The height ẑ is the distance below

the ground surface. The use of these formulations is discussed further in Walko

et al. (2000a).
Solving Eq. (11-48) at the surface permits the determination of As for use in

Eq. (11-42), which is needed in the surface heat budget calculation. In addition,
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TABLE 11-5

Soil Parameters as a Function of 11 U. S. Department of Agriculture
(USDA 1951) Textural Classes Plus Peat

Soil type �s &s K�s
b �wilt �ici

Sand 
395 −12
1 
01760 4
05 
0677 1
47

Loamy sand 
410 −9
0 
01563 4
38 
0750 1
41

Sandy loam 
435 −21
8 
00341 4
90 
1142 1
34

Silt loam 
485 −78
6 
00072 5
30 
1794 1
27

Loam 
451 −47
8 
00070 5
39 
1547 1
21

Sandy clay loam 
420 −29
9 
00063 7
12 
1749 1
18

Silty clay loam 
477 −35
6 
00017 7
75 
2181 1
32

Clay loam 
476 −63
0 
00025 8
52 
2498 1
23

Sandy clay 
426 −15
3 
00022 10
40 
2193 1
18

Silty clay 
492 −49
0 
00010 10
40 
2832 1
15

Clay 
482 −40
5 
00013 11
40 
2864 1
09

Peat 
863 −35
6 
00080 7
75 
3947 0
84

Units for soil porosity ��s� are centimeters per centimeters cubed, saturated moisture potential (&s) is in

centimeters, and saturated hydraulic conductivity (K�s
) is expressed in centimeters per second. The exponent b

is dimensionless. Permanent wilting moisture content (�wilt ) is in centimeters cubed per centimeters cubed, and

it corresponds to 153 m (15 b) suction. Dry volumetric heat capacity (�ici) is in joules per centimeter cubed

per degree Celsius. The first four variables for the USDA textures are reproduced from Clapp and Hornberger

(1978). Table adapted from McCumber (1980). Recent values for the saturated hydraulic conductivity for peat

range from 1 × 10−5 centimeters per second for deeply humidified sapric peat to 2
8 × 10−2 centimeters per

second in relatively undercomposed fibric peat. Average soil porosity ranges from 0.83 to 0.93 (Letts et al. 2000).

as shown after Eq. (11-52), � is needed in the determination of the equilibrium

moisture value at the ground surface.

Figures 11-22, 11-23, 11-24, and 11-25,30 reproduced from McCumber

(1980), illustrate the influence of different types of bare soil on diurnal vari-

ations of surface temperature, specific humidity, sensible heat flux, and latent

heat flux. As shown in Figure 11-22, for example, a sand surface has a much

larger variation in temperature than the other soils (as evident by anyone who

has walked on a beach in the summer), whereas peat and marsh have the largest

excursions in surface moisture (Figure 11-23). McCumber concluded that the

large excursions in the sand temperature were a result of its inability to hold

water effectively and to transfer it up from below, whereas peat and marsh,

even with their much lower albedos than sand, had less variability because of

the efficiency with which incoming radiation was used to cause evaporation as

opposed to an elevation in surface temperature.

From his results, McCumber (1980) concluded that soil moisture and albedo

were the two most important controls for regulating feedback to the atmosphere

from bare soils. The amount of soil moisture determined the fractional parti-

tioning of sensible and latent subgrid-scale fluxes, and the albedo was a crucial

parameter in determining the available radiation reaching the surface. Physick
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Fig. 11-22. Predicted soil surface temperature (degrees Celsius) as a function of soil
type for a July summer day in south Florida. (From McCumber 1980.)

Fig. 11-23. Same as Figure 11-22 except for soil surface specific humidity. (From
McCumber 1980.)
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Fig. 11-24. Same as Figure 11-22 except for surface layer turbulent sensible heat flux.
(From McCumber 1980.)

Fig. 11-25. Same as Figure 11-22 except for surface layer turbulent latent heat flux.
(From McCumber 1980).
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(1980) showed that the relative contributions of the sensible and latent heat

fluxes determined the inland penetration rate of sea breezes. Larger values of

sensible heat provide more direct heating of the atmosphere, thereby producing

a larger horizontal pressure gradient and more rapid inland propagation of the

sea breeze. Idso et al. (1975b, c) documented observationally major changes

in evaporation that can occur from the wetting of a dry soil surface. Wetzel

(1978) used a one-dimensional boundary layer model to show that even the

irrigation (i.e., wetting) of a relatively small percentage of land (∼20%) can

have a large effect on an unstably stratified boundary layer even well down-

stream from the irrigated region. Using a one-dimensional model, Zhang and

Anthes (1982) illustrated the strong sensitivity of the planetary boundary layer

to moisture availability.

Anthropogenic Sources of Surface Heating. The contributions to the surface

heat budget by anthropogenic and natural sources, Qm, have been estimated

based on such factors as population density, heat content of a forest fire, etc.

Such studies include those of Orville et al. (1981), who examined the influence

of cooling towers on cumulus convection using a two-dimensional cloud model.

Hanna and Swisher (1971), Hanna and Gifford (1975), and Pielke (1976)

have reported estimates of heat released from some of these activities. Using

their values, along with other estimates, the power per unit area and the area

of input that would be included in Qm are given in Table 11-6. Harrison

and McGoldrick (1981) have provided levels of current artificial heat input

on a 10 × 10 km grid over Great Britain. Over this size area, they calculated

that in February, values of Qm are nearly 30 W m−2 in the London and Bir-

TABLE 11-6

Representative Values of Heat Input from Anthropogenic and Natural Sources

Feature Heat (W m−2) Area (km2) Observational effect

Suburban area 4 10 Negligible

Urban area 100 1,000 Effects on local climate,

local convergence due to

a city results in enhanced

precipitation downwind

Tropical island 400 600 Influence on rainfall pattern

downwind due to enhanced

convergence

Australian bushfire 2,000 50 Cumulonimbus cloud

generation

Surtsey volcano 100,000 1 Deep cumulus cloud, water

spouts

Saturn V booster 4,900,000 0
0003 Cumulus cloud

rocket tests
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mingham areas, whereas over 1-km2 areas in Teeside, England, Qm exceeds

600 W m−2.

Based on previous mesoscale model calculations, Pielke (1976) estimated that

heat releases on the mesoscale (e.g., 103 km2) of 10 W m−2 would have no

detectable effect on local weather, whereas 100 W m−2 input uniformly over the

same area would cause influences on weather that could be detected statistically.

If 1000 W m−2 were input, however, the response of the mesoscale system

would be significant and immediate. By inputting various values of Qm into

a mesoscale model for different situations, useful information can be obtained

regarding inadvertent weather modification effects.

Table 11-6 also shows the influence of area on the observed meteorological

response. Even an immense input of heat, such as from a Saturn rocket booster,

had only a very localized effect if the area of input is small. Hence substantially

smaller rates of heating over a mesoscale area have a much more pronounced

effect on the mesoscale meteorological response, a conclusion that is substanti-

ated using the linear model results reported in Dalu and Pielke (1993) and Dalu

et al. (1996).

Solution Technique for the Equilibrium Surface Temperature. With the eval-

uation of the individual heat fluxes in Eq. (11-33) [or Eq. (11-34)], their sum

should equal 0. In general, however, they do not because several of the terms

are dependent on one another through the surface temperature TG. This temper-

ature, also called the skin temperature, is the value that properly partitions the

various heat fluxes so that their sum is 0.

The terms that have the most direct relation to surface temperature are:

� �̄Cpw
′′�′′, since the value of TG strongly influences the magnitude of

w′′�′′ [see, e.g., Eqs. (7-29), (7-39), and (7-40) where TG = �̄G (P (in

mb)/1000 mb)Rd/Cp ]

� �̄Lvw
′′q′′

3 , since the value of TG strongly influences the value of w′′q′′

[see, e.g., Eqs. (7-29), (7-39), and (7-40)], the definition of L given after

Eq. (7-24), and the definition of Ws�G given after Eq. (11-53)

� QG, since the ground heat conduction is proportional to the vertical tem-

perature gradient at the surface [i.e., QG = v�T /�z�G; see Eq. (11-36)]

� �R↑lwG
, since the longwave radiation from the ground is a function of T 4

G

[see, e.g., Eq. (11-35)].

The rest of the fluxes have a less direct impact on TG. The solar radiation

reaching the ground, for instance, might be affected by changes in atmospheric

turbidity as TG varies, but this effect is not expected to be immediate.
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To evaluate the equilibrium skin temperature, it is convenient to write

Eq. (11-33) [or Eq. (11-34)] as

+QG + �̄Cpw
′′�′′ + �̄Lvw

′′q′′
3 − �1− A�

( �R↓swG
+ �R↓D

swG

)
− �R↓lwG

+ �R↑lwG
+QM = F �TG�	 (11-50)

where F �TG� = 0 if the fluxes are in exact balance. In general, F �TG� 	= 0,

however, and a truncated Taylor series expansion given by

F �TG + �TG� = F �TG�+
�F

�TG
�TG��TG = F �TG�+ F ′�TG��TG

is used to obtain a better estimate. Requiring F �TG + �TG� to be 0 (as it should

if the fluxes are in balance) with �TG = T n+1
G − T n

G (where the superscripts n
and n+ 1 refer to the original and new estimates, respectively) and rearranging

yields

T n+1
G = T n

G − F �TG�/F
′�TG�
 (11-51)

The derivative of F with respect to TG	 F
′�TG�, is obtained from Eq. (11-50),

yielding

F ′�TG� = 4�T 3
G + �

�TG
��̄Cpw

′′�′′�+ �

�TG
��̄Lvw

′′q′′
3 �+ v

�

�z

�T

�TG
	

where it is assumed that �G = 1 and v is not a function of depth or temperature.

An equilibrium temperature is said to be attained when ��TG� < �, where �
is some arbitrarily small number. Mahrer and Pielke (1977b) used � = 10−5.

If ��TG� 	< �, T n
G is replaced with T n+1

G , then the heat fluxes are recomputed

and Eq. (11-51) is reevaluated. This procedure is called the Newton–Raphson
iteration process.

To simplify the computation of Eqs. (11-50) and (11-51), Mahrer and Pielke

(1977b) applied this scheme by assuming that �̄, u∗, q∗, !m, and !H are not

functions of TG and used the formulations for surface layer fluxes given by

Eq. (7-29), so that

�

�TG
��̄Cpw

′′�′′� � −�̄Cpu∗
��∗
�TG




Rather than differentiate �∗ directly, however, Mahrer and Pielke evaluated

Eq. (11-51) assuming that �∗ is constant. Then, after an equilibrium tempera-

ture is obtained, �∗ is recomputed with the new value of TG. If the absolute

change in �∗ is greater than 0.01 K, then new values of �∗, u∗, q∗, !M, and !H

are computed from surface layer equations similar to those given in Eqs. (7-40)

and (7-41) and a new estimate of TG is obtained from Eq. (11-51). This double-

iteration procedure continues until both �TG and changes in �∗ are arbitrarily

small. In using the surface profile equations such as Eq. (7-40), to compute �∗
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in this iteration, Eq. (7-39) and the definition of potential temperature are used

to relate the skin temperature TG to the potential temperature at z0.
Mahrer and Pielke (1977b) also simplified the derivative of the ground heat

flux term by approximating �T /�z with a finite difference form and assuming

that �T /�TG at z = −�z corresponds to 0. Expressed formally,

�QG

�TG
= �

�TG
v
�T

�z
� v

�

�TG

[
TG − T �−�z�

�z

]
= v

�z



Figure 11-26 illustrates the surface temperature predicted using a surface

energy budget in a sea-breeze calculation. As the sea-breeze front moves inland,

the marine air cools the surface resulting in reduced maxima. In a model with a

prescribed surface temperature distribution that is only a function of time, such

as given by Eq. (11-30), the curve as given for 73.75 km inland would apply at

all locations over land.

If the surface is assumed to have a finite heat storage, then the right side of

Eqs. (11-33) and (11-34) can be replaced by �c�z�TG
�t

(Tremback and Kessler

1985). This new form of the surface heat budget can then be integrated forward

in time (solving for
�TG
�t
) and removing the need to solve an iterative equation

such as (11-51). Blackadar (1976) introduced a “force–restore” method to solve

for the surface temperature where a deep soil reservoir of heat is available

to constrain the heating at the surface. Mihailović et al. (1999a) reviews and

evaluates the force-restore equation.

Ground Wetness. McCumber (1980) has improved the heat budget to include

a more realistic representation of the turbulent latent heat flux term through a

better representation of the value of specific humidity at the ground surface qG
[qG is related to q̄z0 by Eq. (7-39)].

McCumber computes the equilibrium surface-specific humidity from

qG = hqs�TG�	

where

qs�TG� = 0
622

[
es�TG�

P (in mb) − 0
378es�TG�

]
(11-52)

(from the definition of specific humidity),

es�TG� = 6
1078 exp

[(
TG − 273
16

TG − 35
86

)
17
269

]
[from Teten’s formula (see e.g., Murray 1970), with TG in degrees Kelvin], and

h = exp

(+g&G

RvTG

)





11.3 Spatial Boundary Conditions 421

Fig. 11-26. The predicted surface temperature as a function of time and inland dis-
tance from the coast for a sea-breeze simulation, using a surface energy budget of the
form given by Eq. (11-50). (From Mahrer and Pielke 1977b.)

The variable &G is the moisture potential (expressed as a head of water)

at the ground surface, and Rv is the gas constant for water vapor (Rv =
461 J K−1 kg−1). The soil moisture potential at the ground surface is obtained

by McCumber (1980) from a finite difference analog to Eq. (11-47) and is

given by

&G = &G−�z +
[

Ws�G
�wK��G

− 1

]
�z	 (11-53)

where Ws�G is the soil moisture flux at the surface. Continuity of moisture flux

is required at z = 0, so that

Ws�G − �̄w′′q′′ � Ws�G + �̄u∗q∗ � 0
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must be obtained. Garrett (1978) defines this to occur when∣∣∣∣ �̄u∗q∗ −Ws�G
�̄u∗q∗

∣∣∣∣ < 0
001
 (11-54)

In determining &G, at each time step at each grid point, Ws�G is initially

determined using values of &G and &G−�z from the last time step. Subsequently,

Ws�n+1
G = �Ws�nG + �1− ���̄u∗q∗	

where � is a weighting factor (0 ≤ � ≤ 1) used to promote a convergent solution

[as defined by Eq. (11-54)] and the superscript n + 1 refers to the next guess

in the iteration. The value of Ws�n+1
G is used to recompute a value of &G from

Eq. (11-53), which then provides updated values of �, and then K� and D�,

at the surface. McCumber found the fastest convergence to a solution when

� > 0
5, with dry soils (e.g., h < 0
70) requiring values closer to unity. Once

the surface moisture characteristics are computed, Eq. (11-49) can be used to

calculate moisture fluxes within the soil.

Influence of Terrain Slope. Up to now in our discussion, the influence of slop-

ing terrain on the amount of shortwave radiation that reaches the ground has

not been considered in the surface heat budget. In Chapter 8, Section 8.4, it

was shown that in a horizontal layer of the atmosphere the amount of solar

radiation on a unit cross-sectional area is dependent on such factors as the time

of the year, opacity of the atmosphere, latitude, and time of day. For irregular

terrain, the orientation of the ground surface with respect to the sun must also

be considered.

Kondratyev (1969) presented a formula that accounts for the influence of slop-

ing terrain on the direct solar radiation per unit area, and his analysis was used

by Mahrer and Pielke (1977b) to investigate the effect of irregular terrain heating

on mesoscale circulations. Figure 11-27, adapted from Kondratyev (1969), illus-

trates the angle, i, at which direct solar radiation impinges on sloping terrain,

where SH = �R↓swG
/ cosZ is the value of direct solar radiation at the ground on

a unit cross-sectional area perpendicular to the sun’s rays. The value of �R↓swG

can be obtained for clear skies from the integrated form of the Eq. (8-62) eval-

uated at the ground.

Expressed mathematically,

�R↓sl
swG

= SH cos i	 (11-55)

where

cos i = cos� cosZ + sin� sinZ cos��− ��
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Fig. 11-27. An illustration of the angles used in the definition of Eq. (11-55). (Adapted
from Kondratyev 1969, Figure 5-38.)

The zenith angle Z was defined by Eq. (8-61), and �, the slope of the terrain,

is given by

� = tan−1

[(
�zG
�x

)2
+
(
�zG
�y

)2]1/2
	

where zG is terrain height. The quantity � − � is the orientation of the sun’s

azimuth, �, with respect to the azimuth of the terrain slope, �. The slope azimuth

is expressed by

� = �

2
− tan−1

(
�zG
�y

/
�zG
�x

)
(so that south has zero azimuth), and the azimuth of the sun is obtained by

projecting the location of the sun onto a horizontal surface and also requiring

that south have zero azimuth. The expression for � is given by

� = sin−1

(
cos �sun sin hr

sinZ

)
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where, as in Section 8.4, �sun is the declination of the sun and hr is the hour

angle. Spherical trigonometric identities such as given in, for example, Selby

(1967:161–164), are used to derive � and �.
The following example is presented to illustrate the dependence of direct

solar heating on terrain slope and azimuth. Assuming � = 40�N, clear sky, local
noon, � = 0� (i.e., south-facing slope), June 21 (�sun = 23
5�), r = 1
015a,
S0 = 1380 W m−2, A = 0
2	 � = 10�, and R ↓sw0

in Eq. (8-58) is attenuated

by 40% between the top of the atmosphere and the ground, Eq. (11-55) yields
�R↓sl

swG
= 625 W m−2. Table 11-7 gives the same calculation except � = �/2	 �	

and 3�/2 corresponding to east-, north-, and west-facing slopes, respectively.

Table 11-7 also presents calculations for the same situation except for December

21 (�sun = −23
5�) with r = 0
985a.
These and even smaller slopes can have a substantial influence on mesoscale

circulations. Mahrer and Pielke (1977b, Figure 4) found the eastern slope of

a 1-km mountain (with a slope of about 2�) to be about 1� to 2�C warmer in

the morning and cooler by the same amount in the afternoon than the same

location on the western slope. Observed solar radiation on four different slopes

in Kansas is discussed in Nie et al. (1992).
The influence of slope on the diffuse shortwave radiation, �RD

swG
, is consid-

ered negligible for slopes of less than about 20�, however, as explained by Lee

(1978:61–62). Although the diffuse radiation is reduced in magnitude because

only a portion of the sky is visible, if the diffuse radiation is isotropic (see

Note 5 in Chapter 8), then �RD
swG

received on a flat, open surface is only modified

by

�RDsl
swG

= �RD
swG

cos2��/2�


As given by Lee, for � = 16
7� (a slope of 0.3), the difference between �RD
swG

and �RDsl
swG

is only 2%. Lee also showed that the contribution to the total solar

radiation by the reflection of total solar radiation from surrounding terrain is

only about 3% or less of �R sl
swG

for slopes of less than 20� ( �R sl
swG

= �R↓sl
swG

+ �RD
swG

).

Ignoring attenuation in the intervening atmosphere of the reflected light from

TABLE 11-7

Solar Radiation at Noon on a Slope of 10� Oriented in Four Different Directions on
June 21 and December 21 Using the Values Given in the Text

Solar radiation (Wm−2)

Variable Date South East North West

�Rsl
swG

↓ 21 June 625 594 563 594

�Rsl
swG

↓ 21 December 215 159 103 159



11.3 Spatial Boundary Conditions 425

the surrounding terrain, the increased solar absorption on the slope for a uniform

albedo is

�R↓swG
= �1− A�A� �R↓swG

+ �RD
swG

� sin2��/2�


There is also a small effect on albedo, since the effective zenith angle in

Eq. (11-42) is the angle between the solar beam and the angle normal to the

slope. As seen in Figure 11-21, for slopes less than 20�, the effect of terrain

slope on albedo is relatively small even for large zenith angles. With � = 0
3
sloping toward the north, for example, a value of Z of 50� at noon would

provide an effective zenith angle along the slope of 66.7�, resulting in a change

of albedo of about 2.5%.

The influence of slight slopes on the longwave radiation balance is also small,

as discussed by Lee (1978:71) using the same type of geometric argument as

applied to derive �RDsl
swG

and �R↓swG
; that is, for an equilateral triangular valley,

�R ↓sl
lw= �R ↓ cos2��/2� + �Rlw sin

2��/2�, where �Rlw is the longwave radiation

reaching one side of the valley from the other and �R↓ comes from the atmo-

sphere above the slope [using, e.g., Eq. (8-39)].

Zdunkowski et al. (1980) and Welch and Zdunkowski (1981b) have provided

a discussion of the influence of slope on the amount of direct and diffuse solar

radiation incident on sloped surfaces as a function of optical depth and solar

zenith angle. They report, for example, that at 40� of latitude during the equinox,

a north-facing slope receives more integrated daily shortwave radiation on a

cloudy day than on a clear day.

A consequence of this analysis is that the direct shortwave radiation term
�R↓swG

in Eqs. (11-33) and (11-34) must be replaced with �R↓sl
swG

[Eq. (11-55)]

over sloping terrain.

Snow. Sturm et al. (1995) and Sturm and Holmgren (1998) describe snow on

the ground in six separate classes where the typical seasonal range of bulk den-

sity in g cm−3 is: tundra (0.38), taiga (0.10–0.25), alpine (0.20–0.35), maritime

(0.15–0.40), ephemeral (variable), and prairie (est. 0.30). Snow can be repre-

sented similar to soil with the important additional characteristic that snow can

change its phase (melt, refreeze, sublimate). Snow can also saltate (i.e., bounce

along the surface), and blow through the air. Liston and Sturm (1998) devel-

oped a model to simulate this drifting of snow. Greene et al. (1999) applied

this model to a portion of the Continental Divide in Colorado, where it was

found that as much as 30% of the snow can sublimate into the air. Although

this has not yet been done, this drifting/blowing snow model could also be used

to simulate the movement of sand and dust by the wind.

Liston (1999) also developed a snow melt model that uses solar input and

wind speed, along with the terrain slope and azimuth, to represent this phase
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change. Liston illustrates the close interrelationships among the spatial snow

distribution, snow melt, and snow cover depletion.

Other examples of model representations of snow processes include Marshall

and Oglesby (1994), Marshall et al. (1994), Horne and Kavvas (1997), and

Walko et al. (2000a). For example, over snow cover during the day and with

a calm wind, Halberstam and Schieldge (1981) demonstrated the importance

of radiative flux divergence and moisture flux from the surface in determining

temperature and wind profiles. Because of the high albedo of the snow and the

creation of a moist layer of air immediately above the surface, both downward-

and upward-reflected solar radiation are absorbed just above the surface, thereby

creating a local region of enhanced warming within the surface layer.

Vegetation. When vegetation is introduced at the ground, the proper represen-

tation of the bottom boundary conditions becomes more difficult than for bare

soil, since the observational and theoretical information concerning the fluxes

of heat, moisture, momentum, and other gaseous and aerosol materials into and

out of the vegetation remains limited. Since much of the world is vegetated

and the vegetation dynamically changes over time (Eidenshink and Haas 1992),

however, it would be inappropriate to neglect this important component of the

ground characteristics in a mesoscale model. Even for arid regions with sparse

vegetation, Otterman (1981a, b) has illustrated the importance of protruding

plant material on the flux of heat.

This section describes one type of parameterization for the influence

vegetation on the boundary layer, that of McCumber (1980). McCumber’s

soil-vegetation-atmosphere transfer (SVAT) scheme was among the earliest

developed. Other early formulations are described for drainage flow simulations

by Garrett (1983a) and for boundary-layer structure over flat terrain by Yamada

(1982). Terjung and O’Rourke (1981) examined the influence of vegetation

on the magnitude of the terms in the surface energy budget in an urban area.

Although the accuracy of physically elaborate parameterizations of vegetation,

such as that of Deardorff (1978), have been questioned (e.g., Monteith 1981),

realistic representations of this ground–air interaction must be included in

mesoscale models.

There are three temporal scales of interaction between vegetation and the

atmosphere: biophysical, biogeochemical, and biogeographic (Pielke 1998).

Biophysical influences include controls on the transpiration of water vapor

through the stoma of plants. Biogeochemical effects include above- and below-

ground vegetation growth, such as that represented by the CENTURY model

(Lu et al. 2001). Biogeographic models include changes in the mixture of veg-

etation species and the spatial movement of biomes. Models that represent both

biophysics and biogeochemistry include Chen and Coughenour (1994), Eastman

et al. (2001a, b), and Tsvetsinskaya et al. (2001a, b). Benoit et al. (2000)
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discuss the use of coupled atmospheric-hydrologic modeling. In this chapter,

since the focus is on the use of mesoscale models in weather forecasting, only

biophysics models are discussed.

Deardorff (1978) introduced a bulk type of parameterization for vegetation in

which he assumed that a single-level canopy had the characteristics of a large

leaf. Garrett (1982) applied Deardorff’s parameterization to simulate convection

over the southeastern United States. McCumber (1980) introduced this type of

representation into a mesoscale model in which an energy balance analogous

to Eq. (11-33) is applied to the vegetation canopy. McCumber’s discussion of

the vegetation parameterization differs in interpretation from that of Deardorff.

As described by McCumber (1982, personal communication), Deardorff’s tech-

nique parameterizes a canopy of a given density throughout a grid area, whereas

McCumber’s formulation assumes a dense canopy that occurs over a fraction of

a grid area with entirely bare soil in the remainder.

Assuming that the storage of heat in vegetation is negligible (Monteith 1975a;

Deardorff 1978), an equilibrium temperature, Tf , is determined from the heat

energy gains and loss at the top of the vegetation and at the ground surface.

The net flux within the vegetation can be expressed as31

� �R↓swc
− �R↑swc

�+ � �R↓lwc
− �R↑lwc

�− � �R↓swG
− �R↑swG

�

− � �R↓lwG
− �R↑lwG

�+ �H + LE�c − �H + LE�G = 0	 (11-56)

where the subscripts “c” and “G” refer to the vegetation canopy and the ground

surface. The individual terms in this heat budget can be written as

�Rswc
↓ = � �R↓sw + �RD

sw� at the canopy level	 (11-57)

�Rswc
↑ = ��1− �f��AZ + As�+ �f�Af + AZ�� �R↓swc

	 (11-58)

�RswG
↓ = �1− �f� �R↓swc

	 (11-59)

�RswG
↑ = �AZ + As��1− �f� �R↓swc

	 (11-60)

where �f is called the shielding factor and represents the fractional coverage of

a grid area by a dense vegetation canopy. The albedo Af is that of the canopy.

In this particular formulation, the shortwave radiation flux below the canopy top

is ignored. For dense forests in full foliage, this assumption is reasonable with

the net shortwave radiation reaching the ground on the order of 6–8% of the

net shortwave radiation at the top of the canopy (see, e.g., Table 11-8).

The individual longwave radiation terms are given as32

�R↓lwc
= �R↓lw at the canopy level	 (11-61)

�R↑lwc
= �1− �f���G�T

4
G + �1− �G� �R↓lwc

�

+ �f ��f�T
4
f + �1− �f� �R↓lwc

�	 (11-62)
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TABLE 11-8

Representative Values of Leaf Area Index LA, Transmissivity, Absorption, and Albedo
for Shortwave Radiation �̄� ā, and Af , and Emissivity for Longwave Radiation �f

for Various Types of Vegetation

LA "̄ ā Af �f

Maize, rice

June 1 0 ∼0.90 ∼0.0 ∼0.10 0
95

Mid-July 1.8 ∼0.55 ∼0.30 ∼0.15 0
95

September 1 4 ∼0.15 ∼0.65 ∼0.20 0
95

Mid-October 6 ∼0.10 ∼0.70 ∼.0.20 0
95

Cotton 2 ∼0.23 ∼0.57 ∼0.20 0
95

Wheat, barley 4 ∼0.25 ∼0.55 ∼0.20 0
95

Prairie grasslands

Green ∼1 0
96

Dead ∼4 0
96

Meadow 2 ∼0.48 0
96

4 ∼0.72 0
96

6 ∼0.82 0
96

Coniferous forest 2 ∼0.20 ∼0.70 ∼0.10 0
97

4 ∼0.08 ∼0.82 ∼0.10 0
97

Deciduous forest

Aspen (in foliage) 2 ∼0.45 ∼0.35 ∼0.20 0
95a

4 ∼0.23 ∼0.65 ∼0.12 0
95a

6 ∼0.06 ∼0.82 ∼ 0.12 0
95a

Oak

30-year-old stand

No foliage ∼0.63 ∼0.25 0.12 0
95a

Full foliage ∼0.12 ∼0.72 0.16 0
95a

160-year-old stand

No foliage ∼0.30 ∼0.58 0.12 0
95a

Full foliage ∼0.25 ∼0.59 0.16 0
95a

aThese values of �f were obtained from Lee (1978:69).

Values were estimated from data given in papers published in Monteith (1975b). Additional values of Af are given

in Table 11-4. Similarly, additional values of �f are listed in Table 11-2.

�R↓lwG
= �1− �f� �R↓lwc

+�f
�Rv↓lwG

	 (11-63)

�R↑lwG
= �1− �f���G�T

4
G + �1− �G� �R↓lwG

�+ �f
�Rv
lwG

↑	 (11-64)

where �G and �f are the emissivities of the ground and the foliage, respectively.

Representative values of �f are given in Table 11-8.33 The downward and upward

longwave radiation fluxes are �Rv
lwG

↓ and �Rv
lwG

↑ beneath the vegetation and are

defined as

�Rv
lwG

↑ = �G�T
4
G + �1− �G� �Rv

lwG
↓ (11-65)

�Rv
lwG

↓ = �f�T
4
f + �1− �f� �Rv

lwG
↑ 
 (11-66)
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Substituting �Rv
lwG

↓ into Eq. (11-65) and �Rv
lwG

↑ into Eq. (11-66) yields

�Rv
lwG

↑= �G�T
4
G + �1− �G��f�T

4
f + �1− �f��1− �G� �Rv

lwG
↑

and

�Rv
lwG

↓= �f�T
4
f + �1− �f��G�T

4
G + �1− �G��1− �f� �Rv

lwG
↓ 


Rearranging and solving for �Rv
lwG

↑ and �Rv
lwG

↓ gives

�Rv
lwG

↑ = ��G�T
4
G + �1− �G��f�T

4
f �/��f + �G − �f�G� (11-67)

�Rv
lwG

↓ = ��f�T
4
f + �1− �f��G�T

4
G�/��f + �G − �f�G� (11-68)

(see also Lee 1978:179). These two expressions can then be substituted into

Eqs. (11-63) and (11-64).

The sensible and latent heat flux terms in the heat budget can be written as

�H+LE�c=�f

[
�̄Cpw

′′�′′ f+�̄Lvw
′′q′′

3

f
]
+�1−�f�

[
�̄Cpw

′�′′G+�̄Lvw
′′q′′

3

G
]

and

�H + LE�G = �1− �f�
[
�̄Cpw

′′�′′ G + �̄Lvw
′′q′′

3

G
]
	

where the subgrid-scale terms with the subscripts “f” and “G” correspond to

fluxes from the foliage and the ground surface. The difference between these

two terms required in Eq. (11-56) is then

�H + LE�c − �H + LE�G = �f

[
�̄Cpw

′′�′′ f + �̄Lvw
′′q′′

3

f
]



The sensible and latent heat fluxes from the foliage are estimated (Deardorff

1978) as

�̄Cpw
′′�′′ f = 1
1LA�̄Cpcfuaf

(
1000mb

p�in mb�

)0
286
�Taf − Tf� (11-69)

and

�̄Lvw
′′q′′

3

f = LA�̄Lvf
′cfuaf�qaf − qs�Tf��	 (11-70)

where LA is the leaf area index, defined as the total one-sided leaf area of the

foliage relative to the same size ground area (i.e., meters squared of foliage area

per meters squared of ground area). The equation for LA is given by Eq. (7-38).

The leaf area index, LA, can be a function of height within the vegetation. Rep-

resentative values of LA are given in Table 11-8 for various types of vegetation.

Deardorff assumed a relation between leaf area index and fractional coverage

of ground by foliage of LA = 7�f .

The variables uaf , Taf , and qaf are representative values of wind speed, tem-

perature, and specific humidity, respectively, between the top of the vegetation
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and the ground, and cf is a nondimensional transfer coefficient [equivalent to a

drag coefficient, as discussed after Eq. (7-55)]. The coefficient 1.1 was included

by Deardorff (1978) to account roughly for stems, branches, and trunks of

vegetation, which were assumed to not be included in LA. The transfer coeffi-

cient is estimated by

cf = 0
01

(
1+ 0
3

uaf

)
	 with uaf in meters per second (11-71)

based on the work of Kumar and Barthakur (1971) and Allen and Lemon (1972)

as reported by Deardorff. The value of 0.01 was derived for forced convection

over several different types of plants, and the second term within the parentheses

was added to account for transfers of heat, moisture, and momentum during free

convection.34

The wind speed, uaf , is estimated by

uaf = 0
83c
1/2
d ua	 (11-72)

where ua is the wind speed just above the vegetation (e.g., at the first grid level

in a mesoscale model above the plants) and cd can be estimated as

cd =
[

k

ln��z−D�/z0�− !M��z−D�/L�

]2

 (11-73)

In Eq. (11-73), D is the zero displacement height defined by Eq. (7-34).

As reported in Deardorff (1978), the coefficient 0.83 is based on the inves-

tigations of Geiger (1965), Thom (1971), Legg and Long (1975), and Webb

(1975), with the assumption that in a relatively dense vegetation canopy,

uaf � 0
3ua	 D � 3/4h	 and z0 � 1/3�h−D�	

where h is the height of the top of the vegetation. The quantity c
1/2
d ua roughly

corresponds to a friction velocity similar to u∗, which was defined in Section 7.2.

The values of Taf and qaf are assumed to be

Taf = 0
3Ta + 0
6Tf + 0
1TG (11-74)

qaf = 0
3aa + 0
6qf + 0
1qG
 (11-75)

This form was chosen by Deardorff using a heuristic argument that the greatest

influence on temperature within vegetation is caused by the foliage (when the

vegetation is comparatively dense, LA>̃2). Deardorff experimented with coeffi-

cients of 0.45, 0.45, and 0.1 in these two expressions (i.e., replacing coefficients

0.3, 0.6, and 0.1) and found little change in the final heat budget solutions.

The specific humidity of the foliage stoma is obtained from

qf = f ′qs�Tf�+ �1− f ′�qaf	
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with the restriction that qf ≤ qs�Tf�. The parameter f ′ is the fraction of potential

evaporation/transpiration available from the vegetation and is given by

f ′ = 1− �wrs
rs + ra

[
1−
(
WL

WI

)0
67]
(11-76)

where �w = 0 if condensation is occurring and �w = 1 otherwise, WL is the

liquid water per unit surface leaf area, and WI is the maximum interception
storage (in units of depth per unit surface leaf area) and refers to the amount

of water that can remain on vegetation before it falls to the ground of its own

weight35 (WL ≤ WI). Hicks (1981) reported values of WL of about 0.2 mm

from dew formation at night under cloudless skies in the arid summer climate

in Wangara, Australia. The maximum interception storage, WI, is a function

of plant type and depends on rainfall rate (Clark 1940; Ovington 1954; Burgy

and Pomeroy 1958; Helvey and Patric 1965; Sim 1972). According to Monteith

(1975a:118), values of WI range from about 0.4 mm to 2.0 mm, with little

distinction between forest and herbaceous communities. Details of individual

plant geometry apparently determine the precise value of WI. McCumber used

values of WI = 0
6 mm for grass and 1.6 mm for trees. The exponent 0.67 in the

equation for f ′, as discussed by Deardorff (1978), is intended to approximate

the agglomeration of an evaporating film of water into discrete droplets, thereby

covering less leaf surface and accelerating water evaporation.

The parameters ra and rs, coefficients of air resistance and of bulk stom-

atal resistance, respectively, as adapted from Deardorff (1978) and McCumber

(1980), are represented by

ra =
(

1

cfuaf

)
(11-77)

and

rs = rc

[ �Rswc
↓max

0
03Rswc
↓max + �R↓swc

+ P +
{
�wilt

�root

}2]
	 (11-78)

where Rswc
↓max is the noon incoming solar radiation under a cloudless, clear

sky; P is a function of the time of year (P = 0 during the growing season and

P  0 at other times); �wilt is the level of soil moisture below which permanent

wilting of the plant occurs (see, e.g., Table 11-5), and �root is the minimum

value of soil moisture occurring in the root zone of the plant. The coefficient rc
is a function of plant type and measures the surface (biological) resistance of a

canopy to losses of water; representative values of rc are given in Table 11-9.

McCumber used rc = 400 s m−1 for grasslands and 600 sm−1 for trees. Segal

(1987, personal communication) suggests that for both types of vegetation, rc
should remain at or below 200 s m−1 to prevent the canopy temperature from

becoming unrealistically high.
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TABLE 11-9

Characteristic Values of Surface Biological
Resistance of a Canopy to Loss of Water

Type of vegetation rc �s m
−1�

Cotton field

0600 LST ∼130

Noon ∼17

1800 LST ∼330

Sunflower field

LA = 1
8 110

LA = 3
6 80

Coniferous forest

0600 LST

Spruce ∼20

Hemlock ∼240

Pine ∼50

Noon

Spruce ∼100

Hemlock ∼150

Pine ∼130

1800 LST

Spruce ∼120

Hemlock ∼200

Pine ∼310

Prairie grasslands

0800 LST

Late July ∼100

Mid-September ∼150

1200 LST

Late July ∼100

Mid-September ∼500

1800 LST

Late July ∼150

Mid-September ∼550

Values are estimated from published values given in papers pre-

sented in Monteith (1975b).

The value of liquid water on the leaves, WL, required in Eq. (11-76) can be

obtained from the conservation relation

�WL

�t
=
{
�fPr + �̄

(
w′′q′′

3

f − w′′q′′
3

tr
)
	 0 ≤ WL < WI

0	 WL = WI	

where Pr is the precipitation rate.36 The transpiration rate is given by

�̄w′′q′′
3

tr = LA�̄cfuafrs
rs + ra

[
1−
(
WL

WI

)0
67]
�qaf − qs�Tf��
 (11-79)
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This transpiration term represents the water extracted from the root zone of the

plant. Therefore, in addition to considering this term in the heat budget of the

vegetation, Eq. (11-48) for volumetric moisture content must be rewritten as

��

�t
= 1

�w

�Ws

�z
+ A�z�	 (11-80)

where A�z� is called a root extraction term. In general, this term is dependent

on such factors as root distribution and density, soil moisture content, and soil

type. McCumber (1980) uses a form of this function, adopted by Molz and

Remson (1970), given by

A�z� = �̄w′′q′′
3

tr
[

R�z�D�∫ zG
zG−�R

R�z�D�dz

]
	

where R�z� is the vertical distribution of roots and �R is the depth in the soil

of the roots. According to McCumber, Molz and Remson obtained good results

using this formulation and concluded that such a macroscopic approach can

reasonably approximate the integrated microscopic flow of soil moisture into

the roots and up to the foliage level of the plants.

