

Práctico 6 – Topología en \mathbb{R}^n

Nota: en \mathbb{R}^n , a menos que se aclare lo contrario, asumiremos que estamos trabajando con la distancia euclídia.

- 1. a) Una función $N: \mathbb{R}^n \to \mathbb{R}$ es una norma si satisface las siguientes propiedades:
 - (I) $N(u) \ge 0$, $\forall u \in \mathbb{R}^n$ y N(u) = 0 sí y sólo sí $u = \vec{0}$
 - (II) $N(\lambda u) = |\lambda| N(u), \forall \lambda \in \mathbb{R}, \forall u \in \mathbb{R}^n$
 - (III) $N(u+v) \le N(u) + N(v), \forall u, v \in \mathbb{R}^n$

Investigar si las siguientes funciones de \mathbb{R}^2 en \mathbb{R} son normas

- (i) N((x,y)) = |x| + |y|,
- (ii) $N((x,y)) = \sqrt{x^2 + y^2}$,
- (iii) $N((x,y)) = \max\{|x|, |y|\},\$
- (iv) N((x,y)) = |x+y|.
- b) Para aquellas que sean normas, dibujar la bola de centro en el origen y radio 1. Indicar cuáles de los siguientes puntos pertenecen a la bola de centro (3,4) y radio 2: (3,4), (4,5), (0,1).
- c) Decimos que dos normas N_1 , N_2 son equivalentes si existen constantes $\alpha, \beta > 0$ tal que $\alpha N_1(u) \le N_2(u) \le \beta N_1(u)$. Probar que aquellas funciones que son normas de este ejercicio son equivalentes dos a dos
- 2. Se definen los siguientes conjuntos:

$$A_{1} = \{(x,y) \in \mathbb{R}^{2} : 1 \leq x \leq 2, 1 < y < 3\},$$

$$B = A_{1} \cap \mathbb{Q}^{2}$$

$$A_{2} = \{(x,y) \in \mathbb{R}^{2} : y = x^{2}\}$$

$$A_{3} = \{(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} < 1, (x,y) \neq (0,0)\},$$

$$C = A_{3} \cap \mathbb{Q}^{2}$$

$$A_{4} = \{(x,y) \in \mathbb{R}^{2} : 2x^{2} + y^{2} < 1\} \cup \{(x,y) \in \mathbb{R}^{2} : x = y\}$$

$$A_{5} = \{(x,y) \in \mathbb{R}^{2} : x = (-1)^{n} + \frac{1}{n}, y = 1, n \geq 1\},$$

$$A_{6} = \{(x,y,z) \in \mathbb{R}^{3} : x + y + z < 1, x > 0, y > 0, z > 0\}$$

$$A_{7} = \{(x,y,z) \in \mathbb{R}^{3} : x^{2} + y^{2} + 1 < z\}$$

- a) Representarlos gráficamente e investigar si están acotados.
- b) Hallar el interior, la frontera y la clausura de cada uno de ellos.
- c) Hallar el conjunto de sus puntos de acumulación.
- d) Indicar si son abiertos.
- e) Indicar si son cerrados.
- f) Indicar si son compactos.
- 3. a) Probar que toda bola abierta es un conjunto abierto.
 - b) Probar que si A es un conjunto abierto y $p \in A$ entonces A p es abierto.
- 4. Sean A un conjunto abierto de \mathbb{R}^2 y $C = A \cap (\mathbb{Q} \times \mathbb{Q})$. Hallar int(C), \overline{C} , y ∂C .

