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ABSTRACT 
Context is a central concept in empirical software engineering. It 
is one of the distinctive features of the discipline and it is an 
indispensable part of software practice. It is likely responsible for 
one of the most challenging methodological and theoretical 
problems: study-to-study variation in research findings. Still, 
empirical software engineering research is mostly concerned with 
attempts to identify universal relationships that are independent of 
how work settings and other contexts interact with the processes 
important to software practice. The aim of this paper is to provide 
an overview of how context affects empirical research and how 
empirical software engineering research can be better 
‘contextualized’ in order to provide a better understanding of what 
works for whom, where, when, and why. We exemplify the 
importance of context with examples from recent systematic 
reviews and offer recommendations on the way forward. 
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Keywords 
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1. INTRODUCTION 
What is best? Pair programming or solo programming? Test-first 
or test-last? A multitude of studies have been performed to answer 
these and other similar questions of the type: “Is <technology x> 
better than <technology y?” However, asking the general question 
of whether pairs outperform individuals in programming tasks, or 
whether test-driven development results in higher productivity, is 
meaningless. It is meaningless since these questions can be 

answered with “Yes” or “No” depending on the setting of the 
study. Still, posing research questions of this type, without 
considering contextual influences like the subjects of the study, 
the location, the time period, and the rational of the study, seems 
to prevail. 

However, we cannot expect a technology to be universally good 
or universally bad, only more (or less) appropriate in some 
circumstances and for some organizations [19]. The settings in 
which practice takes place are rarely, if ever, the same. For 
example, one software organization will have a different 
environment or be influenced by different environmental factors 
to that of another software organization. The size of the 
organization, types of customers, country or geographical 
location, the age of the organization, all impose different 
influences in unique ways. Additionally, the human factors, which 
form the organizational culture and make one setting different 
from another one, also influence the way software development is 
performed. We know that these issues are important for the 
successful uptake of research into practice and that there are 
interrelationships among organizational systems, structures, 
processes, technologies, settings, and cultures. However, the 
nature of these relationships is poorly understood. 

This dependence of a potentially large number of relevant context 
variables in any study is an important reason for why empirical 
software engineering (SE) is so hard. Because of this, we cannot a 
priori assume that the results of a particular study apply outside 
the specific context in which it was run [6]. 

In an effort to bring context information in empirical research in 
SE more into consideration, Kitchenham et al. [32] suggested the 
following general guideline: “Be sure to specify as much of the 
industrial context as possible. In particular, clearly define the 
entities, attributes, and measures that are capturing the contextual 
information.” However, as Whetten pointed out, it is not of much 
help to have a long context description if it is short on explanation 
[48]. 

Such explanation relies on understanding and interpretation of 
research evidence in light of the features and characteristics 
surrounding it. Contrary to empirical SE’s treatment of context as 
a stable set of attributes of the world, the problem is that these 
surroundings themselves are selected and interpreted in different 
ways. There is an implicit parallel with linguistics here; that the 
meaning of a word is determined by the words and sentences that 
surround it. This raises the question about what a SE context is, 
how it is selected, and by whom.  
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The aim of this paper is to address this question and to provide an 
overview of how context affects empirical SE research and how 
this research can be better ‘contextualized.’ The remainder of the 
paper is organized as follows: Section 2 provides an overview of 
the concept of context and describes important dimensions and 
implications of context. Section 3 describes relationships between 
empirical studies and context, with examples from test-driven 
development and pair programming. Section 4 points to a 
potential way forward by suggesting how SE research can be 
better contextualized. Section 5 concludes. 