With the specification of the individual components of the heat budget,

the representative temperature of the foliage, Tf , can be determined from

Eq. (11-56) using Eqs. (11-57)–(11-62) and (11-67)–(11-70). Substituting these

expressions into Eq. (11-56) and rearranging yields the budget equation

�f

[
�1− Af − As� �R↓swc

+�f �R↓lwc
+ �f�G
�f + �G − �f�G

�T 4
G

− �f + 2�G − �f�G
�f + �G − �f�G

�f�T
4
f

]
+ LA�̄cfuaf

[
1
1Cp

(
1000 mb

p�mb�

)0
286
× �Taf − Tf�+ Lvf

′�qaf − qs�Tf��

]
= 0
 (11-81)

Since LA is assumed to be proportional to the fractional coverage of ground by

foliage, �f , as applied by McCumber (e.g., Deardorff used LA = 7�f ), �f can

be removed from this balance equation. The solution of Eq. (11-81) for Tf was
performed by McCumber using the Newton–Raphson method, as discussed pre-

viously in this chapter [Eq. (11-51) and following]. In obtaining F ′�Tf�, which
is required to use the Newton–Raphson method, McCumber differentiated the

two terms in Eq. (11-81) containing �T 4
f and �Taf − Tf� with respect to Tf , and

iterating for the correct value of qs�Tf� and Taf in a fashion similar to that used

to obtain an accurate value of �∗ for use in Eq. (11-51).

The ground surface heat budget, of course, is also modified by the presence of

vegetation from that given by Eq. (11-33). Still using McCumber’s formulation,
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the budget equation for ground surface temperature TG is then given by37

−� �R↓swG
− �R↑swG

�− � �R↓lwG
− �R↑lwG

�+ �̄Cpw
′′�′′ + �̄Lvw

′′q′′ +QG = 0	

where

�̄Cpw
′′�′′ = −�1− �f��̄Cpu∗�∗ − �f

(
�̄Cpw

′′�′′ G + �̄Cpw
′′�′′ f
)

�̄Lvw
′′q′′ = −�1− � f��̄Lvu∗q∗ − �f

(
�̄Lvw

′′q′′ G + �̄Lvw
′′q′′ f
)



QG could be obtained using Eq. (11-41), and the four radiative flux terms are

given by Eqs. (11-59), (11-60), (11-67), and (11-68). The subgrid-scale flux

terms have been represented as (e.g., Deardorff 1978; McCumber 1980)

�̄Cpw
′′�′′ G = �̄Cpcduaf�Taf − TG�

(
1000mb

p�mb�

)0
286
(11-82)

and

�̄Lvw
′′q′′G = �̄Lvcduaf�qaf − q̄s�TG��	 (11-83)

where a drag coefficient formulation [see Eq. (11-73)] has been used. These

fluxes are evaluated at the ground surface beneath the vegetation. The sums

of Eqs. (11-82) and (11-69) and of (11-83) and (11-70) give the subgrid-scale

contribution of heat and moisture flux to the atmosphere from the ground and

foliage. These fluxes are used as the lower boundary condition for the subgrid-

scale correlation terms in the conservation-of-heat and water vapor equations

(i.e., w′′�′′ and w′′q′′
3 ) over vegetation. The vertical subgrid-flux terms over a

grid area at the top of the vegetation in the horizontal equations-of-motion (i.e.,

w′′u′′ and w′′v′′) similarly can be given by

−w′′u′′ = [�1− �f�u
2
∗ + �fcdu

2
a

]
cos

−w′′v′′ = [�1− �f�u
2
∗ + �fcdu

2
a

]
sin	

with  defined by Eq. (7-16).

Within the vegetation (indicated by the subscript “v”), the momentum flux

can be represented by

−w′′u′′∣∣
v
= �fLAcdu

2
a cos and − w′′v′′

∣∣
v
= �fLAcdu

2
a sin

[see also Eq. (7-37) and the subsequent discussion].

McCumber used the following iterative procedure to compute these subgrid-

scale fluxes when vegetation is present:

1. Calculate the shortwave and longwave radiation terms in Eq. (11-56) that

are not directly dependent on Tf ; these include Eqs. (11-57)–(11-61).

2. Compute cf , uaf , ra, and rs from Eqs. (11-71), (11-72), (11-77), and (11-

78).
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3. Compute Taf , qs, and f ′ from Eqs. (11-74), (11-52), and (11-76).

[Equation (11-52) is used to compute qs�Tf�, where Tf is inserted in the right

side in place of TG.]
4. Calculate qaf from Eq. (11-75).

5. Compute �̄Cpw
′′�′′ f , �̄Lvw

′′q′′ f , and �̄Lvw
′′q′′ tr from Eqs. (11-69),

(11-70), and (11-79).

6. Use the Newton–Raphson method to compute Tf from the budget

equation (11.81).

7. If the iteration has converged, then compute �̄Cpw
′′�′′ G and �̄Lvw

′′q′′ G

using Eqs. (11-82) and (11-83).

8. Solve for the temperature and moisture in the soil using Eqs. (11-36) and

(11-80).

Incorporating vegetation into a mesoscale model can be very important. For

example, Figure 11-28 (reproduced from McCumber 1980), using input syn-

optic meteorological data for July 17, 1973 applicable to south Florida, shows

substantially different profiles of potential temperature in the afternoon and

morning over a forested area (with �f = 0
90) for a sandy loam soil and over

a bare soil of the same soil type (�f = 0
0). The differences in temperature

are as large as 3�C, with the depth of the mixed layer during the day differing

by more than 300 meters. Figure 11-29, also adopted from McCumber (1980),

illustrates large variations of foliage, canopy, and ground temperatures over four

different types of vegetation soil combinations. Because the surface temperature

dominates the forcing for many types of mesoscale systems, different vegetation

and soils, therefore, are expected to play an important role in such atmospheric

phenomena and must be included in model simulations.

Fig. 11-28. Vertical profile of (a) potential temperature for early afternoon and (b) at
sunrise the following day for bare sandy loam (� = 0.0) soil and for a forested area,
where �f = 0�90. Initial synoptic data were for July 17, 1973 over south Florida. (From
McCumber 1980.)
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Fig. 11-29. Diurnal variation of predicted foliage temperature Tf (solid line), canopy
air temperature Taf (short dashed line) and ground temperature TG (long dashed line)
for (a) grass on top of peat soil (�f = 0�85), (b) grass on top of sandy soil (�f = 0�75), (c)
trees on top of sandy clay (�f = 0�90), and (d) trees on top of sandy loam (�f = 0�90).
The abscissa is time in hours after sunrise. The simulation is for July 17, 1973 conditions
over south Florida. (From McCumber 1980.)

More recent evaluations using later forms of this SVAT model, now referred

to as the Land Atmosphere Ecosystem Feedback (LEAF) model, are referred to

in Lee et al. (1995), and Shaw et al. (1997). The latest (1999) version, called

LEAF-2, is described in Walko et al. (2000a) and has been used by Pielke

et al. (1999b). Runoff is also represented in LEAF-2 and is an important loss

of immediate return of water vapor to the atmosphere. Famiglietti and Wood

(1991) discuss the role of runoff.

Figure 11-30 illustrates how SVATs represents atmosphere–surface interac-

tions for three different models (BATS, LAPS, and LEAF). A figure of this type

for three other SVATs was given by Schultz et al. (1998, Figure 1). As evident
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Fig. 11-30. (a) Framework of the simple biosphere (SiB) model. The transfer pathways
for latent and sensible heat flux are shown on the left and right sides of the diagram,
respectively. (From Sellers et al. 1986.) Symbols are described in the text. (b) Same as (a)
except for the biosphere-atmosphere transfer scheme (BATS). (c) Same as (a) except for
the land ecosystem atmosphere feedback (LEAF) model. (From Lee et al. 1993. Used by
permission of Oxford University Press, Inc.)

in Figure 11-30, the transfer of moisture and heat between different components

of the vegetation and soil system are represented by the electrical analog of a

resistor.

Basic equations used in three SVATS are presented in Appendix D. The

original sources for these models include Mihailovic and Ruml (1996),

Mihailovic and Kallos (1997), Mihailovic et al. (1993, 1998, 1999a), and Walko

et al. (2000a). Mihailovic et al. (1999b) discuss how to represent deep soil in

such models. Vegetation datasets have been described in Zeng et al. (2000a).
A summary of land-surface datasets is given in Hof (1999). For a summary of

datasets, see Appendix E. Reviews of land–atmosphere interactions are given

in Monteith (1981), Avissar (1995), Betts et al. (1996), Chen et al. (2001), and
Pielke (2001). The Project for Intercomparison of Land-Surface Parameteriza-

tion Schemes (PILPS) was introduced to assess the ability of the SVATS to

represent actual observed surface data (Henderson-Sellers et al. 1993, 1995;
Shao and Henderson-Sellers 1996).38
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Fig. 11-30b

Notes to Chapter 11

1. Here � is used to indicate the generalized vertical coordinate discussed in Chapter 6. In many

model applications, the rectangular vertical coordinate z is used.

2. Open and closed boundaries are defined in Section 11.3.1.1.

3. The integral over a given set of wavelengths in Figure 11-2 is equal to the variance of the

topography over this interval. Integrating over all wavelengths yields the total variance of the terrain,

assuming that significant terrain variations do not occur on scales less than twice the minimum

resolution in the topographic data.

4. x = 0 and x = 1 correspond to the model domain sides, so that 0 ≤ x ≤ 1.

5. The use of two or more distinct grid meshes is referred to as a nested grid. Elsberry (1978)

provides a short review of nested grid procedures.

6. See Chapter 12, Section 12.5.2, for a discussion of kinetic energy conservation.

7. The prognostic form of the conservation equations, called hyperbolic differential equations,

require both initial and spatial boundary conditions for their solution. Certain subsets of these

conservation equations [e.g., Eq. (4-35)], however, are elliptic differential equations and require only

spatial boundary conditions. Most texts on partial differential equations discuss the determination

of the particular types of partial differential equations in more detail. Haltiner and Williams (1980)

gave a brief summary of types of partial differential equations.

8. Guiraud and Zeytounian (1982) briefly discussed the influence on initialization of the reduced

number of initial conditions needed when a model is made hydrostatic.

9. This initialization process, called dynamic initialization, is defined in Section 11.2.1.
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Fig. 11-30c

10. The small value of RMSET from Figure 11-11(c) resulted because temperature was continu-

ally forced back to the observed value during the initialization. No such adjustment, however, was

used on the wind field in obtaining Figure 11-11(b).

11. The mesoscale model requires values of the dependent variables averaged over a grid volume

as defined in Chapter 4 (e.g., ū	 �̄, etc.), and the observations provide values over the sampling

volume of the instrumentation. This difference gives rise to observational data that are not consistent

with the mesoscale-averaged variables needed for input to a model.

12. Structure functions arise when a dependent variable is decomposed into products of dependent

variables that individually are functions of only a subset of the entire range of independent variables.

Each separate function represents a different subset of the independent variables. A vertical structure

function, for example, can be written as ��x	 y	 z	 t� = '�z�!�x	 y	 t�. Baer and Katz (1980) and

Daley (1981) described the advantages of such a decomposition of the dependent variables.

13. If only one observation site is used, then the field is assumed to be horizontally homogeneous

over the entire region.

14. In geological time periods, the development of mountains is referred to as diastrophism; this

term has been adopted in mesoscale meteorology to describe the construction of terrain in a model.

15. The definition of slowness is arbitrarily, of course, but if the wind field changes by only

10% in 12 hours, for example, and the forcing is constant, then it is reasonable to conclude that a

quasi-steady solution has been achieved.

16. At a latitude of 48�, six inertial periods equal about 4 days. With a wind velocity of 20 m s−1,

the advective transit time from one side of the model to the other for a 200-km long domain is less

than 3 hours.



440 11 Boundary and Initial Conditions

17. A local boundary condition is one that is generated at the boundary and is not a function of

interior grid points.

18. Closed boundaries could also be defined where no flow occurs at that perimeter of a model.

This definition seems too limited, however, so that in this text a closed boundary means that

u′	 v′	 w′ ≡ 0 at the boundary, rather than ū	 v̄	 w̄ ≡ 0. Such a boundary is closed to mesoscale flow

but not to larger-scale motions.

19. The Brunt–Väisälä frequency is defined by Note 5 in Chapter 5.

20. See, for example, Eq. (10-66), where � would increase near the lateral boundaries.

21. See, for example, Eq. (10-67), where � would increase near the lateral boundaries.

22. See Section 11.3.2 for a discussion of the absorbing layer.

23. If a terrain-following coordinate system is used (see Chapter 6), then the boundary conditions

given by Eq. (11-24) must be transformed properly to the new coordinate system.

24. Note that even when the incompressible continuity Eq. (4-23) is used, ��̄/�t 	= 0. As shown

in Section 3.1, the use of the incompressible and anelastic forms of the conservation of mass are

permitted when temporal changes of density are small relative to the other terms in Eq. (2-38), but

not necessarily equal to 0.

25. The effective radiating temperature, T∗, is defined from R↓lwG
= �T 4

∗ .
26. On the mesoscale, the horizontal conduction of heat in the soil is neglected, since the hori-

zontal grid is much larger than the vertical grid in the soil.

27. The thermal diffusivity, ks, is also referred to as heat conductivity and thermometric conduc-
tivity (Huschke 1959).

28. This identity can be shown by squaring both sides; i = �i + 1�2/2 = �i2 + 2i + 1�/2 = i.

29. The equivalent atmospheric term is given by Eq. (3-29) in Chapter 3.

30. The procedure for calculating the equilibrium moisture value discussed after Eq. (11-46) was

used to make these calculations.

31. Note that upward (downward) arrows are used to indicate that the direct plus diffuse solar

radiation has an upward (downward) direction of propagation. This notation is, therefore, somewhat

different from that used in Chapter 8, where an arrow was used with shortwave radiation only when

referring to direct radiation.

32. Fleagle and Businger (1980:233,234) provide a discussion of longwave radiative exchange

between two parallel surfaces (such as a canopy and the ground) where there is negligible absorption

in the intervening space.

33. For a more detailed discussion of emissivities and other aspects of the micrometeorology of

vegetation stands, Monteith (1975b) offers a useful survey.

34. Forced and free convection are defined after Eq. (7-8).

35. Lockwood and Sellers (1982) is an example of a paper that compares the amount of inter-

ception by different types of vegetation canopies.

36. Pr for rain and snow could be estimated from Eq. (9-6) for q̄R
2 and q̄S

1 evaluated at the

vegetation level.

37. The form of the sensible and latent heat fluxes used here is somewhat different from those

applied by McCumber in that the fluxes are weighted by �f , whereas McCumber weighted u∗	 �∗,
and q∗ separately to compute a grid-volume–averaged flux. Weighting the fluxes, however, is the

procedure used in more recent SVATs, as reported in Walko et al. (2000a).
38. Other papers that discuss SVATS and their use include Dickinson (1984), Sellers et al. (1986),

Noilhan and Planton (1989), Pinty et al. (1989), Avissar and Pielke (1991), Ye and Pielke (1993),

Lakhtakia and Warner (1994), Lee et al. (1995), Pleim and Xiu (1995), Viterbo and Beljaars (1995),

Chen et al. (1996, 1997), Gao et al. (1996), DeRidder and Schayes (1997), Dai and Zeng (1997),

Mölders and Raabe (1997), Niyogi and SethuRaman (1997), Betts et al. (1998), Bosilovich and

Sun (1998), Dai et al. (1998), Qu et al. (1998), Qingcun et al. (1998), Schultz et al. (1998),
Yang et al. (1998, 1999a, b), Yongjiu et al. (1998), Ashby (1999), Bastidas et al. (1999), Bonan
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et al. (1999), Boone et al. (1999), Chang et al. (1999), Chapin et al. (1999), Entin et al. (1999),
Gupta et al. (1999), Liu et al. (1999), Lynch et al. (1999a), Oki et al. (1999), Pauwels and Wood

(1999), Zeng et al. (1999b), Xu et al. (1999), Boone et al. (2000), Ding et al. (2000), Dirmeyer

et al. (2000), Marshall et al. (2000), Mihailovic et al. (2000), Mohr et al. (2000), Schlosser

et al. (2000), Sen et al. (2000), van den Hurk et al. (2000), Verseghy (2000), Walko et al. (2000a),
Wu et al. (2000a), Zeller and Nikolov (2000), and Zeng et al. (2000b). As evident from this exten-

sive list of citations, SVAT research has become an active area of research.

Additional Readings

Recent books and review papers that explore the subjects in this chapter in greater depth include

the following.

Brutsaert, W. 1982a. “Evaporation into the Atmosphere: Theory, History and Applications,”

D. Reidel, Norwell, MA.

Halldin, S., and S.-E. Gryning. 1999. Boreal forests and climate. Agric. Forest Meteor. 98-99, 1–4.
Hayden, B.P. 1998. Ecosystem feedbacks on climate at the landscape scale. Phil. Trans. R. Soc.

Lond. Ser. B. 353, 5–18.
Parlange, M. B., A. T. Cahill, D. R. Nielsen, J. W. Hopmans, and O. Wendroth. 1998. Review of

heat and water movement in field soils. Soil and Tillage Research. 47, 5–10.
Tenhunen, J. D., and P. Kabat, (Eds.). 1999. Integrating hydrology, ecosystem dynamics,

and biogeochemistry in complex landscapes. Report of the Dahlem Workshop on Inte-

grating Hydrology, Ecosystem Dynamics, and Biogeochemistry in Complex Landscapes,

January 18–23, 1998. Wiley, New York.

Special journal issues of land-surface field campaigns include (listed by editors) Murphy (1992),

Sellers et al. (1997), Avissar and Lawford (1999), and Hall (1999). Recent reviews of field cam-

paigns are presented in Kabat (1999) and LeMone et al. (2000).

Problems

1. Using Eq. (11-55), compute the lowest latitude at which the sun does not set on June 21. Then

compute the latitudes at which the sun does not rise on December 21. (Hint: You are computing

the latitude of the Arctic Circle.)

2. Using the simple energy budget �T 4 = S�1− A�/4, where S is the solar constant, A is the

albedo, � is the Stefan–Boltzmann constant, and T is the temperature, derive the quantity �T /�A.

Calculate the change of albedo required to obtain a 1�C change in temperature.

3. Program the tank model in Section 10.1.4. Run with cyclic boundary conditions to show that

the values in Table 10-3 can be reproduced. Then run the tank model with (a) constant inflow–

gradient outflow and (b) constant inflow–radiative outflow (see Section 11.3.1.1). Discuss the resul-

tant solutions and how they differ from the results with cyclic boundary conditions.

4. Select a SVAT (such as LEAF, LEAF-2, or LAPS in Appendix D), and determine the depen-

dent variables, tunable coefficients, and universal constants (if any).
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Model Evaluation

12.1 Evaluation Criteria

Six basic requirements must be met before the credibility of simulations per-

formed with that a mesoscale numerical model can be established by the scien-

tific community. In reading papers in the published literature, one must consider

the same criteria when evaluating the results and conclusions of those papers.

These requirements are as follows.

1. The model must be compared with known analytic solutions. To perform

these experiments, the mesoscale model is forced by very small perturbations,

so that essentially linearized results are produced, or the initial and boundary

conditions are idealized, so that exact solutions to the nonlinear equations are

possible.

2. Nonlinear simulations with the model must be compared with the results

from other models that have been developed independently.

3. The mass, moisture, and energy budgets of the model must be computed

to determine the conservation of these important physical quantities.

4. The model predictions must be quantitatively compared with observations.

5. The computer logic of the model must be available on request, so that

the flow structure of the code can be examined.

6. The published version of the model must have been subjected to peer

review. For this reason, model results presented in recognized professional jour-

nals (e.g., Monthly Weather Review, The Journal of Atmospheric Science, The
Quarterly Journal of the Royal Meteorological Society, Tellus, The Journal of
the Meteorological Society of Japan, The Chinese Journal of Atmospheric Sci-
ences, Atmosfera, Atmosphere-Ocean, Boundary-Layer Meteorology, The Jour-
nal of Geophysical Research, Meteorology and Atmospheric Physics, Russian
Meteorology and Hydrology) should carry more weight than those distributed in

report formats.

442
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Hanna (1994) provides a similar list of evaluation criteria. In this chapter, several

of these criteria are examined in more detail.

12.2 Comparison with Analytic Theory

To compare a numerical model with its analytic analog, the equations in the

computational model must be used in the same form as used to develop the

solution for the analytic version. Except for special cases, the development of

an analogous system of equations in a numerical model usually requires that

the equations be linearized. In addition, to minimize computational errors, the

grid resolution of the model must be sufficiently small such that the spatial

scale of the forcing (e.g., Lx and Lz) are adequately resolved, as summarized in

Chapter 10, Section 10.6.

Figure 12-1, reproduced from Martin (1981), illustrates a numerical sim-

ulation performed to validate the model against Defant’s (1950) exact linear

Fig. 12-1. The horizontal and vertical velocity fields 6 hours after sunrise predicted
by a numerical model analog to Defant’s (1950) analytic model. The input parameters
are given by Eq. (5-99), the results correspond to the exact solution given in Figure 5-4.
(From Martin 1981.)
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solution. Defant’s analytic model was derived in Chapter 5, Section 5.2.3.1.

Although there are minor differences between the fields in Figure 12-1 and those

evaluated from Defant’s solution (e.g., Figure 5-4), the solutions are almost

identical.

Klemp and Lilly (1978) have performed similar comparisons between ana-

lytic and numerical solutions for airflow over rough terrain. One example is

reproduced in Figure 12-2. In addition to validations against linear theory,

Klemp and Lilly (1978) and Lilly and Klemp (1979) also performed compar-

isons against analytic solutions of a subset set of the nonlinear conservation

equations developed by Long (1953, 1955); see Section 5.3 for a derivation

of the Long model. Although Long’s solutions are valid only for the special

case when the flow is steady state and the density multiplied by the domain-

averaged horizontal velocity squared is independent of height, such comparisons

offer some evidence of the accuracy of the numerical computations. The limita-

tions of Long’s solution to actual stratified flows over an obstacle are discussed

by Baines (1977). Durran (1981) has referenced studies by other investigators

who obtained exact solutions for specialized sets of the nonlinear conservation

equations.

Fig. 12-2. Comparison of predicted contours of potential temperature �̄ for an analytic
solution (dashed line) and the equivalent numerical solution (solid line) for a bell-shaped
mountain of 10 m. Results have been amplified by 50 for illustration purposes. The
normalizing factor d is the characteristic half-width of the mountain. The atmosphere
in this simulation was prescribed as isothermal initially with a large-scale wind flow of
20 ms−1, constant with height. (From Klemp and Lilly 1978.)
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12.3 Comparison with Other Numerical Models

In evaluating a numerical model, it is useful to compare its results for a par-

ticular simulation with those of a model from a different set of investigators,

such as reported by Cox et al. (1998). Although all models start with the conser-

vation equations discussed in Chapter 2, such model facets as the computational

schemes, parameterizations, and particular simplified form of the conservation

equations result in different model formulations. Although similar model results

do not necessarily indicate a realistic reproduction of the actual atmospheric sys-

tem, they are useful experiments to ascertain whether independent researchers

using different model structures can replicate each others’ results.

Mahrer and Pielke (1977b) performed a qualitative evaluation of their three-

dimensional simulation of the airflow over the White Sands Missile Range in

New Mexico against that of Anthes and Warner (1974), but used no quantitative

measures of degree of agreement. Tapp and White (1976), Hsu (1979), and

MacDonald et al. (2000) performed a similar qualitative comparison of their

results against the sea-breeze simulation reported in Pielke (1974a). An example

of an intercomparison between the results of Tapp and White (1976) and of

Pielke (1974a) are illustrated in Figure 12-3. Carpenter and Lowther (1981) have

shown that these Florida sea-breeze results are relatively insensitive to changes

Fig. 12-3. The predicted horizontal winds (a) at 50m, 10 hours after sunrise (Pielke
1974a) and (b) at 75m, 12 hours after sunrise (Tapp and White 1976). The synoptic
geostrophic wind for both simulations was from the southeast to 6 ms−1, and the maxi-
mum land-surface temperature during the day was 10�C warmer than the surrounding
ocean temperature. The distance between one grid point (indicated by the origin of the
arrows) corresponds to 6 ms−1.
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in the vertical grid mesh used. This result is consistent with the two-dimensional

vertical grid resolution sensitivity test illustrated in Chapter 11, Figure 11-6.

Using two-dimensional models, Kessler and Pielke (1982), Mahrer and Pielke

(1978b), and Peltier and Clark (1979) have simulated the airflow over rough

terrain for the Colorado Front Range windstorm of January 11, 1972 (described

by Lilly and Zipser 1972), and compared their results to those of Klemp and

Lilly (1978). A more recent model intercomparison of the simulations of this

wind storm, using 11 different models, is reported in Doyle et al. (2000).

12.4 Comparison Against Different
Model Formulations

Rather than comparing results from models of different investigators, one

can examine alternative forms of the same model. In one form of sensitiv-
ity study,1 changes to the model can include different computational schemes,

other approximations to the conservation equations, and so on. Tapp and White

(1976), for example, contrasted the use of forward-in-time, upstream differenc-

ing (Scheme I in Table 10-1) of the advective terms in their sea-breeze model

with the use of a second-order leapfrog representation (Scheme II in Table 10-1).

Although the results were similar, the use of upstream differencing produced

smoother vertical and horizontal velocity fields. The noisier fields resulting from

the leapfrog representation may have occurred due to the poor handling of phase

speed with that scheme. Mahrer and Pielke (1978b) performed a test of the

upstream spline interpolation (Scheme III in Table 10-1) and the upstream dif-

ferencing in a two-dimensional sea-breeze simulation and found no significant

differences in the results. (In the same paper, however, Mahrer and Pielke found

that the upstream differencing scheme produced mountain wave solutions with

excessive damping, as contrasted with the more realistic appearing solutions

obtained with the spline. Sea-breeze simulations can produce reasonable solu-

tions with upstream differencing because such a mesoscale feature is strongly

controlled by vertical subgrid-scale mixing, whereas simulations of forced air-

flow over rough terrain require a much more accurate representation of advection

and gravity wave propagation.)

The evaluation of nonlinear model results with and without the hydrostatic

assumption is of particular interest. For the sea-breeze circulation, Pielke (1972),

Martin (1981), and Martin and Pielke (1983) examined the relative magnitude

of the nonhydrostatic pressure in a nonlinear model in considerable depth. One

procedure used to evaluate this pressure is to derive a Poisson equation for the

hydrostatic component of the pressure, p̄H = p′
H + p0, as was performed for the

Defant sea-breeze model in Section 5.2.3.2. The difference between the total
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and hydrostatic pressure, defined here as R′, represents a grid-volume–averaged

nonhydrostatic pressure residual. In an anelastic formulation, since �p0/�xi is
already required to be in hydrostatic balance, the ratio given by∣∣∣∣�p′

H

�xi
+ �R′

�xi

∣∣∣∣/
∣∣∣∣�p′

H

�xi

∣∣∣∣	 i = 1	 2	 (12-1)

indicates the significance of the nonhydrostatic effect.

To illustrate the derivation of R′ for a nonlinear model, assume that the depth

of the atmospheric circulation of interest is much smaller than the density scale

depth of the atmosphere (i.e., Lz � H�) so that the shallow continuity equation

in (4-23) can be used, the second term on the left of Eq. (4-35) can be ignored,

and �′/�0 can be approximated by �′/�0. In addition, to simplify the analysis

(without losing the generality of the result since p0 is assumed hydrostatically

determined) assume ��/�xi�p0 = 0 �i = 1	 2�. For this situation, differentiating
Eq. (4-34) with respect to z and Eq. (4-14) with respect to x and y (i.e., �/�xi
with i = 1	 2), where p̄ is replaced with p̄H, and adding the two equations yields( �2
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where �ū∗
i /�t is evaluated from Eq. (4-14) using p̄H in place of the total pressure

p̄. Subtracting Eq. (12-2) from the form of Eq. (4-35) for a shallow atmospheric

system and with �p0/�xi �i = 1	 2� = 0, and assuming that the velocities occur-

ring in Eq. (12-2) that do not involve a time tendency term are the same as the

equivalent velocities in Eq. (4-35), results in the equation2
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where R′ = p̄ − p̄H = p′ − p′
H. Since the magnitude of �/�xi in Eq. (12-1) is

over the same distance for each term, examination of

� = �R′/p′
H�

at each grid point over a model simulation is an adequate test of the adequacy

of the hydrostatic assumption.

Pielke (1972) found for sea-breeze simulations that for the same scale of

horizontal heating, � became larger as the heating was increased and as the

thermodynamic stratification was made less stable. This result agrees with that

found by Martin for the linear model results discussed in Section 5.2.3 and
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illustrated in Figures 5-5 and 5-6. The variation of the maximum nonhydrostatic

pressure residual as a function of heat input and overlying stratification from

Pielke’s (1972) results are illustrated in Figure 12-4 as a function of the horizon-

tal grid scale used. For each experiment, heat was input within the lowest 300

m over a horizontal distance of 9�x and over a time scale such that the maxi-

mum heating was reached at the time indicated at the top of the figure. Even for

relatively small scales of horizontal heating over short time periods (e.g., with

Lx = 9 km, the time to maximum heating was 30 min), the hydrostatic relation

appears to be a valid assumption for the pressure distribution.

Figures 12-5 and 12-6 illustrate results from Pielke (1972) for a hydrostatic

model run, where p′
H is used to represent the horizontal pressure gradient, and

for a nonhydrostatic simulation, where p′ = p′
H + R′ is used for that horizontal

gradient. The scales of horizontal heating in the calculation are 2.7 and 9 km,

with a maximum temperature amplitude, ��̄max, in Eq. (11-30) of 5�, and a

potential temperature gradient in the lowest 2.7 km of the model of 1�C/300
m. In Figures 12-5 and 12-6, day in Eq. (11-30) was defined as 2160 s and

Fig. 12-4. The maximum absolute value of the nonhydrostatic pressure residual, R′,
as a function of horizontal scale of heating and time to maximum heating (Pielke 1972).
To determine R′ from Pielke (1972:26), a large-scale pressure of 1000 mb was used. The
magnitude of maximum heating is A [i.e., using A = 	�̄max in Eq. (11-30)] and B is the
value of ��0/�z in the middle and lower levels of the model in terms of B�C/300 m.
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Fig. 12-5. The vertical velocity in centimeters per second in (a) an anelastic, nonhy-
drostatic model and (b) a hydrostatic model, where Lx = 2.7 km, 	x = 0�3 km, 	�̄max and
day in Eq. (11-30) of 5�C and 2160 s, and ��0/�z = 1�C/300 m in the lowest 2.7 km. The
horizontal scale of heating is indicated at the bottom. (From Pielke 1972.)

7200 s, respectively. Despite the short time period of heat input, however, the

differences between the hydrostatic and nonhydrostatic simulations for Lx =
9 km were small. With Lx = 2
7 km, the hydrostatic solution had substantially

larger amplitude, although the locations of the convergence zones were similar.

Figure 12-7 illustrates the contribution of the nonhydrostatic pressure residual,

R′, to the total pressure for Pielke’s (1972) sea-breeze calculations. In a nonhy-

drostatic model, the vertical accelerations act to diminish the magnitude of the

hydrostatic horizontal pressure gradients.

Martin’s (1981) study substantiated Pielke’s (1972) investigation of the rel-

ative influence of the nonhydrostatic pressure residual. In Martin’s thesis, the

nonlinear advection terms are added to Defant’s (1950) analytic equations given
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Fig. 12-6. Same as Figure 12-5 except Lx = 9 km and day = 7200 s. (From Pielke 1972.)

by Eqs. (5-66)–(5-70); that is, u′�u′/�x and w′�u′/�z to Eq. (5-66), u′�v′/�x
and w′�v′/�z to Eq. (5-67), u′�w′/�x and w′�w′/�z to Eq. (5-68), and u′��′/�x
and w′��′/�z to Eq. (5-70). A hydrostatic model is formed from these equations

using �p′
H/�z = �0�

′/�0 in place of Eq. (5-68) (i.e., �1 = 0), and a nonhydro-

static version is derived of the form given by Eq. (12-3) where p′ = p′
H + R′

is used in Eqs. (5-66) and (5-68) with �1 = 1. Figure 12-8 illustrates predicted

results for horizontal velocity at the time of maximum heating, where Lx =

6.25 km and the largest temperature perturbation is 2.5�C. As in Pielke’s (1972)

earlier study, the nonhydrostatic and hydrostatic results are similar even for this

relatively small spatial scale of heating.

Tag and Rosmond (1980) extended the hydrostatic–nonhydrostatic compar-

ison to a three-dimensional cloud simulation. Among their findings was that

moist processes magnified the nonhydrostatic effect, although increasing the

stability from 1 to 2�C km−1 almost eliminated the differences caused by the

nonhydrostatic effect.
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Fig. 12-7. A schematic of the relative contributions of the nonhydrostatic pressure
residual and the hydrostatic pressure to the total pressure at a location over land in
the center of the lowest pressure in the sea-breeze convergence zone. The arrows illus-
trate the instantaneous horizontal winds that would be expected from these pressure
distributions. (Adapted from Pielke 1972.)

One of the advantages of using Eq. (12-3) to compute the nonhydrostatic

pressure residual is that it must be computed only in a region where significant

vertical accelerations exist. As illustrated in Figure 12-9, the boundary condition

for R on the subdomain is straightforward to apply, since R = 0 where the

motions are hydrostatic.

The importance of the nonhydrostatic residual has also been examined, to

some extent, for forced air over rough terrain. Figure 12-10, reproduced from

Durran (1981), shows potential temperature surfaces from one of Klemp and

Fig. 12-8. Nonhydrostatic and hydrostatic simulations for Lx = 6�25 km after 2700 s
with a surface heating function of �̄ = �0
t = 0� + �	��max sin
2�x/Lx� sin
�t/T �, where
�	��max = 2�5�C and T = 3 h. The horizontal and vertical grid spacings were 	x =
0�306 km and 	z = 100 m. Periodic lateral boundary conditions were used. Other pre-
scribed values include ��0/�x = 10�C km−1, K� = 10 m2 s−1, f = 1�301 × 10−4 s−1, and
�H and �v = 10−3 s−1. (These symbols are explained in Section 5.2.3.1.) Positive values
are given by the solid line and negative values are represented by dashed lines, with 0
indicated by the dotted line. (From Martin 1981.)
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Fig. 12-9. The definition of a subdomain, DNH, in a model where nonhydrostatic
effects are significant. Such a domain is defined to enclose those regions where F 
x� y�
is significantly different from 0.

Lilly’s (1978, Figure 10) hydrostatic simulations and an equivalent result per-

formed by Durran for a nonhydrostatic simulation. In both model runs the

upstream wind was 20 m s−1, constant with height, the mountain height reached

1 km, ��0/�z = 4�C km−1 within the lowest 10 km, and an isothermal absorb-

ing layer (see Section 11.3.2 and Figure 11-18) was prescribed between 10 and

20 km in height. The half-width of the mountain was 20 km, where the terrain

was defined as

zG = b2zGmax
/�x2 + b2�	 (12-4)

where b is the half-width and zGmax
is the maximum height of the terrain.

Although the nonhydrostatic simulation produced a slightly steeper wave in the

upper stratosphere, the hydrostatic and nonhydrostatic results are almost iden-

tical. Klemp and Lilly (1980) concluded that for realistic atmospheres with

simple, uniform structure (i.e., constant large-scale velocity and static stability

with height), ratios of �b/�u0����g/�0����0/�z��1/2 ≥ 10 or so yield nearly iden-

tical hydrostatic and nonhydrostatic results. For example, with ��0/�z = 1 K

100m−1, �0 = 300 K, and u0 = 20 m s−1, b ≥ 10 km or so satisfies this require-

ment. For a more general atmospheric structure, however, it is desirable to check

the hydrostatic assumption for each situation.
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Fig. 12-10. Contours of potential temperature from (a) a nonlinear hydrostatic sim-
ulation by Klemp and Lilly (1978), and (b) a nonlinear nonhydrostatic simulation by
Durran (1981). The upstream winds were 20 ms−1, and the upstream stratification within
the lowest 10 km was 4�Ckm−1. Note that because of scale differences the height scale
in (b) is about 8% larger than that in (a). To more quantitatively compare the two results,
measure the trough-to-crest difference for equivalent initial inflow potential tempera-
ture heights.
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12.5 Calculation of Model Budgets

Evaluation of the budgets of such physical quantities as kinetic energy and

mass is useful not only to improve our understanding of mesoscale physical

processes, but also, as a diagnostic tool to examine the fidelity of the com-

puter program logic. Before discussing such budgets of mesoscale models, it is

useful to examine this approach with the single fluid tank model introduced in

Section 5.2.1.1.

12.5.1 Mass and Energy Equations for the
Homogeneous Tank Model

The mass budget for this simplified model given by Eqs. (5-17) and (5-20)

is particularly easy to compute, since the fluid is assumed to be homogeneous.

Using the product rule of differentiation and integrating Eq. (5-20) over the tank

model domain, Dx, yields∫ Dx

0

�h

�t
dx +
∫ Dx

0

�

�x
u′hdx =

∫ Dx

0

�h

�t
dx + u′h

∣∣∣∣Dx

0

= 0


If the sides of the tank �x = 0	 Dx� are rigid (i.e., u′
0 = u′

Dx
= 0�,3 or if

periodic boundary conditions for h and u′ are used (i.e., u′h at x = 0 is equal

to u′h at x = Dx), then∫ Dx

0

�h

�t
dx = �

�t

∫ Dx

0

hdx = �h̄

�t
= 0	

so that the average height of the fluid must be constant in time. In a numerical

model, the conservation of mass, as represented by the depth of the fluid, can

be checked at each time step by

h̄ = 1

ID

ID∑
i=1

hi	

where ID is the number of grid points. If �h̄/�t 	= 0, then mass is not conserved.

The kinetic energy of the tank model can be computed by multiplying

Eq. (5-17) by hu′ and Eq. (5-20) by u′2/2, yielding the two simultaneous partial

differential equations

hu′ �u
′

�t
+ hu′2 �u

′

�x
+ ghu′ �h

′

�x
= h

�u′2/2
�t

+ hu′ �
�x

(
u′2

2

)
+ ghu′ �h

�x
= 0

u′2

2

�h

�t
+ u′2

2
u′ �h
�x

+ u′2

2
h
�u′

�x
= u′2

2

�h

�t
+ u′2

2

�

�x
�hu′� = 0




12.5 Calculation of Model Budgets 455

Adding these two equations using the product rule of differentiation and multi-

plying through by the constant density �0 yields

�

�t

(
�0

u′2

2
h

)
+ �

�x

(
�0

u′2

2
hu′
)
+ �0ghu

′ �h
�x

= 0	 (12-5)

where �0�u
′2/2h� as units of kinetic energy per unit area.

The potential energy equation is obtained by multiplying Eq. (5-20) by �0gh,
resulting in

�0gh
�h

�t
+ �0gh

�

�x
hu′ = �0g

�h2/2

�t
+ �0gh

�u′h
�x

= 0	 (12-6)

where �0gh
2/2 has units of potential energy per unit area.

To obtain the total energy, add Eqs. (12-5) and (12-6) and rearrange, giving

�

�t

[
�0

u′2

2
h+ �0g

h2

2

]
+ �

�x

[
hu′
(
�0

u′2

2
+ �0gh

)]
= 0
 (12-7)

The first term on the left is the local change of total energy per unit area E, and
the second term is proportional to the horizontal flux divergence of this energy

per unit area.

Integrating this expression over the model domain (i.e., the size of the tank)

gives ∫ Dx

0

�E

�t
dx = −hu′

(
�0

u′2

2
+ �0gh

)∣∣∣∣Dx

0

= �

�t

∫ Dx

0

E dx = �E0

�t
	

which is equal to 0 if the walls are rigid or if cyclic boundary conditions are

applied. If �E0/�t = 0, then total energy is conserved in the tank model. Thus

numerical approximations of the tank model equations should also conserve total

energy; that is, evaluating the approximate form for the first bracketed term on

the left of Eq. (12-7) at each grid point and summing across the domain should

yield a number that is identical at each time step. Thus simulations that differ

significantly from such mass- and energy-conservation criteria are suspect, and

results from them should be used cautiously, if at all.