5. Sean A y B dos conjuntos \mathbb{R}^n . Se define el conjunto suma A+B de la siguiente forma:

$$A + B = \{a + b : a \in A, b \in B\}$$

- a) Demostrar que si A es abierto A + B es abierto.
- b) ¿Qué se puede decir de A + B si A es cerrado?
- 6. Probar los siguientes resultados.
 - a) A es abierto sii $A \cap \partial A = \emptyset$.
 - b) $int(A) = \bar{A} \partial A$ es un conjunto abierto, más aún, es la unión de los subconjuntos abiertos contenidos en A (es el "mayor" conjunto abierto incluido en A).
 - c) A es cerrado sii $\partial A \subset A$ sii $A' \subset A$.
 - d) $\bar{A} = A \cup \partial A$ es un conjunto cerrado, más aún, es la intersección de todos los conjuntos cerrados que contienen a A (es el "menor" cerrado que contiene a A).
 - e) A' es un conjunto cerrado.
- 7. a) Probar que la unión de una familia arbitraria de conjuntos abiertos es un conjunto abierto.
 - b) Probar que la intersección de una cantidad finita de conjuntos abiertos es un conjunto abierto.
 - c) ¿Es cierto que la intersección de una cantidad arbitraria de conjuntos abiertos es un conjunto abierto?
 - d) Extraer conclusiones sobre la unión e intersección de conjuntos cerrados.
- 8. Estudiar la convergencia de las siguientes sucesiones definidas en \mathbb{R}^2 . En caso de no convergencia, determinar la existencia de subsucesiones convergentes y calcularlas

$$a_n = \left(e^{-n}, \frac{3}{n}\right), \quad b_n = \left(e^{-n} + 2, [1 + (-1)^n]n\right), \quad c_n = \left((-1)^n, (-1)^n + \frac{1}{n}\right).$$

$$d_n = \left(n((-1)^n + 1), e\right), \quad e_n = \left(\sin\left(\frac{n\pi}{8}\right), \cos\left(\frac{n\pi}{3}\right)\right)$$

- 9. a) Sea x_n una sucesión en \mathbb{R}^n . Probar que si una sucesión tiene límite, entonces toda subsucesión tiene el mismo límite.
 - b) Sea x_n una sucesion en \mathbb{R}^2 , tal que $x_n \to p$ y sea $A = \{x_n, n \in \mathbb{N}\}$. Hallar $int(A), \overline{A}, A', \partial A$.
 - c) Demostrar que un punto a es de acumulación de un conjunto X sii existe una sucesión $(x_k) \subset X \{a\}$ que converge a a.

Ejercicios propuestos en evaluaciones anteriores

1. (Primer parcial segundo semestre 2022) Considere el conjunto

$$A = \left\{ (x,y) \in \mathbb{R}^2 \, : \, x^2 + y^2 < 1, \, y \geq |x| \right\}$$

y las siguientes afirmaciones:

- (I) A es un conjunto abierto.
- (II) $\bar{A} = A$.
- (III) (0, 1/2) es un punto de acumulación de A.

Entonces:

- (A) Todas las afirmaciones son verdaderas.
- (B) Solo la afirmación (I) es verdadera.
- (C) Solo las afirmaciones (II) y (III) son verdaderas.
- (D) Solo la afirmación (III) es verdadera.
- (E) Ninguna de las tres afirmaciones es verdadera.
- 2. (*Examen febrero 2022*) Recordemos que el plano complejo \mathbb{C} se puede identificar con \mathbb{R}^2 , considerando que el número complejo $z = x + iy \in \mathbb{C}$ es el punto $(x, y) \in \mathbb{R}^2$.

Consideremos el siguiente subconjunto del plano complejo:

$$A = \{ z \in \mathbb{C} : z\bar{z} > 2, \operatorname{Re}(z) > 1, \operatorname{Im}(e^z) = 0 \}.$$

Si ahora pensamos en A como subconjunto de \mathbb{R}^2 , indicar cuál de las siguientes afirmaciones es correcta:

