

What Works for Whom, Where, When, and Why?
On the Role of Context in Empirical Software Engineering

Tore Dybå

Department of Informatics
University of Oslo and SINTEF
NO-7465 Trondheim, Norway

tore.dyba@sintef.no

Dag I.K. Sjøberg
Department of Informatics

University of Oslo
NO-0316 Oslo, Norway

dagsj@ifi.uio.no

Daniela S. Cruzes
Department of Computer and
Information Science, NTNU

NO-7491 Trondheim, Norway
dcruzes@idi.ntnu.no

ABSTRACT
Context is a central concept in empirical software engineering. It
is one of the distinctive features of the discipline and it is an
indispensable part of software practice. It is likely responsible for
one of the most challenging methodological and theoretical
problems: study-to-study variation in research findings. Still,
empirical software engineering research is mostly concerned with
attempts to identify universal relationships that are independent of
how work settings and other contexts interact with the processes
important to software practice. The aim of this paper is to provide
an overview of how context affects empirical research and how
empirical software engineering research can be better
‘contextualized’ in order to provide a better understanding of what
works for whom, where, when, and why. We exemplify the
importance of context with examples from recent systematic
reviews and offer recommendations on the way forward.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms
Management, Measurement, Experimentation, Theory

Keywords
Evidence-Based Software Engineering, Generalization, Theory,
Empirical Methods, Sociotechnical System

1. INTRODUCTION
What is best? Pair programming or solo programming? Test-first
or test-last? A multitude of studies have been performed to answer
these and other similar questions of the type: “Is <technology x>
better than <technology y?” However, asking the general question
of whether pairs outperform individuals in programming tasks, or
whether test-driven development results in higher productivity, is
meaningless. It is meaningless since these questions can be

answered with “Yes” or “No” depending on the setting of the
study. Still, posing research questions of this type, without
considering contextual influences like the subjects of the study,
the location, the time period, and the rational of the study, seems
to prevail.

However, we cannot expect a technology to be universally good
or universally bad, only more (or less) appropriate in some
circumstances and for some organizations [19]. The settings in
which practice takes place are rarely, if ever, the same. For
example, one software organization will have a different
environment or be influenced by different environmental factors
to that of another software organization. The size of the
organization, types of customers, country or geographical
location, the age of the organization, all impose different
influences in unique ways. Additionally, the human factors, which
form the organizational culture and make one setting different
from another one, also influence the way software development is
performed. We know that these issues are important for the
successful uptake of research into practice and that there are
interrelationships among organizational systems, structures,
processes, technologies, settings, and cultures. However, the
nature of these relationships is poorly understood.

This dependence of a potentially large number of relevant context
variables in any study is an important reason for why empirical
software engineering (SE) is so hard. Because of this, we cannot a
priori assume that the results of a particular study apply outside
the specific context in which it was run [6].

In an effort to bring context information in empirical research in
SE more into consideration, Kitchenham et al. [32] suggested the
following general guideline: “Be sure to specify as much of the
industrial context as possible. In particular, clearly define the
entities, attributes, and measures that are capturing the contextual
information.” However, as Whetten pointed out, it is not of much
help to have a long context description if it is short on explanation
[48].

Such explanation relies on understanding and interpretation of
research evidence in light of the features and characteristics
surrounding it. Contrary to empirical SE’s treatment of context as
a stable set of attributes of the world, the problem is that these
surroundings themselves are selected and interpreted in different
ways. There is an implicit parallel with linguistics here; that the
meaning of a word is determined by the words and sentences that
surround it. This raises the question about what a SE context is,
how it is selected, and by whom.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’12, September 19–20, 2012, Lund, Sweden.
Copyright 2012 ACM 978-1-4503-1056-7/12/09…$15.00

19

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

The aim of this paper is to address this question and to provide an
overview of how context affects empirical SE research and how
this research can be better ‘contextualized.’ The remainder of the
paper is organized as follows: Section 2 provides an overview of
the concept of context and describes important dimensions and
implications of context. Section 3 describes relationships between
empirical studies and context, with examples from test-driven
development and pair programming. Section 4 points to a
potential way forward by suggesting how SE research can be
better contextualized. Section 5 concludes.

2. WHAT IS CONTEXT?
The word contextus is of Latin origin and stands for weaving
together or to make a connection [38]. Approaches to context and
contextual dimensions range widely, reflecting different
philosophical stances and practical orientations. In linguistics, for
example, context refers to how readers can infer the meaning of a
passage by referring to its intratextual clues; something that
transcends the text itself [11]. In other words, trying to make
sense of a single word in a sentence or of a sentence in a
paragraph by looking only at the specific word or sentence and
isolating them from the rest of the text in which they are used can
be problematic, even if one knows technically their various
linguistic meanings. For instance, “I am attached to you” has very
different meanings to a person in love and to a hand-cuffed
prisoner [33]. So, to take something ‘out of context’ leads to
misunderstanding; there is no meaning without context. On the
other hand, even if one is not familiar with the specific meaning(s)
of a word or sentence, one can infer their correct meaning by
situating them in the greater text and connecting them with the
rest of the text.

In management research, context refers to the circumstances,
conditions, situations, or environments that are external to a
specific phenomenon and that enable or constrain it [47]. Mowday
and Sutton see context as stimuli existing in the external
environment [36], while Johns takes this a step further and
understands context as situational opportunities and constraints
that affect behavior [30]. Moreover, Johns distinguishes between
substantive and methodological contexts [29], where substantive
context stands for the context individuals or groups face while
methodological context refers to detailed information about the
research study.

In this paper we focus on substantive contexts for empirical SE,
taking into account omnibus and discrete context dimensions as
suggested by Johns [30]. Omnibus context refers to a broad
perspective, drawing attention to who, what, when, where, and
why [30], [49], while discrete context refers to specific contextual
variables [30]. Thus, context can simultaneously be considered as
a “lens” (omnibus context) and as a “variable” (discrete context)
[25]. However, as most empirical SE research to date has studied
discrete contexts, focusing on context as a set of variables, this
paper emphasizes omnibus contexts, applying a context “lens.”