2. WHAT IS CONTEXT? 
The word contextus is of Latin origin and stands for weaving 
together or to make a connection [38]. Approaches to context and 
contextual dimensions range widely, reflecting different 
philosophical stances and practical orientations. In linguistics, for 
example, context refers to how readers can infer the meaning of a 
passage by referring to its intratextual clues; something that 
transcends the text itself [11]. In other words, trying to make 
sense of a single word in a sentence or of a sentence in a 
paragraph by looking only at the specific word or sentence and 
isolating them from the rest of the text in which they are used can 
be problematic, even if one knows technically their various 
linguistic meanings. For instance, “I am attached to you” has very 
different meanings to a person in love and to a hand-cuffed 
prisoner [33]. So, to take something ‘out of context’ leads to 
misunderstanding; there is no meaning without context. On the 
other hand, even if one is not familiar with the specific meaning(s) 
of a word or sentence, one can infer their correct meaning by 
situating them in the greater text and connecting them with the 
rest of the text. 

In management research, context refers to the circumstances, 
conditions, situations, or environments that are external to a 
specific phenomenon and that enable or constrain it [47]. Mowday 
and Sutton see context as stimuli existing in the external 
environment [36], while Johns takes this a step further and 
understands context as situational opportunities and constraints 
that affect behavior [30]. Moreover, Johns distinguishes between 
substantive and methodological contexts [29], where substantive 
context stands for the context individuals or groups face while 
methodological context refers to detailed information about the 
research study.  

In this paper we focus on substantive contexts for empirical SE, 
taking into account omnibus and discrete context dimensions as 
suggested by Johns [30]. Omnibus context refers to a broad 
perspective, drawing attention to who, what, when, where, and 
why [30], [49], while discrete context refers to specific contextual 
variables [30]. Thus, context can simultaneously be considered as 
a “lens” (omnibus context) and as a “variable” (discrete context) 
[25]. However, as most empirical SE research to date has studied 
discrete contexts, focusing on context as a set of variables, this 
paper emphasizes omnibus contexts, applying a context “lens.”  

2.1 Omnibus Context 
According to Johns [30], research will benefit more from the 
careful consideration of context by paying more attention to 
designing and reporting studies along the lines of good 
journalistic practice in which a story describes the who, what, 
when, where, and why to the reader (see Fig. 1), thus putting 
recounted events in their proper context. This corresponds to the 
typical situation in empirical SE, in which we study how an actor 

applies technologies to perform certain activities on a software 
system [41].  

‘What’ constitutes the substantive content of the research, the 
factors (variables, constructs, concepts) or treatments that 
logically should be considered as part of the explanation of the 
phenomena of interest. Although it might seem obvious, and 
maybe not strictly part of the context, it is not always clear what is 
actually studied. A typical problem is the descriptions of measures 
of the constructs being studied and the justification for variable 
coding. For example, if software quality is the phenomenon of 
interest, then it would require quite a bit of justification if only 
defects are being measured and how they are coded. 

‘Who’ refers to the occupational and demographic context, and 
concerns both the direct research participants and those who 
surround them. It is important that the study clearly identifies the 
population about which one intends to make claims, and selects 
and describes subjects who are representative of that population 
[6]. Usually, there is an assumption that the target population is 
professional software developers. One should, however, be aware 
that this group may be very diverse [1]. A typical example of the 
‘who’ in controlled SE experiments, is the student vs. professional 
[28] and the personality of the subjects [10]. However, it might 
not be enough to just state the occupational context or personality 
of a subject since individual differences in skill also affect the 
outcome of empirical studies. Within many different domains of 
expertise, with increased skill, the number of errors in 
performance decreases and the speed with which a task is 
executed increases [8]. The performance may differ significantly 
between various categories of professionals. Description of the 
‘who’, and especially the skill, is important, thus, since the 
similarity of the subjects of a study to the people who will use the 
technology impacts the ease of the technology transfer. 

‘Where’ a research study is conducted can have a noticeable 
impact on its results. It refers to the various locations in which 
software development happens. An important distinction is 
whether the phenomenon occurs in an artificial laboratory or in a 
more realistic industry setting [42]. For example, a challenge 
when configuring an experimental environment is to provide an 
infrastructure of supporting technology (processes, methods, 
tools, etc.) that resembles an industrial development environment. 
Because the logistics is simpler, a classroom is often used instead 
of a usual work place. Conducting an experiment on the usual 
work site with professional development tools also implies less 
control of the experiment than one would have in a classroom 
setting with pen and paper. Nevertheless, there are many 
challenges when conducting experiments with professionals in 
industry that might also be due to location effect such as 
economic conditions and organizational and national culture.  