12.5.2 Mass and Energy Equations for a Mesoscale Model

In mesoscale models, much more involved conservation relations are used;

however, it is similarly desirable to conserve mass and energy. To illus-

trate the procedure, the hydrostatic, anelastic form of the equations given by

Eqs. (6-87)–(6-90) and (6.93) with � defined by Eq. (6-48) are used to derive

the kinetic energy and mass-conservation relations.
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The shallow-slope, hydrostatic form of Eq. (6-90) [Eq. (6-62)] can be differ-

entiated with time and the order of operation reversed to yield

�

�x̃3

��̄

�t
= g

�̄2

s − zG
s

��̄

�t



Integrating between x̃3 = 0 and s� and rearranging yields4

��̄

�t

∣∣∣
zG

= ��̄

�t

∣∣∣
s�

− g
s − zG

s

∫ s�
0

1

�̄2

��̄

�t
dx̃3	 (12-8)

which is the same form as Eq. (11-25) except zG 	= 0 in Eq. (12-8). The pressure

tendency ��̄/�t�s� must be specified as a boundary condition [i.e., see after

Eq. (11-22)], and the integrated term in Eq. (12-8) is evaluated using Eq. (6-90).

Integrating the right side of Eq. (12-8) over the model domain gives5

1

Dx̃1Dx̃2

∫ Dx̃1

0

∫ Dx̃2

0

��̄

�t

∣∣∣∣
zG

(
s − zG

s

)(
s

s − zG

)
dx̃2dx̃1

= 1

Dx̃1Dx̃2

�

�t

∫ Dx̃1

0

∫ Dx̃2

0

�̄∗dx̃
2dx̃1 = �(∗

�t

 (12-9)

Values of ��̄/�t needed at x̃1 = 0	 Dx̃1 and at x̃2 = 0	 Dx̃2 are obtained from the

assumed lateral boundary condition on �̄ (see Section 11.3.1).

Since from Eq. (11-27) a change of � at the surface is equivalent to a change

of mass above that level, (∗ in Eq. (12-9) provides the value of the average mass

change per unit area over the model domain. This value of (∗ can be compared

against the integrated value of �(zG
computed directly from Eq. (6-62); that is,

�(zG

�t
= 1

Dx̃1Dx̃2

�

�t

∫ Dx̃1

0

∫ Dx̃2

0

�̄zG
dx̃2dx̃1	

where

�̄zG
= +g

s − zG
s

∫ s�
0

dx̃3

�̄
+ �(�s� 


The difference ��/�t��(zG
−(∗� is proportional to the mass loss.

A kinetic energy equation for the flow parallel to the terrain can also be

derived from the set of equations. Since ũ1 = u and ũ2 = v from Eq. (6-34),

multiplying Eq. (6-57) by �0
¯̃u1
�s − zG�/s and Eq. (6-58) by �0

¯̃u2
�s − zG�/s,

adding the two equations, and using the anelastic conservation-of-mass equation,
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after multiplying by k̄ = 1

2
� ¯̃u1 ¯̃u1 + ¯̃u2 ¯̃u2

�, results in the terrain-following kinetic

energy equation

�0

s − zG
s

�k̄

�t
= − �

�x̃j
�0

s − zG
s

¯̃uj
k̄ − ¯̃u1

�0

s − zG
s

ũj ′′ �ũ
1′′

�x̃j

− ¯̃u2
�0

s − zG
s

ũj ′′ �ũ
2′′

�x̃j
− ¯̃u1

�0

s − zG
s

×
{
�
��̄

�x̃1
− g

� − s

s

�zG
�x

}
− ¯̃u2

�0

s − zG
s

×
{
�
��̄

�x̃2
− g

� − s

s

�zG
�y

}
− ¯̃u1

�0

s − zG
s

f̂ ¯̃u3

 (12-10)

Equation (12.10) can be integrated over the model domain, yielding

�K∗
�t

= −
∫ s�
0

{∫ Dx̃2

0

�0

s−zG
s

¯̃u1
k̄
∣∣∣Dx̃1

0
dx̃2+
∫ Dx̃1

0

�0

s−zG
s

¯̃u2
k̄
∣∣∣Dx̃2

0
dx̃1

+
∫ Dx̃2

0

∫ Dx̃1

0

�0

s−zG
s

[
¯̃u1
ũj ′′ �ũ

1′′

�x̃j
+ ¯̃u2

ũj ′′ �ũ
2′′

�x̃j

]
dx̃1dx̃2

+
∫ Dx̃2

0

∫ Dx̃1

0

�0

s−zG
s

[
¯̃u1
�̄
��̄

�x̃1
+ ¯̃u2

�̄
��̄

�x̃2

]
dx̃1dx̃2

−
∫ Dx̃2

0

∫ Dx̃1

0

�0

s−zG
s

[
¯̃u1
g
�−s

s

�zG
�x

+ ¯̃u2
g
�−s

s

�zG
�y

]
dx̃1dx̃2

−
∫ Dx̃2

0

∫ Dx̃1

0

�0

s−zG
s

¯̃u1
f̂ ¯̃u3

dx̃1dx̃2

}
dx̃3

+
∫ Dx̃2

0

∫ Dx̃1

0

�0

s−zG
s

k̄s�
�s�
�t

dx̃1dx̃2	 (12-11)

where

K∗ =
∫ s�
0

∫ Dx̃1

0

∫ Dx̃2

0

(
�0

s − zG
s

k̄

)
dx̃2dx̃1dx̃3


In deriving Eq. (12-11), the condition that ¯̃u3 = 0 at zG and s� has been used.

The last term in Eq. (12-11) arises from Leibnitz’s rule,6 since s� is a function

of time. Each of the variables in the last term is evaluated at s�.
The first two terms on the right side of Eq. (12-11) are proportional to the

net flow of terrain-following kinetic energy through the sides of the model

domain, and the next term represents the change in kinetic energy from subgrid-

scale effects. The terms involving ��̄/�x̃1 and ��̄/�x̃2 are proportional to the

conversion of potential to kinetic energy by cross-isobaric flow, and the expres-

sions containing the gradients of terrain represent the conversion of potential
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to kinetic energy through upslope and downslope flow. The next to last term

in Eq. (12-11) (with f̂ ) would not appear in a three-dimensional kinetic energy

equation using the complete conservation-of-motion equation (i.e., without the

hydrostatic assumption), since the Coriolis force arises solely because of a coor-

dinate transformation (see Section 2.3) and thus cannot do work. Therefore, to

have a physically consistent terrain-following energy equation, it is necessary

to remove this term in Eq. (12-11) and in Eq. (6-87).

In using Eq. (12-11) to determine the total terrain-following kinetic energy

changes, it is imperative that the approximation technique used to evaluate the

individual terms in that expression be the same as that used in the original

approximate form of the conservation relation [i.e., the approximated forms of

Eqs. (6-60) and (6-61)] from which Eq. (12-11) was derived.

The time rate of change of terrain-following kinetic energy can also be eval-

uated directly at each individual grid point and then summed; that is,

�K

�t
=
∫ s�
0

∫ Dx̃2

0

∫ Dx̃2

0

�0

s − zG
s

�k̄

�t
dx̃2dx̃1dx̃3

+
∫ Dx̃2

0

∫ Dx̃1

0

�0

s − zG
s

k̄s�
�s�
�t

dx̃1dx̃2 (12-12)

is used instead of Eq. (12-11) to obtain an estimate of the total terrain-following

kinetic energy change. If the kinetic energy changes computed by the numerical

approximation to this expression and the approximated form of Eq. (12-11)

closely agree, then the modeler can be certain that mistakes, such as coding

errors, are not causing significant sources of unexplained changes of kinetic

energy. Note that since the last term is the same in Eqs. (12-11) and (12-12),

there is no need to compute it for a comparison of K and K∗.
Anthes and Warner (1978) discuss the use of kinetic energy budgets in

mesoscale models as a tool to check the model code, as well as to seek addi-

tional insight into the energetics of mesoscale systems. Among their results,

they showed that the flux of kinetic energy through the side walls of a mesoscale

model crucially affects the solutions in the interior. They conclude that because

of the extreme sensitivity of mesoscale model results to domain size and the

form of lateral boundary conditions, studies of the energetics of real-world

mesoscale systems will be very difficult to perform and very sensitive to errors

and small-scale variations of wind, potential temperature, and pressure at the

model boundaries. Figure 12-11 illustrates the magnitude of individual terms as

a function of time in a two-dimensional analog of Eq. (12-11), computed by

Anthes and Warner for strong airflow over rough terrain. Of particular impor-

tance is the large magnitude of the boundary fluxes of kinetic energy through

the west and east boundaries. Even small percentage errors in these terms can

cause serious errors in the results, a conclusion illustrated in Table 11-1. In a
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Fig. 12-11. Individual components of a two-dimensional form of the domain-averaged
kinetic energy equation, which is equivalent to Eq. (12-11). (A) Generation of kinetic
energy by cross-isobaric flow, from the terms with ¯̃u1

��̄
��̃/�x̃1�− g�
� − s�/s�
�zG/�x��;
Bw and Be are the flux of kinetic energy across the west and east boundaries from the
two terms evaluated from ¯̃u1

k̄�Dx̃1
0 ). (B) Net flux across the west and east boundaries

(from Be − Bw). (C) The domain-averaged change of kinetic energy. (D) The dissipation
of kinetic energy by horizontal diffusion (from the term with ¯̃u1

ũ1′′ �ũ1′′/�x̃1.). Analogs
to the last two terms in Eq. (12-11) were not evaluated. (Reproduced from Anthes and
Warner 1978.)

different study, Tag and Rosmond (1980) discuss energy conservation in a three-

dimensional small-scale (nonhydrostatic) model in considerable detail. Pearson

(1975), Dalu and Green (1980), and Green and Dalu (1980), provide additional

studies of the energetics of mesoscale systems. Avissar and Chen (1993) use a

mesoscale kinetic energy equation similar to Eq. (12-11) to develop a parame-

terization of mesoscale fluxes for use in larger-scale models.

12.5.3 Momentum Flux

Another useful diagnostic tool for model evaluation involves calculation of the

momentum flux. Used most often in the study of the dynamics of forced air over

rough terrain (e.g., Klemp and Lilly 1978), this is straightforward to calculate.
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To illustrate its evaluation, in the absence of the Coriolis term for two-

dimensional flow, Eq. (4-14) for i = 1 can be written as

��0ū

�t
= − �

�x
�0ū

2 − �

�z
�0w̄ū− �

�x
�0u

′′2 − �

�z
�0u

′′w′′ − �p̄

�x
	 (12-13)

where the conservation-of-mass equation (4.23) has been used. Assuming a

steady state and that ū	 p̄, and u′′2, far enough upstream and downstream of a

two-dimensional barrier to the flow, are constant, Eq. (12-13) can be integrated

to yield

− �

�z

∫ �
−�

(
�0w̄ū+ �0w

′′u′′)dx = 0

or ∫ �
−�

�0

(
w̄ū+ w′′u′′)dx = m1	 (12-14)

where m1 is a constant with dimensions of kilogram per seconds squared.

Equation (12.14) can be written as∫ �
−�

�0

[
w0u0 + w′u0 + w0u

′ + w′u′ + w′′u′′]dx = m1 (12-15)

using the definition of a mesoscale perturbation from the domain-averaged (i.e.,

synoptic) value given by Eq. (4-11). For the case where w0 = 0 and u0 is equal

to a positive constant, Eq. (12-15) reduces to∫ �
−�

�0�w
′u′ + w′′u′′� dx = m2	

since ��/�z��0w̄ū can be written as ��/�z��0w
′u′ in Eq. (12-13). Assuming

nonturbulent flow, the equation can be further reduced to∫ �
−�

�0w
′u′ dx = m3
 (12-16)

The constant m3 is less than 0 if the source of the mesoscale motion is the

ground surface and there is no downward reflection or generation of perturbed

flow above the ground. In this situation, the movement of a parcel upward (i.e.,

w′ > 0) toward a level of higher potential energy results in a reduction of kinetic

energy (i.e., u′ < 0). The converse is true for the downward movement of a

parcel. Hence w′u′ < 0 is required to satisfy the conservation of total energy.

Equation (12.16) is of the form most commonly applied in the diagnosis of

a mesoscale simulation of airflow over rough terrain. In a numerical model,

u0 is equal to a constant, w0 = 0, nonturbulent flow can be assumed for an

atmosphere of constant large-scale velocity and static stability, and w′u′ can
be calculated to ascertain whether it satisfies Eq. (12-16). To prevent aliasing

problems (described in Section 10.5.1), however, long-term inviscid calculations

(i.e., with no explicit or computational smoothing) can be performed only for
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small mountain perturbations where the nonlinear effects are minimal. Klemp

and Lilly (1978) show that for inviscid, isothermal analytic solutions over a bell-

shaped mountain given by Eq. (12-4) with u0 equal to a constant and w0 = 0,

the momentum flux is of the form

m3a �
−�

4
�0u0z

2
Gmax

(
g

�0

��0
�z

)1/2
� −�

4
�0z

2
Gmax

�u2
0
 (12-17)

Here the definition of � is from Eq. (5-129) and the relation between den-

sity and potential temperature vertical gradients is given by Eqs. (5-135) and

(5-136). Figure 12-12, reproduced from Klemp and Lilly, illustrates a compar-

ison of a numerically computed, horizontally integrated momentum flux [from

Eq. (12-16)] for a simulation of airflow with u0 = 20 m s−1 over a mountain of

the form given by Eq. (12-4), along with the analytic result given by Eq. (12-17).

The numerical model was integrated with zGmax
= 10 m, and m3 was multiplied

by 102 for comparison against the linear solution m3a
. The results are almost

coincident up to 10 km, thereby providing proof of the fidelity of the numer-

ical model. Above 10 km, the numerical model uses an absorbing layer (see

Section 11.3.2) to mimic the radiation boundary condition of the analytic model.

Another useful parameter that can be calculated from a model of forced air

over rough terrain is the surface drag. This drag occurs because the sloping

Fig. 12-12. A plot of m3 calculated from Eq. (12-16) from a numerical model result
for a bell-shaped mountain (dashed-dotted line) and m3a evaluated using Eq. (12-17)
for the same mountain shape (dashed line), as a function of height for u0 = 20 ms−1,
zGmax equivalent to 100 m, and 0 = 1 kgm−3. The atmosphere is isothermal, and M
corresponds to m3 and m3a . (Adapted from Klemp and Lilly 1978.)
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terrain is a partial barrier and impedes the large-scale wind flow. The wave drag

for a two-dimensional mountain can be written as

D =
∫ �
−�

p̄�zG�
�zG
�x

dx	 (12-18)

where p̄ is evaluated on zG. The momentum flux [Eq. (12-16)] evaluated at zG is

identical to the surface drag given by Eq. (12-18). The integrand of Eq. (12-18)

arises from the force per unit area exerted on a two-dimensional mountain in

the x direction.7 For a mountain that is symmetric around its crest, for example,

an asymmetric pressure field will result in a value of D that is not equal to

0. Moreover, since total energy must be conserved, the generation of internal

gravity waves by a mountain must result in the extraction of energy from the

ground.

From the Lilly and Klemp (1979) solution to Long’s model presented in

Section 5.3,

DLK = −�0u
2
0

∫ �
−�

�

(
zGi

−
(
�z2Gi

2

))
�zG
�x

dx	 (12-19)

where the subscript “LK” indicates that it is from the Lilly–Klemp solution

to the Long model. Lilly and Klemp (1979) contrast the drag [Eq. (12-19)]

from their solution to Long’s equation for an isothermal atmosphere with

constant velocity using a nonlinear bottom boundary condition, with the drag

[Eq. (12-17)] computed for a linear lower boundary condition. Among their

results, they found that the drag was enhanced compared to linear theory for

mountains with a gentle upslope and steep downslope terrain.

12.6 Comparison with Observations

The validation of a model using observations can be cataloged into two gen-

eral classes: (1) subjective validation and (2) point and pattern quantitative

validation. In subjective validation, one or more of the predicted fields are qual-

itatively compared against observations of a related phenomena. Pielke (1974a),

for example, compared the simulated vertical motion at an elevation of 1.22 km

over south Florida with the observed locations of rain showers as seen via a

10-cm radar located in Miami. The justification for the comparison is that the

primary control for rain shower development over south Florida during a syn-

optically undisturbed summer day is the location and intensity of the low-level

convergence (Pielke et al. 1991). Since 1.22 km is approximately at the top of

the planetary boundary layer, the predicted vertical velocity at that level yields

an appropriate estimate for low-level convergence. Figure 12-13 illustrates one

such comparison for June 29, 1971, 9-1/2 hours after sunrise. As evident in the
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Fig. 12-13. A model-predicted vertical motion field at 1.22 km and the radar echo map at about 9.5 hours after sunrise for June 29, 1971.
The large-scale horizontal velocity used in the model simulation above the initial height of the planetary boundary layer was 2.5 m s−1

from the east-southeast. The model used in this simulation is reported in Pielke (1974a).
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figure, the wishbone pattern of the rain showers is closely correlated with the

distribution of vertical motion at 1.22 km.

Point-to-point correspondence between model prediction and observation of

the same meteorological parameter provides a quantitative test of model skill.

Keyser and Anthes (1977) use a technique in which if �i and �iobs
are individual

predictions and observations at the same grid point, �0 and �0obs
are the average

values of �i and �iobs
at a level, and #N is the number of observations, then

E =
{ #N∑

i=1

��i − �iobs
�2/#N

}1/2
	

EUB =
{ #N∑

i=1

���i − �0�− ��iobs
− �0obs

��2/#N

}1/2
	 (12-20)

�obs =
{ #N∑

i=1

��iobs
− �0obs

�2/#N

}1/2
	

and

� =
{ #N∑

i=1

��i − �0�
2/#N

}1/2
can be used to determine the skill of the model results. The parameter E is

the root mean square error (RMSE), EUB is the RMSE after a constant bias

is removed, and � and �obs are the standard deviations of the predictions and

the observations, respectively.8 Keyser and Anthes found that the RMSE can

be significantly reduced when a constant bias is removed. Such a bias, they

suggested, could result from incorrect specification of the initial and/or bottom

and lateral boundary conditions.

Skill is demonstrated when (1) � � �obs, (2) E < �obs, and (3) EUB < �obs.

Pielke and Mahrer (1978) applied these criteria to their simulation of the sea

breezes over south Florida to show that the model could accurately predict wind

velocity and temperature at 3 m. Temperature predictions over the entire day-

light period, as given in Table 12-1, for example, had a ratio of EUB/�obs = 0
6.
Segal and Pielke (1981) have applied this analysis tool over the Chesapeake

Bay region to evaluate the accuracy of a mesoscale model prediction of biome-

teorological heat load during the daylight hours. For temperature, for example,

Segal and Pielke found that E/�obs = 0
53 with �obs = 2
12�C and � = 2
24�C.
This evaluation technique has also been applied by Shaw et al. (1997) in the

modeling of a Great Plains dryline.

One problem with point-to-point validation, however, is that spatial and tem-

poral displacement of the predicted from the observed fields could yield a poor

verification according to Eq. (12-20), even though the shape and magnitude of

the simulated pattern could be almost exact. Although not yet attempted in a
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TABLE 12-1

Error Analysis of Model-Predicted Winds and Temperature Using Eq. (12-20) for an
East–West Cross-Section From Naples to Just North of Fort Lauderdale, Florida

(See Figure 12-13 for the Location)

Variable E EUB � �obs EUB/E EUB/�obs

ū (m s−1) 3.1 3.1 1.2 2.2 1.0 1.4

v̄ (m s−1) 2.2 1.2 0.8 1.2 0.5 1.0

T (�C) 5.1 2.8 3.9 4.6 0.5 0.6

From Pielke and Mahrer 1978.

mesoscale model, rigid translation of the predicted results on the model grid

(e.g., in one–grid-interval increments) relative to the observations, and recom-

putation of E and EUB in Eq. (12-20), offers one possibility for considering the

effect of displacement on the accuracy of the results.

A quantitative measure of a model’s ability to predict observed meteorological

fields, such as displayed in Figure 12-13, is also possible using concepts of set

theory. Pielke and Mahrer (1978) applied this technique to determine the degree

of correspondence between predicted low-level convergence zones (as estimated

by the vertical velocity, w̄, at 1.22 km) and the locations of radar echos over

south Florida. Two major questions were answered using this technique:

1. What fraction of the predicted convergence zones are covered by

showers?

2. What fraction of the showers that occur lie inside of the predicted con-

vergence zones?

To illustrate the procedure of analysis, let DxDy be the model domain area, let

C be the area of the model domain covered by predicted convergence of a given

magnitude or larger, and let R be the area of the model domain covered by radar

echoes of a specified intensity and greater. With these definitions, the following

apply:

1. FE = �C ∩ R�/R is the fraction of echoes in convergence zones with

values equal to or greater than a certain value of convergence (where the symbol

∩ is an intersection in set theory symbolism).

2. Fm = C/DxDy is the fraction of the model domain covered by a specified

value of convergence and larger.

3. Fc = �C ∩ R�/C is a measure of the fraction of convergence zones, of a

given magnitude and larger. covered by echoes.

Capability is demonstrated if FE/Fm > 1, since the ratio would be expected

to be unity by random chance. A necessary condition for perfect skill is
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Fc = 1, since in that case the entire convergence zone would be covered with

echoes.9

This methodology is illustrated schematically in Figure 12-14 for an ideal-

ized distribution of radar echoes and convergence. Results for an actual model

simulation of a sea breeze over south Florida (for July 1, 1973) from Pielke and

Mahrer (1978) are given in Table 12-2, where the ratio of FE/Fm was greater

than unity in 26 out of 30 categories. The ratio was larger than 2.0 in 20 of the

categories. In contrast, Fc was much less than unity, indicating that most of the

convergence zones were not covered by rain showers—a result indicating that

sea-breeze convergence alone does not completely explain the spatial variability

of radar echoes over south Florida in the summer.

The application of this analysis procedure to other meteorological variables,

such as cloud cover and rainfall, is straightforward. Simpson et al. (1980), for
example, quantitatively examined the skill of the mesoscale model predictions

over south Florida on several days during the summer to predict locations of

shower mergers as seen by radar. This technique can, of course, be applied to

other geographic areas and to different mesoscale systems.

Anthes (1983) provides an effective summary of additional evaluations of

model capability. These include

TS = CFA

FA+ OA− CFA
	

where TS is called the “threat score,” CFA is the correctly forecast area, FA is

the forecast area, and OA is the observed area. These quantities are equivalent

to CFA = C ∩ R, FA = C, and OA = R used to obtain Table 12.2.

Fig. 12-14. A schematic illustration of the juxtaposition of a field of radar echoes R
and low-level convergence of a given magnitude and larger C. The two fields are coin-
cident at C ∩ R. The quantity Fc = 
C ∩ R�/C indicates the fraction of a convergence
zone covered by radar echoes, and FE/Fm = �
C ∩ R�/R�/
C/DxDy� measures the ratio of
echoes within the convergence zone to the fraction of the model domain covered by that
magnitude of convergence and larger.
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TABLE 12-2

The Fraction of Convergence Zones Fc of a Given Magnitude and Larger, Covered by
Radar Echoes, and the Ratio of the Fraction of Echoes in Convergence Zones of a
Given Magnitude and Larger to the Fraction of the Model Domain Covered by that

Magnitude of Convergence and Larger; This Ratio is Given by FE/Fm.

Fc FE/Fm
Time

(EST) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

1200 0
0049 0
0118 0
0 0
0 0
0 1
31 2
67 0
0 – –

1300 0
0571 0
1237 0
0072 0
0 0
0 2
16 3
17 0
20 – –

1400 0
0945 0
1770 0
3111 0
0 0
0 1
98 2
78 3
50 0
0 –

1500 0
1396 0
1337 0
1942 0
3040 0
0 2
25 2
56 3
29 6
00 –

1600 0
0889 0
1765 0
1156 0
00 0
0 2
44 2
95 2
00 0
0 –

1700 0
1609 0
2829 0
2950 0
2379 0
0 2
49 3
16 3
00 2
33 –

1800 0
1451 0
1976 0
3403 0
3866 0
0909 2
19 3
07 3
75 3
75 0
10

1900 0
0759 0
1205 0
1313 0
0211 0
0 1
06 1
43 1
67 1
67 –

Convergence is defined by vertical velocity w̄ at 1.22 km. For 1200–1800 EST, (i) w̄ > 0 cm s−1, (ii) w̄ > 8

cm s−1, (iii) w̄ > 16 cm s−1, (iv) w̄ > 24 cm s−1, (v) w̄ > 32 cm s−1. For 1900 EST (i) w̄ > 0 cm s−1, (ii)

w̄ > 8 cm s−1, (iii) w̄ > 24 cm s−1, (iv) w̄ > 40 cm s−1, (v) w̄ > 56 cm s−1. (From Pielke and Mahrer 1978.)

The threat score can also be defined as

TS = C/�F + O − C�	

where C is the number of locations in which a forecast is defined to be correct,

F is the number of locations for which a forecast is made, and O is the number

of locations that observed the forecast quantity.

A bias score, B, can be defined as

B = FA/OA

and by

B = F /O


Colle et al. (1999) discuss the changes in bias scores as the spatial grid incre-

ment in the MM5 model is made smaller.

To assess model skill, Mielke (1984, 1991) introduced a new statistical eval-

uation scheme called the Multivariate Randomized Block Permutation (MRBP)

procedure. His approach has the advantage in that regression relations and com-

parisons between model and observed data is based on the absolute value of the

differences, rather than on the square of the distances.

A summary of the MRBP technique is provided in Lee et al. (1995) and

is reproduced here. As described by Sheynin (1973), the initial known use of

regression by Bernoulli (circa 1734) for astronomical problems involved the
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least sum of absolute deviations (LADs) regression. The distance function asso-

ciated with LAD regression is the common Euclidean distance between observed

and predicted response values. Further work in developing LAD regression was

accomplished by Boscovich (circa 1755), Laplace (circa 1789), and Gauss (circa

1809). Sheynin (1973) points out that Gauss developed linear programming

for the sole purpose of estimating the parameters associated with LAD regres-

sion. Gauss consequently had to introduce the least sum of squared deviations

(LSD) regression (also termed least squares regression), simply because calcu-

lus provided an efficient way to estimate the parameters associated with LSD

regression. Thus LSD regression is a default procedure that was introduced only

because Gauss lacked appropriate computational equipment for solving linear

programming problems. The American mathematician and astronomer Bowditch

(circa 1809) immediately attacked LSD regression because squared deviations

unduly overemphasize questionable observations in comparison to the absolute

deviations associated with LAD regression (Sheynin 1973).

The MRBP procedure developed by Mielke (1984, 1991) is based on the

LAD regression. Specifically, MRBP randomly permutes the observed vector

of values ( �X) relative to the model-predicted vector of values (̃�X) with the

agreement measure, �, defined by

� = � − �

�

	 (12-21)

where � = �1/n�
∑n

i=1 � �Xi − �̃Xi� is the average distance between n-observed and

model-predicted data pairs and � is the average value of � over all n! permu-

tations. Note that the Euclidean distance between vector value pairs is used to

evaluate the agreement measure, and that good predictions are associated with

relatively small values of �. The LAD regression used here is both multivari-

ate (i.e., n vectors of two or more dependent variables may be involved) and

nonlinear. The remaining problem is to determine whether a realized value of �
for observed and model-predicted values is due merely to chance. The standard

measurement for this purpose is the P value; that is, the probability of obtaining

a value of � that is not larger than a realized value of � given that each of the

n! values of � occurs with equal probability. Although the exact calculation of

all n! values of � is seldom computationally feasible, an approximate P value

is based on the standardized test statistic given by

T = ��− ��/��	 (12-22)

where �� is the exact standard deviation of � and T is approximately distributed

as a Pearson type III distribution (Mielke 1984, 1991). Examples of the use of

the MRBP evaluation technique in mesoscale modeling are reported in Cotton

et al. (1994), Lee et al. (1995), and Mielke and Berry (2000).
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12.7 Model Sensitivity Analyses

Stein and Alpert (1993) and Alpert et al. (1995) have introduced a very

effective analysis procedure for assessing model sensitivity to the alteration of

model formulations. These alterations, for example, could include integrating a

model with surface latent turbulent heat fluxes excluded, as contrasted with a

control run in which these fluxes are included.

When one alteration is contrasted with the control run, simply subtracting the

two model runs at equivalent times of integrations is the obvious procedure for

assessing the model’s sensitivity to the alteration. However, when two alterations

are evaluated (e.g., surface turbulent sensible heat fluxes are also excluded), the

interaction between the two alterations must be assessed. Only if the alterations

are not interactive (i.e., “orthogonal”) to each other would running the two alter-

ation experiments and then adding them together provide the model’s sensitivity

to the combined effect of both alterations.

The Stein–Alpert analysis procedure includes the effect of the interactions.

Following this analysis procedure, if f0 is the control and f1, f2	 and f3 represent
three alteration experiments, then

f̂1 = f1 − f0	

f̂2 = f2 − f0	

f̂3 = f3 − f0	

where f̂1	 f̂2, and f̂3 represent the individual effects of making just one alteration

to the control. In the past, this is where most sensitivity experiments ended.

However, as shown by Stein and Alpert,

f̂12 = f12 − �f1 + f2�+ f0	

f̂13 = f13 − �f1 + f3�+ f0	

f̂23 = f23 − �f2 + f3�+ f0

represent the interaction between each pair of alterations when two alterations

from the control are made in the same experiment. When these alterations are

made in the same experiment, the three-way interaction effect is

f̂123 = f123 − �f12 + f13 + f23�+ �f1 + f2 + f3�− f0


Examples of uses of the Stein–Alpert sensitivity analysis procedure are reported

in Alpert et al. (1995, 1996a, 1999), DeRidder and Gallee (1998), Romero

et al. (1998, 2000), Eastman (1999), Grossi et al. (2000), and Eastman et
al. (2001).
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Notes to Chapter 12

1. The other type of sensitivity study involves changes in the physical parameters within the

model (e.g., initial wind speed, Coriolis value, ground roughness).

2. The solution to this diagnostic differential equation can be obtained using the procedure of

sequential relaxation discussed in Section 10.3. Haltiner and Williams (1980, Chap. 5) also present

procedures to solve Eq. (12-3) using direct matrix procedures. Mason and Sykes (1978) discuss

the use of a direct method to solve for pressure in a Cartesian coordinate framework even when

topography exists in the model domain.

Also, in deriving Eq. (12-2), the velocities on the right of Eq. (4-14), were assumed to be the

velocities obtained when the complete nonhydrostatic pressure, p̄H +R′, was used (e.g., as available

at the beginning of a time step). This assumption does not have to be made, however (it simply

results in more terms in Eq. (12-3) if it is not made). As long as changes of R′ at a grid point

between time steps are small relative to the magnitude of R′, it is a reasonable assumption.

3. If u′ ≡ 0 at the boundaries, then �u′/�x and �u′/�t must also be identically 0 at these

locations. Therefore, from Eq. (5-17), g�h/�x = 0 at the boundaries, so that no slope to the fluid

is permitted at the walls. Numerical approximations to the tank model equations with rigid walls

must use this boundary condition on h, recognizing that �h/�x = 0 at the boundary does not mean

that �h/�x = 0 between the boundary and one grid point inside when �x is finite.

4. As used here and in Section 6.3, s is a constant, usually defined to correspond to the ini-

tial value of s� as defined by Eqs. (11-13) and (11-19) and following material. The variable s�
corresponds to a movable potential temperature surface.

5. As shown by Dutton (1976:144), differential area on a constant x̃3 surface can be written as

dS = ��n3�
√
G̃dx̃2dx̃1. For the terrain-following coordinate system defined by Eq. (6-48),

√
G̃ =

�s − zG�/s [from Eqs. (6-32) and (6-51)] and for small slopes ��n3� � s/�s − zG� [from Eqs. (6-33)

and (6-51)].

6. Leibnitz’s rule is given in such sources as Hildebrand (1962:360) and Dutton (1976:115).

7. The change in force per unit area in the x direction can be written as p̄�zG� cos��n/�x,

where � is the terrain slope and �n is distance along the slope. Since �n cos� = �z, at z = zG,

the change in force per unit area in the x direction becomes p̄�zG��zG/�x. In the limit as �zG and

�x approach 0, and integrating from + to −� yields Eq. (12-18).

8. The use of RMSE analysis to examine the skill of model results for different sets of initial

conditions was also discussed in Section 11.2 associated with Eq. (11-5).

9. Since R can be larger than C	 Fc = 1 is not a sufficient measure of perfect skill.

Additional Readings

Several studies provide additional examples of model evaluations.

Cox, R., B. L. Bauer, and T. Smith. 1998. A mesoscale model intercomparison. Bull. Amer. Meteor.
Soc. 79, 265–283.

Hanna, S. R., and R. Yang. 2001. Evaluations of mesoscale models’ simulations of near-surface

winds, temperature gradients, and mixing depths. J. Appl. Meteor., 40, 1095–1104.
Snook, J. S., P. A. Stamus, J. Edwards, Z. Christidis, and J. A. McGinley. 1998. Local-domain

mesoscale analysis and forecast model support for the 1996 Centennial Olympic Games. Wea.
Forecasting 13, 138–150.
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Problems

1. Using the one-layer tank model programmed in problem 9 in Chapter 10, use the equations

in Section 12.5.1 to compute the time rate of change of the mass and energy budget of the model

by summing over the grid points of the model and then compare to what they should be from the

requirement that h is a constant and Eqs. (12-5) and (12-7). Use cyclic lateral boundary conditions.

2. Repeat problem 1 with constant inflow and gradient outflow lateral boundary conditions.

3. Repeat problem 1 with constant inflow and radiative outflow lateral boundary conditions.

4. Select a mesoscale model and describe which of the model evaluations reported in this chapter

have been used.
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Examples of Mesoscale Models

Mesoscale atmospheric systems can be divided into two groups: (1) those

forced primarily by surface inhomogeneities (terrain- and physiographic-induced

mesoscale systems), and (2) those forced primarily by instabilities in trav-

eling larger-scale disturbances (synoptically induced mesoscale systems). The

first group includes such features as sea and land breezes, mountain valley

winds, urban circulations, and forced airflow over rough terrain; the second

group includes squall lines, hurricanes, and traveling mesoscale cloud clusters.

The first group is the least difficult to simulate, because the sources of these

mesoscale circulations are geographically fixed with time scales of 12 hours or

so, and they recur frequently. These mesoscale systems do not generally move

far from their point of origin, and in general do not require a detailed spa-

tial representation of the initial and the lateral and top boundary conditions for

the dependent variables. These types of weather systems are readily forecast

in general, although weather services have not yet taken full advantage of the

repetitive nature of terrain-induced mesoscale circulations (Pielke 1982). These

mesoscale systems can be considered a boundary value problem.

Mesoscale disturbances initiated by some type of atmospheric instability [e.g.,

conditional instability of the second kind (CISK); see Holton 1972; Wallace

and Hobbs 1977:442; Mak 1981; Ooyama 1982) usually occur less frequently

at a given location, however. Moreover, because they are not forced by well-

defined geographic features, the data requirements needed to initialize mesoscale

simulations of these phenomena are more formidable. A large percentage of

the rainfall over the earth results from the tendency for synoptically driven

weather disturbances to organize into such synoptically induced mesoscale-sized

precipitating cloud systems (Houze and Hobbs 1982). These mesoscale systems

can be considered to be an initial and lateral boundary value problem. Browning

(1980) provides a similar categorization of mesoscale systems as described in

this chapter.

472
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13.1 Terrain-Induced Mesoscale Systems

13.1.1 Sea- and Land-Breezes Over Flat Terrain

Of all the mesoscale phenomena, sea and land breezes over flat terrain appear

to have been the most studied, both observationally and theoretically. This is

undoubtedly a result of the geographically fixed nature of the phenomenon (the

location of land–water boundaries), as well as the repetitive nature of the event.

The sea breeze is defined to occur when the wind is onshore, whereas the land

breeze is when the opposite flow exists.

In the case of nonexistent large-scale winds, it is comparatively easy to

describe the diurnal variations of the coastal wind circulations. Defant (1951)

presented an excellent qualitative description for this condition, which is illus-

trated in Figure 13-1. For this case, the idealized sequence of events is as

follows:

1. At some time in the early morning, the pressure surfaces become flat and

no winds occur (e.g., at 0800 LST—perhaps an hour after sunrise).

2. Later in the morning, mass is mixed upward over land by turbulent mix-

ing in the unstably stratified boundary layer, creating an offshore pressure gra-

dient at some distance above the ground.1 Over water, its translucent character

and ability to mix prevent significant heating of the surface (e.g., at 1100 LST).

Fig. 13-1. Schematic of the diurnal evolution of the sea and land breeze in the absence
of synoptic flow. (From Pielke 1981.)
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3. The resultant offshore flow of air above the ground near the coast creates

a low-pressure region at the ground, and onshore winds (the sea breeze) develop
(e.g., at 1300 LST).

4. The onshore winds transport cooler marine air over the land, thereby

advecting the horizontal temperature gradient and, hence, the sea breeze inland.

The distance that the sea breeze travels inland depends most directly on the

intensity of the total heat input to the air (Pearson 1973) and the latitude (e.g.,

at 1600 LST).

5. As the sun sets, longwave radiational cooling becomes dominant over

solar heating, and the local wind field removes the horizontal temperature gra-

dient. The pressure surfaces again become horizontal (e.g., at 1900 LST).

6. As longwave cooling continues, the air near the ground becomes more

dense and sinks. The resultant lowering of the pressure surfaces a short dis-

tance above the ground creates an onshore wind at that level (e.g., at 2200

LST).

7. In response to the loss of mass above the surface over the water, a pres-

sure minimum develops at the ocean interface immediately off the coast. The

offshore wind that then develops near the surface is called the land breeze (e.g.,
at 0100 LST).

8. The distance of offshore penetration of the land breeze depends on the

amount of cooling over the land. Because the planetary boundary layer over

land is stably stratified at night and thus vertical mixing is weaker and closer

to the ground, the land breeze is a shallower and weaker phenomenon than the

daytime sea breeze.

When the coastline is irregular, local regions of enhanced or weakened low-level

convergence develop, as illustrated for the daytime portion of the cycle in

Figure 13-2. (Such zones of preferential convergence help explain the preference

for showers in certain locations in south Florida during the summer, as seen in,

e.g., Figure 12-13.) This preference for showers results from the enhancement

of convective potential energy associated with the horizontal convergence of

water vapor (Pielke et al. 1991) and the moistening of the deeper troposphere as

repeated cumulus convection in this region detrains water vapor into the same

atmospheric column.

The evolution of the sea breeze is somewhat more complicated when a weak

or moderate (i.e., ≤̃6 m s−1) prevailing synoptic flow is included. For the two

distinct situations of comparatively cold water and comparatively warm water

relative to land, a synoptic wind direction from the colder to the warmer surface

weakens the intensity of the local wind by diminishing the horizontal tem-

perature gradient. In contrast, when a prevailing larger-scale flow of the same

strength is from the warmer to the colder surface, the temperature gradient is

strengthened and the subsequent local wind flow is stronger.
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Fig. 13-2. Schematic of the influence of coastline configuration on the sea breeze in
the absence of large-scale flow.

Examples of water that is warm relative to the land include the eastern sides

of continents in the tropics and midlatitudes at night and over coastal water

during a polar outbreak. Situations with water that is cold relative to the adjacent

land include the eastern sides of continents in tropical and midlatitudes during

sunny days, along the west side of continents in which upwelling is occurring,

and along polar coastal areas in the summer.