2.1 Omnibus Context
According to Johns [30], research will benefit more from the
careful consideration of context by paying more attention to
designing and reporting studies along the lines of good
journalistic practice in which a story describes the who, what,
when, where, and why to the reader (see Fig. 1), thus putting
recounted events in their proper context. This corresponds to the
typical situation in empirical SE, in which we study how an actor

applies technologies to perform certain activities on a software
system [41].

‘What’ constitutes the substantive content of the research, the
factors (variables, constructs, concepts) or treatments that
logically should be considered as part of the explanation of the
phenomena of interest. Although it might seem obvious, and
maybe not strictly part of the context, it is not always clear what is
actually studied. A typical problem is the descriptions of measures
of the constructs being studied and the justification for variable
coding. For example, if software quality is the phenomenon of
interest, then it would require quite a bit of justification if only
defects are being measured and how they are coded.

‘Who’ refers to the occupational and demographic context, and
concerns both the direct research participants and those who
surround them. It is important that the study clearly identifies the
population about which one intends to make claims, and selects
and describes subjects who are representative of that population
[6]. Usually, there is an assumption that the target population is
professional software developers. One should, however, be aware
that this group may be very diverse [1]. A typical example of the
‘who’ in controlled SE experiments, is the student vs. professional
[28] and the personality of the subjects [10]. However, it might
not be enough to just state the occupational context or personality
of a subject since individual differences in skill also affect the
outcome of empirical studies. Within many different domains of
expertise, with increased skill, the number of errors in
performance decreases and the speed with which a task is
executed increases [8]. The performance may differ significantly
between various categories of professionals. Description of the
‘who’, and especially the skill, is important, thus, since the
similarity of the subjects of a study to the people who will use the
technology impacts the ease of the technology transfer.

‘Where’ a research study is conducted can have a noticeable
impact on its results. It refers to the various locations in which
software development happens. An important distinction is
whether the phenomenon occurs in an artificial laboratory or in a
more realistic industry setting [42]. For example, a challenge
when configuring an experimental environment is to provide an
infrastructure of supporting technology (processes, methods,
tools, etc.) that resembles an industrial development environment.
Because the logistics is simpler, a classroom is often used instead
of a usual work place. Conducting an experiment on the usual
work site with professional development tools also implies less
control of the experiment than one would have in a classroom
setting with pen and paper. Nevertheless, there are many
challenges when conducting experiments with professionals in
industry that might also be due to location effect such as
economic conditions and organizational and national culture.

‘When’ refers to the time at which the research was conducted or
research events occurred. For example, it includes when the data
was collected and reflects the role of temporal factors in the
research. Time affects the sociotechnical relationships that
surround all aspects of software development, and is especially
important for researchers who deal with software product life-
cycles. Key contextual conditions of time are also related to
whether the study is cross-sectional or longitudinal. Repeated
calls for longer duration of experimental tasks [43] and more
longitudinal research [40] in SE underscore the importance of the
temporal dimension in contextual influences.

20

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Important dimensions of SE context (adapted from [30]).

Time is also often a dependent variable in SE experiments, in
which the goal is usually for subjects to solve the tasks with
satisfactory quality in as short time as possible, as most software
engineering jobs are subject of a relatively high pressure.
However, if the time pressure on the participatory subjects is too
high, then the task solution quality may be reduced to the point
where it becomes meaningless to use the corresponding task times
in subsequent analyses. A challenge is therefore to put a realistic
time pressure on the subjects. How to best deal with this challenge
depends to some extent on the size, duration, and location of the
experiment. Methods for combining time and quality as task
performance is currently being developed as a promising first step
to measuring programming skill in both industry and research
settings [8].

 ‘Why’ refers to the rationale for the conduct of the research or the
collection of research data. Why data is collected can have a
compelling contextual impact on organizational behavior and
associated research. An experimental setting would, for example,
ideally either reflect the subjects’ organizational setting or would
allow them to see some professional benefit from the
experimental tasks, which would motivate them to put more effort
and thought into the study. However, motivation can be a problem
when subjects are asked to work on toy problems, are given
unrealistic processes, or see some other disconnection between the
study and their professional experience [6].

2.2 Discrete Context
Discrete context focuses on specific situational variables that
directly influence behavior or moderate relationships between
variables. Viewing software development from an open
sociotechnical systems perspective [45], the lower portion of
Figure 1 shows that the prominent dimensions of discrete context
in SE research include technical, social, and environmental
factors. Each of the variables within these dimensions may be
treated as independent variables through selection or
manipulation, or as moderator or mediator variables.

A moderator is a qualitative or quantitative variable that affects
the direction and/or strength of the relations between an
independent or predictor variable and a dependent or criterion
variable [4]. Some moderator variables are categorical. Suppose,
for example, that pair programming yielded high effect sizes on
complex tasks but low effect sizes on simple tasks, with the

opposite pattern emerging for solo programming. Task complexity
is then a categorical moderator. Other moderators are continuous.
An example would be if pair programming produced moderate
effect sizes no matter how complex the task is, but solo
programming produced low effect sizes for developers with few
years’ experience and high effect sizes for developers with many
years.

Mediators reflect a mechanism through which the independent
variable causes the mediator, which then causes the outcome. For
example, suppose that self-management (the independent
variable) causes higher motivation (the mediator), which then
leads to increased software quality (the dependent variable).
However, more complex and subtle relationships may exist. For
instance, the same variable can be both a moderator and a
mediator in the same model, and mediators can be nonlinear or
non-recursive, see [4].

The elements of the three discrete context dimensions (Fig. 1) can
be seen as mediating the omnibus context. For example, knowing
someone’s occupation often permits reasonable inferences about
his or her tasks, social, and physical environment at work, which,
in turn, can be used to predict behavior and attitudes [30].

We will not consider the details of all possible discrete context
variables, as several lists of a large variety and diversity of such
variables have already been identified and proposed elsewhere
(e.g., [12], [37], [50]). Therefore, the elements of technical, social,
and environmental context in Figure 1 are not meant to be
exhaustive, but argued to be important. This importance is
inferred from a combination of the fact that they are interrelated,
that they operate at multiple levels of analysis, and that they
appear as fundamental elements in several empirical SE studies.