‘When’ refers to the time at which the research was conducted or 
research events occurred. For example, it includes when the data 
was collected and reflects the role of temporal factors in the 
research. Time affects the sociotechnical relationships that 
surround all aspects of software development, and is especially 
important for researchers who deal with software product life-
cycles. Key contextual conditions of time are also related to 
whether the study is cross-sectional or longitudinal. Repeated 
calls for longer duration of experimental tasks [43] and more 
longitudinal research [40] in SE underscore the importance of the 
temporal dimension in contextual influences.  
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Figure 1. Important dimensions of SE context (adapted from [30]). 

 

Time is also often a dependent variable in SE experiments, in 
which the goal is usually for subjects to solve the tasks with 
satisfactory quality in as short time as possible, as most software 
engineering jobs are subject of a relatively high pressure. 
However, if the time pressure on the participatory subjects is too 
high, then the task solution quality may be reduced to the point 
where it becomes meaningless to use the corresponding task times 
in subsequent analyses. A challenge is therefore to put a realistic 
time pressure on the subjects. How to best deal with this challenge 
depends to some extent on the size, duration, and location of the 
experiment. Methods for combining time and quality as task 
performance is currently being developed as a promising first step 
to measuring programming skill in both industry and research 
settings [8]. 

 ‘Why’ refers to the rationale for the conduct of the research or the 
collection of research data. Why data is collected can have a 
compelling contextual impact on organizational behavior and 
associated research. An experimental setting would, for example, 
ideally either reflect the subjects’ organizational setting or would 
allow them to see some professional benefit from the 
experimental tasks, which would motivate them to put more effort 
and thought into the study. However, motivation can be a problem 
when subjects are asked to work on toy problems, are given 
unrealistic processes, or see some other disconnection between the 
study and their professional experience [6]. 

2.2 Discrete Context 
Discrete context focuses on specific situational variables that 
directly influence behavior or moderate relationships between 
variables. Viewing software development from an open 
sociotechnical systems perspective [45], the lower portion of 
Figure 1 shows that the prominent dimensions of discrete context 
in SE research include technical, social, and environmental 
factors. Each of the variables within these dimensions may be 
treated as independent variables through selection or 
manipulation, or as moderator or mediator variables.  

A moderator is a qualitative or quantitative variable that affects 
the direction and/or strength of the relations between an 
independent or predictor variable and a dependent or criterion 
variable [4]. Some moderator variables are categorical. Suppose, 
for example, that pair programming yielded high effect sizes on 
complex tasks but low effect sizes on simple tasks, with the 

opposite pattern emerging for solo programming. Task complexity 
is then a categorical moderator. Other moderators are continuous. 
An example would be if pair programming produced moderate 
effect sizes no matter how complex the task is, but solo 
programming produced low effect sizes for developers with few 
years’ experience and high effect sizes for developers with many 
years. 

Mediators reflect a mechanism through which the independent 
variable causes the mediator, which then causes the outcome. For 
example, suppose that self-management (the independent 
variable) causes higher motivation (the mediator), which then 
leads to increased software quality (the dependent variable). 
However, more complex and subtle relationships may exist. For 
instance, the same variable can be both a moderator and a 
mediator in the same model, and mediators can be nonlinear or 
non-recursive, see [4]. 

The elements of the three discrete context dimensions (Fig. 1) can 
be seen as mediating the omnibus context. For example, knowing 
someone’s occupation often permits reasonable inferences about 
his or her tasks, social, and physical environment at work, which, 
in turn, can be used to predict behavior and attitudes [30]. 