Fog and low stratus often form over the relatively cold water in polar and

upwelling ocean areas (e.g., Noonkester 1979; Pilié et al. 1979). Noonkester dis-
cussed fog formation caused by the offshore movement of warm, dry air along

the coast of southern California and its subsequent movement back toward and

over land in the sea breeze. Estoque (1962) performed numerical experiments

showing the influence of the prevailing synoptic flow on sea-breeze conver-

gence, and Yoshikado (1981) used observations to illustrate the influence of the

geostrophic wind direction on the sea-breeze pattern.
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Figure 13-3 illustrates predicted sea-breeze results for weak and moderate

onshore synoptic flow. With the weaker winds, the large horizontal gradient

of potential temperature (and, therefore, large horizontal gradient of pressure)

results in a tight, well-defined sea-breeze circulation as it moves inland. How-

ever, when the prevailing onshore flow is stronger, such a large pressure gradient

cannot develop, because of the rapid inland movement and greater warming of

the marine air. In this and subsequent figures, the ends of the dumbbells are

spaced 100 km apart to illustrate the approximate horizontal grid spacing of a

large-scale model, as contrasted with mesoscale grid resolution.

The magnitude of the effect of a particular horizontal temperature gradient

can be estimated from existing observational and numerical studies (e.g., Hanna

and Swisher 1971, Hanna and Gifford 1975). These and other related works

show that in the tropics and midlatitudes, a horizontal gradient of less than

about 10 W m−2/30 km has only a minor influence on local wind patterns. But

with a gradient of 100 W m−2/30 km, significant effects are discernible from

the statistical evaluation of observational data, whereas at 1000 W m−2/30 km

the influence on local wind patterns is very pronounced in case-by-case studies.

Observational studies of significance to this phenomenon are numerous; a

sampling includes those of Byers and Rodebush (1948), Day (1953), Carson

(1954), Gentry and Moore (1954), Randerson and Thompson (1964), Plank

(1966), Frank et al. (1967), Pielke and Cotton (1977), Burpee (1979), Schwartz

and Bosart (1979), Cunning et al. (1982), and Blanchard (1983) for Florida;

Kozo (1982a) for part of the Alaskan coast; Lyons (1975), Keen and Lyons

(1978), and Ryznar and Touma (1981) for Lake Michigan; Hsu (1969) for the

Texas coast; Neumann (1951), Doran (1979), Skibin and Hod (1979), and Bitan

(1981) for Israel; Druilhet et al. (1982) for the southern coast of France; Johnson

and O’Brien (1973) along the coast of Oregon; Simpson (1996) for southern

England; Skinner and Tapper (1994) for islands along the coast of northern

Australia; and Lalas et al. (1983) for Athens, Greece.
Using observational data, Biggs and Graves (1962) and Lyons (1972) have

developed indices to estimate whether a sea breeze will occur. Lyons, for exam-

ple, has shown that when V 2
g /�T is greater than 10 (where Vg is the 0600

CST surface geostrophic wind speed in meters per second and �T is the max-

imum temperature difference between the inland air temperature and the mean

lake surface temperature in degrees Celsius), a sea breeze will not occur at

the Chicago shoreline. A sea breeze does not develop when this ratio is large,

because the horizontal pressure gradient generated by the differential heating

between the land and the lake is insufficient to overcome the kinetic energy of

the large-scale flow.

These studies have demonstrated that land and sea breezes (and other similar

mesoscale circulations) are poorly resolved in conventional weather-observing
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Fig. 13-3. The vertical cross-section of potential temperature along a coastline at 1600
LST for (a) a 1-m s−1 onshore synoptic wind and (b) a 6-m s−1 onshore synoptic wind.
Initial input was for a typical summer day over south Florida. (From Mahrer and Pielke
1978b.)
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network systems. Such a lack of resolution creates serious problems in

developing routine operational forecasts of these phenomena.

Lyons and Keen (1976) also concluded that studies of transport and diffusion

over land are generally invalid when applied to the coastal environment. Lyons

and Cole (1976) and Eastman et al. (1995), for example, have discussed the

accumulation of pollutants that results from the recirculation associated with

the Lake Michigan sea breeze—an effect not considered in commonly used

dispersion models. Keen et al. (1979) also concluded that size sorting of aerosols
occurs within this lake breeze system. In a different geographic area, Carroll

and Baskett (1979) concluded that the most serious degradation of air quality in

Yosemite National Park occurs because of the transport of material from several

hundred kilometers away by the sea breeze from the Pacific coast, as well as

by the mountain-valley circulation generated by the Sierras.

In southern California, Sackinger et al. (1982) used a tracer study to document

that essentially all of the released material transported to sea during a land

breeze was advected back across the shore during the subsequent sea breeze.

McRae et al. (1982b) found similarly that in this situation, material emitted

into an elevated stable layer at night is transported offshore, fumigated to the

surface, and returned onshore during the daytime. Fumigation occurred over

the ocean, because the ocean was warmer than the overlying air. Blumenthal

et al. (1978) documented the relation between sea breeze and smog in the Los

Angeles Basin, and Lalas et al. (1982) discussed sulfur dioxide concentrations

in Athens, Greece and the need to determine the local sea-breeze, heat island,

and terrain circulations.

Examples of early analytic studies of direct relevance to the sea-breeze

phenomenon include those of Haurwitz (1947), Schmidt (1947), Defant (1950),

Malkus and Stern (1953), Stern and Malkus (1953), and Smith (1955, 1957).

More recent studies of this sort include those of Geisler and Bretherton (1969),

Walsh (1974), Neumann (1977), Kimura and Eguchi (1978), Dalu and Green

(1980), Sun and Orlanski (1981a), Rotunno (1983), Uedo (1983), Dalu and

Pielke (1989), and Dalu et al. (1996, 2000). The first nonlinear numerical

modeling study of this phenomenon, performed using two-dimensional models,

was that of Estoque (1961, 1962); this was followed by Fisher (1961), Moroz

(1967), Neumann and Mahrer (1971), and others. More recent two-dimensional

simulations, such as those of Pielke (1974b), Neumann and Mahrer (1974,

1975), Estoque et al. (1976, 1994), Physick (1976, 1980), Patrinos and Kistler

(1977), Dalu (1978), Gannon (1978), Sahashi (1981), Sun and Orlanski (1981b),

Kozo (1982b), Okeyo (1982), Maddukuri (1982), Alpert and Neumann (1983),

Segal et al. (1983a), Xian and Pielke (1991), Nicholls et al. (1991), Tijm

et al. (1999a, b), and Baker et al. (2001), have continued to use such models

to improve our understanding of the physical processes associated with the sea

breeze.
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Anthes (1978), for instance, using a two-dimensional model, has shown that

with a zero large-scale prevailing flow, the return flow of the sea breeze occurs

entirely above the boundary layer, whereas the onshore winds are confined

below that level. Abe and Yoshida (1982) examined the influence of peninsula

width on the intensity of the sea breeze and found that a width of 30–50 km

produces the strongest upward vertical velocities. Ozoe et al. (1983) used a two-

dimensional model to investigate the local pollution patterns and average parcel

trajectories in the presence of land and sea breezes. Satomura (2000) used a

two-dimensional model to study the diurnal variation of precipitation over the

Indo-China region.

Since the early 1970s, computer capability has improved sufficiently to permit

three-dimensional simulations. McPherson (1970) was the first to report such

calculations of the sea breeze and was followed, for instance, by studies such as

those of Pielke (1974a), Mahrer and Pielke (1976, 1978b), Warner et al. (1978),
Carpenter (1979), Hsu (1979), Kikuchi et al. (1981), Xu et al. (1996), Kotroni
et al. (1997), Pielke et al. (1999b), Cai and Steyn (2000), Sheng et al. (2000),
Yimin and Lyons (2000), and Baker et al. (2001). These studies provided valu-

able insight into the sea breeze, including the conclusion that along coastlines,

under undisturbed synoptic conditions during the summer in the tropics and

subtropics, the sea breeze exerts a dominant influence on the sites of formation

and the movement of thunderstorm complexes (Pielke 1974a). A sea breeze (or

lake breeze) also significantly influences the transport and dispersion of pollu-

tion (Eastman et al. 1995; Kassomenos et al. 1995; Lyons et al. 1992, 1995;
Kotroni et al. 1999a).
Figure 13-4 presents a sea-breeze model calculation during an afternoon over

the Chesapeake Bay that illustrates the need for three-dimensional simulations.

A quantitative numerical study of the sea breeze in this region is presented in

Segal and Pielke (1981) and Segal et al. (1982a). Figure 13-5 (reproduced from

Carpenter 1979) illustrates a similar complex wind field for a sea breeze over

England, and Figure 13-6(a) contrasts simulated daytime and nighttime lake–

land breeze wind fields over Lake Michigan. Sarvijarvi and Jarvenoja (2000)

modeled the mesoscale atmospheric conditions over Lake Tanganyika in Africa.

The sea breeze may also be involved in the generation of severe local weather.

Clarke et al. (1981), for example, reported on the generation of wind squalls

accompanied with spectacular roll clouds, which move onshore in northern

Australia, whose origin often appears to be related to the interaction of a sea-

breeze front and a developing nocturnal inversion.

The establishment of a mesoscale horizontal temperature gradient along a

coastline can cause or enhance low-level jets as a mesoscale-generated wind

seeks to adjust to gradient wind balance. This mechanism has been used to

explain observed wind maxima along the coasts of south Texas (McNider

et al. 1982) and Oregon (Mizzi and Pielke 1984).
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Fig. 13-4. Predicted winds at 4 m at about 1500 LST over the Chesapeake Bay for
August 9, 1975. Scale bar in meters per second. (Model simulations were performed by
W. Snow at the University of Virginia.)

Other mesoscale modeling studies of the low-level jet include that of Zhong

et al. (1996). A review of coastal meteorology is given in Rogers (1995).

13.1.2 Vegetation and Snow Breezes

Since horizontal variations of vegetation coverage and type, and of snow can

result in differences in surface sensible heat fluxes as large as those between

the land and adjacent sea, it should be expected that landscape heterogeneities

will also generate mesoscale flows (Cotton and Pielke 1995; Pielke 2001).
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Fig. 13-5. The 50-m wind and sea-level pressure forecast for 1800 LST on June 14,
1973. The experiment includes orographic effects, the movement of a synoptic-scale anti-
cyclone, and differential heating between land and water. The isopleth interval is 0.5
mb. One grid interval corresponds to 10 m s−1. (From Carpenter 1979.)

Figure 13-7(a)., for example, illustrates the role of different shapes of deforesta-

tion in a tropical region, on the generation of mesoscale circulations.

Modeling and observational studies of flows resulting from vegetation

and soil moisture variations and change include those of Lanicci et al. (1987),
Segal et al. (1988, 1989a, b), Pielke and Zeng (1989), Bryant et al. (1990),
Pielke and Avissar (1990), Chang and Wetzel (1991), Kimura and Takahashi

(1991), Pielke et al. (1991), Avissar (1992), Entekhabi et al. (1992), Chen and

Avissar (1994), Dirmeyer (1994), Clark and Arritt (1995), Cotton and Pielke

(1995), Cutrim (1995), Hong et al. (1995), Klink (1995), Crook (1996), Eltahir

(1996), Lyons et al. (1996), Nadezhina and Shklyarevich (1996), Schrieber

et al. (1996), Taylor et al. (1997), Vidale et al. (1997), Eastman et al. (1998),
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Fig. 13-6(a). The mesoscale model–predicted wind field at 10 m at 0800 LST over
the southern and central Lake Michigan area with a synoptic geostrophic wind within
the planetary boundary layer of 2.8 m s−1 from 310�. A wind vector of one grid length
corresponds to 6 m s−1. (Calculations performed by Mike McCumber and reported in
Lyons and Schuh 1979.)

Emori (1998), Stohlgren et al. (1998), Chase et al. (1999), Kalthoff et al. (1999),
Mölders (1999a), Zeng and Neelin (1999), Friedrich et al. (2000), Chen

et al. (2001), Eastman et al. (2001b), Freedman et al. (2001), Kanae et al.
(2001), Lu et al. (2001), Lynn and Tao (2001), Lynn et al. (2001) and Weaver

and Avissar (2001). Mölders (1999b) discusses how floods can alter the local

mesoscale system. Nykanen et al. (2001) discuss how small-scale precipitation

variability influences the larger-scale organization of land-atmosphere fluxes.

Sud et al. (1993, 1995) discuss the dependence of rainfall on vegetation.

Fires also can generate mesoscale atmospheric circulations. The influence

of fire on the surface energy budget is discussed in, for example, Amiro
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Fig. 13-6(b). The mesoscale model–predicted wind field at 10 m at 1600 LST over
the southern and central Lake Michigan area with a synoptic geostrophic wind within
the planetary boundary layer of 2.8 m s−1 from 310�. A wind vector of one grid length
corresponds to 6 m s−1. (Calculations performed by Mike McCumber and reported in
Lyons and Schuh 1979.)

et al. (1999) and Bremer and Ham (1999). The influence of the fire’s heat on

the physical and chemical of properties of soil are described in Giovanninni

et al. (1988).
Variations of snow cover also generate mesoscale flows, as simulated by

Taylor et al. (1998) and Segal et al. (1991a, b, c). However, Liston (1995)

illustrates, that when the snow patches are small enough, mesoscale effects can

be ignored and the individual surface fluxes simply added using the mosaic

approach discussed by Avissar and Pielke (1989). Liston and Sturm (1998)

present a model that shows how winds can create snow patches of varying
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Fig. 13-7(a). Representation of the simulated horizontal domains. (From Avissar and
Liu 1996.)
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Fig. 13-7(b). Accumulated precipitation (millimeters) at 1800 LST in domain 3D0, 3D1,
3D2, 3D3, and 3D4. Contour intervals are 2 mm in 3D0; 1 mm in 3D1, 3D2, and 3D3; and
0.05 mm in 3D4. (From Avissar and Liu 1996.)
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depth as a result of drifting and blowing of the snow. Hartman et al. (1999)
show that wind-driven sublimation of snow must be known to properly

predict moisture fluxes. Liston (1999) discusses this approach further. Green

et al. (1999) assesses how landscape influences snow-cover depletion and

regional weather.

Procedures to parameterize land-surface heterogeneity for use in larger-

scale models are discussed in Zeng and Pielke (1993, 1995a, b), Avissar and

Chen (1995), Lynn et al. (1995a, b), Arola (1999), and Liu et al. (1999a).
Overviews of the role of the land surface in weather include Avissar (1995),

Pitman et al. (1999) and Claussen (2002).

13.1.3 Mountain-Valley Winds

In a region with irregular terrain, local wind patterns can develop because of

the differential heating between the ground surface and the free atmosphere at

the same elevation some distance away. A larger diurnal temperature variation

usually occurs at the ground, so that during the day the higher terrain becomes

an elevated heat source, whereas at night it is an elevated heat sink.
Two categories of mountain–valley winds are generally recognized: (1) slope

flow and (2) valley winds. These types are easiest to recognize when the pre-

vailing large-scale flow is light. Slope flow refers to cool, dense air flowing

down elevated terrain at night and warm, less dense air moving toward higher

elevations during the day. Such air movement is often referred to as noctur-
nal drainage flow and the daytime upslope. The nocturnal drainage flow is

also called a katabatic wind (e.g., Manins and Sawford 1979a, b).2 Manins

and Sawford (1979b), for example, found that such drainage winds are three-

dimensional phenomena and that a critical gradient Richardson number of about

0.25 is required to maintain mixing between the katabatic and ambient winds.

Other studies of drainage flows include those of Andersen (1981), Egger (1981),

Horst and Doran (1981), Mahrt (1982), Mahrt and Larsen (1982), McNider

(1982), Clements and Nappo (1983), Doran and Horst (1983), Arritt and Pielke

(1986), Ye et al. (1989, 1990), Banta and Gannon (1995), and Winstead and

Young (2000). Upslope winds have been studied by Ye et al. (1987, 1990). The
Atmospheric Studies in Complex Terrain (ASCOT) program3 (e.g., Dickerson

and Gudiksen 1980, 1981) studied this type of wind field in detail in the Gey-

sers area of California. Yamada (1981) performed a three-dimensional numerical

simulation of the drainage winds in the ASCOT study area, and Lange (1981)

reports on the use of a diagnostic4 wind field model (that of Sherman 1978) to

model the movement of tracers in the drainage flow of this valley.

Valley winds, the second category of mountain-valley flow, are up- and down-

valley circulations that develop from along-valley horizontal pressure gradients

in one segment of a valley, which occur because of the input into that part of a
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valley by the slope flow of air of a different temperature structure than occurs

adjacent to that segment. Since both slope flows and these horizontal pressure

gradients along the valley floor must be resolved, three-dimensional models are

required to simulate valley winds (see, e.g., McNider 1981, who models a valley

flow that develops at the exit of a valley). Slope flows generally occur when

topographic gradients along the slope are steeper than those found along the

valley bottom; hence slope winds tend to develop more quickly than valley flow.

When slope flows occur but valley winds cannot develop as a result of block-

ing by the terrain configuration, the valley can be called a trapping valley, as
suggested by T. McKee of Colorado State University. In contrast, McKee refers

to valleys with a substantial valley flow as flushing valleys. Magono et al. (1982)
concluded that extremely low temperatures can develop in snow-covered trapped

valleys.

During sunny days, slope winds tend to be deeper than at night, as with

the sea breeze, because the heating of the ground by the sun is mixed upward

effectively by turbulent heat fluxes. At night, radiational cooling predominates

if the winds are light and the resultant perturbation flow field is more shal-

low. Figure 13-8 (reproduced from Mahrer and Pielke 1977b) illustrates the

differences in depth and strength of upslope and downslope winds in a two-

dimensional simulation in the absence of a prevailing synoptic flow. These

figures also illustrate that the airflow tends to form a closed circulation, so

that if pollutants were continuously released in one segment of the flow, they

would tend to accumulate in a region. Such recirculation is ignored in the Gaus-

sian plume models commonly used to estimate concentrations of pollutants in

irregular terrain. Using tracer data, Kossmann et al. (1999) has shown that dis-

continuities in the boundary-layer height associated with mountainous terrain

and its associated mesoscale flow can enhance the transfer of boundary-layer

air into the free atmosphere.

The diurnal evolution of the planetary boundary layer in mountainous topogra-

phy is more complicated than that observed over flat terrain, however. Whiteman

(1982) and Whiteman and McKee (1978, 1982), for example, discussed the

breakup of temperature inversions within deep valleys because of upward heat

flux after sunrise and the sinking of the inversion layer over the valley cen-

ter as upslope flows develop along the valley walls. When the inversion height

becomes sufficiently low, turbulent mixing resulting from the heating of the

ground eliminates the inversion, and a relatively deep boundary layer is pro-

duced. [Over Colorado in the summer, McKee (1982, personal communication)

reported observed mixed layers as high as 5 km or so above the surface]. Before

the inversion is eliminated, however, enhanced air pollution can occur since the

vertical depth of mixing of an effluent becomes more limited.

When a large-scale flow (often including a vertical shear of the horizontal

wind), variable surface characteristics, and/or three-dimensional topographic
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Fig. 13-8. Two-dimensional simulation of (a) nocturnal drainage flow and (b) upslope
flow with no prevailing synoptic flow. Input condition typical of summer in midlatitudes.
(From Mahrer and Pielke 1977b.)
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features are present, the resultant mesoscale flow field can become even

more complex. Without extensive observations or an accurate three-dimensional

mesoscale model, it is generally impossible to anticipate the details of the

diurnal variations in the wind field. Figure 13-9 (reproduced from Mahrer

and Pielke 1977b) illustrates the complicated wind field predicted over the

Sacramento and San Andreas Mountains of New Mexico at about 1300 LST

during a summer afternoon with a prevailing westerly wind of 5 m s−1. Another

study of three-dimensional mountain–valley type flow patterns is that of Hughes

(1978).

Wipperman and Gross (1981) have used a two-dimensional mesoscale model

to construct a wind rose in irregular terrain for stable atmospheric stratification

at Mannheim, West Germany, using 12 computations with different geostrophic

wind directions and speeds. The large-scale winds were taken from averaged

synoptic values over a 5-year period. In their study, they concluded that a non-

hydrostatic version provided a somewhat better replication of the wind rose than

the hydrostatic version, where their horizontal grid spacing was 2 km. However,

Wipperman and Gross did not explain the reason for the difference between

Fig. 13-9. The predicted surface winds at 3 m at 1300 LST over the White Sands
Missile Range for an average June day. One grid interval corresponds to 6 m s−1. Terrain
is contoured at intervals of 200 m. (From Mahrer and Pielke 1977b.)
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the two models in which the assumed stable stratification in the lowest 1800 m

(��̄/�z = 0
6�C/100 m) would be expected to minimize vertical accelerations

(see, e.g., Figure 5-5).

Modeling simulations of mountain–valley winds include those of McNider

(1981), Mannouji (1982), Kimura and Kuwagata (1995), Kuwagata and Kimura

(1997), and Chase et al. (1999), and observational studies of this atmo-

spheric feature are represented by MacHattie (1968), Wooldridge and Orgill

(1978), George (1979), Banta and Cotton (1981), Broder et al. (1981), Ohata
et al. (1981), Banta (1982, 1984), Hootman and Blumen (1983), and DeWekker

et al. (1998). Whiteman (1980), Bader (1981), and Whiteman et al. (1999) have
studied the breakup of temperature inversions in Colorado mountain valleys

after sunrise. Also in Colorado, the South Park Area Cumulus Experiment

(SPACE) (Danielson and Cotton 1977; Cotton et al. 1982a; Knupp and Cotton

1982a, b) was an investigation of the influence of mountain winds on cumulus

cloud development. Nair et al. (1997) simulated the development of cumulus

cloud convection over the Black Hills of South Dakota. Poulos and Bossart

(1995) modeled dispersion within complex terrain. Doran and Zhong (2000)

investigated thermally driven gap winds in the Mexico City area.

As an example of results from these studies, MacHattie found that the syn-

optic wind was most strongly coupled to the flow in the direction of the main

valley. Thus the diurnal perturbation was reduced more in that direction than

it was normal to the valley axis. Also, the diurnal variation of the wind was

observed to be less well defined on days with intense solar radiation, because

the strong heating was effective in developing a deep planetary boundary layer,

which enhanced mixing of the gradient wind down to the ground.

Whiteman and Doran (1993) explore the influence of terrain and the hori-

zontal pressure gradient force orientation on the diurnal variation of the wind

in complex terrain. They illustrate very effectively, as shown in Figure 13-10,

the differences in the diurnal variation of the valley wind direction as a func-

tion of the wind direction above the valley for four distinct mechanisms that

can control the wind direction. Thermally driven winds are independent of the

above-valley winds and are solely controlled by locally developed along-valley

pressure gradients. Downward momentum transport of the above-valley winds

(such as associated with a deep convective boundary layer) would produce sim-

ilar wind directions at all levels. Forced channeling occurs when the valley flow

aligns itself as to whether the above-valley flow has a net flow down- or up-

valley. A sharp transition occurs within the valley when this net flow changes

from a down- or up-valley direction. Pressure-driven channeling (which is 90�

out of phase with the forced channeling) occurs when the winds in the valley

respond only to the large-scale horizontal pressure, and not to winds that occur

above the valley. The valley winds blow directly toward low pressure synoptic

systems in this case. Pressure-driven channeling should be important when there
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Fig. 13-10. Relationships between above-valley (geostrophic) and valley wind direc-
tions for four possible forcing mechanisms: thermal forcing, downward momentum
transport, forced channeling, and pressure-driven channeling. The valley is assumed to
run from northeast to southwest. (From Whiteman and Doran 1993.)

is a lack of downward momentum transport (such as when the valley is stably

stratified) and thermal mesoscale wind effects are weak.

A stable surface layer that persists throughout the day can produce a less well-

defined mesoscale system. Ohata et al. (1981), for instance, documented the

major influence of snow cover in minimizing the strength of the local mountain–

valley wind circulation in Nepal.

Weaver and Kelly (1982) documented that mountain ranges in Colorado

are preferred locations for thunderstorm development during the summer, and

Johnson and Toth (1982a, b), and Smith and McKee (1983) have shown the

influence of topography in northeastern Colorado on controlling the local diurnal
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wind field. Johnson and Toth found that near the Front Range of the Rock-

ies, upslope winds tend to dominate during most of the day, with downslope

winds later in the afternoon and at night. The downslope winds before sun-

set apparently result from the entrainment of synoptic westerly winds aloft

down to lower levels, as well as from downdrafts initiated by cumulus con-

vection over the higher terrain to the west. This preference for westerly flow

of air throughout the troposphere in the late afternoon causes cumulonim-

bus convection to propagate toward the east at the time of their maximum

development.

Holroyd (1982) summarized climatologically the occurrence and movement of

mountain-generated cumulonimbus rainfall over the northern Great Plains dur-

ing the May–July period. In this study, the maximum rainfall from these systems

was found about 400 km northeast of the eastern boundary of the Rockies.

Cotton et al. (1983), Wetzel et al. (1983), McAnelly and Cotton (1986), Tripoli

(1989a, b), Tremback (1990), Nachamkin and Cotton (2000), and Nachamkin

et al. (2000) have investigated these mountain-generated thunderstorm com-

plexes. The observed monthly mean temperature distribution in areas of complex

topography is also strongly dependent on terrain, as illustrated in Figure 13-11

for central Virginia.

Sea- and land-breeze circulations interacting with mountain-valley systems

have also been studied (e.g., Doran and Neumann 1977; Mahrer and Pielke

1977a, b; Ookouchi et al. 1978; Garrett 1980; Alpert et al. 1982; Segal

et al. 1982b). Such interactions can be very complex and, as shown by Segal

et al. (1983b), are not simply a superposition of the two different phenomena.

Rather, mountains along coastal regions, acting as elevated heat sources, create

subsidence over and just inland from the coastal waters, thereby influencing the

intensity and distribution of the sea breeze. Mass (1982) illustrated how such a

terrain configuration can influence the diurnal pattern of rainfall in the Puget

Sound region of Washington State.

Other related studies include that of Asai and Mitsumoto (1978), who inves-

tigated the influence of slope on sea and land breezes with a linear and nonlin-

ear representation, and of Kikuchi et al. (1981), who used a three-dimensional

model to examine the importance of elevated terrain along the coast of Japan

around Tokyo in the evolution of the sea breeze. Sahashi (1981) reported on

the use of a two-dimensional nonhydrostatic model to study sea breezes over

irregular terrain. Figure 13-12 gives a schematic of the onshore-offshore diur-

nal wind pattern over the island of Hawaii, reproduced from Garrett (1980). In

Greenland, Gryning and Lyck (1983) discuss the possible interplay of a drainage

wind and a sea breeze along the coast in influencing the transport and diffusion

of tracer material. Regional-scale mountain wind circulations are reported by

Bossert and Cotton (1994a, b).
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Fig. 13-11. The estimated mean temperatures in degrees Celsius at Stevensen screen
height (∼2 m) over central Virginia in January 1961. (From Pielke and Mehring 1977.)

13.1.4 Forced Airflow Over and Around Rough Terrain

When air flows over terrain features that have horizontal scales of 25–100 km

or so, another type of mesoscale system develops. This atmospheric feature is

different from the sea and land breezes, and mountain-valley winds because

forced ascent of air in a prevailing stably stratified air mass, rather than differ-

ential heating of the ground by the sun, generates the mesoscale perturbation.

The intensity of this mesoscale system is directly proportional to the pressure

gradient generated by this forced movement of air.

Since the pressure gradient force [of the form

−�̄ ��̄/�x̃1 + g
(
�� − s�/s

)
�zG/�x + f ¯̃u2

	

for example, as obtained from Eq. (6-87)] is of such importance in the evolution

of this type of flow, and because it is approximately a linear term, exact analytic
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Fig. 13-12. An east–west cross-section of the onshore–offshore flow pattern over the
island of Hawaii (a) during midafternoon and (b) in the early morning. Temperature (�C),
dewpoint temperature (�C), and wind velocity (using wind barbs) are from observations
plotted together with the schematic flow field. (From Garrett 1980.)
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wave solutions have been applied with considerable success. Early investigators

who used exact solutions include Queney (1947, 1948), Scorer (1949), Eliassen

and Palm (1960), Covez (1971), and Vergeiner (1971). Eliassen and Palm (1960)

found that, depending on wavelength, 65–100% of the wave energy generated

as airflow is forced over mountains could be reflected downward from layers

of strong wind in the upper troposphere. A recent analytic study is that of

Kumar et al. (1998).
Klemp and Lilly (1975) have had some success at applying a linear model to

estimate the occurrence or nonoccurrence of extreme downslope winds in the

lee of the Colorado Rockies, and Sangster (1977) tested a statistical procedure

to forecast these winds using observed synoptic information and parameters

derived from linear theory. Klemp and Lilly found that the maximum downs-

lope winds occur when an inversion is present near mountaintop level upstream,

and if the temperature and wind profiles are such that the wave induced by the

terrain approximately reverses phase between the surface and the tropopause.

Sangster determined that temperature differences in the vertical and strong west-

erly winds at 700 mb were important parameters in causing strong downslope

winds, although in contrast with Klemp and Lilly’s result, such information as

the vertical wavelength, Scorer parameter (defined subsequently), and the pres-

ence of an inversion were not. Extending Klemp and Lilly’s work, Hyun and

Kim (1979) gave another example of a linear two-dimensional model of this

type of mesoscale system.

Three-dimensional linear models (e.g., Blumen and McGregor 1976;

Somieski 1981) provide guidance as to what fraction of the airstream goes

around topographic barriers and how much advects over it as a function of

factors such as the thermodynamic stability. When air can neither go over nor

go around because it is too stable and the terrain feature is too elongated, the

influence of the mountain propagates rapidly upwind—a process called block-
ing. Baker (1971) and Richwien (1978, 1980) gave examples of such blocking

by segments of the Appalachian Mountains in the eastern United States, and

Schwerdtfeger (1974) and Kozo (1982c) described the effect of blocking by the

Brooks Range in Alaska on the local wind field along the Beaufort sea coast.

Schwerdtfeger (1975) discussed the influence of blocking due to a peninsula

in Antarctica, while Wesley and Pielke (1990) described how blocking east of

the Front Range of the Colorado Rockies can produce convergence zones that

locally enhance precipitation. Reason et al. (1999) studied and simulated with a

mesoscale model the development of propagating mesoscale systems along the

coast of southeast Australia that are associated to some extent with topography.

Smith (1982a) suggested that this blocking causes a deformation of the poten-

tial temperature surfaces such as to create an unstable layer upstream of the

mountain. Parrish (1982), using observational and modeling results concluded

that low-level, mountain-parallel jets can form during the winter in the Sierra
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Nevadas of California as a result of blocking. Harada (1981) suggested that

over the Kanto plains of Japan, mountains to the west may play a role in the

generation of low-level jets.

Manins and Sawford (1982), using observational data from a small valley in

southeast Australia, found that blocking occurred when Fr ≤̃ 1
6, where Fr is
called the Froude number and is defined by

Fr = V g

(
z2Gmax

g
��0
�z

/
�0

)−1/2

�

V g is the ridge-perpendicular, large-scale wind speed above the maximum terrain

zGmax
; and �0 is the large-scale potential temperature. Manins and Sawford found

that when Fr was greater than about 1.6, the air within the valley became coupled

with the large-scale flow and was flushed out. It would be expected that this

critical value of Fr would vary for different terrain configurations. The critical

Froude number, as discussed by Manins and Sawford, represents the relative

magnitudes of kinetic energy of the large-scale wind to the potential energy

change needed to move an air parcel near the surface over a terrain barrier.

Lyons and Steedman (1981) found a critical value of Fr = 1
5 for a shallow

valley in western Australia.

Linear theory predicts that the vertical wavelength of lee waves induced by a

single ridge is given by

Lz = 2�/S
1/2
0 = 2� V g/

[
�g/�0����0/�z�

]1/2
	

where S0 is called the Scorer parameter (e.g., Alaka 1960; Anthes and Warner

1978). According to linear theory, for well-developed waves to develop (as

listed by Anthes and Warner), the Scorer parameter must be less in the upper

troposphere than at lower levels. This requires that if ��0/�z is constant, then

V g must increase with height, whereas if V g is a constant, then ��0/�z must be

less stable in the higher levels. According to linear theory, in the absence of the

Coriolis effect, two types of wave motions are induced as air flows over rough

terrain; the forced wave, which is collocated with the underlying topography,

and the lee wave, which propagates downstream. Trapped lee waves (which

propagate indefinitely downstream in the absence of friction but which decay in

amplitude rapidly with height) are a common type of air motion to the lee of

mountain barriers when S0 decreases rapidly with height. Only the forced wave

is realistically simulated in a hydrostatic model, as is evident from the reviews

of Smith (1979) and Klemp and Lilly (1980).

The use of nonlinear models to simulate the airflow over mountains orig-

inated with Hovermale (1965), who felt that the large perturbation velocities

observed in actual mountain flows violated the requirements of linear theory

in which the products of perturbations must be small. Nonlinear studies have

continued with the work of such investigators as Furukawa (1973), Anthes and
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Warner (1974), Gal-Chen and Somerville (1975b), Deaven (1976), Clark (1977),

Clark and Peltier (1977), Klemp and Lilly (1978), Mahrer and Pielke (1978b),

Peltier and Clark (1979, 1983), Seaman and Anthes (1981), Seaman (1982),

Arritt et al. (1987), Poulos and Pielke (1994), Sun and Chern (1994), Pinty

et al. (1995), Snook and Pielke (1995), Kang et al. (1998), and Mayr and Gohm

(2000). Peltier and Clark (1979, 1983), for example, disagree with Klemp and

Lilly’s (1975) explanation for strong downslope wind events and suggest that

downward reflection of energy from breaking waves in the stratosphere is the

primary mechanism. Poulos et al. (2001) investigated the interaction between

large-scale airflow over the Front Range mountains of Colorado and nocturnal

drainage flow. Figure 13-13 illustrates a simulation by Klemp and Lilly (1978)

for a particular windstorm in Colorado on January 11, 1972, a day also studied

by Mahrer and Pielke (1978b) and Peltier and Clark (1979).

Other geographic areas have also been studied. Clark and Gall (1982) pro-

vided observational comparison of several model-predicted and observed param-

eters at different levels over the Elk Mountain region of Wyoming. Seaman

(1982) also performed a model prediction of the airflow over this terrain feature.

Peltier and Clark imply that a nonhydrostatic model is necessary to simulate

the windstorm properly on this day, whereas Klemp and Lilly and Mahrer and

Pielke claim that a hydrostatic representation is adequate. The scale analysis

introduced previously in this book [e.g., Eq. (5-59) and after] indicates that the

hydrostatic formulation is adequate for representing this windstorm; however,

additional quantitative experiments are needed to settle the issue conclusively.

An exchange of correspondence on the different mechanisms for the generation

of downslope wind storms is given by Lilly and Klemp (1980) and Peltier and

Clark (1980). Durran (1986) concludes that these wind storms behave as a gen-

eralized hydraulic jump, which is apparently the reason that Mahrer and Pielke

(1978b) were successful in producing a simulated wind storm even though the

diffusive forward upstream differencing scheme was used to represent advection.

When the Coriolis effect and boundary-layer dynamics are included, the

response of the atmosphere to terrain is more complex. As shown by Kessler

and Pielke (1982), air that becomes ageostrophic after passing over one ridge

does not adjust again to equilibrium for a long distance downstream. Therefore,

if a second ridge were situated a short distance downstream, then its upstream

wind profile would be markedly different from that obtained if the Coriolis

effect were not included. Smith’s (1982b) results support this conclusion. Using

a linear model, he demonstrated that although the pressure and vertical motion

fields over mesoscale-sized mountains are unaffected by the Coriolis force, the

horizontal trajectories are altered, with a significant ageostrophic component

produced.

Kessler and Pielke also suggested that net boundary-layer warming could

occur downwind of a second ridge relative to the first, even in the absence of
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Fig. 13-13. (a) The predicted potential temperature cross-section and (b) horizontal
wind field in m s−1 for a simulation of the January 11, 1972 windstorm along the east
slopes of the Colorado Rockies. (From Klemp and Lilly 1978.)

the Coriolis effect, because of the enhanced mixing of potentially warmer air

downward as it accelerates over the upstream ridge. This net warming can occur

in the absence of precipitation on the upwind side of the mountain barrier.

Lee et al. (1989) discussed how a cold pool of air downstream from a moun-

tain barrier inhibits strong downslope wind flow. They found that the develop-

ment of a large-amplitude mountain wave is inhibited. Based on observations
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and modeling results, they concluded that in the absence of significant surface

heating, a large-scale horizontal surface pressure gradient directed away from

the mountain must be present to remove the cold pool before the downslope

winds can reach the surface.

Observational studies of strong airflow over rough terrain include those of

Lilly and Zipser (1972), Lilly and Kennedy (1973), Brinkmann (1974), Hoinka

(1980), Lilly et al. (1982), and Zipser and Bedard (1982). Lilly and Zipser, for

example, observed wind gusts of 166–200 km h−1 associated with a chinook

immediately downwind of the Rockies. Reed (1981) described a case study

of downslope winds with gusts to around 100 km h−1 downwind from low

sections of the Cascade Mountains in Washington. Under lighter winds in this

geographic area, Mass (1981) reported on a zone of preferential convergence

and precipitation in the Puget Sound area associated with the wind flow around

the Olympic Mountains. Walter and Overland (1982) discussed theoretically and

observationally several different synoptic flows over and around the Olympic

Peninsula, including the damaging winds associated with the Hood Canal Bridge

disaster. The ALPEX (Kuettner 1986; Pichler et al. 1995; Alpert et al. 1996b)
and PYREX (Bougeault et al. 1990, 1997) field campaigns were designed to

study airflow associated with mountain barriers in Europe.

In Europe, Pettré (1982) reported on violent winds associated with forced

airflow down the Rhône Valley in France. At the top of Sierra Grande Mountain

in New Mexico, Barnett and Reynolds (1981) measured winds for a 6-month

period to assess the potential for wind energy electric-conversion systems. A

report by the Centre for Advanced Studies in Atmospheric and Fluids Sci-

ence (1983) summarized studies of the influence of strong wind flows over the

Himalayas on the local wind fields in India, and Arakawa et al. (1982) reported
on an observational study of forced airflow over rough terrain in Japan. In this

latter study, the wind to the lee of the terrain barrier is found to be strongest

during the night and morning, at which time the synoptic flow, land breeze, and

nocturnal downslope winds are superimposed.

Over many mountainous and hilly regions of the world, this forced lifting

on the upwind slopes causes condensation and/or sublimation and precipitation

(e.g., Marwitz 1983; Passarelli and Boehme 1983) and is an important factor in

the local water budget. Blocking and the resultant deformation of the upstream

isentropes could also create regions of convective instability even if no such

instability were present in the upwind synoptic flow, thereby enhancing precip-

itation immediately upwind of the mountains (Smith 1982a) and increasing the

spatial irregularity of the precipitation (Gocho 1982). The merger of cumulus

clouds in the blocked flow may also increase precipitation amounts, as suggested

by the work of Sakakibara (1981). For instance, huge snow packs of more than

800 cm occur in the San Juan Mountains of southwestern Colorado in large part

because of this effect.
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Because of the increase in potential temperature that results from the release

of latent heat (and entrainment of potentially warmer air from above the plan-

etary boundary layer), comparatively dry and even arid regions often occur in

the lee of mountains, particularly when the prevailing flow is persistently from

one direction.5 As suggested by Smith and Lin (1982) from a linearized model

result, this latent heat release also alters the structure of wave motions as air is

forced over rough terrain.