Along the technical dimension, for example, there is often a gap
between researcher expectations and empirical results because one
fails to acknowledge that potentially more powerful technologies
may be more complex to use, or may require new skills in order to
use correctly. It is self-evidently true that a technology is better
when it is easier and faster to use than when it is not. However,
what if a “faster” technology comes at the price of added
complexity, which makes the technology harder to use properly.
Then the faster technology would require more training to be used
successfully. Without training, the faster and more complex
technology would be associated with a higher proportion of

!
!
"#$%& !"#'& !"#()(& !"#(*& !"#+&!
!

!"#$%&#$%$ '()*+#,-. '/%,01%$ '23&# '401%$05#'

Omnibus context:

!
!

'2#,"$3,056 '(%,3056 '7$839%$&#$-056!
':%&;5#<3-= '>$?383?)05'.@355 'A$,#9-03$-='
'2#,"$%5%B= 'Team autonomy ':%&&)$3-='
'20.@C.=.-#& 'Organizational structure 'Market'
'Etc… '7-,D 'Etc… ''

Discrete context:

21

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

incorrect uses, thereby making the faster technology appear worse
than the existing alternative that is slow but easy to use correctly.
More complex technologies frequently require more training than
less complex technologies; at the same time, more complex
technologies are adopted because they add to productivity [7].

Individual differences in skill are an important element along the
social dimension that affects the outcome of empirical studies.
When evaluating alternative processes, methods, or tools, skill
levels may mediate the effect of using a specific alternative. For
example, in an experiment on the effect of a centralized versus
delegated control style, the purportedly most-skilled developers
performed better using a delegated control style than with a
centralized one, while the less-skilled developers performed better
with the centralized style [1]. In another experiment, skill had a
moderating effect on the benefits of pair programming [2].

Another important element along the social dimension is the
complexity of team performance, which depends not only on the
team’s autonomy and competence in managing and executing its
work but also on the organizational context surrounding it. For
example, aspects of the organizational context such as reward
systems, supervision, training, resources, and organizational
structure can strongly affect team functioning. Likewise,
relationships with the market and key stakeholders outside the
team can influence task performance [35].

The environmental dimension refers to various characteristics
outside the control of the organization that is important to its
performance. These characteristics include the nature of the
market, political climate, economic conditions, and the kind of
technologies on which the organization depends. The environment
of a particular software organization may range from stable to
dynamic – from predictable to unpredictable. A study on process
improvement strategies, for example, showed that there was no
difference in the level of exploitation between small and large
organizations regardless of the environment, but that there was a
marked difference in the level of exploration. The results showed
that small software organizations engaged in significantly more
exploration in turbulent and uncertain environments than large
software organization. Due to the increased complexity, increased
convergence, and increased inertia of the large organizations, they
are less likely to change in response to environmental changes
than small organizations. They tend to generate the same response
even when the stimuli had changed [15], [16].

The argument behind the usefulness of studying discrete context
variables depend on the assumption that research findings are
strongly a function of general empirical laws or processes.
However, from a constructionist point of view, consistency of
research results implies either the stability of the social
constructions across the contexts in which the studies were
conducted or an interpretive norm that leads to the perception of
consistency [17], [27]. Similarly, inconsistency among research
results might indicate an inconsistency among the interpretative
norms of the research community. One of the most interesting
implications of the constructionist perspective is that the
perceived cumulativeness of scientific knowledge in SE is a
function of the conventions of evidence and methodology in the
research community.

3. CONTEXT AND EMPIRICAL STUDIES
It can often be problematic to transfer evidence generated from
one context to another. Shull [39], for example, points to several

recent studies showing that lessons learned from one project are
simply not applicable to others. For example, a study of the
prediction factors in the COCOMO model across 93 project
datasets from one organization showed huge variations in the size
of the effects those factors had on overall project effort. In some
cases, the direction of the relationships changed from positive to
negative depending on which projects were in the dataset being
fit. Also, in another study on defect predictors for pairs of
projects, only for four percent of the pairs did the factors that
worked well for predicting defects in the first project also apply in
the second [39].

In this section we will look further into three examples of the
relationship between context and empirical studies of agile
practices – two secondary studies and one primary study. The first
one is a systematic review on test-driven development (TDD), the
second is a meta-analysis of pair programming (PP), while the
third is a large experiment on PP with professional developers.
The systematic review and meta-analysis are typical examples of
secondary studies which try to synthesize evidence from primary
studies of the type: “Is <technology x> better than <technology
y?” without considering contextual influences. Our primary study
example, however, shows how important contextual elements
influence the main effects of the experiment.

3.1 Test-Driven Development
Attempts to aggregate the available evidence on agile practices
like test-driven development (TDD) have shown wide disparities
in how well these practices work in different contexts. Although
advocates claim that TDD enhances both product quality and
programmer productivity, skeptics maintain that such an approach
to programming would be both counterproductive and hard to
learn [46].

However, it is the productivity dimension that engenders the most
controversial discussion of TDD. Although many admit that
adopting TDD may require a steep learning curve that may
decrease the productivity initially, there is no consensus on the
long-term effects. One line of argument expects productivity to
increase with TDD; reasons include easy context switching from
one simple task to another, improved external quality (i.e., there
are few errors and errors can be detected quickly), improved
internal quality (i.e., fixing errors is easier due to simpler design),
and improved test quality (i.e., chances of introducing new errors
is low due to automated tests). The opposite line argues that TDD
incurs too much overhead and will negatively impact productivity
because too much time and focus may be spent on authoring tests
as opposed to adding new functionality [46].

A systematic review that aggregated the available evidence about
the effectiveness of TDD found that TDD does not have a
consistent effect on productivity. The evidence from controlled
experiments suggests an improvement in productivity when TDD
is used. However, the pilot studies provide mixed evidence, some
in favor of and others against TDD. In the industrial studies, the
evidence suggests that TDD yields worse productivity. Even when
considering only the more rigorous studies, the evidence is
equally split for and against a positive effect on productivity. Ten
studies resulted in higher productivity for TDD than otherwise,
nine studies led to worse productivity for TDD, while six
additional studies found no significant effect on productivity at all
[46].