We will not consider the details of all possible discrete context 
variables, as several lists of a large variety and diversity of such 
variables have already been identified and proposed elsewhere 
(e.g., [12], [37], [50]). Therefore, the elements of technical, social, 
and environmental context in Figure 1 are not meant to be 
exhaustive, but argued to be important. This importance is 
inferred from a combination of the fact that they are interrelated, 
that they operate at multiple levels of analysis, and that they 
appear as fundamental elements in several empirical SE studies. 

Along the technical dimension, for example, there is often a gap 
between researcher expectations and empirical results because one 
fails to acknowledge that potentially more powerful technologies 
may be more complex to use, or may require new skills in order to 
use correctly. It is self-evidently true that a technology is better 
when it is easier and faster to use than when it is not. However, 
what if a “faster” technology comes at the price of added 
complexity, which makes the technology harder to use properly. 
Then the faster technology would require more training to be used 
successfully. Without training, the faster and more complex 
technology would be associated with a higher proportion of 
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incorrect uses, thereby making the faster technology appear worse 
than the existing alternative that is slow but easy to use correctly. 
More complex technologies frequently require more training than 
less complex technologies; at the same time, more complex 
technologies are adopted because they add to productivity [7]. 

Individual differences in skill are an important element along the 
social dimension that affects the outcome of empirical studies. 
When evaluating alternative processes, methods, or tools, skill 
levels may mediate the effect of using a specific alternative. For 
example, in an experiment on the effect of a centralized versus 
delegated control style, the purportedly most-skilled developers 
performed better using a delegated control style than with a 
centralized one, while the less-skilled developers performed better 
with the centralized style [1]. In another experiment, skill had a 
moderating effect on the benefits of pair programming [2]. 

Another important element along the social dimension is the 
complexity of team performance, which depends not only on the 
team’s autonomy and competence in managing and executing its 
work but also on the organizational context surrounding it. For 
example, aspects of the organizational context such as reward 
systems, supervision, training, resources, and organizational 
structure can strongly affect team functioning. Likewise, 
relationships with the market and key stakeholders outside the 
team can influence task performance [35]. 

The environmental dimension refers to various characteristics 
outside the control of the organization that is important to its 
performance. These characteristics include the nature of the 
market, political climate, economic conditions, and the kind of 
technologies on which the organization depends. The environment 
of a particular software organization may range from stable to 
dynamic – from predictable to unpredictable. A study on process 
improvement strategies, for example, showed that there was no 
difference in the level of exploitation between small and large 
organizations regardless of the environment, but that there was a 
marked difference in the level of exploration. The results showed 
that small software organizations engaged in significantly more 
exploration in turbulent and uncertain environments than large 
software organization. Due to the increased complexity, increased 
convergence, and increased inertia of the large organizations, they 
are less likely to change in response to environmental changes 
than small organizations. They tend to generate the same response 
even when the stimuli had changed [15], [16]. 

The argument behind the usefulness of studying discrete context 
variables depend on the assumption that research findings are 
strongly a function of general empirical laws or processes. 
However, from a constructionist point of view, consistency of 
research results implies either the stability of the social 
constructions across the contexts in which the studies were 
conducted or an interpretive norm that leads to the perception of 
consistency [17], [27]. Similarly, inconsistency among research 
results might indicate an inconsistency among the interpretative 
norms of the research community. One of the most interesting 
implications of the constructionist perspective is that the 
perceived cumulativeness of scientific knowledge in SE is a 
function of the conventions of evidence and methodology in the 
research community.  

3. CONTEXT AND EMPIRICAL STUDIES 
It can often be problematic to transfer evidence generated from 
one context to another. Shull [39], for example, points to several 

recent studies showing that lessons learned from one project are 
simply not applicable to others. For example, a study of the 
prediction factors in the COCOMO model across 93 project 
datasets from one organization showed huge variations in the size 
of the effects those factors had on overall project effort. In some 
cases, the direction of the relationships changed from positive to 
negative depending on which projects were in the dataset being 
fit. Also, in another study on defect predictors for pairs of 
projects, only for four percent of the pairs did the factors that 
worked well for predicting defects in the first project also apply in 
the second [39]. 