Figure 13-14 illustrates the annual rainfall pattern in Washington, which is

controlled in large measure by the distribution of terrain relative to the pre-

vailing, generally southwest synoptic flow during the wet season. Figure 9-2

in Chapter 9 (from the two-dimensional results of Colton 1976) illustrates an

example of the predicted and observed orographic rainfall pattern over the Sierra

Nevadas of California, with precipitation confined to the windward slope. Over

south Wales in Great Britain, Hill et al. (1981) documented observationally the

average enhancement by a factor of three of frontal rainfall during southwest

wind flow by even hills of modest height (maximum elevations of 600 m).

Simulations of clouds or precipitation, or both, over rough terrain using three-

dimensional models include those of Chappell et al. (1978) for the San Juan

Mountains, Nickerson and Magaziner (1976) and Nickerson (1979) for the

Fig. 13-14. Annual rainfall (in centimeters) over Washington State. (From Climate and
Man 1941.)
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island of Hawaii, and Abbs and Pielke (1987) and Snook and Pielke (1995) for

Colorado. Lavoie (1974) presented a one-layer simulation of Oahu in Hawaii,

and Chang (1970) applied Lavoie’s model to the Black Hills of South Dakota.

Raddatz and Khandekar (1979) also successfully applied Lavoie’s model to the

western plains of Canada using a 47.6-km horizontal grid. Hutchison (1995,

1998a, b) discussed the coherence of weather that occurs as a result of the

presence of topographic features, which permits an interpolation of weather

information to smaller scales than the model-simulated resolution.

When the atmosphere is particularly moist and potential instability is

released, the resultant rains over rough terrain can be heavy and can cause

disastrous flash floods, such as occurred in Fort Collins, Colorado in July 1998

(Petersen et al. 1999) over the Black Hills of South Dakota in 1972, and in

the Big Thompson watershed in Colorado in 1976 (e.g., Caracena et al. 1979).
Mesoscale models may provide an effective tool for explaining these extreme

events.

Accurate simulations of airflow over rough terrain when precipitation and

cloudiness occur must not only properly represent the complex terrain but also

the dynamic and thermodynamic changes caused by the phase transformations

of water. For example, Hill (1978) found that circulation cells are formed over

mountain areas by the precipitation itself, and Reid et al. (1976) determined that

cloud shadowing over irregular terrain also affects the intensity of the airflow

over mountains. Fraser et al. (1973) and Hobbs et al. (1973) described a diag-

nostic two-dimensional simulation of the airflow over the Cascade Mountains

in Washington in which a detailed description of the cloud and precipitation

microphysics is included. Gocho (1978) used a two-dimensional linear steady-

state model to investigate the influence of microphysical processes on rainfall

over the Suzuka Mountains in Japan. Cotton et al. (1982b) and Meyers and Cot-

ton (1992) applied an ice-phase parameterization to a two-dimensional model

simulation of stable wintertime orographic flow.

Durran (1981), Durran and Klemp (1982b), and Kessler and Pielke (1983),

in a confirmation of the conclusions of Smith and Lin (1982), have shown

that latent heat release can substantially alter the structure of internal waves

over mountainous terrain. Kessler and Pielke found that the release of heat of

condensation over a ridgetop results in a more symmetric wind field over the

mountain than is produced when no phase change of water occurs.

Simulations of wind flow over rough terrain using a form of dynamic ini-

tialization or objective analysis include those reported in Collier (1975, 1977),

Fosberg et al. (1976), Danard (1977), Rhea (1977), Bell (1978), Dickerson

(1978), Sherman (1978), and Patnack et al. (1983). Ludwig and Byrd (1980)

outlined what they claim to be a particularly efficient procedure to compute mass

consistent flow fields from wind observations in rough terrain. Such models are

called diagnostic, even if the conservation relations are used, because they are
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Fig. 13-15. The predicted precipitation pattern over Colorado with a westerly synoptic
wind. The darkest shading indicates the heaviest precipitation. Terrain is contoured in
units of kilometers above sea level, whereas precipitation is given in relative units (i.e.,
for this flow a contour location with a value of 1.0 receives twice as much precipitation
as a contour value of 0.5; based on work in Rhea 1977).



13.1 Terrain-Induced Mesoscale Systems 503

Fig. 13-16. The simulated winds over the region around the southern end of Van-
couver Island, British Columbia. One grid distance represents 10 m s−1. (From Danard
1977.)

not used to forecast forward in time through the integration of the conservation

relations. Figures 13-15 and 13-16 show examples of results from two of these

models.

Diagnostic models are very economical and appear to be effective mesoscale

analysis tools when (1) the dominant forcing is the terrain; (2) below the highest

terrain heights a strong, well-defined inversion exists at the top of the planetary

boundary layer; and (3) sufficient observational data are available to input to

the analysis.

13.1.5 Urban Circulations

Urban circulations are similar to sea and land breezes and mountain-valley

winds in that it is the differential heating and cooling between the rural and

urban areas that generates and sustains the wind system. Over cities and sub-

urban areas, such alterations as asphalting, buildings, and the removal of veg-

etation have markedly altered the surface heat budget and thus the intensity of

heat flux to the air.

The influence of these urban areas on the local weather pattern has received

increased attention as the areal extent of such regions expands and as we realize
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the major influence of industrial and populated areas on climate and on human

health and well being. It is in the study of urban circulations that Eq. (4-26)

becomes an important component in the conservation laws relevant to mesoscale

atmospheric flows. As reported by Pielke (1978), an estimated 15,000 deaths

per year in the United States are due to air pollution. This number exceeds

the annual average number of fatalities of all other weather-related hazards

combined.

Health effects from poor air quality occur throughout the world. In Italy

during July 1976, for example, the accidental venting of the highly toxic organic

compound dioxin (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin) from a factory and

its transport and dispersal by the local flow field caused death to farm animals

and sickness to people and forced the permanent evacuation of individuals from

their homes (Science News 1976; Fuller 1978). Seinfeld (1975) summarized the

effects of air pollution on human health as known up to that time.

In the eastern United States, the emission of sulfates from coal-burning power

plants and nitrates from automobile exhausts and power plants has greatly

increased the acidity of precipitation (Likens and Bormann 1974). J. Galloway

of the University of Virginia (1978, personal communication) has sampled pre-

cipitation in Virginia and found that on occasion, it has an acidity over 250

times the naturally expected value (pH as low as 3.2). Figure 13-17 illustrates

an example of the enhanced levels of sulfur over an urban area, with its peak

concentration elevated somewhat above the ground. Such high concentrations

of sulfur, along with its possible long residence time over a city during stagnate

synoptic conditions, result in mesoscale-enhanced levels of acid deposition. For

such a situation, dry deposition would occur throughout the stagnate period, and

wet deposition would happen when precipitation finally does fall.

The impact of anthropogenic gases and aerosol contaminants in the atmo-

sphere demands greater complexity in mesoscale models, since the number of

interactions is greater. In addition, Gaussian plume simulations, as originally

proposed by Pasquill (1961) and used by the U.S. Environmental Protection

Agency (e.g., Turner 1969), are inaccurate representations of pollutant dis-

tributions when phenomena such as the recirculation of the urban air occur.

Calder (1977), for example, in a serious oversimplification of urban meteorol-

ogy, assumed that a single wind speed and direction are representative of an

entire city area for 1-hour periods in his multiple-source plume model formu-

lation. However, van Egmond and Onderdelinden (1981) found that even with

108 stations monitoring SO2 over a 15 × 220 km2 area in Holland, relative

errors of 20% occurred in the analyzed fields. These errors are due to measure-

ment errors and small-scale influences of local sources (including the local wind

and turbulence fields).

Urban models have tended to evolve separately in the areas of air chemistry

and meteorology. In the former case, models have treated detailed chemical
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Fig. 13-17. (a) A photograph taken from the Eiffel tower of a layer of pollution over
Paris, France (b) measurements of sulfur (o) and temperature 
+� at various heights from
the tower at 1140 LST on December 12, 1977. The top of the pollution is distinctly evident
as the approximately horizontal discontinuity in grey shading in the upper middle of the
photograph. The photograph and figure were supplied by Pierre Huguet (1982, personal
communication). This information is also reported in Huguet et al. (1978) and Fage and
Moussafir (1980).
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interactions (e.g., Peterson 1970; Appel et al. 1978; Kowalczyk et al. 1978;
Brewer et al. 1981; Seigneur 1994) but have not adequately handled the

mesoscale dynamics. Such models are often called Box models (e.g., Schere

and Demerjian 1978). Surveys of the knowledge of atmospheric chemistry are

given by Hales (1975), McEwan and Phillips (1975), and Heicklen (1976). EPA

(1980) provides a summary of selected photochemical grid models for use over

urban areas.

Mesoscale meteorological models have been used to estimate the transport

and dispersion of pollutants. McNider (1981), for example, simulated the move-

ment of effluent under drainage wind flow. McRae et al. (1982a) used the

advection-diffusion equation of the form given by Eq. (4-26), including surface

removal processes and parameterized photochemistry, to estimate urban air pol-

lution. Other work in formulating transport and dispersion representations of

pollutants for use in three-dimensional models includes that of Yamada (1977)

and Uliasz et al. (1996). Sheih (1977) and others have considered the influ-

ence of thermal coagulation and gravitation on pollution concentrations. Hane

(1978) simulated the wet deposition of pollutants over St. Louis using a two-

dimensional squall line model.

In general, however, the meteorological observations and simulations have

concentrated on the effects of an urban area on the wind, temperature, and mois-

ture fields rather than on chemical interactions. Loose and Bornstein (1977), for

instance, investigated the influence of New York City on the synoptic flow and

observed that when a heat island was well developed, synoptic fronts deceler-

ated over the upwind half of the city and accelerated over its downwind half in

response to the higher surface roughness of the urban area. Bornstein directed

a study of the influence of New York City on the sea breeze (Anderson 1979;

Fontana 1979; Thompson 1979) and further illustrated the large drag effect of

the buildings in this urban area. Bornstein and Thompson (1981) described the

influence of this wind retardation on sulfur dioxide concentrations in New York

City. Among their results, they found decreased concentrations near the coast,

but larger concentrations on the downwind side of the city, associated with

the inland passage of the sea breeze. Such an observation is explained as the

contamination of relatively clean, onshore flow as it traverses the city.

The St. Louis area has been studied extensively as part of the METROMEX

program (see Project METROMEX 1976 for a summary and the May 1978 issue

of the Journal of Applied Meteorology for a series of articles with results from

this program). Vukovich et al. (1976), for example, found from a mesoscale

model that the urban effect of St. Louis depends on wind direction when the

synoptic wind is above a certain threshold. From the observational data, Oochs

and Johnson (1980) concluded that both radar echo tops and bases over St. Louis

were lower than their rural counterparts. They attributed this difference to

weaker updrafts in urban clouds. Changnon (1982) reported on the substantial
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reduction in visibility over this city from locally generated pollutants. Shreffler

(1982) discussed the variability of winds over the St. Louis area and its influence

on short-term air quality predictions, while Ching et al. (1983) described the

relative importance of vertical heat flux and horizontal advection over this city.

Other mesoscale-modeling studies of this urban area include those of Vukovich

et al. (1979), Vukovich and King (1980), and Hjelmfelt (1980, 1982). An

example of Hjelmfelt’s (1980) simulation of the wind flow over St. Louis is

given in Figure 13-18.

Changnon (1980) found results over Chicago to be similar to those observed

over St. Louis, although the rainfall increase due to the urban area was less, a

Fig. 13-18. The predicted winds at 1 km at 1100 LST on July 18, 1975 over St. Louis,
Missouri. The urban land-use areas are located within the stippled area. The wind
arrows are drawn to a scale of 8 m s−1 per grid interval, and the isotachs are contoured
at 1-m s−1 intervals. (From Hjelmfelt 1980.)
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result that he attributed to the proximity of Lake Michigan. He observed a 15%

increase of rainfall over central Chicago compared with the surrounding rural

areas. Fujita and Wakimoto (1982) showed a reduction of mean wind speeds

over Chicago by more than one-half as compared with the open terrain to the

west of the city.

Additional observational and theoretical urban studies include those of

Anderson (1971), Olfe and Lee (1971), Oke and Fuggle (1972), Lee and Olfe

(1974), Taylor (1974), Yap and Oke (1974), Fuggle and Oke (1976), Nunez and

Oke (1976), Oke (1976), Loose and Bornstein (1977), Sawai (1978), Sisterson

and Dirks (1978), Shreffler (1979), Goodin et al. (1980), Goldreich et al. (1981),
Leduc et al. (1981), Tapper et al. (1981), Sorbjan and Uliasz (1982), Yonetani

(1983), Ulrickson and Mass (1990), Kallos et al. (1993), Pilinis et al. (1993),
Sailor (1995), Tso (1995), Banta et al. (1998), Kitada et al. (1998), Grimmond

and Oke (1999), Hafner and Kidder (1999), Ichinose et al. (1999), Kallo and

Owen (1999), Philandras et al. (1999), Bornstein and Lin (2000), Jazcilevich

et al. (2000), Sharan et al. (2000) and Kanda et al. (2001). Air pollution studies

in India are reported by the Centre for Advanced Studies in Atmospheric and

Fluids Science (1983), and Kotroni et al. (1999a) simulate an air pollution

episode in Athens, Greece. Air pollution studies using mesoscale models also

include Kallos et al. (1998), Cautenet et al. (1999), Varinou et al. (1999),

Yamada (1999), Bornstein and Lin (2001), Seaman and Michelson (2000),

and Warner and Sheu (2000). Arritt et al. (1988) used a mesoscale model to

investigate the spatial variations of the deposition velocity of sulphur dioxide

resulting from mesoscale flow. Taha (1999) and Taha et al. (1999) discuss

the importance of urban heat storage on mesoscale weather. A summary of

mesoscale air quality modeling issues is given by Dabberdt (2001).

Among the results of these types of studies, Oke (1973) determined from

an observational study that the heat island effect of a city on its surroundings

under cloudless skies is inversely proportional to the large-scale wind speed

and directly related to the logarithm of the population. The heat island effect

is also apparently dependent on the culture and age of settlement. Oke (1982,

Figure 3), for instance, found less heat island intensity in Europe than in North

America for the same population size. Over Australia, Manton and Ayers (1982)

reported that aerosol production is proportional to the town population and has

a rate of input of 8× 1013 s−1 per person.

Nkemdirim (1980) found that for Calgary, Canada, the urban heat island

intensity is directly proportional to the magnitude of the stable lapse rate and

inversely proportional to the wind speed at the upwind edge of the city. Large-

scale wind speeds greater than 15 m s−1 or so essentially eliminated the heat

island effect, as did near neutral lapse rates. Palumbo and Mazzarella (1980)

ascertained that urbanization of Naples, Italy has resulted in a local increase of

rainfall. Yonetani (1982) reported on an increase of precipitation in the urban-
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ized area of Tokyo as compared to its suburbs. Harada (1980) suggested the

possibility that the increase between 1927 and 1976 of rainfall and thunder

occurrences during the warm season at the town of Muroran, Japan was from

increased industrial activity associated with the making of steel.

Schultz and Warner (1982), using a two-dimensional numerical model, inves-

tigated the importance of the sea-breeze, mountain-valley, and urban circulations

in the Los Angeles Basin and concluded that the urban heat island effect was

negligible in their simulation. Van der Hoven (1967) reported on an early trans-

port and diffusion study in the same geographic area. Goodin et al. (1980),
used a diagnostic model (see Section 13.1.4) to construct a three-dimensional

mass-conservative wind field over the Los Angeles Basin. McRae and Seinfeld

(1983) reported on an evaluation of an urban photochemical air pollution model

that contains chemical reactivity for the Los Angeles Basin, although measured

surface wind fields rather than a mesoscale model simulation were used to esti-

mate air parcel trajectories. As shown by Reible et al. (1983), the behavior of

plumes cannot be determined from surface winds alone but will also depend on

the wind directional shear with height.

Studies of islands have also been performed to estimate the influence of urban

areas on climate and weather (as well as to study the effects of the islands them-

selves, of course). Such investigations are particularly useful because pollution

is not generally significant over an island, whereas it may be significant in the

city environment. Mahrer and Pielke (1976) performed such a study using the

island of Barbados in the West Indies, and found a downwind pressure min-

imum created by the advection offshore of the heat generated by the island.

Figure 13-19 illustrates the resultant low-level convergent zone produced down-

wind of the island. Scofield and Weiss (1977) and the principal investigators

of Project METROMEX (1976) reported on preferred regions of thunderstorm

development downwind of urban areas, apparently at least partially because of

this type of convergent wind field. Figure 13-20 (reproduced from Scofield and

Weiss 1977) illustrates the strong heating of a metropolitan area (in this case

Washington, D.C. and Baltimore) relative to the rural area.

Matson et al. (1978) used satellite imagery to illustrate maximum urban-

rural differences ranging from 2.6 to 6.5�C in the midwestern and northeastern

United States on a particular summer day. Price (1979), using high-resolution

satellite imagery, found peak rural–urban temperature differences as large as

17�C over New York City, a result that is substantially larger than surface-based

observed temperatures. He suggests that this difference could be from satellite

sensing of industrial areas and rooftops, as well as the trapping of energy within

urban canyons (Nunez and Oke 1977) which are not sensed by the surface

observations. Thus actual heat fluxes into the atmosphere must be proportionally

larger than if only surface-based observed data are used to estimate fluxes in

mesoscale models of the urban circulation. The cover of the March 1980 issue
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Fig. 13-19. The vertical velocity field at 1 km above the water and land surface at 1300
LST in the vicinity of Barbados during a typical summer afternoon. The contour interval
is 8 cm s−1. The synoptic geostrophic wind was 10 m s−1 from the east. (From Mahrer
and Pielke 1976.)

of the Bulletin of the American Meteorological Society (Matson and Legeckis

1980) illustrates another satellite image of urban heat islands (this example is for

eastern New England), and Carlson and Augustine (1978) presented an image

for the Los Angeles area. Using surface station data, Winkler et al. (1981)
showed that the difference in the January and July mean temperatures between

downtown Minneapolis–St. Paul and the surrounding countryside is about 2�C
and 3�C, respectively.
Other studies of heated islands include those of Estoque and Bhumralkar

(1969), Delage and Taylor (1970), Bhumralkar (1972), Lee (1973), Lal (1979),

and Carbone et al. (2000). Chopra (1973) summarized these and other aspects

of the influence of islands on atmospheric flow patterns. Melgarejo (1980) used

a two-dimensional boundary-layer model to help assess wind energy over the

island of Gotland, Sweden. Garstang et al. (1975) presented a summary of heat

island studies.

On a somewhat larger scale, Keyser and Anthes (1977) reported on predic-

tions of planetary boundary-layer depths over the mid–Atlantic states using

a mesoscale model. The concentration of pollution is, of course, closely

related to the boundary-layer depth. Sheih (1978), Hanna (1979), and McNider
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Fig. 13-20. The observed surface temperature (in degrees Celsius) over the Chesa-
peake Bay Region (as seen via the NOAA-4 satellite) at 0848 LST on June 26, 1976. (From
Scofield and Weiss 1977.)

et al. (1980), provided more accurate representations of pollution dispersion for

use in urban and other types of mesoscale models. de Wispelaere (1981) and

Zannetti (1990) provided summaries of a number of techniques for estimating

pollution concentration over mesoscale-sized areas. Moran (1992) and Moran

and Pielke (1996a, b) compared mesoscale and regional model simulations of

dispersion with tracer data.

Efforts to couple air chemistry and meteorology continue (e.g., Swan and

Lee 1980); however, comprehensive coupled three-dimensional mesoscale sim-

ulations of this interaction (including radiative interactions; see Sections 8.3.3

and 8.4.3) need to be performed. Swan and Lee (1980), for example, have
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reported that because of the highly nonlinear interactions between chemical

reactions in the atmosphere and the meteorology, both chemistry and meteo-

rology must be considered simultaneously to accurately assess the effects of

individual sources on air quality.

Gas and aerosol pollutants are known to have large temporal fluctuations and

large spatial mesoscale variations. Health standards for such pollutants as carbon

monoxide, ozone, nitrogen oxide, sulfur dioxide, lead, and fine aerosol parti-

cles have been developed. Many urban areas do not satisfy air quality standards

and are said to be in nonattainment. Although these air quality standards were

chosen primarily for health reasons (and, more recently, to monitor visibility),

the effect on local weather could also be substantially influenced by lesser con-

centrations than are mandated as upper air quality limits. Viskanta and Weirich

(1978) used a two-dimensional mesoscale model in which initial pollutant con-

centrations at the surface in a rural and an urban area were 20 and 100 g m−3,

respectively, for gases and aerosols. They showed that in midlatitudes, surface

temperatures were reduced about 0.3�C during midday downwind of an urban

area in both winter and summer, whereas around sunrise it was 0.8�C warmer

in winter and 0.5�C warmer in summer. Even upwind of the city, changes in

surface temperature were predicted from the influence of changes in radiative

flux divergence on the urban circulation. These pollutants also affect visibility

(e.g., Mumpower et al. 1981).
Other studies of the effect of pollution on urban weather include those of

Atwater (1971a, b; 1974; 1977), Bergstrom and Viskanta (1973a, b), Pandolfo

et al. (1976), Zdunkowski et al. (1976), Viskanta et al. (1977b), Welch

et al. (1978), and Viskanta and Daniel (1980). This last article reported on

a two-dimensional simulation of St. Louis during the summer and found a

maximum heat island effect of +3�C. Viskanta et al. found that the interaction

of radiation with air pollution acts to decrease stability near the ground at

night and to increase it during the day. Welch et al. (1978) found significant

changes in the modeled planetary boundary-layer structure over and downwind

from a city because of changes in atmospheric turbidity, roughness, heating,

and soil types over the urban area. Atwater (1977) investigated urban effects

in desert, tropical, midlatitude, and tundra locations and concluded that the

largest thermal effects were in the tundra and the smallest were in the tropics

and deserts. In contrast to Viskanta and Daniel (1980) and others, however, he

concluded that except in the tundra, pollutants are only minor factors in the

formation of heat islands. Pandolfo et al. (1976) also suggested that NO2 and

the particulate aerosols are the only commonly found anthropogenic pollutant

constituents with significant radiative effects, and that their concentrations

can be represented as a fixed fraction of carbon monoxide, which is the only

pollutant they predicted explicitly.
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Robinson (1977), Bornstein and Oke (1980), Landsberg (1981), and Bennett

and Saab (1982) reviewed the influence of pollution and urbanization on urban

climate. The 1983 AMS/EPA Specialty Conference on Air Quality Modeling

of the Nonhomogeneous, Nonstationary Urban Boundary Layer reviewed our

current understanding of urban meteorology with papers on such topics as

ground-air exchange (Garrett 1983b), parameterization of subgrid-scale fluxes

(Lewellen 1983), pollution removal mechanisms (Hales 1983), parameterization

of radiation (Kerschgens 1983), modeling techniques (Warner 1983), transport

and diffusion (McNider 1983), and synoptic influences in urban circulations

(McKee 1983). Seaman (2000) provides a recent review of the use of meteo-

rological models for air quality assessments. Accurate modeling simulations of

urban areas requires that both air chemistry and the meteorology must interact.

The primary interactions are as follows:

1. The rates of input, transport, diffusion, and fallout of pollutants, as well

as the types and rates of chemical reactions, depend on the mesoscale meteoro-

logical dynamics and thermodynamics.

2. Mesoscale circulations are influenced by alterations in radiative charac-

teristics due to changes in the clarity of the atmosphere because of pollutant

gases and aerosols.

13.1.6 Lake Effect

When cold air advects over warmer ocean or lake water, the sensible and

latent heat fluxes to the atmosphere can be very large, deepening the plane-

tary boundary layer as the air continues its traverse over water. Over the East

China Sea during arctic outbreaks, total heat fluxes of more than 450 W m−2 are

supplied from the sea surface (Nitta 1976), and average heat fluxes of 600 W

m−2 occur in cold arctic air in the advance of an extratropical cyclone (Bosart

1981). This latter heating was apparently critical in the subsequent explosive

deepening of the cyclone. Chou and Atlas (1981, 1982) and Stage (1983) have

shown how to estimate these ocean-air heat fluxes during cold air outbreaks

using satellite imagery. In a related study, Atlas and Chou (1982) and Atlas

et al. (1983) calculated that the top of the boundary layer rose from about

1–1.4 km over a distance of about 250 km as polar air advected south-southeast

from the New York City area over relatively warm ocean water on February

17, 1979. Garstang et al. (1980), using both mesoscale observations and model

simulations, documented, that arctic air initially accelerates substantially as it

advects offshore of the Delmarva peninsula during cold outbreaks.

When the body of water is sufficiently broad, marked changes in local weather

occur along the windward shore relative to conditions found on the lee coast

as a result of these large heat fluxes. The shorelines of the Great Lakes (see,
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e.g., Hill 1971; Jiusto and Kaplan 1972; Strommen and Harman 1978) and the

Sea of Japan (see, e.g., Takeda et al. 1982), for example, suffer from major

localized snowstorms because of the over-water advection of arctic and polar air

during the winter. Lavoie (1972) and Estoque and Ninomiya (1976) successfully

represented this phenomena using a one-layer mesoscale model, and Hjelmfelt

and Braham (1983) used a three-dimensional numerical model. The Hjelmfelt–

Braham study found that horizontal grid lengths of 24 and 40 km were unable to

adequately simulate lake-effect snow on the windward shore of Lake Michigan.

Only with a horizontal grid interval of 8 km could an accurate simulation be

achieved.

Boudra (1977), with a 50-km, and Boudra (1981), with a 40 to 45-km, grid

interval reported on somewhat larger domain simulations of the influence of all

of the Great Lakes on the flow field. Ellenton and Danard (1979) applied a model

with a 48-km grid interval to Lake Huron and vicinity. Recent studies of lake

effect snowstorms include those of Schultz (1999) and Sousounis et al. (1999).
Figure 13-21 illustrates an example from Lavoie’s (1972) work showing the

predicted and observed precipitation resulting from cold air advection across

Lake Erie. Lavoie also found that upslope winds over low topographic relief

enhance precipitation. This type of phenomenon, highly localized in space,

occurs over many midlatitude windward coastal regions of the world during

cold air outbreaks. For example, the weather over the entire Great Lakes

region is substantially influenced by this juxtaposition of land and water (see,

e.g., Figure 13-22). Figure 13-23 (reproduced from Jiusto et al. 1970) gives

the observed snowfall downwind of Lake Ontario and Lake Erie after several

days of arctic airflow over the area. The large spatial variability, evident in

both of these figures, illustrates the strong influence of lake effect snowstorms

on local weather. Indeed, the effect of the lakes extend far inland. Leffler and

Foster (1974), for instance, reported on probable annual snowfall in excess

of 5 m at elevations above 1.3 km in West Virginia. Such large precipitation

amounts result primarily from orographic lifting of lake-moistened air during

northwesterly, cold, low-level synoptic flow.

13.2 Synoptically-Induced Mesoscale Systems

13.2.1 Convective Bands Embedded in Stratiform Cloud Systems

In extratropical cyclones and along synoptic-scale fronts, precipitation often

is not uniformly distributed but rather occurs in well-organized mesoscale-sized

bands of heavier snow or rain (e.g., Akiyama 1978). These smaller-scale systems

are generally a part of the synoptic system but usually are not resolvable with
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Fig. 13-21. (a) The predicted and (b) observed melted precipitation in centimeters for
the 30-hour lake-effect snowstorm of December 1–2, 1966. (From Lavoie 1972.)

conventional meteorological observations, except by satellite and radar. They

occur when organized local regions of the atmosphere are convectively unsta-

ble, whereas the mean atmosphere is stable to moist adiabatic displacements in

the vertical. Such bands can be reinforced by terrain inhomogeneities, such as

the development of small-scale baroclinic zones (small-scale fronts) along the

coast associated with the passage of extratropical storms, as reported by Bosart
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Fig. 13-22. The mean winter snowfall in centimeters over a portion of eastern North
America. U.S. data 1951–1960; Canadian data 1931–1960. (From Muller 1966.)

Fig. 13-23. The observed snowfall resulting from a severe lake-effect storm. All of
the precipitation was attributed to this terrain-induced mesoscale phenomena. (Adapted
from Jiusto et al. 1970 and Jiusto and Kaplan 1972.)
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et al. (1972), Bosart (1975, 1981), and Marks and Austin (1979), or they can

be disrupted or destroyed as they descend larger terrain barriers, as reported by

Hobbs (1978). Over the open ocean, they are well defined in satellite imagery

and clearly an important component of the extratropical storm system.

In the vicinity of northwest Europe, distinct subsynoptic-scale disturbances

of this type, called polar lows (Rasmussen 2000), apparently driven to some

extent by latent heat release (e.g., Oerlemans 1980; Rasmussen 1979, 1981,

1982) are relatively common features in polar outbreaks, associated with extra-

tropical storms. Similar-appearing features also occur in the winter over the

north Pacific (e.g., Mullen 1979; Reed 1979). Locatelli et al. (1982), in a case

study of several such mesoscale disturbances over and off of the northwest coast

of Washington and Oregon, concluded that the systems that they investigated

were deep baroclinic disturbances that extended as high as the 400-mb level. In

general, however, the relative contributions of latent heat release from cumulus

activity and of horizontal thickness gradients to the generation and evolution of

these synoptically-induced mesoscale systems is not completely understood. In

a study contrasting polar lows in the Pacific Ocean and Atlantic Ocean, Sardie

and Warner (1983) concluded that moist cumulus convection plays a major role

in their evolution in the Atlantic, whereas such a mechanism is not necessary

in the north Pacific region. Winter mesoscale cyclogenesis to the east of Korea

is modeled by Lee et al. (1998).
The interactions between the mesoscale and synoptic scales for this type

of mesoscale system are complex. Ballentine’s (1980) work represents an

early numerical study of the quasi-stationary coastal fronts reported by Bosart,

and the Cyclonic Extratropical Storms Project (CYCLES) (e.g., Herzegh and

Hobbs 1980, 1981, Hobbs et al. 1980, Matejka et al. 1980, Parsons and

Hobbs 1983; Rutledge and Hobbs 1983; Wang et al. 1983) represents an

extensive observational program aimed at understanding these systems along

the northwest Washington coast. In the CYCLES study, for example, Houze

et al. (1981b) found that the presence of low-level mesoscale ascent was

crucial in generating significant cloud condensate at the lower levels. The

accretion of this condensate by hydrometeors falling from higher levels resulted

in substantially larger precipitation rates in the warm frontal region of extra-

tropical cyclones than would have occurred otherwise. From the CYCLES

project, mesoscale rainbands were catalogued into the five basic types (Hobbs

1978): warm-frontal, warm-sector, cold-frontal (wide and narrow), prefrontal

cold-surge (wide and wavelike), and postfrontal bands. Recent mesoscale model

simulations of embedded convective systems include those of Nicosia and

Grumm (1999).
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13.2.2 Squall Lines

Along with the convective bands embedded in stratiform clouds, the squall

line is among the most difficult of mesoscale phenomena to simulate. Although

the squall line is undoubtedly influenced (and often generated) by fixed geo-

graphic features such as terrain, it is highly variable in space and transient

in time, making accurate lateral boundary and initial conditions, essential to

satisfactory predictions, difficult and expensive to obtain. Uccellini (1980), for

instance, documented the strong synoptic forcing of upper- and lower-level tro-

pospheric jets, which are frequently associated with squall line formation. There-

fore, although it may be possible to build a climatology of mesoscale model

forecasts for representative conditions for terrain-induced mesoscale systems, it

is necessary to perform squall line predictions for each event, which is one of

the main goals in the development of the Center for Analysis and Prediction

of Storms (CAPS) at the University of Okalahoma. The explosive growth of a

squall line over Virginia is illustrated in Figure 13-24.

Fig. 13-24. The development of a squall line over the middle Atlantic states on June 6,
1977 as observed at 2-hour intervals by geostationary satellite imagery. The times of
observation are given in Eastern Standard Time (EST) in the upper left.
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Fig. 13-24(b)

Squall lines often form in association with synoptic weather features such as

cold and warm fronts, dry lines (e.g., Schaeffer 1974; Ogura and Liou 1980;

Koch and McCarthy 1982; McCarthy and Koch 1982; Shapiro 1982; Homan and

Vincent 1983), and tropical waves (e.g., Fortune 1980), although they typically

travel at a greater speed than these larger-scale weather phenomena. Squall lines

develop in air masses that are convectively unstable and, as shown by Weiss

and Purdom (1974), their appearance is strongly influenced by factors such as

the occurrence of early morning cloudiness.

Negri and Vonder Haar (1980) have used 5-min–interval satellite imagery

to determine the magnitude of moisture convergence in the presquall line

environment. They found maximum values of this convergence to be 2.2 ×
10−3 g kg−1 s−1 for a severe storm outbreak in the midwest in April 1975.

Purdom and Marcus (1982) provided evidence that the merger and intersection

of thunderstorm-produced outflow boundaries are the major source of low-level

convergence for subsequent deep cumulus convection over the southeastern

United States during the summer, particularly in the mid- and late afternoons.

Holle and Maier (1980) documented the formation of a tornado caused by the

intersection of thunderstorm outflows over south Florida.
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Fig. 13-24(c)

Using linearized forms of the conservation relations, studies (e.g., Raymond

1975) indicate that squall lines apparently propagate as waves with particu-

larly intense convective activity occurring where two or more of these waves

constructively reinforce one another and where the atmosphere is convectively

unstable. Ley and Peltier (1981) provided a detailed analysis of a propagating

wave-cloud formation with a horizontal wavelength of 10 km whose origin was

assumed to be from the transient latent heat released by a severe storm some

distance away. Silva Dias (1979) performed a linear analysis of tropical squall

lines. Also using a linear model, Raymond (1983) examined the influence of

cumulonimbus-induced downdrafts on subsequent convection.

Sun and Ogura (1979) suggested that squall lines may also be initiated

through differential temperature gradients in the boundary layer interacting with

the synoptic flow in an analogous manner to that causing sea and land breezes.

From a case study for June 8, 1966 over Oklahoma, Sun and Ogura observed a

well-defined band of horizontal convergence at low levels prior to the appear-

ance of the first radar echoes in a region of large horizontal temperature contrast.

Colby (1980) showed that large convective instability was also a necessary pre-

requisite for the squall line development on this day, which explained why the
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Fig. 13-24(d)

convection formed in the eastern portion of the region of upward vertical motion.

Uccellini and Johnson (1979) examined the role of tropospheric jet streaks in

squall line development. Emanuel (1982b) discussed the possibility that squall

lines are self-exciting and involve a CISK-like cooperative interaction between

the cumulus and mesoscale.

Hane (1973), Schaeffer (1974), Perkey (1976), Ross and Orlanski (1978),

Chang et al. (1981), Kondo (1981), Kaplen et al. (1982), Thorpe et al. (1982),
Wong et al. (1983b), Cram et al. (1992a, b), and Finley et al. (2001a, b), provide
examples of nonlinear mesoscale simulations of features related to squall lines,

and a review of the understanding of squall line dynamics is presented by Lilly

(1979). Brown (1979) has modeled mesoscale unsaturated downdrafts driven by

rainfall evaporation from precipitating cloud features, such as anvils created by

squall lines. Bradberry (1981) suggested from an observational study of a squall

line over Oklahoma on April 26, 1969 that mesoscale ascent associated with

condensational heating about 5 km behind the leading edge of radar echoes,

and descent due to evaporative cooling from cumulus cloud tops and from the

dissipation of a middle cloud layer 10 km ahead of the echoes may be typical

of large, mature convective storm systems.
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Fig. 13-24(e)

Squall lines that become stagnant over one geographic location [e.g.,

Johnstown, Pennsylvania in July 1977 (Hoxit et al. 1978); London, England in

August 1975 (Bailey et al. 1981)] can produce devastating floods. Squall lines

also often produce devastating tornado outbreaks (see, e.g., Fritsch 1975; Hoxit

and Chappell 1975a, b). The Severe Environmental Storms and Mesoscale

Experiment (SESAME) (e.g., Lilly 1975; Alberty and Barnes 1979; Alberty

et al. 1979) was a mesoscale observational program designed to improve our

understanding of the influence of the local environment on the generation of

these intense cumulus convective systems over the Great Plains of the United

States. The GARP Atlantic Tropical Experiment (GATE) (e.g., Frank 1978,

1980; Zipser and Gautier 1978; Warner et al. 1979; Houze and Betts 1981),

the Venezuelan International Meteorological and Hydrological Experiment

(VIMHEX) (e.g., Betts et al. 1976), and the winter monsoon experiment

(MONEX) (e.g., Warner 1982) represent similar observational programs in the

tropical eastern Atlantic, over land in tropical South America, and over water

southeast of Vietnam.

Examples of studies of squall lines observed in the tropics include those of

Fernandez (1982), Gamache and Houze (1982), and Ishihara and Yanagisawa
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(1982). Zipser et al. (1981) documented a weaker mesoscale convective system

off the coast of west Africa. Johnson and Nicholls (1983) analyzed boundary-

layer structure associated with tropical squall lines over the eastern Atlantic.

Additional discussions of squall lines and their dynamics have been given by

for example, Dudhia and Moncrieff (1989) and Houze (1989).

13.2.3 Mesoscale Convective Clusters

Since geostationary satellite imagery over the United States became routinely

available, the frequent occurrence of persistent mesoscale areas of cumulus con-

vection, such as illustrated in Figure 13-25, has been noted, as first suggested by

W. R. Cotton (1977, personal communication). Defined as mesoscale convective

Fig. 13-25. A mesoscale convective cluster (MCC) on June 28, 1979 at 0600 Central
Standard Time as seen via infrared geostationary satellite imagery. Wind barbs are vec-
tor errors of the 12 h National Weather Service limited fine mesh (LFM) model-predicted
200 mb wind field. A full barb represents 5 m s−1; a flag represents 25 m s−1. Note
that the largest errors usually occur in the vicinity of the MCC. (Figure provided by
J. M. Fritsch, 1982.)
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clusters (MCCs) by Maddox (1980a, c), these systems appear to originate over

and downstream of the Rocky Mountains and to propagate from west to east

(Nachamkin and Cotton 2000; Nachamkin et al. 2000).6 As warm core sys-

tems, they have been shown (Fritsch and Maddox 1980, 1981a; Maddox 1980b;

Maddox et al. 1981, Keyser and Johnson 1982) to cause major alterations in the

synoptic flow field. Fritsch et al. (1980) presented a scheme to initialize model

simulations of these mesoscale convective clusters, and Fritsch and Maddox

(1981b) performed a model simulation of an MCC using a 20-km horizontal grid

mesh. Electrification in mesoscale convective systems is discussed in Schuur

and Rutledge (2000a, b).

Cotton et al. (1983) and Wetzel et al. (1983) document the initiation of an

MCC over the Rockies and its eventual passage into the western Atlantic 2 days

later. Park and Sikdar (1982) documented an MCC over Oklahoma and illus-

trated its complex interaction with the synoptic scale. Ninomiya et al. (1981)
illustrated what is apparently a small MCC moving over and off of the coast

of China toward Japan at about 32�N. Its origin was just east of the Tibetan

Plateau. Other studies of mesoscale convective systems include those of Chen

et al. (1999b), Tucker and Zentmire (1999), Bernardet et al. (2000), Stensrud
et al. (2000), and Xu et al. (2001a, b). Table 13-1, adapted from Maddox (1980c)

gives his definition of an MCC.

Bosart and Sanders (1981) concluded from an observational analysis of the

data for the July 1977 flood in Johnstown, Pennsylvania, that an MCC, rather

than a stagnant squall line, was responsible for the excessive rainfall. MCCs

also are a major component of the tropical atmosphere and are also referred to

as cloud clusters. Observational studies of these tropical systems include those

of Houze and Cheng (1981), Zipser et al. (1981), and Houze (1982). Houze

et al. (1981a), Johnson (1982), and Johnson and Kriete (1982) documented a

diurnally-varying mesoscale precipitating cloud system over the ocean in the

Asian tropics that is related to the winter monsoon flow pattern and the daily

TABLE 13-1

The Definition of a Mesoscale Convective Cluster (MCC)

Size Contiguous cloud shield with temperatures less than or equal to −32�C covering an

area of more than 100,000 km2 and an interior cloud region with temperatures

less than or equal to −52�C covering an area of more than 50,000 km2.