22

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

Based on a more detailed investigation of the results, the authors
could not recommended any specific context that would benefit
from the use of TDD. The results do not suggest to which
domains TDD is applicable, to which kinds of tasks within a
domain, or to which projects sizes and complexities it is
applicable. Furthermore, the studies do not make it clear whether
TDD is an applicable practice for developing embedded systems
or for developing highly decentralized systems where incremental
testing may not be feasible.

3.2 Pair Programming
Pair programming is one of the best documented and most popular
agile practices, and it has been the subject of a relatively large
body of empirical research from an industrial perspective [18],
[26]. Like the TDD example, common to most of the PP studies is
the general question of whether pairs outperform individuals in
programming tasks without consideration of context.

Claims as to both the benefits and the adversities of PP abound.
Advocates of PP claim that it has many benefits over individual
programming when applied to new code development or when
used to maintain and enhance existing code. Stated benefits
include higher-quality code, shorter development duration,
happier programmers, improved teamwork, improved knowledge
transfer, and enhanced learning (see [18]). There are also
expectations with respect to the benefits and drawbacks of various
kinds of pairing, e.g., expert–expert vs. novice–novice pairing.
However, the finding across decades of small group research is
that groups usually fall short of reasonable expectations to
improved performance (see [26]).

Motivated by the diverse claims regarding PP a meta-analysis on
the effectiveness of PP, which extended the analysis presented by
Dybå et al. [18], was undertaken, taking into account between-
study variance, subgroup differences, and publication bias [26].
The meta-analysis included 18 studies, which showed a small
positive overall effect of PP on quality, a medium positive overall
effect on duration, and a medium negative overall effect on effort.
The meta-analysis suggests that PP is not uniformly beneficial or
effective, that inter-study variance is high, and that publication
bias might be an issue. It showed large and partly contradictory
differences in overall effects, specifically with respect to duration
and effort.

Also, differences in research design and methodological rigor
across the studies, makes it difficult to compare the findings. For
example, some studies used student homework assignments as
experimental tasks, some used repeated measure designs in which
the same subjects worked individually as well as in pairs, while
others employed quasi-experimental designs for the assignment of
subjects to treatments. The approach to partner selection also
differed considerably, ranging from self-selection by pairs to
matching pairs on abilities or experience levels. Yet another
source of variation is the unit of analysis employed in these
studies. For example, certain studies used the programming team
as the unit of analysis, whereas others used a dyad [3].

These issues point to a need for untangling the moderating factors
of the effect of PP. The meta-analysis also concluded that the
question of whether PP is better than solo programming is not
precise enough to be meaningful, since the answer depends on
other factors, for example, the expertise of the programmers and
on the complexity of the system and tasks to be solved.

Indeed, expertise and task complexity are perhaps the most central
situation-independent predictors of SE performance [8]. Situation-
dependent factors, on the other hand, include more dynamic
factors such as motivation, team climate, organizational issues,
etc. Theory predicts that experts perform better on complex tasks
than do novices because experts’ level of understanding
corresponds to the deep structure of a complex task [22].

The collaborative nature of PP also influences what social
mechanisms (e.g., social loafing, social laboring, social
facilitation, social inhibition, and social compensation) are
applicable. However, these social mechanisms also depend on a
host of other factors. In a meta-analysis of social loafing (the
phenomenon that individuals tend to expend less effort when
working collectively than when working individually), Karau and
Williams [31] identified several conditions in which such loafing
is eliminated (e.g., by high group cohesion) and some in which the
opposite phenomenon, social laboring, could be observed (i.e.,
greater effort on group tasks). Social laboring seems to occur
when complex or highly involving tasks are performed, or when
the group is considered important for its members, or if the
prevailing values favor collectivism rather than individualism [9].

Group performance also depends on whether a task is additive,
compensatory, disjunctive, or conjunctive [9]. For example, for
conjunctive tasks, all group members must contribute to the
solution, but for disjunctive tasks it suffices that one group
member has the ability to complete the task. However, it is not
obvious what sort of task PP is in this respect.

Figure 2 is good example of the relationship between context and
empirical studies. It shows the results of a large experiment, with
295 professional developers, performed by Arisholm et al. [2] that
found moderating effects of both task complexity and expertise.
Overall, the results showed that the pairs had an 8% decrease in
duration with a corresponding 84% increase in effort and a 7%
increase in correctness. However, the main effects of PP were
masked by the moderating effect of system complexity, in that
simpler designs had shorter duration, while more complex designs
had increased correctness.

When considering the moderating effect of programmer expertise,
junior pairs had a small (5%) increase in duration and thus a large
increase in effort (111%), and a 73% increase in correctness.
Intermediate pairs had a 28% decrease in duration (43% increase
in effort) and a negligible (4%) increase in correctness. Senior
pairs had a 9% decrease in duration (83% increase in effort) and
an 8% decrease in correctness. Thus, the juniors benefited from
PP in terms of increased correctness, the intermediates in terms of
decreased duration, while there were no overall benefits of PP for
seniors.

When considering the combined moderating effect of system
complexity and programmer expertise on PP, there appears to be
an interaction effect: Among the different treatment combinations,
junior pairs assigned to the complex design had a remarkable
149% increase on correctness compared with individuals.
Furthermore, intermediates and seniors experienced an effect of
PP on duration on the simpler design, with a 39% and 23%
decrease, respectively. However, the cost of this shorter duration
was a corresponding decrease in correct solutions by 29% and
13%, respectively.

23

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

Hence, based on this experiment, the overall answer to the
question of whether PP is “better” than solo programming is a
clear “No”. However, the more detailed examination of the
evidence suggests that PP is faster than solo programming when

programming task complexity is low and yields code solutions of
higher quality when task complexity is high.

By cooperating, programmers may complete tasks and attain goals
that would be difficult or impossible if they worked individually.