- (A) A es abierto, es acotado, y acumula en (1,1).
- (B) A no es abierto, es acotado, y acumula en (1,1).
- (C) A no es abierto, es acotado, y no acumula en (1,1).
- (D) A es abierto, no es acotado, y no acumula en (1,1).
- (E) A no es abierto, no es acotado, y no acumula en (1,1).
- (F) A no es abierto, no es acotado, y acumula en (1,1).
- 3. (*Examen diciembre 2021*) Sea $B \subset \mathbb{R}^2$ el conjunto definido como:

$$B = \{(x, y) \in \mathbb{R}^2 : \cos(x) = 0 , \sin(y) = -1\}$$

Considere las siguientes afirmaciones sobre el conjunto B:

- (I) $int(B) = \emptyset$.
- (II) B es cerrado.
- (III) Todos los elementos de B son puntos de acumulación de B^c .

Entonces:

- (A) Todas las afirmaciones son verdaderas.
- (B) Solamente las afirmaciones (I) y (II) son verdaderas.
- (C) Solamente la afirmación (II) es verdadera.
- (D) Solamente las afirmaciones (I) y (III) son verdaderas.
- (E) Todas las afirmaciones son falsas.
- 4. (*Primer parcial segundo semestre 2021*) Consideremos la sucesión en \mathbb{R}^2 dada por:

$$a_n = \left(\frac{(1 - e^{\frac{1}{n^2}})n^2}{3}, \frac{(-1)^n \log(n)}{\log(2n+1)}\right), \ n \ge 1$$

Entonces:

- (A) $(a_n)_{n>1}$ converge a (-1/3,0).
- (B) $(a_n)_{n>1}$ converge a (1/3,0).
- (C) $(a_n)_{n>1}$ está acotada, y tiene subsucesiones que convergen a (-1/3,1) y (-1/3,-1).
- (D) $(a_n)_{n\geq 1}$ está acotada, y tiene subsucesiones que convergen a (1/3,1) y (1/3,-1).
- (E) $(a_n)_{n>1}$ no está acotada.

- 5. (Primer parcial primer semestre 2019) Sea A un conjunto de \mathbb{R}^n .
 - (a) Definir interior del conjunto A.
 - (b) Definir punto de acumulación del conjunto A.
 - (c) Considerar el conjunto A del plano definido como:

$$A = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{9} < 1 \right\} \cap (\mathbb{N} \times \mathbb{N})^c$$

Representar gráficamente los puntos de acumulación de A que no son interiores. Justificar.

6. (**Primer parcial segundo semestre 2018**) Se considera conjunto $B = \bigcup_{n \in \mathbb{N}^*} \{(x, y) \in \mathbb{R}^2 : xy = 1/n\}.$

Determinar la opción correcta:

- (A) $\partial B \cap B = \emptyset$
- (B) B es un conjunto cerrado.
- (C) $B' \cup B = \emptyset$.
- (D) $A \subset \bar{B}$, donde $A = \{(x, y) \in \mathbb{R}^2 : y = 0\}$.

Ejercicios opcionales

1. Distancia entre dos conjuntos

Sean $A,B\subset\mathbb{R}^n$ dos conjuntos no vacíos. Definimos la distancia entre los conjuntos A y B de la siguiente manera:

$$d(A, B) := \inf \{ d(x, y) : x \in A, y \in B \}$$

- a) Mostrar que d(A, B) = 0 si $A \cap B \neq \emptyset$, en particular d(A, A) = 0.
- b) Mostrar con un ejemplo que puede ocurrir que d(A,B)=0 y sin embargo $A\cap B=\emptyset$
- c) Mostrar que si A y B son compactos entonces $A \cap B \neq \emptyset$ sí y sólo si d(A,B) = 0.

2. El Conjunto de Cantor

- a) Sea $(K_m)_{m>0}$ una sucesión decreciente de conjuntos compactos no vacíos en \mathbb{R}^n , es decir que:
 - $K_m \subseteq \mathbb{R}^n$ es compacto y no vacío $\forall m \geq 0$.
 - $K_{m+1} \subseteq K_m$.