Duration The above two conditions must last for at least 6 hours. The MCC is then defined

as an entity until the two conditions listed above no longer apply.

Shape The eccentricity (i.e., ratio of minor to major axis) must be greater or equal to 0.7

at the time of its maximum extent.

From Maddox 1980c.
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heating cycle of the adjacent land. Potty and Sethu Raman (2000) simulated

the structure and track of monsoon depressions over India. Zipser (1982) briefly

summarized our understanding of MCCs. A recent review of mesoscale convec-

tive systems is given in Smull (1995).

13.2.4 Tropical Cyclones

Tropical cyclones, which are generally smaller than the extratropical cyclones

that form along the polar front, represent one of the larger mesoscale phenom-

ena. Their location of formation and subsequent movement are strongly influ-

enced by the synoptic scale. Ooyama (1982), for instance, defined the tropical

cyclone as “a mesoscale power plant with a synoptic-scale supportive system.”

Tropical storms form when the heating from cumulonimbus activity positively

reinforces the low-level convergent wind flow such that an increasingly more

intense mesoscale vortex develops. Simulations of this phenomenon include

two-dimensional studies such as those of Rosenthal (1970, 1971) and Kurihara

(1975). Anthes et al. (1971), Anthes (1972), Kurihara and Tuleya (1974), and

Jones (1980), and others have performed idealized three-dimensional calcula-

tions. Kurihara and Bender (1982) and Bender and Kurihara (1983) performed a

three-dimensional hurricane simulation with 5-km horizontal grid increments in

the finest grid of their quadruply nested model. Anthes et al. (1971) contrasted
solutions using two- and three-dimensional simulations.

Ceselski (1974) and Mathur (1974, 1975) have given examples of simulations

for actual observed tropical storms; an example of the wind field predicted

by Mathur 1974 for a Caribbean hurricane is given in Figure 13-26. Eastman

(1995), Eastman et al. (1996), Lui et al. (1997, 1999b), and Zhang et al. (2000)
simulated Hurricane Andrew (1992) as it approached and made landfall in south

Florida. Lagouvardos et al. (1999) modeled a system in the Mediterranean Sea

that had characteristics of a tropical cyclone.

The effect of landfall on tropical cyclone structure has been studied by Moss

and Jones (1978), Tuleya and Kurihara (1978), Tuleya et al. (1984), and Powell

et al. (1996). Wind flow in mountainous terrain caused by such storms has been

investigated by a diagnostic model and a physical model (Brand et al. 1979) and
by numerical models (Chang 1982; Lin et al. 1999). Chang’s model simulation

demonstrated that the original low-level center of a tropical storm is blocked by

the mountainous terrain of a large island, with a secondary low-level circulation

forming in the lee of the island as the upper-level center propagates over the

region immediately downwind of the island.

Using observations of damage, Fujita (1980) estimated the wind field pat-

tern of landfalling hurricanes, and Powell (1980) examined the use of several

boundary-layer models in estimating wind speed near the surface in hurri-

canes. Surface observations associated with hurricanes were reported in Cione

et al. (2000).
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Fig. 13-26. Three-dimensional model prediction of the winds at 1000 mb associated
with the development of Hurricane Isbell in 1964. (From Mathur 1974.)

An overview of tropical storm modeling was given by Simpson and Pielke

(1976), and more extensive reviews were presented by Anthes (1974b, 1982a),

Pielke (1990), and Pielke and Pielke (1997). Krishnamurti and Kanamitsu (1973)

simulated the more common tropical disturbance referred to as the nondevelop-

ing tropical wave. The latter model was described in Krishnamurti et al. (1973).
Another example of a mesoscale tropical cyclone simulation is that of Mathur

(1997).
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Fig. 13-27. The observed precipitation (in centimeters) from the remnants of Hurri-
cane Camille from noon August 19 to midnight August 20, 1969. (From the December
1969 issue of the Virginia Climatological Summary, NOAA, Asheville, NC.)

Figure 13-27 (reproduced from the December 1969 issue of the Virginia Cli-
matological Summary) illustrates the complex precipitation patterns that can

occur over land from the overland track of a tropical storm interacting with a

cold front (in this case Hurricane Camille). Zhou (1980) presented a similar

study over central China. The ability of nonlinear numerical models to reproduce

such complicated precipitation patterns has not yet been achieved, and given

the severe lateral and initial boundary constraints required for actual mesoscale

situations (e.g., Anthes and Warner 1978), it may never be attained. Discus-

sions are presented on the societal impacts of hurricanes in Pielke and Pielke

(1997).

13.2.5 Frontal Circulations

Synoptic-scale fronts are directly related to a horizontal temperature gradi-

ent averaged over a depth in the atmosphere (e.g., between 1000–850 mb or

1000–500 mb). Such a mean temperature gradient is referred to as a thickness
gradient, as described in detail in most texts on basic meteorology (e.g., Wallace

and Hobbs 1977; Pielke 1995). This relation between the mean temperature

between two pressure surfaces and the thickness results directly from the hydro-

static assumption. Synoptic-scale cold, warm, and stationary fronts are found

on the leading warm edge of these baroclinic zones, and occluded fronts lie

in the middle of a polarward extension of warm thickness. An early discus-

sion of fronts and their relation to extratropical cyclones was given by Bjerknes

and Solberg (1921). Synoptic fronts are associated with the genesis of extrat-

ropical low pressure systems. Gyakum et al. (1996) summarized the ability of

regional models to simulated explosive ocean extratropical low development.

Kuo et al. (1992) simulated the dynamics of an occluded marine cyclone.
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When the horizontal thickness gradient associated with a front has been steady

for a long period, the wind field closely approximates gradient wind balance.

Using the definition of mesoscale presented in Chapter 1, these fronts are not

mesoscale features. When the thickness distribution changes rapidly, however,

significant nongradient winds are generated as the adjustment toward a new

balanced state begins. Williams (1967), for example, suggested that cold fron-

togenesis is created from the large-scale baroclinic field by the divergent com-

ponent of the wind. Such frontal circulations are mesoscale and are an integral

component in frontogenesis and cyclogenesis.

Studies of frontal circulations include those of Palmén and Newton (1969),

Browning and Harrold (1970), Rao (1971), Hoskins and Bretherton (1972),

Shapiro (1981), Bennetts and Sharp (1982), Lagouvardos et al. (1996), and
Kotroni et al. (1999b, c). Uccellini et al. (1981) examined the importance of

circulations associated with jet streaks in frontal zones during intense cyclo-

genesis along the east coast of the United States, and Uccellini (1980) dis-

cussed the role of jet streaks in the formation of low-level jets over the Great

Plains. Carbone (1982) documented intense rainfall associated with a cold front

in central California, and Hobbs and Persson (1982) reported on precipitation

associated with a cold front moving onshore along the Washington coast. As

suggested at the end of Section 13.2.1, these mesoscale frontal circulations are

closely related to the convective bands embedded in stratiform cloud systems.

Ross and Orlanski (1982) used a three-dimensional numerical model to simu-

late the 48-hour evolution of a cold front in early May 1967 over the southeast-

ern United States, while Sergeev (1983) used a parameterization of precipitation

forming processes to examine the influence of precipitation on frontal dynamics.

Dickison et al. (1983) documented that flying insects can accumulate in the con-

vergence zones associated with cold fronts. Lagouvardos et al. (1998) simulated

an extreme cold frontal surge over Greece that produced the worst snowfall in

100 years. A cold outbreak in Kenya was discussed by Okoola (2000).

In eastern Asia, a frontal circulation that extends southwest to northeast for

several thousand km is established each year associated with the Asian sum-

mer monsoon. Mesoscale model simulations of this feature (called the “Baiu

front” or the “Mei-Yu front”) have been performed by Sun (1984b) and Hsu

and Sun (1994). Observational studies of this front have been reported by, for

example, Ninomiya (1992, 2000), Yamazaki and Chen (1993), and Takahashi

et al. (1996).
Williams (1972) contrasted the creation of fronts by a nondivergent horizon-

tal wind field that contains stretching deformation with the generation of fronts

by the divergent component of the wind. He concluded that the first mechanism

requires too much time to cause frontogenesis. Apparently, the low-level con-

vergence of the thickness gradient by nonlinear horizontal advection (such as
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discussed for the sea breeze in Section 11.1.1.1 and shown in Figure 11-3) is

required to create fronts in the observed time period.

Shaw et al. (1997), Ziegler et al. (1995, 1997), Ziegler and Rasmussen (1998),

and Grasso (2000) discussed the inititation of deep cumulus convection along

another type of frontal zone called the dryline. The dryline is an interface

between shallow moist and deep dry boundary layers. This feature is frequently

found in the western high plains of the United States in the summer, for exam-

ple. Other mesoscale model simulations of the dryline include those of Sun

(1987) and Sun and Wu (1992).

Notes to Chapter 13

1. Nicholls and Pielke (1994a, b) demonstrate that the expansion of the volume, as required by

the ideal gas law, also elevates the pressure surface over land.

2. Some authors distinguish between a drainage flow caused by a source of cool air high on a

slope and a katabatic flow that is continuously cooled from below as the air sinks. For analytic

solutions of downhill flows, such a division is useful; however, in the real atmosphere, this catego-

rization is generally not distinct. A general discussion of gravitationally-forced flows for a number

of geophysical phenomena is given in Simpson (1982).

3. The ASCOT program was designed to develop the technology needed to assess atmospheric

properties and the impact of new energy sources on air quality in areas of complex terrain, as

described by M.H. Dickerson in the Foreword of Orgill (1981), and by Knox et al. (1983:15–19).
The report by Orgill presents a review of past meteorological and diffusion work in complex terrain.

4. Diagnostic models are discussed briefly in Section 13.1.4.

5. The warm wind that occurs to the lee of mountains as a result of such forced ascent and

descent is called, for example, a chinook in North American and a föhn in Germany. When cold

advection is occurring, a strong downslope wind is called a bora.
6. To include mesoscale convective cloud features that do not fit into the MCC classification

given in Table 13-1, the more inclusive term mesoscale convective system (MCS) is used.
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The Solution of Eqs. (10-28) and (10-47) with
Periodic Boundary Conditions

From Ahlberg et al. (1967:15), the equations of the form (10-28) and (10-47) for a

periodic condition can be written as

b1x1 + c1x2 + a1xD = d1

a2x1 + b2x2 + c2x3 = d2





aixi−1 + bixi + cixi+a = di





aD−1xD−2 + bD−1xD−1 + cD−1xD = dD−1

cDx1 + aDxD−1 + bDxD = dD
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where �z1/2 = �zD = �zD+1/2 = �z1 should be assumed.

For Eq. (10-47), xi = Ni,
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where h1 = hD should be assumed.

The procedure for solving (A-1) involves letting the right side of the top and second

from the bottom equations in (A-1) be written as d1 − a1xD and dD−1 − cD−1xD, then

solving the first D − 1 equations, as performed in Section 10.2. The result is a solution

in terms of xD, whose value is determined algebraically from the last equation in (A-1).

The algorithm for solving (A-1) is similar in form to that given by Eq. (10-49) and,

following Ahlberg et al. (1967), can be written in general form in terms of the coefficients

of (A-1) as

xi = ui + qixi+1 + sixD	 i = 1	 � � � 	 D − 1	 (A-2)

where

si = −aisi−1/pi	 s0 = 1	

pi = bi + aiqi−1	 q0 = 0	

qi = −ci/pi	

ui = �di − aiui−1�/pi	 uo = 0
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If the equation

xi = tixD + vi	 i = 1	 � � � 	 D − 1 (A-3)

is defined, then substituting into (A-2) for xi+1 yields

xi = ui + qivi+1 + �qiti+1 + si�xD	 i = 1	 � � � 	 D − 1
 (A-4)

Equating like terms between (A-3) and (A-4) produces

ti = qiti+1 + si	 i = 1	 � � � 	 D − 1

vi = ui + qivi+1	
(A-5)

where vD = 0 and tD = 1, as required by (A-2) for i = D − 1.

After values of ti and vi are obtained from (A-5), xD is obtained algebraically from

the equation

cd�t1xD + v1�+ aD�tD−1xD + vD−1�+ bDxD = dD	

where (A-3) is used to substitute into the last line of (A-1). The remaining values of xi
are then determined from (A-3).
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Model Summaries

As in the first edition of this text, summaries of several mesoscale models are included

as an Appendix. Most of these models were discussed as part of an American Meteoro-

logical Society Short Course on “Mesoscale Atmospheric Modeling by Original Model

Developers” held on January 9, 2000 in Long Beach, California. This short course was

organized by the Yamada Science and Art Corporation of Santa Fe, New Mexico.

These models are by no means the only state-of-the-art codes. They are presented to

demonstrate how models can be decomposed into their component parts, following the

individual chapters of this text. To avoid misrepresentation, the text provided by each

modeling group was retained verbatim as much as possible, with only minor editorial

revisions to conform more with the notation in the text. Each modeling group reviewed

the description of its model during the preparation of this Appendix.

Other valuable state-of-the-art mesoscale and regional models not described here

include the Clark model (Farley et al. 2000); the Australian Air Quality Forecasting Sys-

tem (AAQFS) (Cope et al. 1999; Hess et al. 2000), which includes the BMRC Limited

Area Prediction System (Puri et al. 1998), the Deutschland model (Gross and Hense

1999), the UK Mesoscale model (Met. Office 1999/2000), the North Carolina State

University (NCSU) mesoscale model (Wu and Raman 1997), the MRI nonhydrostatic

model (Fujibe et al. 1999; Saito 1997), Gesthacht’s Simulation Model of the Atmosphere

(GESIMA) (Mölders 2000), the Regional Spectral model (RSM) (Juang et al. 1994)
a nonhydrostatic version of which is described in Juang (2000); HIRLAM (Savijärvi

and Jarvenoja 2000), the Quasi-Nonhydrostatic (QNH) mesoscale model (MacDonald

et al. 1999, 2000), which uses the bounded derivative initialization technique intro-

duced by Browning and Kreiss (1986) and discussed by Lee and MacDonald (2000); the

Central University Mesoscale model (CUMM) (Huang 2000); the Collaborative Model

for Multiscale Atmospheric Simulation (Peckham and Wicker 2000); and the Meso-NH

model (Giordani and Planton 2000; Lafore et al. 1998). Schlunzen (1994) overviewed

German nonhydrostatic models. Clearly, the suite of mesoscale models has expanded

since the first edition of this book appeared!

The value of community mesoscale models with which individuals other than model

developers can use codes is discussed in Anthes (2000). Additional datasets for validating

mesoscale models have been developed over the last decade or so. These include the First

International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment

(FIFE) (Sellers et al. 1992), the Global Energy and Water Cycle Experiment (GEWEX)
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Continental Scale International Project (GCIP) (Coughlan and Avissar 1996), the Boreal

Ecosystem-Atmosphere Study (BOREAS) (Sellers et al. 1995), the Hydrologic and

Atmospheric Pilot Experiment (HAPEX) (André et al. 1998; Goutorbe et al. 1994),
the European Field Experiment in a Desertification-Threatened Area (EFEDA) (Bolle

et al. 1993), the Wind in Non-uniform Domains program (WIND) (Cionco 1994),

the Fronts and Atlantic Storm Track Experiment (FASTEX) (Williams 2000), and the

Meteorology And Diffusion Over Non-uniform Areas program (MADONA) (Cionco

et al. 1999).
New initiatives for comparing mesoscale models (or components of these models) to

observations include GLASS FLUXNET (Valentini et al. 1999), and the Large-Scale
Biosphere-Atmospheric Experiment in Amazonia (LBA) (Dolman et al. 1999; Kabat

et al. 1998).
Overviews of land surface experiments have been provided by Gash and Kabat (1999).

New initiatives to create mesoscale models include the Weather and Research Forecasting

Model (WRFM) (Rasmussen 1999; Fullerton 2000).

Model: The Operational Multiscale Environment
Model with Grid Adaptivity (OMEGA)

Name(s): Dr. David Bacon

Organization: Science Applications International Corporation

Address: 1710 SAIC Dr., McLean, VA 22102

Telephone: (703) 676-4594

Fax: (703) 676-5509

E-mail: bacon@apo.saic.com

A. Group: Science Applications International Corporation.

B. Equations: Fully compressible, nonhydrostatic, primitive equations.

C. Dimensionality: 3-D prognostic.

D. Grid: Variable resolution unstructured and adaptive grid.

E. Minimum horizontal resolution: Usually 1 km.

F. Vertical resolution: Variable; ∼10 m–1 km stretched grid.

G. Model domain: User selectable via an easy-to-use graphical user interface.

H. Initialization: Gridded initial conditions from coarser resolution models (such as

NOGAPS, MRF, NGM, or ETA) with analysis of rawinsonde and surface observations

in many different formats.

I. Solution technique: The numerical scheme uses a finite-volume technique with a

Smolarkiewicz-type advection scheme modified for use in unstructured triangular grids.

J. Coordinate system: Rotating Cartesian system with origin at the center of the

earth.

K. Lateral boundary condition: Open boundaries with a radiational scheme.

L. Top boundary condition: Rigid lid, free slip.

M. Surface boundary: No slip, with thermal, momentum, and vapor fluxes deter-

mined via air–surface interaction routines.

N. Parameterization of subgrid mixing: Two-and-a-half level closure k-� model.
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O. Cumulus parameterization: Modified Kuo scheme.

P. Radiation parameterization: Sasamori scheme.

Q. Stable precipitation parameterization: Bulk water parameterization from Lin

et al. (1983).
R. Other:

S. Phenomena studied: Dispersion over complex terrain, reconstruction of Desert

Storm weather, hurricane simulations, validation simulation using weather conditions

from different parts of the world and different seasonal regimes, etc.

T. Computer used; example of time of integration for a specific problem: A

25 degree × 25 degree domain gridded down to 20-km resolution can produce a 24-hour

forecast in about 90 minutes on 8 processors of an Origin 2000 (230 MHz).

An example of an application of this model is given in Bacon et al. (2000).

Model: MC2

Name(s): Robert Benoit

Organization: Recherche en Prevision Numerique, Environment Canada

Address: 2121 TransCanada, Suite 564, Dorval, Quebec, Canada H9P 1J3

Telephone: (514) 421-4762

Fax: (514) 421-2106

E-mail: Robert.Benoit@ec.gc.ca

A. Group: Limited Area Model.

B. Equations: Nonhydrostatic Euler equations.

C. Dimensionality: 3-D.

D. Grid: Arakawa-C; staggered. Range of problems solved: Workstation (UNIX or

Linux) 100 × 100 × 25; supercomputers: 800 × 800 × 25; largest problem (production

type for MAP 1999): 350 × 300 × 50 at 3 km mesh/27 h duration; case study type:

1500× 1300× 30 grid, 1-day forecast at 2 km (60 gb memory, 13 hours wall clock on

10 NEC SX5 PEs).

E. Minimum horizontal resolution: Tested down to ∼500 m.

F. Vertical resolution: Up to several hundreds of levels tested; usually for full atmo-

spheric column.

G. Model domain: Limited area.

H. Initialization: Not sophisticated; dynamical (forth and back steps.)

I. Solution technique: Semi-implicit, semi-Lagrangian. Nonseparable 3-D Helmholtz

pressure (or W) problem. Domain decomposition. FGMRES solver with multiple pre-

conditioners (ADI, etc.).

J. Coordinate system: Conformal projections (polar stereographic, mercator), Gal-

Chen vertical coordinate; option of Gal-Chen/geometrical height hybrid coordinate.

K. Lateral boundary condition: With truly open boundary conditions; Staniforth’s

acid test passed.

L. Top boundary condition: Rigid lid or diffusive (del2) sponge layer.

M. Surface boundary: Force-restore/ISBA/CLASS land-surface scheme.

N. Parameterization of subgrid mixing: (optionally advective) TKE (with 1.5 order

closure). Del4 diffusion in fluid interior.
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O. Cumulus parameterization: None at high resolution; explicit convection dynam-

ics. At lower resolution, options of Kuo, Fritsch–Chappell, Kain–Fritsch, and reduced

Arakawa–Schubert types.

P. Radiation parameterization: Solar (Fouquart and Bonnel 1980) and infrared radi-

ation.

Q. Stable precipitation parameterization: Kong and Yau 2-ice microphysics, Trem-

blay mixed-phase scheme (inclusive of freezing rain).

R. Other:

S. Phenomena studied: Chinook, foehn, heavy orographic precipitation, flash floods,

breaking gravity waves.

T. Computer used: Workstations: SGI, HP; Supercomputers: NEC SX4, SX5, Cray

T3E, Linux with Pentium Intel chips.

Publications include Tanguay et al. (1990), Gyakum et al. (1995, 1996), Pinty

et al. (1995), Tremblay et al. (1996), Benoit et al. (1997a, b), Kong and Yau (1997),

Laprise et al. (1997), Ruel et al. (1997), Thomas et al. (1997), Yu et al. (1997,

1998), Desjardins et al. (1998), Lackmann et al. (1998), Mailhot et al. (1998), Gong
et al. (1999), and Ruel and Benoit (1999).

Model: Boundary-Layer Mesoscale Forecast Model
(BLFMESO), Version 3.0

Name(s): S. M. Daggupaty

Organization: Meteorological Service of Canada (formerly Atmospheric Environment

Service) Air Quality Research Branch

Address: 4905 Dufferin St., Downsview, Ontario, Canada M3H 5T4

Telephone: (416) 739-4451

Fax: (416) 739-5708

E-mail: sam.daggupaty@ec.gc.ca

A. Group: Meteorological Service of Canada, Air Quality Research Branch.

B. Equations: Hydrostatic, primitive equations.

C. Dimensionality: 3-D.

D. Grid: Flexible limited area with uniform grid in x and y; nonuniform in the

vertical; 36 × 36 × 10 (Daggupaty et al. 1994); at present, 81 × 81 grid points in the

horizontal and 10 vertical levels (Daggupaty 2001).

E. Minimum horizontal resolution: �x = �y = 5 km.

F. Vertical resolution: Nonuniform, with high resolution closer to the surface; first

level at 1.5 m above surface, top level at 3000 m above terrain height.

G. Model domain: Flexible limited area; typically 400 km× 400 km in the horizontal

and 3 km in the vertical.

H. Initialization: Objectively analyzed data of the regional Canadian weather forecast

model is interpolated to the model grid, followed by 1-D dynamic initialization (Pielke

1984).

I. Solution technique: Model equations are solved with implicit finite difference

methods. Upstream space difference is used for horizontal advection terms, and the
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implicit centered-space difference method is applied for horizontal diffusion terms. A

semi-implicit method (Mahrer and Pielke 1978a) is adopted for the vertical advection

and diffusion terms.

J. Coordinate system: UTM coordinate projection in x	 y, and terrain-following rel-

ative Z vertical coordinate. Z = z− h�x	 y�� h is terrain height above sea level.

K. Lateral boundary condition: Time-dependent lateral boundary conditions (Davies

1976) are used. This involves the relaxation of the interior flow in the vicinity of the

boundary to the external fully prescribed flow with 4-D data from the Canadian regional

forecast model.

L. Top boundary condition: Dependent variables specified at t = 0, as a function of

horizontal space and kept invariant with time.

M. Surface boundary: No-slip for wind at z0. W = 0. Surface energy budget and

ground temperature prediction following the force-restore method (Deardorff 1978). Sur-

face fluxes of momentum, heat, and surface layer parameters are computed through sur-

face similarity theory (Byun 1990) and allowing different roughness lengths z0h and z0m
(Lo 1996). Surface grid cells are subdivided into 1-km-square subgrid cells to account for

multiple land-use characteristics of the underlying surface. A subgrid-scale parameteri-

zation scheme with the formulation of “effective” roughness length and other “effective”

surface parameters and fluxes is used (Ma and Daggupaty 1998).

N. Parameterization of subgrid mixing: Surface similarity theory in the surface layer,

as specified in M; exchange coefficient following O’Brien (1970) profile in the PBL

(Daggupaty et al. 1994). In the current version, a nonlocal diffusion scheme (Holtslag

et al. 1995) for momentum and heat transfer is used.

O. Cumulus parameterization: None.

P. Radiation parameterization: None.

Q. Stable precipitation parameterization: None.

R. Other: Evolution of boundary-layer height (Vogelezang and Holtslag 1996).

S. Phenomena studied: Meso-� scale phenomena, boundary-layer flow over complex

terrain, lake/sea and land breezes, upslope and downslope flows (Daggupaty 2001, Dag-

gupaty and Ma 1999); air quality applications, including subgrid-scale surface effects on

deposition of gases and particles (Ma and Daggupaty 1999), impact of lead emissions to

Lake Ontario and vicinity (Daggupaty 1998).

T. Computer used: The CPU time for a 24-hour forecast with BLFMESO (Version

3.0) for a domain of 81× 81× 10 is about 35 minutes on a 200-MHz personal computer.

Model: FITNAH

Name(s): Dr. Günter Gross

Organization: Department of Meteorology, University Hannover, Germany

Address: Herrenhäuser Str. 2, 30419 Hannover, Germany

Telephone: (+49) 511-762-5408

Fax: (+49) 511-762-4418

E-mail: gross@muk.uni-hannover.de

A. Group: Güter Gross.
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B. Equations: Navier-Stokes, nonhydrostatic, Boussinesq-approximation (Gross

1992).

C. Dimensionality: 3-D (Gross 1992).

D. Grid: Staggered grid, Arakawa-C type (Gross 1992).

E. Minimum horizontal resolution: 1–100 m.

F. Vertical resolution: surface, 1–10 m; upper layers, ∼1000 m.

G. Model domain: 1 km× 1 km–50 km× 50 km.

H. Initialization: Diastrophy, variational technique.

I. Solution technique: Time: forward, leapfrog, space: centered, advection, upstream-

upstream spline (Gross 1995).

J. Coordinate system: Terrain-following (Gross 1987a).

K. Lateral boundary condition: Fixed (time-dependent), derivatives specified, radia-

tion condition.

L. Top boundary condition: Damping layer.

M. Surface boundary: Surface energy budget for temperature (Gross 1986).

N. Parameterization of subgrid mixing: First-order closure, K from turbulent kinetic

energy (Gross 1986).

O. Cumulus parameterization: (Gross 1986).

P. Radiation parameterization: Two-stream approximation (Gross 1986).

Q. Stable precipitation parameterization: (Gross 1986).

R. Other: Kessler scheme for precipitation (Gross 1986).

S. Phenomena studied: Airflow in complex terrain, land-sea breeze, slope winds, air

flow in urban canopies and in forest canopies, dispersion of air pollutants, of odours and

of sound (see Wipperman and Gross 1986; Gross 1987b, 1996, 1997, 1998; Gross and

Wipperman 1987; Gross et al. 1987; Alpers et al. 1998, Heimann and Gross 1999).

T. Computer used: Example of time of integration for a specific problem. Worksta-

tion; supercomputer.

Model: COAMPS

Name(s): Dr. Richard M. Hodur

Organization: Naval Research Laboratory

Address: 7 Grace Hopper Ave., Monterey, CA 93943-5502

Telephone: (831) 656-4788

Fax: (831) 656-4769

E-mail: hodur@nrlmry.navy.mil

A. Group: Naval Research Laboratory, Marine Meteorology Division; R. Hodur, S.

Chen, J. Doyle, T. Holt, J. Schmidt.

B. Equations: Nonhydrostatic compressible equations (Klemp and Wilhelmson

1978a, b).

C. Dimensionality: 3-D (Hodur 1997).

D. Grid: Arakawa-C grid, supports any number of nests, with multiple nests of one

resolution allowed (Hodur 1997).

E. Minimum horizontal resolution: Flexible: Using real data, typical resolutions

range from 1–81 km, with resolutions as low as 333 m used. In LES mode, resolutions

as low as 1 m have been used (Hodur 1997).
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F. Vertical resolution: Flexible, stretched sigma coordinate. For real data forecasts,

typical resolutions range from 20 m at the lowest level to several thousand meters at the

model top, typically near 10 mb. The typical number of levels used is 30, with as many

as 120 used in some experiments (Hodur 1997).

G. Model domain: Flexible, user specifies latitude and longitude of any position on

the earth (Hodur 1997).

H. Initialization: 3-D multivariate optimum interpolation analysis of winds and

heights (Goerss and Phoebus 1992); Cressman analysis of temperature and moisture;

2-D optimum interpolation analysis of SST using ship and mcsst observations; digital

filter and/or variational balancing of temperature and pressure analysis increments

(Hodur 1997).

I. Solution technique: Time-splitting; explicit formulation for advective modes;

semi-implicit solution for treatment of vertically propagating sound waves and Brunt–

Väisälä frequency. Fourth-order differencing is used for diffusion, and second-order

differencing is used for all other terms (Hodur 1997).

J. Coordinate system: x	 y	 � = H�z− zsfc�/�H − zsfc�. The horizontal grid is glob-

ally relocatable and can use either the polar stereographic, Lambert conformal, mercator,

spherical, or Cartesian grid coordinates (Hodur 1997).

K. Lateral boundary condition: Davies (1976) or Perkey-Krietzberg (1976) for real-

data runs; periodic, radiation, fixed, or no-slip for idealized runs (Hodur 1997).

L. Top boundary condition: Sponge or w = 0 (Hodur 1997).

M. Surface boundary: Force-restore slab soil model, surface fluxes (Louis 1979),

specification of land parameters (surface roughness, albedo, coastline, terrain height).

N. Parameterization of subgrid mixing: Level-2.5 Mellor–Yamada (Mellor and

Yamada 1982).

O. Cumulus parameterization: Kain–Fritsch (1990) or Kuo (1974).

P. Radiation parameterization: Harshvardhan (1987).

Q. Stable precipitation parameterization: Rutledge-Hobbs (1983).

R. Other:

S. Phenomena studied: Coastal jets and rainbands (Doyle 1997), barrier jets (Xu

et al. 2000), air–sea interaction and coupling (Doyle 1995; Hodur 1997; Hodur and

Doyle 1998; Marshall et al. 1998), aerosols (Westphal et al. 1999), tropical cyclones
(Hodur 1997), coastally trapped wind reversals (Thompson et al. 1997; Nuss et al. 2000),
landfalling cyclones (Bond et al. 1997; Doyle and Bond 2001), sea-surface tempera-

ture fronts (Glendening and Doyle 1995), extratropical cyclones (Hirschberg and Doyle

1995; Shapiro et al. 1999), breaking gravity waves (Doyle et al. 2000), downslope wind-
storms (Doyle and Shapiro 2000), topographic jets (Doyle and Shapiro 1999), undular

bores (Burk and Haack 2000), and supercritical, subcritical and transcritical flows (Burk

et al. 1999; Dorman et al. 1999; Haack et al. 2001).
T. Computer used: Example of time of integration for a specific problem: Double-

nested grids using 81 and 27 km resolution with 87× 51 and 190× 91 grids, respectively,

and 30 vertical levels uses approximately 2.3 CPU hours on a Cray C90 for a 24-hour

forecast using a time step of 240 s on the 81-km grids. Multitasking across 6 processors

reduces the wall time to approximately 30 minutes. The model code has been successfully

ported to massively parallel computer architectures including SGI O2000 and O3000

using MPI.
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Model: MM5

Name(s): Ying-Hwa Kuo and Jimy Dudhia

Organization: NCAR/MMM Division

Address: P.O. Box 3000, Boulder CO 80307

Telephone: (303) 497-8910; (303) 497-8950

Fax: (303) 497-8171

E-mail: kuo@ucar.edu; dudhia@ucar.edu

Website: http://www.mmm.ucar.edu/mm5/mm5-home.html

A. Group: NCAR/MMM Division.

B. Equations: Primitive nonhydrostatic (Dudhia 1993) or hydrostatic equations.

C. Dimensionality: 3-D.

D. Grid: Arakawa B-grid.

E. Minimum horizontal resolution: 500 m–1 km.

F. Vertical resolution: Variable, stretched.

G. Model domain: Globally relocatable, multiple-level nests.

H. Initialization: Integrated divergence removal.

I. Solution technique: Leapfrog in time with time-splitting, second order in space.

J. Coordinate system: Sigma.

K. Lateral boundary condition: Relaxation.

L. Top boundary condition: Rigid or radiative.

M. Surface boundary: Friction, fluxes using similarity theory, land-use categories.

N. Parameterization of subgrid mixing: Bulk, Blackadar (Zhang and Anthes 1982),

Mellor–Yamada (Burk and Thompson 1989; Ballard et al. 1991; Janjić 1994), MRF

(Hong and Pan 1996).

O. Cumulus parameterization: Anthes–Kuo (Anthes 1977), Grell (Grell et al. 1994),
Kain–Fritsch (Kain and Fritsch 1993), Fritsch and Chappell (Fritsch and Chappell

1980a), Arakawa–Schubert (Grell et al. 1991), Betts–Miller (Betts 1986; Betts and

Miller 1986; Janjić 1994).

P. Radiation parameterization: Broadband (Dudhia 1989) or CCM2 (Hack

et al. 1993).
Q. Stable precipitation parameterization: Supersaturation removal, warm rain (Hsie

and Anthes 1984), ice physics (Dudhia 1993), ice number concentration and graupel (Tao

and Simpson 1993; Schultz 1995; Reisner et al. 1998).
R. Other: Land surface module (Pan and Mahrt 1987; Chen and Dudhia 2000), 4-D

data assimilation (Stauffer and Seaman 1990).

S. Phenomena studied: Cyclones, fronts, MCS, severe weather, mountain waves.

T. Computer used; example of time of integration for a specific problem: Computer

used: SGI, Sun, DEC, IBM, HP, Cray, Linux-PC, and a number of distributed memory

machines from IBM, DEC, Cray, Fujitsu, and network of PCs. Example of CPU times:

For a 2-grid simulation of Hurricane Opal on 45-km and 15-km grids, 121× 131× 31

grid points on 45-km grid, and 151 × 151 × 31 grid points on 15-km grid, it takes

115,000 s on single Cray J90 processor for a 24-hour integration. The wall clock time

on a 16-processor J90 would be about 9,600 s.
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Examples of other studies using this model include Zängl (1999), Bao et al. (2000),
Colle and Mass (2000), Mass and Steenburgh (2000), Ritchie and Elsberry (2000), Sten-

srud et al. (2000), Wang et al. (2000), and Xiao et al. (2000). Derivatives of earlier

versions of this model are reported in Giorgi et al. (1993a, b) and Liu et al. (1996) for
RegCM2, and Lynch et al. (1999a, b), and Lynch and Wu (2000) for ARCSyM.

Model: Eta Model

Name(s): Fedor Mesinger

Organization: NCEP Environmental Modeling Center

Address: 5200 Auth Rd., Room 207, Camp Springs, MD 20746-4304

Telephone: (301) 763-8000, ext. 7249

Fax: (301) 763-8545

E-mail: fedor.mesinger@noaa.gov

A. Group: NOAA/NCEP Environmental Modeling Center; numerous other weather

services and/or centers. The current NCEP operational version is described in the sequel,

unless specifically mentioned otherwise.

B. Equations: Primitive hydrostatic equations. Nonhydrostatic version available

(Janjić et al. 2001).
C. Dimensionality: 3-D.

D. Grid: Arakawa E-grid in horizontal, Lorenz grid in vertical.

E. Minimum horizontal resolution: Minimum resolution extensively used 10 km

(e.g., Black et al. 1998). The lowest resolution on which the model was run was 4 km.

F. Vertical resolution: 50 layers, more for horizontal resolutions higher than the oper-

ational 22 km.

G. Model domain: 106× 80 degrees of rotated longitude × latitude.

H. Initialization: 3-D fully cycled variational data assimilation (EDAS) (e.g.,

http://www.nws.noaa.gov/om/tpeta.htm). Digital filtering for 10-km runs with no EDAS.

I. Solution technique: Time; split-explicit time differencing; forward-backward

adjustment terms, with trapezoidal-implicit Coriolis terms, and adjustment time step

of 60 s; forward-then-off-centered horizontal advection of momentum and tempera-

ture; “forward-in-time” horizontal advection of moisture variables; Matsuno vertical

advection of momentum and temperature. Space: Arakawa-type, Janjić (1984) hori-

zontal advection of momentum and temperature; conserving, among other quantities,

energy and C-grid defined enstrophy; conserving momentum apart from the effect of

mountains; Smolarkiewicz-type, Janjić (1997) horizontal moisture advection; Arakawa

vertical advection of momentum and temperature, conserving momentum and energy;

piecewise-linear (Mesinger and Jovic 2001) vertical moisture advection; energy conser-

vation in transformations between the kinetic and potential energy in space differencing

(Mesinger 1984, Mesinger et al. 1988); gravity-wave coupling scheme (Mesinger 1973,

1974; Janjić 1979) preventing separation of gravity waves on two C-subgrids of the

E-grid.

J. Coordinate system: Rotated spherical coordinates in horizontal; eta (step-

mountain) coordinate in vertical.
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K. Lateral boundary condition: Prescribed/extrapolated along a single outer boundary

line, followed by a buffer line of four-point averaging of the boundary and the third line

variables (Mesinger 1977). Integration starting in the third line, with no relaxation or

enhanced diffusion.

L. Top boundary condition: Eta vertical velocity set to 0 at the model top at 25 mb.

M. Surface boundary: Topography. Silhouette-mean step topography (Mesinger

1996). Mason–type parameterization of orographic roughness; surface fluxes over

land. Monin–Obukhov, Paulson similarity functions. Zilitinkevich parameteriza-

tion of viscous sublayer; land surface schemes. Multilayer (currently four layers)

soil/vegetation/snowpack land surface model (“NOAH” LSM) (Chen et al. 1996, 1997;
Chen and Mitchell 1999; Mitchell et al. 1999, 2000). Provides, or provides input to, soil
moisture/temperature, skin temperature, and surface fluxes of heat, moisture, and upward

radiation (longwave, shortwave). Uses as input spatial databases of 12 vegetation types,

9 soil types, seasonal albedo, and a NESDIS satellite-based NDVI-derived seasonal

cycle of vegetation greenness, as well as a daily updated, 23-km, Northern Hemisphere,

operational snow cover analysis produced by NESDIS. The LSM land state variables

cycle continuously in the Eta EDAS and are driven by EDAS precipitation, surface radi-

ation, etc. Surface fluxes over water. Monin-Obukhov, Lobocki (1993) Mellor-Yamada

level-2 derived similarity functions. Viscous sublayer (Janjić 1994), linear approximation

of Liu et al. (1979), with parameters according to Mangarella et al. (1973) and Brutsaert

(1982b).

N. Parameterization of subgrid mixing: Vertical: Mellor-Yamada level-2.5 turbulence

closure (Mellor and Yamada 1982), with improved treatment of the master length

scale/realizability problems (Mesinger 1993a, b; Janjić 1996); Horizontal: Second-order,

Smagorinsky-like, aimed to parameterize the impact of advection by subgrid-scale

motions.

O. Cumulus parameterization: Betts–Miller–Janjić scheme for deep and shallow con-

vection (Betts 1986; Betts and Miller 1986; Janjić 1994).

P. Radiation parameterization: GFDL radiation scheme (Lacis and Hansen 1974; Fels

and Schwarzkopf 1975).

Q. Stable precipitation parameterization: Explicit prediction of grid-scale cloud

water/ice mixing ratio (Zhao and Carr 1997; Zhao et al. 1997), with predicted clouds

used by the radiation scheme.