Total Effect of PP

84 %

7 %

-8 %
-40 %
-20 %

0 %
20 %
40 %
60 %
80 %

100 %
120 %
140 %
160 %

Duration Effort Correctness

D
iff

er
en

ce
 fr

om
 in

di
vi

du
al

s

Moderating Effect of System Complexity on PP

60 %

-16 %

6 %

112 %

48 %

-20 %
-40 %
-20 %

0 %
20 %
40 %
60 %
80 %

100 %
120 %
140 %
160 %

Duration Effort Correctness

D
iff

er
en

ce
 fr

om
 in

di
vi

du
al

s CC (easy)
DC (complex)

Moderating Effect of System Complexity for Juniors

4 %

109 %

32 %

6 %

112 %

149 %

-40 %
-20 %

0 %
20 %
40 %
60 %
80 %

100 %
120 %
140 %
160 %

Duration Effort Correctness

D
iff

er
en

ce
 fr

om
 in

di
vi

du
al

s CC (easy)
DC (complex)

Moderating Effect of System Complexity for Seniors

55 %

-13 %

8 %

115 %

-23 %
-2 %

-40 %
-20 %

0 %
20 %
40 %
60 %
80 %

100 %
120 %
140 %
160 %

Duration Effort Correctness

D
iff

er
en

ce
 fr

om
 in

di
vi

du
al

s CC (easy)
DC (complex)

Moderating Effect of System Complexity for Intermediates

22 %

-16 %

68 %

92 %

-39 %
-29 %

-40 %
-20 %

0 %
20 %
40 %
60 %
80 %

100 %
120 %
140 %
160 %

Duration Effort Correctness

D
iff

er
en

ce
 fr

om
 in

di
vi

du
al

s CC (easy)
DC (complex)

Effect of PP for Juniors

5 %

111 %

73 %

-40 %
-20 %

0 %
20 %
40 %
60 %
80 %

100 %
120 %
140 %
160 %

Duration Effort Correctness

D
iff

er
en

ce
 fr

om
 in

di
vi

du
al

s

Effect of PP for Intermediates

43 %

4 %

-28 %

-40 %
-20 %

0 %
20 %
40 %
60 %
80 %

100 %
120 %
140 %
160 %

Duration Effort Correctness

D
iff

er
en

ce
 fr

om
 in

di
vi

du
al

s

Effect of PP for Seniors

-9 %

83 %

-8 %
-40 %
-20 %

0 %
20 %
40 %
60 %
80 %

100 %
120 %
140 %
160 %

Duration Effort Correctness

D
iff

er
en

ce
 fr

om
 in

di
vi

du
al

s

Figure 2. The moderating effects of programmer expertise (left column) and system complexity (right column)
on the relation of pair programming on duration, effort, and correctness (Arisholm et al., 2007).

24

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

Junior pair programmers, for example, seem able to achieve
approximately the same level of correctness in about the same
amount of time (duration) as senior individuals. However, the
higher quality for complex tasks comes at a price of a
considerably higher effort (cost), while the reduced completion
time for the simpler tasks comes at a price of a noticeably lower
quality. These relationships give rise to a few evidence-based
guidelines for the use of PP for professional software developers
[18]: If you do not know the seniority or skill levels of your
programmers, but do have a feeling for task complexity, then
employ pair programming either when task complexity is low and
time is of the essence, or when task complexity is high and
correctness is important.

4. THE WAY FORWARD:
CONTEXTUALIZING SE RESEARCH
The examples in the previous section clearly show that an obvious
problem with current empirical SE research is in the stage of
asking questions. The initial question posed, “Is <technology x>
better than <technology y?”, e.g., “Is pair programming better than
solo programming?” is meaningless. SE covers a highly
diversified set of sociotechnical tasks, procedures, and systems
based upon more or less well-defined theoretical formulations.
Narrowing the question down to “Does pair programming lead to
higher quality than solo programming” is no more meaningful
than the general question, since the range of tasks and systems
remain as diversified as within SE in general. Furthermore, this
question fails to take into account the skill of the developers who
may contribute to quality.

So, what is the appropriate question to be asked of empirical SE
research? In all its complexity, the question towards which
empirical SE research should ultimately be directed is the
following:

What technology is most effective for whom, performing that
specific activity, on that kind of system, under which set of
circumstances?

This question resembles the goal part of the goal-question-metric
(GQM) paradigm, which is a systematic approach for setting
project goals tailored to the specific needs of an organization and
defining them in an operational and tractable way [5]. Relating it
to the omnibus context in Figure 1, and the example of PP in
Section 3.2, we find:

What technology (PP vs. solo programming), is most effective
(in terms of improvement in correctness), for whom (highly
skilled developers), performing that specific activity (change
tasks), on that kind of system (complex system designed with
a delegated control style), under which set of circumstances
(in the subjects’ normal work environment for a full-day
experiment)?

Posing the question in this manner, it becomes obvious that in
order for knowledge to meaningfully accumulate across separate
studies and provide a solid empirical foundation for subsequent
research, it will be necessary for every empirical investigation to
adequately describe, measure, or control a potentially large
number of discrete context variables. However, as we will
demonstrate, applying an experimental logic to this problem based
on ready-made lists of discrete context factors is not a viable
option.

The experimental logic, which underpins most empirical SE
research, is to identify the ‘dependent variable’ that captures the
‘outcome’ or ‘effect’ that needs to be explained, and the
‘independent variables’ that have impact on, or explain variation
in the dependent variable. A change in the independent variable
(X) is said to ‘bring about’ change in the dependent variable (Y).
The goal of an experiment is thus to isolate the critical causal
condition, or treatment, (X1) by experimental manipulation, with
other potential influences (X2, X3, X4, etc.) being held in control.
The influence of X1 on Y can thus be observed and measured
directly. Another strategy for achieving ‘control’ is by statistical
means; by observing and including variables in post hoc analyses.

The quasi-experimental and analytical modelling traditions in
empirical SE research build on these strategies in which variables
do the explanatory work and causal complexity is managed via the
progressive addition of subsets of variables (like in the PP
example). The prevailing view on context in empirical SE has the
same variable oriented logic.

However, if we were to evaluate only a small selection of discrete
context variables that presumably would influence the main
effects of a study using this logic, we would quickly find it
difficult because of combinatorial complexity. As an example,
Petersen and Wohlin [37] suggested a checklist for context
documentation consisting of six facets: product, processes,
practices and techniques, people, organization, and market, and a
set of context elements describing each facet. However, Menzies
et al. [33] criticize Petersen and Wohlin since “they offer no way
to learn new contextualizations or … no experimental
confirmation that their contexts are the ‘right’ contexts” (p. 350),
claiming that context is interesting only if it results in different
and better treatments.