Probar que $K = \bigcap_{n=0}^{\infty} K_m$ es compacto y no vacío.

- b) Nos limitaremos ahora al caso n=1. Se define la sucesión $(K_m)_m \geq 0$ de subconjuntos de $\mathbb R$ mediante el siguiente procedimiento: $K_0 = [0;1]$, $K_1 = K_0 (\frac{1}{3};\frac{2}{3})$, $K_2 = K_1 [(\frac{1}{9};\frac{2}{9}) \cup (\frac{7}{9};\frac{8}{9})]$,... En general, K_{m+1} se obtiene de K_m quitándole los tercios centrales abiertos de cada uno de los intervalos que forman K_m . Sea $K = \cap_{m=0}^{\infty} K_m$ (denominado Çonjunto de Cantor"). Probar que:
 - K es compacto y no vacío.
 - K = K'
 - \blacksquare K tiene interior vacío.
- c) Observar que cada número real $x \in [0; 1]$ admite una representación "ternaria" de la forma:

$$x = \sum_{k=1}^{\infty} \frac{\alpha_k}{3^k} \quad con \quad \alpha_k \in \{0, 1, 2, \}$$

¿Cómo es la representación ternaria de los puntos del Conjunto de Cantor? Deducir que K no es numerable.

- d) ¿Cuál es la "longitud" de [0;1] K?
- 3. Sea $(x_n)_{n\geq 0}$ una sucesión contractiva, es decir, tal que existe $k\in\mathbb{R},\ 0< k<1$, que cumple $\forall n\geq 0$:

$$||x_{n+1} - x_n|| \le k||x_n - x_{n-1}||$$

Demostrar que:

- a) $||x_{n+1} x_n|| \le k^n ||x_1 x_0|| \ \forall n \in \mathbb{N}.$
- b) Si $p, q \in \mathbb{N}, p > q$, entonces $||x_p x_q|| \le \frac{k^q}{1-k} ||x_1 x_0||$ Sugerencia: usar la desigualdad triangular.
- c) $(x_n)_{n\geq 0}$ es de Cauchy y por lo tanto convergente.
- 4. a) Sea x_k una sucesión en \mathbb{R}^n tal que $||x_k|| \to \infty$. Probar que x_k no tiene ninguna subsucesión convergente.
 - b) De un ejemplo de una sucesión no acotada, pero que sí contenga alguna subsucesión convergente. ¿Esto contradice lo pedido en el item anterior? ¿Por qué?
- 5. Decimos que $A \subset \mathbb{R}^n$ un conjunto no vacío, es convexo si para todo par de puntos $p,q \in A$ se tiene que el segmento que los une está incluido en él. Es decir $\forall p,q \in A$ se tiene que $[p,q] = \{tp + (1-t)q, t \in [0,1]\} \subset A$,
 - a) Probar que si $V \subset \mathbb{R}^n$ es un subespacio, entonces es convexo
 - b) Probar que en \mathbb{R}^3 un semi-espacio, un semi-plano y una semi-recta son convexos
 - c) Probar que si A_i , $i \in I$ son conjuntos convexos y $A = \bigcap_{i \in I} A_i \neq \emptyset$ entonces A es convexo.
 - d) Sea N una norma en \mathbb{R}^n . Probar que $B(0,1)=\{x\in\mathbb{R}^n:N(x)<1\}$, es un conjunto convexo.
 - e) Sea $f: \mathbb{R} \to \mathbb{R}$ una función C^{∞} . Definimos el conjunto $A_f \subset \mathbb{R}^2$ como $A_f = \{(x, y) \in \mathbb{R}^2 : y \geq f(x)\}$. Probar que A_f es convexo si solo si $f''(x) \geq 0$, $\forall x \in \mathbb{R}$.
 - f) Sea $f: \mathbb{R} \to \mathbb{R}$ una función tal que A_f es convexo. Probar que f es continua