R. Other: Divergence damping (optional/not required for stability).

S. Phenomena studied: QPF performance, depending on systems, regions, and/or

model features; moisture transport impacts and basin/subbasin budgets, return flow; land

surface phenomena, in particular vegetation and soil moisture/water transport impacts;

effects of topography, depending on the choice of the vertical coordinate; tropical

cyclones; slantwise instability; other.

T. Computer used; example of time of integration for a specific problem: On an

Origin 2000, the Eta 32-km (about 2
2 × 107 atmospheric prognostic variables) in a

dedicated run (32 processors) takes about 30 minutes for a 48-hour forecast; in a nonded-

icated run (25 processors), it takes about 43 minutes. On the IBM SP, in a dedicated run

(160 nodes and threading) 48-hour forecast takes about 11 minutes (times as of Octo-

ber 1999, from T. Black and E. Rogers). The code is regularly run on numerous other

computers workstations and on upper-end PCs.
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Other authors who have discussed and used the Eta model include Janjić (1994),

Mesinger and Treadon (1995), Mesinger et al. (1997), Gallus (1999), Mathur

et al. (1999), and Mesinger (2000). Cacciamani et al. (2000) introduced the LAMBO

model, which is a derivative of a 1989 version of Eta.

Model: The Regional Atmospheric Modeling
System (RAMS)

Name(s): Roger A. Pielke, Sr., W. R. Cotton, C. Tremback, and R. L. Walko Organiza-

tion: Colorado State University and ASTeR Division of Mission Research Corporation

Address: Department of Atmospheric Science, Fort Collins, CO 80523 or P.O. Box 466,

Fort Collins, CO 80522

Telephone: (970) 491-8293 or (970) 282-4400

Fax: (970) 491-8293

E-mail: pielke@atmos.colostate.edu and tremback@aster.com

Website: http://blue.atmos.colostate.edu/

A. Group: Department of Atmospheric Science,/ASTeR Division, Mission Research

Corporation.

B. Equations: Basic dynamical system uses Navier Stokes, compressible, nonhydro-

static equations.

C. Dimensionality: 2-D or 3-D.

D. Grid: Staggered Arakawa-C grid. Vertical grid spacing can be stretched. Two-way

interactive grid nesting allows any number of nested grids. Vertical grid nest ratio is

allowed to vary with height.

E. Minimum horizontal resolution: No minimum horizontal resolution (model has

been used at 2 cm).

F. Vertical resolution: No limit on vertical resolution.

G. Model domain: No lower size limit on limited-area model domain. Model may

be run on global domain.

H. Initialization: Method 1: Horizontally homogeneous interpolation from single

sounding; Method 2: Barnes objective analysis of gridded pressure level data, rawinsonde

data, and surface observations.

I. Solution technique: Initial value solution technique. Velocity components and

Exner function marched forward with leapfrog time differencing. All scalar quantities

other than the Exner function use forward time differencing. Acoustic terms are stepped

forward on smaller time step using time-splitting technique.

J. Coordinate system: Polar stereographic or Cartesian coordinates in horizontal,

terrain-following sigma-z coordinates in vertical.

K. Lateral boundary condition: Klemp–Wilhelmson, Klemp–Lilly, Orlanski, and

cyclic options are available for lateral boundary condition on normal velocity compo-

nent. Zero gradient, zero divergence of gradient, and cyclic options are available for

lateral boundary conditions on all other variables. When model is initialized from an

objectively analyzed 3-D dataset, lateral boundaries are also nudged in time toward

analyzed observed field values.



Appendix B 545

L. Top boundary condition: Wall on top (w = 0); Newtonian relaxation toward

sounding or observed fields can be used in upper layers to absorb gravity waves.

M. Surface boundary: Vertical velocity at surface is the scalar product of horizontal

velocity and terrain height gradient. Surface fluxes of momentum, heat, and water vapor

are computed from surface similarity theory using the Louis (1979) method. Characteri-

zation of land surface includes prognosis of energy and moisture in multiple soil layers,

snowcover, vegetation, and canopy air. Surface grid cells are subdivided into multiple

landuse areas, each of which may have a different vegetation, soil type, or water surface.

N. Parameterization of subgrid mixing: Options are Smagorinsky–Lilly, Mellor–

Yamada, and Deardorff; the latter two prognose and use a turbulent kinetic energy

field.

O. Cumulus parameterization: Modified Kuo cumulus parameterization.

P. Radiation parameterization: Options are (1) a new two-stream model developed

by Harrington that accounts for specific optical properties of cloud droplets, rain, and

different types of ice hydrometeors; (2) a scheme by Chen and Cotton that considers

attenuation by clouds; and (3) a scheme by Mahrer and Pielke that does not account for

condensation of any type.

Q. Stable precipitation parameterization: Detailed bulk microphysical model prog-

noses cloud water, rain, small and larger categories of ice crystals, aggregates, graupel,

and hail for both stable and, where grid resolution permits, convective regimes. Physi-

cal processes represented in bulk model include nucleation of cloud droplets, nucleation

of ice crystals by Brownian motion, thermophoresis, diffusiophoresis, contact freez-

ing, deposition freezing, homogeneous nucleation of cloud droplets and haze, collisions

between all pairs of hydrometeor species including self-collection, evaporation, con-

densation, sublimation, deposition, freezing, melting, shedding of water by hail, heat

exchange in hydrometeor collisions, sedimentation, and secondary ice production. Both

mixing ratio and number concentration are predicted for hydrometeors.

R. Other: Parallel processing using MPI has been implemented in RAMS in a very

efficient manner. A simulation on a 16-processor SP-2 has run 14 times faster than on

a single processor. RAMS has a surface and subsoil hydrology model that transports

water downslope. An arbitrary number of additional prognostic scalar quantities may be

easily added for studying transport and dispersion. RAMS has been coupled with a bin

microphysics model and two dynamic vegetation models (CENTURY and GEMTM).

Nested grids may move in time to follow a moving system, such as a convective storm or

tropical cyclone. Vegetation biophysical parameters and other environmental quantities

undergo automatic annual variation to enable long (e.g., year-long) model integrations.

S. Phenomena studied: Winter storms, supercell storms and tornadoes, mesoscale

convective systems, sea breezes, drylines, small cumulus convection, turbulent flow

around buildings, flow in wind tunnels, flow in laboratory tornado simulator, quantitative

precipitation forecasting, severe downslope winds, operational forecasting, transport and

dispersion of pollutants, effect of land-use change on weather and climate, propagation

of acoustic waves, tropical cyclones, large-eddy simulation of the convective boundary

layer.

T. Computer used: Historically, several mainframe computers, including Cray and

CYBER machines were used. More recently, RAMS is usually used on workstation and

PC computers. A single PC processor (500 MHz) will advance approximately 50,000
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grid cells one step forward in time per CPU or wall clock second. How long a simulation

actually takes to run depends to a huge extent on the number of grid cells and nested

grids used, the simulation time, and the grid resolution. The duration of the simulation

also depends on the complexity of the physics options chosen. A simulation can run more

than 100 times slower than real time or more than 100 times faster than real time. The

50,000 grid cell updates per second figure is a quantity that is most useful in evaluating

model speed (without the use of bulk microphysics).

Publications include Tripoli and Cotton (1982); Tremback et al. (1987, 1994); Meyers

et al. (1992, 1997); Pielke et al. (1992); Nicholls et al. (1993, 1995); Lyons et al. (1994);
Harrington et al. (1995); Walko et al. (1995a, b, 2000a, b); Pielke and Nicholls (1997);

and Olsson (2000). Examples of RAMS applications include Abbs (1999).

Model: The Topographic Vorticity Model (TVM)

Name(s): (1) P. Thunis, (2) G. Schayes, (3) R. Bornstein

Organizations: (1) Joint Research Centre (JRC), (2) Universite Catholique Louvain,

(3) San Jose State University

Address (1): JRC, Environment Institute, TP280, Ispra, 21020, Italy

Telephone: 39-0332-785.670

Fax: 39-0332-785.022

E-mail: philippe.thunis@jrc.it

Website: http://rtmod.ei.jrc.it/thunis/TVM/tvm.html

A. Group: Joint Research Centre

B. Equations: Basic dynamical system uses Navier Stokes, anelastic, nonhydrostatic

equations written in vorticity mode. TVM is advanced version of previous hydrostatic-

vorticity URB-MET model.

C. Dimensionality: One, two, or three dimensions.

D. Grid: Staggered Arakawa-C grid. Vertical and horizontal grid spacings can be

stretched.

E. Minimum horizontal resolution: Model has been used up to 500 m resolution but

no limitation exists when used in large-eddy simulations.

F. Vertical resolution: No limit on vertical resolution.

G. Model domain: No lower size limit on limited-area model domain. Model cur-

rently designed for mesoscale areas only (up to a few hundreds of kilometers).

H. Initialization: Horizontally homogeneous interpolation from single sounding.

I. Solution technique: Advection terms approximated by the 3rd order Parabolic

Piecewise Method (PPM) (Collela and Woodward 1984). Diffusion, vorticity tilting, and

buoyancy terms approximated by classical FTCS differencing. Elliptic stream function

equations are solved through iterative variant of bi-conjugate gradient method (van de

Vorst 1992).

J. Coordinate system: Terrain-influenced sigma-z coordinates.

K. Lateral boundary conditions: For advection, only inflow boundary conditions are

specified (value or zero-gradient). Zero gradient for lateral boundary conditions on all

other processes.



Appendix B 547

L. Top boundary condition: Zero vorticity, and horizontal wind set to geostrophic

value. Damping layer can be used in the upper layers to absorb gravity waves.

M. Surface boundary: Wind components set to zero. Surface fluxes of momentum,

heat, and water vapor computed using one of the following methods: a. modified force-

restore model of Deardorff (Schayes et al. 1996) and surface similarity theory. IAGL

land-surface model (De Ridder and Schayes 1997), including vegetation parameterization

and various transfer resistances.

N. Parameterization of subgrid mixing: Prognostic turbulent kinetic energy field and

one of the following methods: a. 1.5 order closure from Therry and Lacarrere (1983)

b. E-� parameterization of Duynkerke (1988) c. in LES mode, with subgrid turbulent

energy and adequate 3-D parameterization.

O. Cumulus parameterization: None

P. Radiation parameterization: Shortwave: Lacis and Hansen (1974) or Stephens

(1978) Longwave: Sasamori (1968) or Stephens (1978)

Q. Stable precipitation parameterization: Kessler-type microphysics parameterization

with 5 species (water, rain, ice crystal, snow, and graupel) used in convective precipitation

with horizontal grid size less than 2 km.

R. Other: None

S. Phenomena studied: Sea breezes (Grossi et al. 2000), slope winds (Schayes et
al. 1996, Bornstein et al. 1996), urban circulations (Bornstein et al. 1994), mountain

waves (Thunis and Clappier 2000), transport and diffusion of pollutants (Sistla et al.
1996), Thunis and Cuvelier 1999, Clappier et al. 2000), residual layers (Freedman and

Bornstein 1998), and large-eddy simulation of convective boundary layers.

T. Computer used: PC to supercomputers.

Model: ARPS

Name(s): Ming Xue and Kelvin Droegemeier

Organization: University of Oklahoma (School of Meteorology and Center for Analysis

and Prediction of Storms)

Address: 100 East Boyd, Suite 1110; Norman, OK 73019

Telephone: (405) 325-0453

Fax: (405) 325-7614

E-mail: mxue@ou.edu/kkd@ou.edu

Website: http://www.caps.ou.edu/ARPS

A. Group: Nonhydrostatic storm- and mesoscale model (Xue et al. 1995; Xue

et al. 2000b, 2001).
B. Equations: Nonhydrostatic, fully compressible.

C. Dimensionality: 1-D, 2-D, 3-D.

D. Grid: Arakawa C-grid.

E. Minimum horizontal resolution: No lower limit; typically run at 1–2 km.

F. Vertical resolution: At user’s choice; typically stretches from 5–500 m.

G. Model domain: Fully variable; can be applied to hemispheric domain down to

domains a few km across or even smaller.

H. Initialization: Single-sounding or 3-D real data analysis.
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I. Solution technique: Split-explicit time integration (Klemp and Wilhelmson 1978a)

with high-order monotonic advection (FCT), (Zalesak 1979) options for scalars.

J. Coordinate system: Height-based generalized terrain-following coordinate in map

projection space.

K. Lateral boundary condition: Several options, including zero-gradient, periodic,

open, and externally-forced condition.

L. Top boundary condition: Rigid, sponge, or wave-radiating.

M. Surface boundary: Semi-slip lower boundary.

N. Parameterization of subgrid mixing: Smagorinsky–Lilly (Lilly 1962; Smagorin-

sky 1963), 1.5-order TKE (Deardorff 1980; Moeng 1984), Germano dynamic closure

(Germano et al. 1991; Wong and Lilly 1994), and their variations.

O. Cumulus parameterization: Kain–Fritsch, Kuo.

P. Radiation parameterization: Based on NASA/GSFC radiation package (Chou

1990, 1992; Chou and Suarez 1994; Tao et al. 1996).
Q. Stable precipitation parameterization: Handled by grid-scale saturation adjustment

and microphysics parameterization. The latter includes Kessler-type warm rain, Lin–Tao

(Lin et al. 1983; Tao and Simpson 1991) six-category ice, and Schultz (1995) simple ice

schemes.

R. Other: Additional physics, including stability-dependent surface flux parameteri-

zations (Monin and Obukhov 1954; Deardorff 1972; Byun 1990), 1.5-order TKE-based

nonlocal vertical mixing inside PBL (Sun and Chang 1986: Xue et al. 1996), and two-

layer soil–vegetation model (Noilhan and Planton 1989; Jacquemin and Noilhan 1990;

Pleim and Xiu 1995; Boone et al. 1999). A data analysis and assimilation system includ-

ing single-Doppler velocity retrieval, satellite, and other conventional data types (Brew-

ster 1996; Shapiro et al. 1996).
S. Phenomena studied: All-season weather from synoptic to storm scales, orographic

flows, idealized simulations of thunderstorms, squall lines, fronts, etc.

T. Computer used; example of time of integration for a specific problem: Origin

2000 (256 processors), Cray T3E (512 processors) (Droegemeier et al. 1995; Sathye
et al. 1997), all other computers (Cray J90, C90, T90, IBM SP-2, Unix workstations,

Linux and Windows PCs, NT and Linux PC clusters, etc.). A 6-hour forecast at 3-km

resolution in a domain covering the southern Great Plains takes about 1 hour on a 256-

node Origin 2000 (full physics).

Model: HOTMAC

Name(s): Dr. Ted Yamada

Organization: Yamada Science and Art Corporation

Address: Rt. 4 Box 81-A, Santa Fe, NM 87501

Telephone: (505) 989-7351

Fax: (505) 989-7965

E-mail: ysa@ysasoft.com

Website: www.ysasoft.com/ysa

A. Group: Yamada Science and Art Corporation (YSA).
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B. Primitive Equations: Hydrostatic, incompressible (Mellor and Yamada 1974;

Yamada 1978b, 1981) and nonhydrostatic (Yamada 2000a).

C. Dimensionality: 1-D (Yamada and Mellor 1975; Yamada and Mellor 1979; Yamada

1982), 2-D (Yamada 1983), or 3-D (Yamada and Bunker 1988, 1989; Yamada 2000b).

D. Grid: 1-D, 80 (Yamada and Mellor 1975); 2-D, 29 × 40 (Yamada 1983); 3-D,

93× 64× 26 (Yamada 2000b).

E. Minimum horizontal resolution: 2-D, 200 m (Yamada 1983); 3-D, 380 m (Yamada

1981), 4 km (Yamada 2000b), 4 m (Yamada 2000a).

F. Vertical resolution: 1-D, ∼0.1 m (Yamada and Mellor 1975); 2-D, ∼2 m (Yamada

1983); 3-D, ∼4 m (Yamada 2000b), 1 m (Yamada 2000a), expanded with height.

G. Model domain:
x y z

1-D 1∼10 km (Yamada and Mellor

1975, 1979)

2-D ∼6 km ∼1 km (Yamada 1983)

3-D 200 m 200 m 500 m (Yamada 2000a)

10 km 368 km 7 km 252 km 1.3 km 8.4 km

(Yamada 1981) (Yamada 2000b)

H. Initialization: Homogeneous or four-dimensional data assimilation (4DDA)

(Yamada 2000b).

I. Solution technique: 2-D and 3-D, alternating direction implicit (ADI) Yamada and

Bunker 1988); 1-D, Laasonen (Yamada and Mellor 1975).

J. Coordinate system: Terrain-following (Yamada and Bunker 1988).

K. Lateral boundary condition: Solutions of 1-D (vertical) equations; smoothing

using interior values (Yamada and Bunker 1988).

L. Top boundary condition: Rigid (Yamada 1981, 1983).

M. Surface boundary: Surface energy budget (Yamada 1981), soil layer, tall tree

canopy (Yamada 1982).

N. Parameterization of subgrid mixing: Based on second-moment turbulence closure

equations (Mellor and Yamada 1974, 1982).

O. Cumulus parameterization: Second-moment closure equations coupled with Gaus-

sian cloud model (Mellor 1977; Yamada and Mellor 1979).

P. Radiation parameterization: Sasomori’s scheme (Sasamori 1968).

Q. Stable precipitation parameterization: Nickerson et al. (1986); equations for the

mixing ratios of water vapor and rain, and the raindrop number concentration.

R. Other: User-friendly graphical interface, 3-D graphics for animation, pre- and

post-processors, well-written, illustrated manuals.

S. Phenomena studied: Diurnal variations of PBL (Yamada and Mellor 1975), noctur-

nal drainage flow over complex terrain (Yamada 1981, 1983; Yamada and Bunker 1988,

1989), turbulence in clouds in marine boundary layer (Yamada and Mellor 1979), long-

range plume transport (Yamada 2000b), tall tree canopy flows (Yamada 1982), urban

canopy flows (Yamada 2000a).

T. Computer used: Runs on low-end workstations and PCS. An hour of a sample

simulation on a PC with a 200-MHz processor took 30 min of CPU time, where a total

of 78 × 55 × 30 (vertical) grid points were used and the horizontal grid spacing was

2 km.
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Summary of Several Cumulus Cloud
Parameterization Schemes

The information included herein was provided courtesy of Nelson Seaman (2000,

personal communication).

The Anthes–Kuo Parameterization

Key References: Kuo (1965, 1974); Anthes (1977)

Key Assumptions:

1. Closure is based on the assumption that the intensity of subgrid deep convection is

proportional to the vertically integrated convergence ofwater-mass in a grid column (the net

resolved-scale moisture convergence, Mt , (including surface evaporation) must exceed a

critical threshold value, Mc).

2. For the moisture convergence to trigger convection, both the cloud depth and the

available buoyant energy (ABE) in the column must exceed minimum threshold values.

3. The moisture-convergence closure assumes that the area of a grid box is large (by

102) compared to the area of convective updrafts.

4. The water convergence can be used to produce rain or to moisten the column. The

fraction rained out, b, is a function of mean relative humidity of the column.

Strong Points:

1. The moisture-convergence closure is well designed for tropics and coarse-grid

applications.

2. Tends to be robust for a wide variety of coarse-grid applications (e.g., NCEP’s

NGM and many global models).

3. Anthes added an easily scaled, empirically based profile for net heating and moist-

ening from convection that allows efficient calculation of feedbacks to the environment.

Weak Points:

1. At mesh sizes of 30 km or less, can produce extreme rainfall similar to Molinar

and Dudek’s (1992) “grid-point storms” for explicit-microphysics-only applications.
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2. Does not include convective downdrafts, so is not well suited for simulating

mesoscale convective systems influenced strongly by outflow boundaries.

The Arakawa–Schubert Parameterization

Key References: Arakawa and Schubert (1974)

Key Assumptions:

1. A cloud field exists as an ensemble of many smaller clouds with decreasing num-

bers of successively larger clouds.

2. The closure is based on the assumption that convection intensity is controlled by

a cloudwork function, a measure of the generation of integrated buoyancy force in the

environment, which then is related to kinetic energy generation inside the cloud. Thus

the convection is closely tied to the rate of buoyancy production at the grid scale.

3. The cloud model includes the effects of entrainment, but detrains only at the

cloud top (detrainment has been added by some investigators), and defines a steady-state

plume.

4. The rain rate is a fraction of the liquid water in the updraft, which may depend

on cloud size and wind shear.

Strong Points:

1. Inclusion of an ensemble of clouds is physically more reasonable than other

parameterizations that assume all clouds in a grid box are identical.

2. The scheme is well designed for convection over tropical oceans where the rate

of buoyancy generation is gradual.

Weak Points:

1. The cloud-work function closure is not well related to non–steady-state situations,

such as explosive convection over midlatitude continents.

2. Can be comparatively expensive due to calculations for cloud-size ensembles.

3. Does not include treatment of convective-scale downdrafts (although Grell 1993

added a downdraft scheme).

The Fritsch–Chappell Parameterization

Key References: Fritsch and Chappell (1980a); Fritsch and Kain (1993)

Key Assumptions:

1. Designed for grid lengths between 10–30 km.

2. The amount of convective activity originates with the concept of potential buoyant

energy (PBE), or positive area on a thermodynamic diagram between the level of free

convection (LFC) and the equilibrium level. This energy becomes “available” if the

negative area below the LFC can be overcome, so that a subcloud parcel reaches its LFC

with positive vertical motion. Thus the convective available potential energy (CAPE) is

the PBE—the negative area below the LFC.
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3. The time scale of the convection tc , is defined as the advective time, which is the

grid length divided by the horizontal wind speed (DX/� �V �).
4. Closure is based on the assumption that convective tendencies are such that all

CAPE in the column is removed within one convective time period, tc .

5. Separate updrafts and downdrafts are calculated. The cloud model allows for par-

cel entrainment into the updrafts (an entraining plume cloud model). Clouds detrain only

at their top through the anvil, or at their base because of downdrafts.

6. The area of the updraft initially is assumed to be 1%, and the submodel iterates

until the calculated updraft/downdraft removes all CAPE during tc .

7. The trigger mechanism is based on whether a parcel with Tv and qv (average

values for a subcloud mixed layer), and with a perturbation temperature, DT , can reach

the LFC with positive buoyancy. The perturbation DT = C1w
1/3, where C1 is a constant

and w is the resolved-scale vertical velocity at the LFC.

Strong Points:

1. Recognized CAPE is a suitable closure for Great Plains storms.

2. Possibly the first convective parameterization specifically designed for meso-�–

scale applications.

Weak Points:

1. Does not conserve water and air mass.

The Betts–Miller Parameterization

Key References: Betts (1986); Betts and Miller (1986)

Key Assumptions:

1. There is a quasi-equilibrium thermodynamic structure toward which the environ-

ment is moved because of convection. This structure can be defined in terms of a “mixing

line” determined from observational data.

2. For the purpose of representing convection in global models, it is unnecessary to

explicitly represent heating and moistening because of the subgrid processes of updrafts,

downdrafts, entrainment, and detrainment. On the assumption that simplicity of design

is more efficient and less prone to errors, all of these are treated implicitly.

3. The closure assumes that the rate at which convective instability is generated in

the environment determines how rapidly the environment profile is changed toward the

mixing line. The relaxation time scale for the convective is roughly 2 hours.

Strong Points:

1. Mixing-line closure is well designed for tropical oceans, coarse grids, and cases

in which the response of the environment evolves slowly.

2. Quite robust for a wide variety of applications and can be adapted for the

mesoscale by adjustment of several parameters. It is used operationally in NCEP’s Eta

model.
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Weak Points:

1. Does not include a convective-scale downdraft parameterization (although later

versions by some investigators have attempted to add their effects).

2. The mixing-line closure appears to be less appropriate in cases of explosive deep

convection and does not directly generate meso-�–scale highs and lows.

The Grell Parameterization

Key References: Grell et al. (1991); Grell (1993)

Key Assumptions:

1. Assumes that deep convective clouds are all of one size.

2. The original Grell scheme used the Arakawa–Schubert cloud-work function for

its closure, but this was later changed to use a CAPE closure, as in Kain–Fritsch.

3. No direct mixing laterally with the environment (no entrainment or detrainment),

except at the levels of origin or termination of updrafts and downdrafts. Thus mass flux

is constant with height.

4. Since there is no lateral mixing (Reynolds averaging), it is not necessary to assume

that the fractional area coverage of updrafts and downdrafts in the grid column is small.

This allows the scheme to operate easily at finer scales, although some degree of scale

separation is still important.

Strong Points:

1. Very robust scheme, which has been modified to look more like Kain–Fritsch.

2. Includes effects of downdrafts.

3. Well adapted for grids as fine as 10–12 km.

Weak Points:

1. Original Arakawa–Schubert characteristics of the closure have been mostly

replaced (but this has also improved performance for explosive convection).

2. Ignores entrainment-detrainment effects.

The Kain–Fritsch Parameterization

Key References: Kain and Fritsch (1990, 1993)

Key Assumptions:

1. Most of the assumptions of the Fritsch–Chappell parameterization are retained,

including the critical CAPE-removal closure assumption.

2. The cloud model is reformulated into an entraining-detraining model, with parcel

buoyancy calculated as a function of parcels mixed laterally between the environment

and the updrafts.
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3. The differencing is reformulated to conserve mass, thermal energy, mass, and

momentum.

4. Designed for grid sizes of ∼20–25 km.

Strong Points:

1. Contains the most complete treatment of in-cloud physical processes of currently

available convective parameterizations.

2. Downdraft parameterization allows better simulation of mesoscale responses than

is possible with most schemes.

Weak Points:

1. CAPE closure is not well suited to tropical environments and can result in overly

vigorous convection.

The PENN State Shallow Convection Parameterization

Key References: Seaman et al. (1996); Deng (1999); Deng et al. (1999, 2000)

Key Assumptions:

1. Closure is based on the assumption that convective intensity, in terms of cloud-

base mass flux, is controlled by a hybrid of the boundary-layer turbulent kinetic energy

(TKE) and the CAPE in the column.

2. The cloud radius is a function of planetary boundary-layer (PBL) depth and cloud

depth.

3. Cloud top height grows at a fraction of the maximum updraft speed because of

resistance in the environment above the cloud.

4. Cloud mass detrained from the shallow convective updrafts is not mixed immedi-

ately with the environment, but rather becomes part of a nearly-neutrally buoyant cloud

(NBC) at its level of detrainment.

5. The area and liquid water content of NBCs are predicted based on source terms

from the cumulus updrafts, advection of cloud properties, and dissipation from mixing,

settling, instability, and precipitation processes.

6. Updraft-initiating parcels are released at the top of the PBL, they have thermal

and moisture characteristics defined from the air in the lowest 20% of the PBL and a

vertical velocity based on the maximum TKE in the PBL.

7. Radiative effects of shallow clouds include effects of partial vertical randomness

of NBCs.

Strong Points:

1. The hybrid mass-flux closure is consistent with size-dependent cumulus forcing

in the atmosphere.

2. The inclusion of an NBC class provides flexibility between stratocumulus and

cumulus environments.

3. Smoothly transitions from shallow convection to deep convection (Kain and

Fritsch 1990) to solid stratiform cloud (Dudhia 1989).
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4. Suitable for marine and land environments and for use in mesoscale models.

Weak Points:

1. A number of parameters and subgrid processes need to be studied further and

modeled based on LES and additional observations.

2. As a new scheme, this parameterization needs further testing and evaluation in a

variety of 3-D environments.
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BATS, LAPS, and LEAF Comparison Tables
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Canopy Air, Vegetation, Temporary Surface Water, Ground Surface, and Deep Soil Temperaturea

LAPS LEAF LEAF-2b

Vegetation Cveg

�Tv

�t
= Rvnet −Hvc − �Evc Cveg

�Tv

�t
= Rvnet −Hvc − �Evc +Hpv Cveg

�Tv

�t
= Rvnet −Hvc − �Evc +Hpv

Canopy air Hca�Tc� = Hvc�Tc�+Hgc�Tc� Cc

�Tc

�t
= Hvc −Hca +Hgc Cc

�Tc

�t
= Hvc −Hca +Hgc +Hsc

Temporary surface

water (snow)c
Not used Not used Tsi =

Qsi − fl�f

fici + flcl

Soil surfacec Cg

�Tgt

�t
= Rgnet −Hgc − �Egc Cg

�Tgt

�t
= Rgnet −Hgc − �Egc +Ht−1	t Tgt =

Qgt −Wgtfl�f

Wgtfici +Wgtflcl + cgmg

−Cv

(
Kt�

2

)1/2
�Tgt − Td�

� = 2�

"d

Deep soilc Cg

�Td

�t
= 2�Rgnet −Hgc − �Egc�(

365�
)1/2 �H = 418.62 exp �−�Pf + 2
7�� Pf ≤ 5
1 Tgi =

Qgi −Wgifl�f

Wgifici +Wgiflcl + cgmg

Cg = 0
95
[
�HCv/�2��

]1/2
�H = 418.62 x 0.00041 Pf > 5
1

Cv

�Tgt

�t
= �

�z

(
�H

�Tgi

�z

)
Cv = Ci + Cwwi

aThe tables in this appendix were compiled by Pier Luigi Vidale, Robert Walko, Guta Mihailovic, and John Strack.
bLEAF-2 does not prognose soil and temporary surface water temperatures, but instead diagnoses them from the internal energy.
cIn LEAF and LEAF-2, multiple soil layers are allowed. The layers are numbered increasing upward from the deepest layer. In LEAF-2, multiple temporary surface water

layers may exist when it is in the form of snow. These layers are numbered increasing upward from the surface.
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Internal Energy of Temporary Surface Water (Snow) and Soil Layers

LEAF-2

Top snow layer
�

�t
�WstQst� = Rsnwt +Ht−1	 t −Hsc − �Esc +Hps −Hw�t	 t−1�

Intermediate snow layers
�

�t
�WsiQsi� = Rsnwi +Hi−1	 i −Hi	 i+1 +Hw�i+1	 i� −Hw�i	 i−1�

Bottom snow layer
�

�t
�WsbQsb� = Rsnwb +Hgs −Hb	 b+1 +Hw�b+1	 b� −Hwsg

Soil surface Dt

�Qgt

�t
= Rgnet +Ht−1	 t −Hgc −Hgs − �Egc +Hwsg −Hw�t	 t−1�

Deep soil layers Di

�Qgi

�t
= Di

�

�z

(
�H

�Tgi

�z

)
+Hw�i+1	 i� −Hw�i	 i−1�

�H = −2
70

(
wi

ws

)2
+ 4
80

(
wi

ws

)
+ 0
30 Sand

�H = −0
96

(
wi

ws

)2
+ 2
40

(
wi

ws

)
+ 0
25 Clay

�H = 0
46

(
wi

ws

)
+ 0
06 Peat

Interception Stores

LAPS LEAF LEAF-2

Vegetation
�Wf

�t
= Pveg − Ewf

�Wf

�t
= Pveg − Ewf − Rveg

�Wf

�t
= Pveg − Ewf − Rveg

Temporary Surface Water (Snow) Stores

LEAF-2

Top layer
�Wst

�t
= Pg + Rveg − Esc − Fw�t	 t−1�, when multiple layers are allowed

�Wst

�t
= Pg + Rveg − Esc − I , when only one layer is present

Intermediate

layers

�Wsi

�t
= Fw�i+1	 i� − Fw�i	 i−1�

Bottom layer
�Wsb

�t
= Fw�b+1	 b� − I
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Soil Moisture Stores

LAPS LEAF LEAF-2

Surface layer
�Wg3

�t
= 1

D3

�Pg−Q3	2−Egc−Et3−Rs−R3�
�Wgt

�t
= 1

Dt

�Pg−Qt	t−1−Egc−Ett−Rs�
�Wgt

�t
= 1

Dt

�Pg−Qt	t−1−Egc−Ett−Rs−Rt�

Intermediate

layers

�Wg2

�t
= 1

D2

�Q3	 2 −Q2	 1 − Et2 − R2�
�Wgi

�t
= 1

Di

�Qi+1	 i −Qi	 i−1 − Eti�
�Wgi

�t
= 1

Di

�Qi+1	 i −Qi	 i−1 − Eti − Ri�

Deep layer
�Wg1

�t
= 1

D1

�Q2	 1 − Rg − Rl�
�Wgd

�t
= 1

Dd

�Qd+1	 d − Etd�
�Wgd

�t
= 1

Dd

�Qd+1	 d − Etd − Rd�



560
A
p
p
en

d
ix

D

Fluxes from Vegetation to Canopy Air Space

LAPS LEAF LEAF-2

Evaporation from

interception

stores

Ewf = �Cp

)�

ev s − ec
rb

•
(
Wf

Wm

)2/3
Ew f = �

qv s − qc
rb

•
(
Wf

Wm

)2/3
Ewf = �

qv s − qc
rb

•
(
Wf

Wm

)2/3

Transpiration

rates

Et =
�Cp

)�

ev s − ec
rb + rc

•
[(

1− Wf

Wm

)2/3]
Et = �

qv s − qc
rb + rc

•
[(

1− Wf

Wm

)2/3]
Et = �

qv s − qc
rb + rc

•
[(

1− Wf

Wm

)2/3]

Evapotranspiration

rate

Evc =
�Cp

)�
�ev s − ec� Ev c = ��qv s − qc� Ev c = ��qv s − qc�

•

⎡⎢⎢⎢⎣
(
Wf

Wm

)2/3
rb

+
1−
(
Wf

Wm

)2/3
rb + rc

⎤⎥⎥⎥⎦ •

⎡⎢⎢⎢⎣
(
Wf

Wm

)2/3
rb

+
1−
(
Wf

Wm

)2/3
rb + rc

⎤⎥⎥⎥⎦ •

⎡⎢⎢⎢⎣
(
Wf

Wm

)2/3
rb

+
1−
(
Wf

Wm

)2/3
rb + rc

⎤⎥⎥⎥⎦
Sensible heat flux Hvc = 2�Cp

TV − Tc

rb
Hv c = �Cp

Tv − Tc

rb
Hv c = �Cp

Tv − Tc

rb
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Fluxes from Canopy Air Space to the Atmosphere

LAPS LEAF LEAF-2

Evaporation rate Ec a =
�Cp

)�

ec − er
ra

Ec a = �
qc − qr

ra
Ec a = �

qc − qr
ra

Sensible heat flux Hca = �Cp

Tc − Tr

ra
Hc a = �Cp

Tc − Tr

ra
Hc a = �Cp

Tc − Tr

ra
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Vertical Movement of Water Through Soil and Snow

LAPS LEAF LEAF-2

Vertical water flux

through soil

Qi	 i−1 = �w

DiKi +Di+1Ki+1

Di +Di+1

•
[
2�!i − !i+1�

Di +Di+1

+ 1

]
Qi	 i−1 = −�wKi

d

dz
�!i + z� Qi	 i−1 = −�wKi

d

dz
�!i + z�

Vertical water flux

through snow

Not used Not used Fw�i	 i−1� =
max�0	Wsi�1
1fl − 0
1��

�t

Hydraulic

conductivity

Ki = Ks

(
wi

ws

)2B+3

Ki = Ks

(
wi

ws

)2B+3

Ki = Ks

(
wi

ws

)2B+3

Soil water

potential

!i = !s

(
wi

ws

)−B

!i = !s

(
wi

ws

)−B

!i = !s

(
wi

ws

)−B

Gravitational

drainagea
Rg = �wKs

(
wl

ws

)2B+3

sin x
�

�t
�wd� = 0 None

aIn LEAF the gravitational drainage is equal to that required to maintain a constant wd .
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Horizontal Movement of Water in Soil

LAPS LEAF LEAF-2

Surface runoff Rs = Pg −min�Pg	 �wKs� Rs = 0
wi

ws

< 1 Predicted by TOPMODEL (see Beven

and Kirkby 1979; Walko et al. 2000a).

Rs = Pg − �wKs

wi

ws

= 1

Subsurface

runoff

Ri = Qi	 i−1 −min�Qi	 i−1	 �wKS� Not used in version 1 Predicted by TOPMODEL (see Beven

and Kirkby 1979; Walko et al. 2000a).
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Fluxes from Ground Surface to Canopy Air Space

LAPS LEAF LEAF-2

Evaporation rate Egc =
�Cp

)�

�megs − ec

rl + rd
Egc = �

qg − qc

rd
Egc = �

qg − qc

rd

Sensible heat flux Hgc = �Cp

Tgt − Tc

rd
Hgc = �Cp

Tgt − Tc

rd
Hgc = �Cp

Tgt − Tc

rd

Fluxes from Temporary Surface Water
(Snow) to Canopy Air Space

LEAF-2

Evaporation rate Esc = �
qsnw − qc

rd

Sensible heat flux Hsc = �Cp

Tst − Tc

rd

Surface Resistance

LAPS LEAF LEAF-2

rl = p1 + p2

(
w3

ws

)p3
not used not used

Soil Surface Resistance

LAPS LEAF LEAF-2

rd = 1

k2uH

[
sinh���

sinh��g��

]�1/2�
rd = rbare max

[(
1− LSAI

�

)
	 0

]
rd = rbare max

[(
1− LSAI

�

)
	 0

]

•
[
ln

(
z

z0

)]2
+ rclose min

[
LSAI

�
	 1

]
+ rclose min

[
LSAI

�
	 1

]

Bulk Leaf Boundary-Layer Resistance

LAPS LEAF LEAF-2

rb=
Ps

Ct

�sinh��1/4

�uH�
1/2LdH

•
∫ �
�g�

[
sinh

(
�z

H

)]
d
(
�
z

H

)
rb=

Ps

Cf LSAI

(
l

Uf

)1/2
rb=

Ps

Cf LSAI

(
l

Uf

)1/2
Ps = 1+ 0
5LSAI Ps = 1+ 0
5LSAI
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Canopy Resistance

LAPS LEAF LEAF-2

rc =
rsmin

LAI
fR
[
fvfT fw
]−1

rc =
1

LAI

[
dsminfRfTcfThfvf!

]−1
rc =

1

LAI

[
dsminfRfTcfThfvf!