In total, Petersen and Wohlin suggested 21 context elements [37].
Even with simplified assumptions and a very conservative
estimate for the number of legal values per context element, we
get more than 4 billion combinations! Making matters even worse,
Clarke and O’Connor [12] proposed a reference framework of
situational factors for software development processes consisting
of 44 factors and 170 sub-factors. Assuming only two legal values
for each sub-factor this results in a minimum of:

2170 = 1.5x1051 combinations of context factors.

As a comparison, there are:

1.33x1050 atoms in the world1,

which shows the absurdity of the variable oriented logic.
Consequently, we need to shift focus away from a checklist-based
approach to context in favor of a more dynamic view of software
practice. Instead of viewing context as a set of discrete variables
that statically surround parts of practice, we argue that context and
practice stand in a mutually reflexive relationship to each other,
with software practice, and the interpretive work it generates,
shaping context as much as context shapes the practice.

On the one hand the traditional variables of empirical phenomena
have to be supplemented by sociotechnical attributes and patterns
that are intrinsic to the activity of software practice. On the other,
the characteristics of research evidence as an interactive
phenomenon, challenges the traditional notions of empirical SE

1 http://education.jlab.org/qa/mathatom_05.html

25

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

research, suggesting a view of the relationship between evidence
and context as a process that emerges and changes through time
and space.

Given that in any study, there are an infinite number of contextual
factors and combinations to consider, the decision as to which
parameters along which to contextualize should be no different
from the decision regarding which variables to control. Both
decisions should be grounded in theory relevant to the
phenomenon under study, or as Menzies et al. [33] formulated it:
“Rather than focus on generalities (that may be irrelevant to any
particular project), empirical SE should focus more on context-
specific principles.”

Therefore, we do not expect a single, precise, technical definition
of context in SE. The term means quite different things within
alternative research paradigms, and even within particular
traditions seems to be defined more by situated practice, by use of
the concept to work with particular analytic problems, than by
formal definition [24]. Like Goodwin and Duranti [24], we do not
see the lack of a single formal definition, or even general
agreement about what is meant by context, as a situation that
necessarily requires a remedy. We clearly dispute any attempt at
providing a general framework or checklists of specific factors
intended at describing the context of local, situated practice.

Instead, we encourage SE researchers to take a broad, omnibus,
perspective to context in their studies and to actively take part in
explaining how phenomena works, for whom, where, when, and
why. Context is shaped by the specific activities being performed.
It is crucial, therefore, to acknowledge that any definition of
context can only be done in relation to a specific practice situation
[17].

However, simply naming an organization, describing a site in
detail, or doing a longitudinal study does not constitute a
contextual contribution. Rather, these means of fostering context
have to be used in a way that adds explanatory value to a study.
So, if we are to move beyond simple assertions that the context is
important, we need to articulate more clearly how contextual
influences operate. Perhaps the best question to ask oneself is this:

Does the inclusion of this information explain the constraints
on, or the opportunities for, the phenomenon I am studying?

There are several ways to explore and exploit contextual impact in
empirical SE research. Menzies et al. [33], for example, suggest
that, rather than seeking general principles that apply to many
projects, empirical SE should focus on ways to find the best local
lessons for groups of related projects. Following Johns [30], we
mention a few ways to explore and exploit contextual impact that
are related to research design, measurement, analysis, and
reporting. However, to succeed with such contextualization, a
prerequisite is theoretical grounding and familiarity with the
research site(s).

• Perform cross-level comparative research that explicitly
demonstrate how higher-level situational factors such as
environmental uncertainty and market conditions affect lower-
level factors such as individual behavior and team autonomy.

• Perform longitudinal research that studies processes and
examines how behavior unfolds over time or how software
teams and organizations configure themselves to deal with
recurrent problems.

• Study critical events that can punctuate context and make
possible research and theory that form part of a larger whole,
such as Moe et al.’s [35] study of the introduction of self-
managing teams.

• Collect qualitative data that illuminate context effects and
interactions that might affect behavior in a studied setting, or
that can aid in making inferences about the situation.

• Measure multiple dependent variables that can uncover
situational context when used in conjunction with one another
or explain the gap in meaning, such as Dybå et al.’s [20]
multiple measurement of software methodology usage.

• Use analytic strategies that are sensitive to the distributional
properties of data, rather than simply exploring means, and
contextual control variables that can explain interactions with
main effects, as shown in the pair programming example.

• Report contextual information that has theoretical bearing on
the study’s results or that might be useful to others (e.g., meta-
analysts) in the future [13], [14]. A good place to begin is to
ensure that the elements of omnibus context are addressed in
adequate detail: what was studied, who was studied, where
were they studied, when were they studied, and why were
they studied?

The last point is especially important to enable the identification
of recurring themes or common contextual factors across studies.
Systematic reviews conducted with respect to the determination of
why study results differ (as they are likely to do), and the
evaluation of the potentially contrasting insights from empirical
studies will generally be more helpful than those that focus on
identifying average effects [13]. Seemingly unpatterned and
disagreeing findings from quantitative studies may have
underlying consistency when omnibus context is taken into
account. Qualitative data may also be useful in capturing
developers’ subjective evaluations of organizational- or project-
level interventions and outcomes. In addition, qualitative findings
can be used to develop theories and to identify relevant variables
to be evaluated in future quantitative studies.

However, the presence of contextual variables does not mean they
will shape software practice or be of theoretical interest. The
context must act on, be noticed by, and be construed as important
by individuals and groups before it can influence practice.
Discovering that contextual variables are present but do not
appear to be influential is often as important from a research
perspective as confirming their power [36].

Maybe the most critical issue in contextualizing empirical SE
research is our willingness, as researchers, to immerse ourselves
in the context. Empirical studies in leading SE conferences and
journals are often based on laboratory studies using students as
subjects. About 90% of the subjects who take part in these
experiments are students [44]. The applicability of most
experimental results to an industrial setting may, therefore, be
questioned.

When researchers move into the field, it is often to administer
questionnaires to anonymous respondents who return them by
mail, or by performing online surveys of organizational members
or various online software communities. Thus, software practice is
often studied without going near the organization and without
talking to any of its members. Doing research so remote from the
industrial context has costs, both in terms of the depth of

26

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

understanding researchers can achieve and with respect to the
inspiration that leads to new, relevant areas of inquiry.