]−1

Aerodynamic Resistance

LAPS LEAF LEAF-2

ra =
1

ku
ln

zr − d

H − d
ra =

1

k2Ur

[
ln

zr − d

z0
+ !M

]
ra =

1

k2Ur

[
ln

zr − d

z0
+ !M

]

•
[
ln

zr − d

z0
+ !H

]
•
[
ln

zr − d

z0
+ !H

]

Adjustment Factors

fR =
[
1+ 1
1S/Sg

LAI

] [
1
1S/Sg

LAI
+ rsmin

rsmax

]−1

fT = 1− 0
0016�298
0− Tc�
2

fs = (see Dickinson et al. 1986: 48–51)

fv = 1− 0
0025 h Pa−1�evs − ec�

fw =

⎧⎪⎪⎨⎪⎪⎩
1 wa > wfc

1−
[wwil

w

]1
5
wwil ≤ wa ≤ wfc

0 wa < wwil

fTc	 fTh	 f! = (see Lee et al. 1993; Avissar and Pielke 1991)
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B = Clapp–Hornberger constant

cg = specific heat of dry soil (J kg−1 K−1)

ci = specific heat of ice (J kg−1 K−1)

cl = specific heat of liquid water (J kg−1 K−1)

Cp = specific heat of air at constant pressure (J kg−1 K−1)

Cc = effective heat capacity of canopy air (J m−2 K−1)

CD = drag coefficient

Cf = 0.01 m s−1/2

Cg = effective heat capacity of soil (J m−2 K−1)

Ci = volumetric heat capacity of dry soil (J m−3 K−1)

Ct = transfer coefficient (m1/2 s−1/2)

Cv = volumetric soil heat capacity (J m−3 K−1)

Cveg = effective heat capacity of vegetation (J m−2 K−1)

Cw = volumetric heat capacity of water (J m−3 K−1)

d = zero plane displacement (m)

dsmax = maximum stomatal conductance (m s−1)

dsmin = minimum stomatal conductance (m s−1)

Dd = thickness of the deepest soil layer (m)

Di = thickness of the ith soil layer (m)

Dt = thickness of the topmost soil layer (m)

ec = vapor pressure of canopy air (mb)

egs = saturated vapor pressure at ground surface temperature (mb)

er = vapor pressure at reference height (mb)

evs = saturated vapor pressure at vegetation temperature (mb)

Eca = evaporation from canopy air to atmosphere (kg m−2 s−1)

Egc = evaporation from soil to canopy air (kg m−2 s−1)

Esc = evaporation from snowcover to canopy air (kg m−2 s−1)

Et = transpiration rate from the dry fraction of the leaves (kg m−2 s−1)

Etd = water extracted from the deepest soil layer by transpiration (kg m−2 s−1)

Eti = water extracted from the ith soil layer by transpiration (kg m−2 s−1)

Ett = water extracted from the topmost soil layer by transpiration (kg m−2 s −1)

Evc = evaporation and transpiration from vegetation to canopy air (kg m−2 s−1)

Ewf = evaporation from interception stores (kg m−2 s−1)

fi = ice fraction of temporary surface water

fl = liquid water fraction of temporary surface water

fR = adjustment factor for total solar radiation

fs = adjustment factor for soil moisture

fT = adjustment factor for seasonal air temperature changes

fTc = adjustment factor for leaf temperature at cold range

fTh = adjustment factor for leaf temperature at hot range

fv = adjustment factor for water vapor pressure deficit

fw = adjustment factor for soil moisture

f! = adjustment factor for soil water potential

Fw�b+1	 b� = flux of water between the bottommost snow layer and

the next snow layer above, positive downward (kg m−2 s−1)
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Fw�i	 i−l� = flux of water between snow layer i + 1 and snow layer i,

positive downward (kg m−2s−1)

Fw�t	 t−1� = flux of water between the top snow layer and below,

positive downward (kg m−2s−1)

H = canopy height (m)

Hb	 b+1 = sensible heat flux between bottom snow layer and

next snow layer above, positive upward (W m−2)

Hca = sensible heat flux from canopy air to atmosphere (W m−2)

Hgc = sensible heat flux from soil to canopy air (W m−2)

Hgs = sensible heat flux from soil to snow cover (W m−2)

Hi−1	 i = sensible heat flux between soil/snow layer i − 1 and

soil/snow layer i, positive upward (W m−2)

Hps = sensible heat flux from precipitation to snow (W m−2)

Hpv = sensible heat flux from intercepted precipition to vegetation (W m−2)

Hsc = sensible heat flux from snow cover to canopy air (W m−2)

Ht−1	 t = sensible heat flux top soil/snow layer and the next soil/snow

layer below, positive upward (W m−2)

Hvc = sensible heat flux from vegetation to canopy air (W m−2)

Hwsg = internal energy carried by water between snow cover and

topsoil layer, positive downward (W m−2)

Hw�b+1	b� = internal energy carried by water between bottom snow layer

and next snow layer above, positive downward (W m−2)

Hw�i	 i−1� = internal energy carried by water between soil/snow layer i and

the next soil/snow layer i − 1, positive downward (W m−2)

Hw�t	 t−1� = internal energy carried by water between top soil/snow

layer and the next soil/snow layer below, positive downward (W m−2)

I = infiltration of precipitation into the upper soil moisture store,

positive downward (kg m−2 s−1)

k = von Karman constant

Ki = hydraulic conductivity of ith layer (m s−1)

Ks = saturated hydraulic conductivity (m s−1)

Kt = thermal diffusivity (m2 s−1)

l = topical dimension of leaves or the stems along the wind directions (m)

Ld = stem and leaf density (m−2 m3)

LAI = leaf area index

LSAI = leaf and stem area index

mg = mass of dry soil per cubic meter of total volume

(water, soil, and air) (kg m−3)

p1	 p2	 p3 = 30 s m −1	 3
5	 2
3 empirical constants, respectively

(see Mihailovic and Ruml 1996)

Pg = precipitation reaching the ground (kg m−2 s−1)

Pf = base-10 logarithm of moisture potential, ! (cm)

Ps = shelter factor

Pveg = precipitation intercepted by vegetation (kg m−2 s−1)

qc = specific humidity of the canopy air (kg kg−1)

qg = effective specific humidity at the surface (see Lee and
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Pielke 1992) (kg kg−1)

qr = specific humidity at reference height (kg kg−1)

qsnw = specific humidity at top snow surface (kg kg−1)

qvs = saturated specific humidity at vegetation temperature (kg kg−1)

Qd+1	 d = flux of water between the deepest soil layer and

the next layer above (kg m−2 s−1)

Qgi = internal energy of the ith soil layer (J m−3)

Qgt = internal energy of top soil layer (J m−3)

Qi	 i−1 = flux of water between the ith and i+1 soil layers,

positive downward (kg m−2 s−1)

Qsb = internal energy of the bottommost snow layer (J kg−1)

Qsi = internal energy of the ith snow layer (J kg−1)

Qst = internal energy of the topmost snow layer (J kg−1)

Qt	 t−1 = flux of water between the topmost soil layer and

the next layer below, positive downward (kg m−2 s−1)

ra = aerodynamic resistance (s m−1)

rb = bulk leaf boundary-layer resistance (s m−1)

rbare = resistance when the surface is bare (see Lee et al. 1992

for LEAF, and rbare = 5/u∗ in LEAF-2) (s m−1)

rc = canopy resistance (s m−1)

rclose = resistance when the surface is covered by a closed canopy (s m−1)

rd = soil surface aerodynamic resistance (s m−1)

rl = surface resistance (s m−1)

rsmax = maximum stomatal resistance (s m−1)

rsmin = minimum stomatal resistance (s m−1)

Rd = subsurface runoff in the deepest soil layer (kg m−2 s−1)

Rg = gravitational drainage (kg m−2 s−1)

Rgnet = net radiation absorbed by the soil (W m−2)

Ri = subsurface runoff in ith soil layer (kg m−2 s−1)

RiB = surface bulk Richardson number

Rs = surface runoff (kg m−2 s−1)

Rsnwb = net radiation absorbed by the bottommost snow layer (W m−2)

Rsnwi = net radiation absorbed by the ith snow layer (W m−2)

Rsnwt = net radiation absorbed by the topmost snow layer (W m−2)

Rt = subsurface runoff in the top soil layer (kg m−2 s−1)

Rveg = runoff from vegetation (kg m−2 s−1)

Rvnet = net radiation absorbed by the vegetation (W m−2)

S = incoming shortwave radiation (W m−2)

Sg = the limit value of 30 W m−2 for a forest and 100 W m−2

for crops

SAI = stem area index

Tc	 Td	 Tgt	 Tv = temperature of canopy air, deep soil, soil surface,

and vegetation, respectively (K)

Tgi = temperature of the ith soil layer (K)

Tr = air temperature at reference height (K)

Tsi = temperature of the ith snow layer (K)
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Tst = temperature of the topmost snow layer (K)

uH = wind speed at canopy top height (m s−1)

u∗ = friction velocity (m s−1)

Uf = magnitude of wind within the canopy (m s−1)

Ur = wind speed at reference level (m s−1)

w3	 w2	 w1	 = volumetric soil moisture content in the upper soil layer,

root zone, and deep soil, respectively (m3 m−3)

wa = mean volumetric soil moisture content in first and

second layer (m3 m−3)

wd = volumetric soil moisture content of the deep layer (m3 m−3)

wfc = volumetric soil moisture content at field capacity (m3 m−3)

wi = volumetric soil moisture content of the ith layer (m3 m−3)

ws = saturated volumetric soil moisture content (m3 m−3)

wwil = volumetric soil moisture content at the wilting point (m3 m−3)

W3	W2	W1	 = soil moisture content in the upper soil layer, root zone,

and deep soil, respectively (kg m−3)

Wf = water stored on vegetation (kg m−2)

Wgd = soil water content of the deepest soil layer (kg m−3)

Wgi = soil water content of the ith soil layer (kg m−3)

Wgt = soil water content of the topmost soil layer (kg m−3)

Wm = maximum water reservoir capacity (kg m−2)

Wsb = water content of bottommost snow layer (kg m−2)

Wsi = water content of ith snow layer (kg m−2)

Wst = water content of topmost snow layer (kg m−2)

x = mean slope angle (�)
z = vertical coordinate (m)

zr = reference height (m)

z0 = roughness length of bare soil (m)

�g = ratio of canopy bottom height and canopy top height

�m = wetness factor (see Mihailovic et al. 1993)

� = extinction factor (see Mihailovic et al. 1993)

�t = time step (s)

� = psychometric constant (mb K−1)

� = latent heat of vaporization of water (J kg−1)

�f = latent heat of fusion of water (J kg−1)

�H = thermal conductivity (J s−1 m−1 K−1)

� = air density (kg m−3)

�w = density of water (kg m−3)

� = critical value of LSAI for closed canopy (m2 m−2)

"d = day length (s)

!H = stability function for moisture transfer

!i = soil water potential (m)

!M = stability function for momentum transfer

!s = saturated soil water potential (m)
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Summary of Datasets (2000)

This access to data on the Web will undoubtedly change with time, but these topic

areas provide the reader with topics (and sites) to start with.

Atmospheric data: http://dss.ucar.edu/pub/reanalysis

Soils

Soil wetness (Dirmeyer et al. 1999)

Soils (Miller and White 1998): http://EarthInteractions.org

Soil water holding capacity (Kern 1995a, b).

Active layer in permafrost regions [Circumpolar Active-Layer Monitoring

Network (CALM)]: http://www.geography.uc.edu/∼kenhinke/ CALM
Land use history: http://biology.usgs.gov/luhna/index.html

Snow and sea ice

National Snow and Ice Data Center: http://nsidc.org

Byrd Polar Research Center: http://www-bprc.mps.ohio-state.edu

National Ice Center: http://www.natice.noaa.gov

National Operational Hydrologic Remote Sensing Center: http://www.

nohrsc.nws.gov

Vegetation data

Ramanukutty and Foley historical crop data: http://cpep.meteor.wisc.edu/pages/

available.html

NOAA/NASA Land Data Assimilation System (LDAS): http://ldas.

gsfc.nasa.gov

Land cover: http://www.usgs.gov (link to the EROS Data Center in Sioux

Falls, South Dakota)

Soils and roots (Feddes et al. 2001)

Ocean data

Sea surface temperatures

Climate Diagnostics Center: ftp.cdc.noaa.gov

Surface Radiative Fluxes–Rachel Pinker (personal communication, 1999) http:

//www.meto.umd.edu/∼srb/gcip
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Index

A

Absorbing layer

as lateral boundary condition, 384

as top boundary condition, 390-391

reflection from, illustrated, 390-391

Adams–Bashford algorithm, 295–296

Additive splitting method, 337–342

Adjoint method, 370

Advection-diffusion effects, 201

Advective boundary layer, 188

Aerodynamic roughness, 173–177, 185–186

values of, 173–177, 182–183

Aerodynamically smooth, defined, 186

Air quality, 169–170, 228–233, 242–246, 504,

511–513

poor, illustrated, 507

standards, 512

Aitken particles, defined, 244

Albedo, 406-409

defined, 406

values of, 408–409, 428

zenith angle and, 410

Aliasing, 281

defined, 332, 334

illustrated, 333

ALPEX, 499

Anelasticity

definition, 27, 79, 83, 160

in wave equations, 76

Angular velocity, of earth

defined, 13

illustrated, 14

in vertical coordinates, 134–137

Anthes–Kuo parameterization, 550–551

Anthropogenic heat input, 392, 400, 417–418

representative values of, 417–418

Arakawa–Schubert parameterization, 551

ARPS model, 546–547

ASCOT, 486, 529

Atmospheric window, defined, 248

Attenuation, defined, 213

Autoconversion, 273

Averaging

definition, 42–43

layer domain, 45

grid-volume, 43

Avogadro’s hypothesis, 6

Azimuth, 423

B

Basic equations. See also Conservation

tensor form, 19–20, 130, 136–138

vector form, 18

Basis functions, 281

Basis vectors

defined, 123–125

illustrated, 124

vertical coordinate system, 134

Betts–Miller parameterization, 552–553

Bias score, 467

Blackbody, defined, 211–212

Blending height, 205

BLFMESO. See Boundary-Layer Mesoscale

Forecast Model

Blocking, defined, 495

Bottom boundary conditions, 392–437

661



662 Index

Boundary conditions, 347–441

domain size

inadequate, 347–349

periodic, 531–533

for spline, 320

Boundary-Layer Mesoscale Forecast Model

(BLFMESO), 537–538

Boundary, similarity, 63

Boundary value problem, defined, 364

Boussinesq approximation

alternative derivation, 54

defined, 46

Box models, 506

Boyle’s law, 6

Broadband emissivity

carbon dioxide, 219–220

CO2-H2O overlap, 219–220

defined, 218

for water vapor, 218–219

Broadband flux transmissivity, 218

Brunt–Väisälä frequency, 383

defined, 119

Bulk aerodynamic formulation, 195

C

Centered-in-time scheme, 293–295

Centripetal acceleration, 14

Chinook, defined, 529

Christoffel symbol

defined, 127

in vertical coordinates, 133

Clausius-Clapeyron equation, 257

Closure

defined, 45, 172

different forms, 199–201

first order, second order, defined, 195

for planetary boundary layer, 199

Cloud clusters, 193, 523–525

Cloud models. See Cumulus field models

Coalescence, defined, 275

COAMPS model, 539–541

Complexity, level of, 273–278

Compressible, in wave equation, 76

Computational accuracy

linear equations, methods for, 290–291, 307,

314

Computational diffusion, defined, 292

Computational mode, defined, 294

Conservation. See also Basic equations

of gaseous and aerosol materials, 18, 38–39,

49, 130, 137

of heat, 5–13, 29, 49, 130, 137

of mass, 3–5, 22–28, 47, 130, 137

of motion, 13–16, 29–38, 48, 54, 130,

136–137, 141

contravariant, 141–142

horizontal equation, 33–38, 45–46, 136

vertical equation, 30–33, 45–46, 47, 137

prognostic form, 438

summary of, 55–56, 158–160

of water, 17, 38, 49, 130, 137

Consistent representation, 343

Consolidative models, 58

Constant flux layer, 174

Continuity equation, 5. See also Conservation,

of mass

approximation for, 326–327, 362

deep, 24–27

shallow, 27–28

Contravariant tensor, defined, 123

Convection

clouds and, 266

forced, defined, 169

free, defined, 169

Convective adjustment schemes, 265–266

Convectively stable

defined, 251, 253

parameterizations for clouds and

precipitation, 253–261

parameterized cumulus, convection and, 272

saturation level, 272

Convectively unstable

defined, 251, 261

parameterization for clouds and precipitation,

261–268

Convergence, cumulus development and, 261,

263, 264, 465

Conversion terms, 273–277

Coordinate systems

generalized vertical coordinates, 130–163

isentropic, 131

isobaric, 131

sigma, 131, 132, 138–152

terrain-following, 131, 138–152

nonaccelerating, 13

nonorthogonal

defined, 124

terrain-following, 134
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orthogonal, defined, 124

relative, 13

terrain-following, 160–161

transformations, 122–163

Coriolis acceleration, defined, 20

Coriolis force, 16

Coriolis parameter, 34

Countergradient flux, 197

Courant number, 286

Covariant tensor, 123

Crank-Nicholson scheme, 308

Cumulus, 263

downdrafts, influence of, 521

illustrated, 262

parameterization schemes, 265–266,

269–271, 278, 550–555

planetary boundary layer and, 193

rainfall from, 263

Cumulus field models, parameterizations and,

268–271

CYCLES, 517

D

Dalton’s law, 20

used in derivation, 7

Damping

aliasing, control of, 332–337

in computational schemes, 289, 290–291,

307, 313–314

Datasets, on internet, 575

Daytime upslope, 486

Deardorff velocity, 192

Defant’s model

discussed, 86–112

illustrated results, 92-94

nonlinear model and, 353

numerical comparison to, 443

Density

discontinuity in, 82

homogeneous, defined, 28

scale height, defined, 24

Density of soils, 402

Deposition velocity

defined, 187

values of, 187–188

wet and dry, defined, 187

Desertification, 392, 407

Diagnostic

illustration of results, 502–503

models, 503

Diagnostic equations

adjoint method, 370

approximate forms for, 326–329, 362,

375–376

defined, 28

for pressure, 51–53

Diastrophism, defined, 375, 439

Difference equations, defined, 282

Diffusion

computational approximations to, 304–309,

307

exact solution of, 304, 402–406

horizontal, aliasing and, 333–337

Diffusivity of SO2, 188

Dimensional analysis, 39

Dirac delta function, 117, 120

Dispersion

in computational scheme, 289, 290–291,

295, 313–314

Displacement height

defined, 182

evaluation, 183–184

values of, 182–184

Domain

as boundary of model, 347–349

defined, 45

Domain average, defined, 45

Domain-averaged acceleration, 381

Downward momentum transport, 490

Drag coefficient

defined, 195

values of, 195–196

Drainage flow equations, 153–158

Dryline, defined, 529

Dynamic initialization, 367–368, 372, 375

example of use, 367–368, 374–376

Dynamic pressure. See Nonhydrostatic pressure

Dynamical similarity, 60

E

Effective parameters, 205

Ekman layer, defined, 188

Elevated heat sink, defined, 486

Elevated heat source, 486

Elevation angle, defined, 248

Emissivity, 213, 218–219, 225–226, 232
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illustrated for carbon dioxide and water

vapor, 219–220

illustrated for clouds, 226

values for, 401–428

Energy budgets, 454–459

Ensemble average, 56

Entropy, defined, 10

Equilibrium temperature level, defined, 268

Equivalent potential termperature, 251, 253

Eta coordinate system, 131

Eta model, 542–544

Eulerian derivative, 12

Exact differential, 9–10

Exchange coefficients

defined, 61, 168

effect of countergradient flux, 197

formula for, 181, 196–197

Exner function, defined, 53, 57

Explicit solution technique, defined, 305–306

Exploratory models, 58

External forces, 14–16

External gravity wave

defined, 72

wave equation for, 72

Extinction, defined, 213

F

Fall velocity, 256, 276

Filters, 334–337

Finite difference

additive splitting and, 337

for advection, 282–304, 295, 326

for Coriolis terms, 309–311

for diffusion, 304–309

implicit-explicit defined, 305–306

solution techniques, 281, 282–315

spline and, 291, 316–326

for tank model, pressure gradient, and

divergence terms, 311–315

Finite element

basis functions and, 281

discussed, 281, 343

wave–wave interactions, 332

Fire, influence of, 482–483

FITNAH model, 538–539

Flushing valleys, 487

Flux correction technique, 296–304

Flux form, 48

Flux interface, 347

Flux Richardson number, 168

Flux temperature, 179

Force-restore method, 420

Forced airflow, rough terrain, 442–446, 490,

493–494

analytic and numerical solutions, 444

hydrostatic and nonhydrostatic simulations,

453

illustrated, 361, 444, 453, 498

momentum flux, 459–462

Forced wave, defined, 496

Form drag, 206

Forward-upstream differencing, 285–293

Fossil turbulence, 202

Fourier number, defined, 305

Fourier transforms, 70, 115, 120

Frequency equations

homogeneous fluid, 67–72

two-layered fluids, 72–74

Friction velocity, 173

Fritsch-Chappell cumulus, 265, 551–552

Frontal circulations, 527–529

Froude number, defined, 496

G

GARP Atlantic Tropical Experiment (GATE),

265

Gas, atmospheric fractions, 7

Gas constant, 8

Gas law, 6–7, 20

GATE, 265, 522. See GARP Atlantic Tropical

Experiment

Gauss elimination, 320–321

Gaussian plume model, 169–170

Generalized linear wave equation, 74–86

Generalized vertical coordinates

discussed, 130–163

illustrated, 132, 139

terrain-following form, 138–152

Geometric similarity, defined, 137–138

Geostrophic wind

defined, 36

generalized, 143–152

Gradient Richardson number, defined, 169

Gradient wind, 40

Gravity, 14–16

Gravity wave

group velocity, 83–85, 115–116
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homogeneous fluid, 67–72

two-layered fluid, 72–74

Gray body, defined, 213

Green’s function theory, 371

Grell parameterization, 553

Grid

adaptivity, 535–536

interval

defined, 42

illustrated, 283

wave representation in, 285

meshed, illustrated, 356

staggering, defined, 362, 363

stretched, illustrated, 354

volume averaging

in rectangular grid mesh, 43

in vertical coordinate grid mesh, 135

volume, illustrated, 42

Grid mesh, discussed, 347–364

Ground temperature, calculated in model,

397–400, 414–415, 417

Ground wetness evaluation, 412–414, 420–421

Group velocity

derived, 83–86

discussed, 39, 83–86, 115–116

Groups active in modeling, examples of,

534–555

H

Harmonics, 76

Heat conductivity, 440

Heat diffusion equation, exact solution,

304–305, 402–406

Heat island, 503–513

illustrated, 510, 511

Heat storage term, defined, 406

Heterogeneous boundary layers, 202–206

Higher-order closure models, 195

Hilbert transform, 118, 120

Homogeneous algebraic equation, 71–72,

76–78

Homogeneous, definition, 28, 67

Horizontal equation of motion, 33–38. See also
Conservation of motion; Scale analysis

Horizontal grid, 204

discussed, 350–357

functional forms for, 353–357

size determination, 350–352

HOTMAC model, 547–549

Hurricanes, 271–272, 525–527

Hydraulic conductivity

defined, 412

values, 414

Hydrostatic relation

approximate form, 326–327

definition, 33, 51, 55

generalized definition, 142–143

horizontal pressure gradient and, 376–377

scale analysis, 30–33

in terrain-following coordinate system,

138–152

in wave equation, 76, 82–83

Hyperbolic equations, 438

I

Implicit solution technique, 306

Incompressibility, 28, 98

Inertial subrange, defined, 331

Initial value problem, defined, 364

Initialization

in complex terrain, 377

defined, 364

discussed, 364–378

normal mode technique, 369

Interception storage, 431

Internal boundary layer

aerodynamic, 202

growth of, 202–204

illustrated, 202, 203

mosaic approach, 205–206

subgrid-scale fluxes, 207

thermal boundary layer, 202

Internal forces, 16

Internal gravity wave

discussed, 496

on interface between fluids

defined, 74

wave speed for, 74

Long’s solution, 444

in stratified fluid

defined, 82

wave speed for, 86

Internet resources, 575

Interpolation

illustration of, 316

solution techniques, 281, 316–326

Invariance, 122
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Inversions, 189

growth of, 190

types of, 189

Irradiance, defined, 210

Isotropic, in radiative transfer, 20, 248

J

Jacobian, defined, 123, 128, 130

Jet stream, simulation of

discussed, 365–366

illustrated, 366

Jump model, 190–191

discussed, 190

illustrated, 191

Junge distribution, 230, 242–243

K

Kain-Fritsch parameterization, 553–554

Katabatic wind, 486

Kinematic similarity, defined, 63

Kinetic energy

subgrid-scale perturbation, 167–168

in tensor form, 134, 141

terrain-following form, 456–457

turbulent, 167–168

Kinetic energy budgets, 454–459

Kirchoff’s law, 213

Kuo scheme, 277–278

L

LAD. See Least sum of absolute deviations

Lagrangian derivative, 12

Lake effect

discussed, 513–514

illustrated, 515–516

Lamb wave, 119

Laminar flow, definition, 37

Laminar sublayer, defined, 207

Land Atmosphere Ecosystem Feedback

(LEAF) model, 436

comparison tables, 557–574

Land, as lower boundary condition, 394–437

Large drop assumption, 238

Large-eddy simulation (LES) models, 201

Latent heat

of condensation, values for, 252

of freezing, values for, 252

Lateral boundary conditions, 380–386

Layer domain-average, defined, 45

Layer instability, defined, 251

LEAF. See Land Atmosphere Ecosystem

Feedback

Leaf area index

defined, 184, 429

values of, 428

Leapfrog computational scheme, 290, 292–295

Least sum of absolute deviations (LADs)

regression, 468

LES. See Large-eddy simulation models

Lifting condensation level, defined, 278

Linear

forced airflow over rough terrain, 493–496

frontal circulation, 527–529

models, 65–121

nonlinear model and, 442–446

sea-land breeze models, 86–96, 478–479

squall lines, 521

Linearly unstable, defined, 283, 287, 289

Liquid water content, defined, 239

Logarithmic wind profile

defined, 173

illustrated, 178

Longwave

blackbody emission, illustrated, 212

cloud layers, variable coverage, 227

defined, 212

See also Radiation, electromagnetic,

longwave

Long’s model, 112–120, 444

M

Marchuk method, 344

Marshall-Palmer distribution, 274, 277

Mass absorption coefficient, 248

Mass budget, determination of, 454–458

Material surface, 69, 388

Mathematical models, 58

Matrix method of stability analysis, 343

MC2 model, 536–537

Mesoscale convective cluster

defined, 524

discussed, 523–525

illustrated, 523
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Mesoscale, defined, 1, 37–38

METROMEX, 263, 506–507, 509

Mie scattering, discussed, 237–238

Mixed layer, 190

Mixing ratio, defined, 278

MM5 model, 541–542

Models

analytic, 65–121, 444, 472–529

groups currently active, 534–555

numerical, 65, 445–453, 464–466, 472–529

physical, 59–65

types of, 58–59

Moist thermodynamics, 271–272

Moisture potential

defined, 412

saturated values for, 414

Molecular dissipation, 37–38

Momentum flux, determined, 112–120,

459–462

Monin length, defined, 176

Mosaic approach, 205

Mountain airflow

analytic and numerical solutions, 444

discussed, 442–446, 459–462, 486–503

hydrostatic and nonhydrostatic simulations,

453

illustrated, 453, 488, 494, 498, 502

momentum flux, 118–119, 459–462

illustrated example, 461

Mountain-valley winds

discussed, 486–492

illustrated, 488, 494

MRBP. See Multivariate randomized block

permutation

Multivariate randomized block permutation

(MRBP) procedure, 467, 468

N

Nested grid, defined, 438

Net radiation, defined, 399

Newton–Raphson solution technique, 419, 433

Nocturnal drainage flow

defined, 486

illustrated, 349, 488, 494

Nonattainment, defined, 512

Nondimensional temperature profile

defined, 177

values for, illustrated, 179

Nondimensional wind shear, 176

Nonhydrostatic model, 53

Nonhydrostatic pressure, 51–53

absolute error, defined, 100–101

anelastic pressure equation, 51–53, 57

advantages-disadvantages, 52–53, 55

diagnostic equation for, 327–328, 446–453

hydrostatic and nonhydrostatic models,

92–94, 96–112, 447–453, 489

hydrostatic assumption, validity of, 100–112

Nonlinear

approximate solutions and, 330–333, 342

definition, 65

instability, defined, 333

Nonorthogonal, defined, 124

Normal mode initialization

discussed, 369, 377–378

solution without, 369

Nudging coefficient, defined, 368

Numerical models, 65, 472–529, 534–555

evaluation, 442–470

reasons for, 58, 65

O

Objective analysis

discussed, 367

for sparse data, 372–378

Observational validation, 464–465

Ocean, as lower boundary condition, 392–94

OMEGA. See Operational Multiscale

Environment Model with Grid Adaptivity

Omega equation, 40

Operational Multiscale Environment Model

with Grid Adaptivity (OMEGA), 535–536

Optical thickness, defined, 214

Orlanski method, 383

Orlanski residual, 104–112

Orthogonal, defined, 124

Overrelaxation, 328–329

Overspecified, defined, 52, 379

P

Parameterization

complexity of, 267

defined, 29, 30, 45

Parameterized microphysics, 255–261

Path length, defined, 217
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Periodic boundary conditions, 384–385,

531–533

Phase changes, effects of, 12, 17

Physical models

discussed, 58–65

illustation of, 64

Pielke residual approach, 111

PILPS. See Project for Intercomparison of

Land-Surface Parameterization Schemes

Planck function, defined, 212

Planetary boundary layer, 185–201

defined, 188–189

Ekman solution, 194

formula for, 190–191

inversions and, 189

jump model, 190–191

laminar sublayer, 183

nocturnal, 189–190

surface layer, 186, 190–191

transition layer, 188–189

viscous layer, 190

Poisson equation, defined, 11

Polar lows, defined, 517

Pollution

dispersion, 203, 506–513

radiation and, 242–246

Porosity, defined, 411

Positive feedback, sea-land breeze, 95

Potential energy budgets, 454–455

Potential instability, defined, 251

Potential temperature

defined, 11, 20

derivation, 11–12

Prandtl number, defined, 62

Precipitable water, defined, 219

Precipitation, defined, 21

Precipitation efficiency, 267

Pressure-driven channeling, 490

Pressure gradient force

alternate form, 53

derivation, 14–15

Primitive equations, 48

Process models, 58

Profile coefficients, 196

Prognostic equations

conservation and, 438

defined, 28

sub-grid scale-fluxes, 170–172

Project for Intercomparison of Land-Surface

Parameterization Schemes (PILPS), 437

Pseudo-spectral, discussed, 281–282

R

Radiation, electromagnetic

absorptivity, 213

atmospheric window, 248

attenuation, 213

blackbody, 211–212

broadband emissivity, 218

broadband flux transmissivity, 218

elevation angle, 248

extinction, 213, 242

flux divergence, 210

gray body, 213

irradiance, 219

isotropic, 248

Kirchoff’s law, 213

large drop assumption, 215

longwave, 213. See also Radiation

parameterization, electromagnetic,

longwave

mass absorption coefficient, 248

Mie scattering, 237–238

monochromatic, 210

net long wave radiation, 399

optical thickness, 214

path length, 217

Planck function, 212

Rayleigh scattering, 236

reflectivity, 213

scattering, 213

shortwave, 213. See also Radiation

parameterization, electromagnetic,

shortwave

slab transmission runction, 217

Stefan-Boltzmann law, 212

transmission function, 216

transmissivity

defined, 213

illustrated, 216

turbidity, 248

volume absorption, coefficient of, 229

volume extinction, coefficient of, 242

zenith angle, defined, 210–211

Radiation parameterization, electromagnetic,

210–250

longwave, 215–233

clean air, 215–224

broadband emissivity for carbon

dioxide, 219–220
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broadband emissivity for water vapor,

218–219

CO2-H2O overlap, need for correction,

219–220

parameterized form,

flux divergence, 221

Sasamori form, 222

cloudy air, 224–228

parameterized form,

emissivities, 225–226

for partly cloudy skies, 227–228

flux divergence, 226

for partly cloudy skies, 227-228

ground and vegetation emissivities, 401,

428

polluted air, 228–233

Junge distribution, defined, 230

refractive index, discussed, 229

suggested parameterized form,

for emissivities, 232

for flux divergence, 232

shortwave, 233–237

absorptivity values for vegetation, 428

clear air, 235–237

defined, 233–234

diffuse, 236–237

defined, 234

parameterized form for, 236–237

direct irradiance, 235–236

albedo,

defined, 236, 406–407

discussed, 406–409

values of, 408–409, 428

effect of ground slope, 422–425

effect of vegetation, 427–428

parameterized form for absorption, 235

cloudy air, 237–242

flux at the ground, 240

parameterized form of flux divergence,

240

with multiple layers, 240

parameterized form of shortwave radiative

flux, 236–237

polluted air, 242–246

parameterized form,

flux at the ground, 243–244

of the flux divergence, 244–245

solar constant, value, 234

at the top of the atmosphere, 234

Radiative boundary conditions, 114

lateral, 383

top, 390

Rainfall distribution, complex terrain

illustrated, 500, 527

RAMS. See Regional Atmospheric Modeling

System

Realization, of model, 56

Recirculation, 478, 487

Reflectivity, defined, 213

Regional Atmospheric Modeling System

(RAMS), 544–546

Relaxation coefficient, sponge boundary

condition, 384

Relaxation technique, defined, 328

Resolution, 42

Resolution, definition, 343

Reynold’s assumption, 43

Reynolds number, 60–61

Richardson number

bulk, 60

critical, 169, 196

flux, 168

gradient, 169

Root extraction term, 433

Root mean square error

defined, 365–366, 464

example of use, 365, 367, 464

Rossby number, 35, 61

Rossby waves, 329

Roughness length, 180, 183, 185–186

S

Saturation equivalent potential temperature, 252

Saturation point, 278

Scalar product, for tensor, 124

Scale analysis

conservation of heat, 29

conservation of mass, 22–28

conservation of motion

horizontal equation, 33–38, 39

vertical equation, 30–33, 36–38

defined, 22

Scale separation, 43

Scattering, defined, 213

Schmidt number, defined, 279

Scorer parameter, defined, 116, 496

Sea-land breeze

different models, comparison of, 445–446

discussed, 352, 358, 445, 473–480, 493
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hydrostatic and nonhydrostatic simulations,

92–94, 450–453

illustrated, 353, 359, 360, 421, 445, 467,

473, 475, 477, 480, 481

linear, 86–96

Sedimentation, defined, 21

Sensitivity studies, types of, 199, 371,

446–447, 469

Sequential relaxation, defined, 329

SESAME, 522

Set theory, in model validation, 465–466

Shallow convection parameterization, 554–555

Shaved cells models, 131, 162

Shearing stress, 173

Shielding factor of vegetation, 427

Shortwave

blackbody emission, solar, 212

defined, 248

See also Radiation, electromagnetic,

shortwave

Sigma representations, 131, 132, 138–152

Silhouette method, 161

Similarity

boundary, 63

dynamic, 60

geometric, 63

kinematic, 63

thermal, 63

Similarity theory

aerodynamic roughness, 182, 185–186

displacement height, 182–184

friction velocity, 173

Monin length, 176

nondimensional temperature, humidity, and

pollutant profiles, 177

nondimensional wind profile, 176

surface layer, 186–188

defined, 186

formulas for, 187

height of, 190–191

Single-column models, 266

Skin temperature, 418

Slab transmission function, 217

Slope angle, illustrated, 142, 154–158, 422–424

Smoothers, 334–337

Snowfall

in complex terrain, 276, 480–486, 502,

515–516

types of, 273–275

Soil, lower boundary conditions, 394–437

Soil moisture conservation equation

derived, 409–415

humidity range, for different types of soil,

415

Soil porosity

defined, 411

values for, 414

Soil temperature and heat flux, 395–399,

401–406

analytic solution for, 402–406

diurnal range, 405

diurnal temperature

sea breeze and, 421

types of soil and, 415

Soil-vegetation-atmosphere transfer (SVAT)

models, 426–437, 440

comparison tables, 557–574

Solar constant, 234

Solenoidal term, 50

Sound waves, 79, 83

Soundproof, 27

Sources and sinks

gaseous and aerosol materials, 18, 38

heat, 12, 29

water, 17, 38

SPACE, 490

Specific heat capacity, of soil, 402

Spectra, in complex terrain, 350–352

Spectral technique

horizontal grid and, 350–352

numerical models and, 281

Spline solution technique, 291, 316–326

Splitting, 337–342

advection and, 325–326

elastic model and, 329–330

Sponge boundary conditions

lateral boundary and, 384

top boundary and, 390

Squall line, 271, 518–523

illustrated, 518-522

Stability classes

defined, 169

dispersion and, 134

Staggering methods, 363

State variables, defined, 20

Steady state, defined, 35

Stefan-Boltzmann law, 212

Stein-Alpert analysis, 469

Stokes boundary layer, 188

Stokes theorem, 57
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Stratiform clouds

discussed, 253–261

illustrated, 254

Stream function

definition of, 113–114

Stretched grid, 352–359

illustrated, 355

Structure functions, 439

Subgrid scale fluxes

closure schemes, 172

parameterization, 164–209

second-order closure equations, 171

Subgrid scale kinetic energy equation, 167–168

Subgrid scale perturbation, 42, 44

Surface biological resistance vegetation,

431–432

Surface energy budget

derived, 398–400

discussed, 398–400, 414–415

equilibrium temperature, 418–420

illustrated, 399

Surface resistance to particle deposition

defined, 188

values for, 188–189

SVAT. See Soil-vegetation-atmosphere transfer

T

Tank model

additive splitting method, 337–342

homogeneous fluid

derivation of, 67–72

illustrated, 67

wave speed in, 72

two-layered fluid

derivation of equations, 72–74

illustrated, 73

wave speed, 74

Temperature distribution in complex terrain

illustrated, 492–493

Tensor

Christoffel symbol, 127–128

contravariant, 123

covariant, 123

covariant derivative, 127

kinetic energy

terrain-following, 456-457

three-dimensional, 134

metric

defined, 125

grid-volume average, 135

for vertical coordinate, 133

notation, 18–19

scalar product, defined, 124

Terminal velocity, 256, 276

Terrain-following coordinate systems, 131,

135–152, 160–161

Terrain spectra

discussed, 350–352

illustrated, 350

Thermal conductivity of soil

defined, 401

values for, 402–403

Thermal diffusivity of soil

defined, 401

values for, 402

Thermal internal boundary layer, 202

Thermal similarity, 63

Thermally driven winds, 490

Thermodynamics

equilibrium, 20

laws of, 7–12

moist processes, 227–280

Thermometric conductivity of soil, 440

Thickness, defined, 528

Threat score, 466, 467

Tilting term, 50, 57

Time splitting, 329–330

Time step, definition, 42

Top boundary condition

discussed, 386–387

solutions illustrated, 388–389

Transition layer, 188–197

Transmission function, defined, 217

Transmissivity

defined, 213

illustrated, 216

Transport of pollution, 504, 506, 508, 511, 513

Trapping valleys, 487

Tridiagonal matrix

defined, 320

finite element technique, 287, 531–533

implicit diffusion equation, 531–533

spline solution, 320–321, 531–533

Tropical cyclones, 271

discussed, 525–527

illustrated, 526

Turbidity, 249

Turbulence

closure, 45

defined, 37

velocity flux, 45
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Turbulent kinetic energy equation, 167–168

Turbulent Reynolds number, 61

Typhoons. See Tropical cyclones

U

Upstream differencing

linear interpolation. See Forward-upstream

differencing

spline interpolation. See Spline solution

technique

Urban circulations

discussed, 503–513

illustrated, 507

V

Variational analysis, 367

Vegetation, parameterization of

boundary-layer structure, effect on, 426

effective bulk stomatal resistance, 188

as lower boundary condition, 426–437

snow breezes and, 480–486

temperature and, 435

Vertical equation of motion. See also
Conservation of motion; Scale analysis

Boussinesq approximation, 46

scale analysis of, 30–33

Vertical grid, 357–359

Virtual temperature, 8, 20

Viscosity of air, 62

Viscous sublayer, defined, 185

Volume absorption coefficient, defined, 229

Volume extinction coefficient, defined, 242

von Karman’s constant, 173

Von Neumann method, 343

Vorticity equation, 49–51

advantages, 50–51

definition of, 112

explanation of terms, 50–51

W

Wangara experiment

boundary layer model simulations, 192,

199–200

long-wave radiative flux model and, 190–191

Wave equations

free atmosphere, idealized form, 74–86

harmonics, 76

homogeneous fluid, 67–72

inertia, 83

two-layered fluid, 72–74

Wave speed

group velocity, defined, 83–85

homogeneous fluid, 72

Lamb wave, 119

stratified fluid, 86

two layered fluid, 74

Well-posed, defined, 379

Winds

geostrophic, 36, 143–152

neutral surface layer and, 178

nonneutral surface layer and, 178

thermally driven, 490

uniform ground cover and, 182

Z

Zenith angle

defined, 210

illustrated, 211, 214, 423

Zero-plane displacement, 182
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