In general, the more similar the research setting of a study is to the
context in which the results will be applied, the more directly
relevant the study is perceived. Fenton et al. [23], for example
stated that “evaluative research must involve realistic projects
with realistic subjects, and it must be done with sufficient rigor to
ensure that any benefits identified are clearly derived from the
concept in question. This type of research is time-consuming and
expensive and, admittedly, difficult to employ in all software-
engineering research. It is not surprising that little of it is being
done.”

In this situation, the most realistic research setting is found in
action research studies, because the context of the study is the
same as the context in which the results will be applied for a given
organization, apart from the presence of the researcher(s). The
context of industry-based case studies is also generally very
similar to the setting of application, although researchers may
study phenomena that might not be regarded as very relevant by
the studied organization. Hence, more (high-quality) action
research and case studies should be conducted. The increasing
number of qualitative studies appearing in our leading journals
may suggest a positive trend in this direction [21].

5. CONCLUSION
The aim of this paper was to provide an overview of how context
affects empirical research and how empirical SE research can be
better ‘contextualized’ in order to provide a better understanding
of what works for whom, where, when, and why.

Empirical SE is concerned with different technologies, actors,
activities, and systems, and therefore contexts, which demand
higher levels of contextualization for accuracy in empirical
generalization. Progress in this area is unlikely, however, if
research is conducted with students in academic settings, through
online surveys, or through short visits to companies during which
questionnaires are distributed to convenience samples.

Contextualization requires immersion and a focus on relevant
phenomena, which means that SE researchers need to invest
considerable time within the practice they wish to understand.
Action research and case studies applying qualitative and
ethnographic methods are examples of approaches that will aid
this immersion. Immersion will also enable us to move the
discipline into a more useful direction that will counter the
common criticism that much empirical SE research is irrelevant
for software organizations and their members.

Empirical SE research only becomes comprehensible when one
takes into account the larger sociotechnical frameworks within
which it is embedded. It is all about context, interpretation, and
evaluation. However, what counts as context will depend on the
substantive problem under scrutiny; it cannot be captured by
generalized lists of discrete variables. So, if we are to move
beyond simple assertions that the context is important, we need to
articulate more clearly how contextual influences operate.

6. REFERENCES
[1] Arisholm, E. and Sjøberg, D.I.K. (2004) Evaluating the Effect of

a Delegated versus Centralized Control Style on the
Maintainability of Object-Oriented Software, IEEE Transactions
on Software Engineering, 30(8): 521-534.

[2] Arisholm, E., Gallis, H.E., Dybå, T. and Sjøberg, D.I.K. (2007)
Evaluating Pair Programming with Respect to System
Complexity and Programmer Expertise, IEEE Transactions on
Software Engineering, 33(2): 65-86.

[3] Balijepally, V., Mahapatra, R., Nerur, S., Price, K.H. (2009) Are
Two Heads Better Than One For Software Development? The
Productivity Paradox of Pair Programming, MIS Quarterly,
33(1): 91-118.

[4] Baron, R.M. and Kenny, D.A. (1993) The moderator–mediator
variable distinction in social psychological research: Conceptual,
strategic, and statistical considerations, Journal of Personality
and Social Psychology, 51(6): 1173-1182.

[5] Basili, V.R. and Rombach, D. (1988) The TAME Project:
Towards Improvement-Oriented Software Environments, IEEE
Transactions on Software Engineering, 14(6): 758-773.

[6] Basili, V.R., Shull, F., and Lanubile, F. (1999) Building
Knowledge through Families of Experiments, IEEE
Transactions on Software Engineering, 25(4): 456-473.

[7] Bergersen, B.R. and Sjøberg, D.I.K. (2012) Evaluating Methods
and Technologies in Software Engineering with Respect to
Developers’ Skill Level, Accepted to EASE’2012.

[8] Bergersen, B.R., Hannay, J.E., Sjøberg, D.I.K., Dybå, T., and
Karahasanovi! (2011) Inferring skill from tests of programming
performance: Combining time and quality, Proc. ESEM’2011,
IEEE Computer Society, pp. 305-314.

[9] Brown, R. (2000) Group Processes: Dynamics within and
between Groups, Second Ed., Blackwell.

[10] Capretz, L.F. and Ahmed, F. (2010) Making Sense of Software
Development and Personality Types, IT Professional, 12(1): 6-
14.

[11] Chin, E. (1994) Redefining “context” in research on writing,
Written Communication, 11(4), 445-482.

[12] Clarke, P. and O’Connor, R.V. (2012) The situational factors
that affect the software development process: Towards a
comprehensive reference framework, Information and Software
Technology, 54(5): 433-447.

[13] Cruzes, D.S. and Dybå, T. (2011) Research Synthesis in
Software Engineering: A Tertiary Study, Information and
Software Technology, 53(5): 440-455.

[14] Cruzes, D.S. and Dybå, T. (2011) Recommended Steps for
Thematic Synthesis in Software Engineering, Proc. ESEM’2011,
IEEE Computer Society, pp. 275-284.

[15] Dybå, T. (2000) Improvisation in Small Software Organizations,
IEEE Software, 17(5): 82-87.

[16] Dybå, T. (2003) Factors of Software Process Improvement
Success in Small and Large Organizations: An Empirical Study
in the Scandinavian Context, Proc. ESEC/FSE’2003, ACM
press, pp. 148-157.

[17] Dybå, T. (2003) A Dynamic Model of Software Engineering
Knowledge Creation, in A. Aurum et al. (Eds.) Managing
Software Engineering Knowledge, Springer, pp. 95-117.

[18] Dybå, T., Arisholm, E., Sjøberg, D., Hannay, J., and Shull, F.
(2007) Are Two Heads Better than One? On the Effectiveness of
Pair-Programming, IEEE Software, 24(6): 12-15.

[19] Dybå, T., Kitchenham, B.A., and Jørgensen, M. (2005)
Evidence-based Software Engineering for Practitioners, IEEE
Software, 22(1): 58-65.

27

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

[20] Dybå, T., Moe, N.B., and Arisholm, E. (2005) Measuring
Software Methodology Usage: Challenges of Conceptualization
and Operationalization, Proc. ISESE’2005, pp. 447-457

[21] Dybå, T., Prikladnicki, R., Rönkkö, K., Seaman, C., and Sillito,
J. (2011) Qualitative Research in Software Engineering,
Empirical Software Engineering, 16(4): 425-429.

[22] Ericsson, K.A. and Charness, N. (1994) Expert Performance: Its
Structure and Acquisition, American Psychologist, 49(8): 725-
747.

[23] Fenton, N., Pfleeger, S.L. and Glass, R.L. (1994) Science and
Substance: A Challenge to Software Engineers, IEEE Software,
11(4): 86-95.

[24] Goodwin, C. and Duranti, A. (1992) Rethinking context:
Language as an interactive phenomenon, Cambridge Univ.
Press.

[25] Griffin, M. (2007) Specifying organizational contexts:
Systematic links between contexts and processes in
organizational behavior, Journal of Organizational Behavior,
28: 859-863.

[26] Hannay, J., Dybå, T., Arisholm, E., and Sjøberg, D. (2009) The
Effectiveness of Pair Programming: A Meta-Analysis,
Information and Software Technology, 51(7): 1110-1122.

[27] Hedges, L.V. (1987) How Hard Is Hard Science, How Soft Is
Soft Science? The Empirical Cumulativeness of Research,
American Psychologist, 42(2): 443-455.

[28] Höst, M., Regnell, B., and Wohlin, C. (2000) Using Students as
Subjects: A Comparative Study of Students and Professionals in
Lead-Time Impact Assessment, Empirical Software
Engineering, 5(3): 201-214.

[29] Johns, G. (1991) Substantive and methodological constraints on
behavior and attitudes in organizational research. Organizational
Behavior and Human Decision Processes, 49: 80-104.

[30] Johns, G. (2006) The Essential Impact of Context on
Organizational Behavior, Academy of Management Review,
31(2): 386-408.

[31] Karau, S.J. and Williams, K.D. (1993) Social loafing: a meta-
analytic review and theoretical integration, Journal of
Personality and Social Psychology, 65(4): 681-706.

[32] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W.,
Hoaglin, D.C., El Emam, K. and Rosenberg, J. (2002)
Preliminary Guidelines for Empirical Research in Software
Engineering, IEEE Transactions on Software Engineering,
28(8): 721-734.

[33] Menzies, T., Butcher, A., Marcus, A., Zimmermann, T., and
Cok, D. (2011) Local vs. Global Models for Effort Estimation
and Defect Prediction, Proc. ASE’2011, pp. 343-351.

[34] Michailova, S. (2011) Contextualizing in International Business
research: Why do we need more of it and how can we be better
at it? Scandinavian Journal of Management, 27: 129-139.

[35] Moe, N.B., Dingsøyr, T. and Dybå, T. (2009) Overcoming
Barriers to Self-management in Software Teams, IEEE Software,
26(6): 20-26.

[36] Mowday, R. and Sutton, R. (1993) Organizational behavior:
Linking individuals and groups to organizational contexts,
Annual Review of Psychology, 44: 195-229.

[37] Petersen K. and Wohlin, C. (2009) Context in Industrial
Software Engineering Research, Proc. ESEM’2009, pp. 401-404.

[38] Rousseau, D.M. and Fried, Y. (2001) Location, location,
location: contextualizing organizational research, Journal of
Organizational Behavior, 22: 1-13.

[39] Shull, F. (2012) I Believe! IEEE Software, 29(1): 4-7.
[40] Sjøberg, D, Dybå, T., and Jørgensen, M. (2007) The Future of

Empirical Methods in Software Engineering Research, Proc.
FOSE’2007, pp. 358–378.

[41] Sjøberg, D., Dybå, T., Anda, B., and Hannay, J. (2008) Building
Theories in Software Engineering, in F. Shull, J. Singer, and D.
Sjøberg (Eds.) Advanced Topics in Empirical Software
Engineering, Springer, pp. 312-336.

[42] Sjøberg, D.I.K., Anda, B., Arisholm, E., Dybå, T., Jørgensen,
M., Karahasanovic, A., Koren, E.F. and Vokac M. (2002)
Conducting Realistic Experiments in Software Engineering,
Proc. ISESE’2002, pp. 17-26.

[43] Sjøberg, D.I.K., Anda, B., Arisholm, E., Dybå, T., Jørgensen,
M., Karahasanovic, A., and Vokac M. (2003) Challenges and
Recommendation when Increasing the Realism of Controlled
Software Engineering Experiments, in R. Conradi & A.I. Wang
(Eds.) Empirical Methods and Studies in Software Engineering -
Experiences from ESERNET, Springer, LNCS 2765, pp. 24-38.

[44] Sjøberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B.,
Karahasanovi!, A., Liborg, N.-K. and Rekdal, A.C. (2005) A
Survey of Controlled Experiments in Software Engineering,
IEEE Transactions on Software Engineering, 31(9): 733-753.

[45] Trist, E. (1981) The Evolution of Socio-Technical Systems: A
Conceptual Framework and an Action Research Program,
Occasional papers No. 2, Ontario Quality of Working Life
Center.

[46] Turhan, B., Layman, L., Diep, M., Shull, F. and Erdogmus, H.
(2010) How Effective is Test Driven Development?, in
G.Wilson & A. Orham (Eds.), Making Software: What Really
Works, and Why We Believe It, O’Reilly Press, pp. 207-219.

[47] Welter, F. (2010) Contextualizing Entrepreneurship: Conceptual
Challenges and Ways Forward, Entrepreneurship Theory and
Practice, 35(1): 165-184.

[48] Whetten (2009) An Examination of the Interface between
Context and Theory Applied to the Study of Chinese
Organizations, Management and Organization Review, 5(1): 29-
55.

[49] Whetten, D.A. (1989) What Constitutes a Theoretical
Contribution, Academy of Management Review, 14(4): 490-495.

[50] Xu, P. and Ramesh, B. (2007) Software process tailoring: an
empirical investigation, Journal of Management Information
Systems, 24(2): 293-328.

28

Authorized licensed use limited to: ANII. Downloaded on September 18,2020 at 23:57:36 UTC from IEEE Xplore. Restrictions apply.