In this section we will look further into three examples of the 
relationship between context and empirical studies of agile 
practices – two secondary studies and one primary study. The first 
one is a systematic review on test-driven development (TDD), the 
second is a meta-analysis of pair programming (PP), while the 
third is a large experiment on PP with professional developers. 
The systematic review and meta-analysis are typical examples of 
secondary studies which try to synthesize evidence from primary 
studies of the type: “Is <technology x> better than <technology 
y?” without considering contextual influences. Our primary study 
example, however, shows how important contextual elements 
influence the main effects of the experiment. 

3.1 Test-Driven Development 
Attempts to aggregate the available evidence on agile practices 
like test-driven development (TDD) have shown wide disparities 
in how well these practices work in different contexts. Although 
advocates claim that TDD enhances both product quality and 
programmer productivity, skeptics maintain that such an approach 
to programming would be both counterproductive and hard to 
learn [46].  

However, it is the productivity dimension that engenders the most 
controversial discussion of TDD. Although many admit that 
adopting TDD may require a steep learning curve that may 
decrease the productivity initially, there is no consensus on the 
long-term effects. One line of argument expects productivity to 
increase with TDD; reasons include easy context switching from 
one simple task to another, improved external quality (i.e., there 
are few errors and errors can be detected quickly), improved 
internal quality (i.e., fixing errors is easier due to simpler design), 
and improved test quality (i.e., chances of introducing new errors 
is low due to automated tests). The opposite line argues that TDD 
incurs too much overhead and will negatively impact productivity 
because too much time and focus may be spent on authoring tests 
as opposed to adding new functionality [46]. 

A systematic review that aggregated the available evidence about 
the effectiveness of TDD found that TDD does not have a 
consistent effect on productivity. The evidence from controlled 
experiments suggests an improvement in productivity when TDD 
is used. However, the pilot studies provide mixed evidence, some 
in favor of and others against TDD. In the industrial studies, the 
evidence suggests that TDD yields worse productivity. Even when 
considering only the more rigorous studies, the evidence is 
equally split for and against a positive effect on productivity. Ten 
studies resulted in higher productivity for TDD than otherwise, 
nine studies led to worse productivity for TDD, while six 
additional studies found no significant effect on productivity at all 
[46]. 
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Based on a more detailed investigation of the results, the authors 
could not recommended any specific context that would benefit 
from the use of TDD. The results do not suggest to which 
domains TDD is applicable, to which kinds of tasks within a 
domain, or to which projects sizes and complexities it is 
applicable. Furthermore, the studies do not make it clear whether 
TDD is an applicable practice for developing embedded systems 
or for developing highly decentralized systems where incremental 
testing may not be feasible.  

3.2 Pair Programming 
Pair programming is one of the best documented and most popular 
agile practices, and it has been the subject of a relatively large 
body of empirical research from an industrial perspective [18], 
[26]. Like the TDD example, common to most of the PP studies is 
the general question of whether pairs outperform individuals in 
programming tasks without consideration of context. 

Claims as to both the benefits and the adversities of PP abound. 
Advocates of PP claim that it has many benefits over individual 
programming when applied to new code development or when 
used to maintain and enhance existing code. Stated benefits 
include higher-quality code, shorter development duration, 
happier programmers, improved teamwork, improved knowledge 
transfer, and enhanced learning (see [18]). There are also 
expectations with respect to the benefits and drawbacks of various 
kinds of pairing, e.g., expert–expert vs. novice–novice pairing. 
However, the finding across decades of small group research is 
that groups usually fall short of reasonable expectations to 
improved performance (see [26]). 

Motivated by the diverse claims regarding PP a meta-analysis on 
the effectiveness of PP, which extended the analysis presented by 
Dybå et al. [18], was undertaken, taking into account between-
study variance, subgroup differences, and publication bias [26]. 
The meta-analysis included 18 studies, which showed a small 
positive overall effect of PP on quality, a medium positive overall 
effect on duration, and a medium negative overall effect on effort. 
The meta-analysis suggests that PP is not uniformly beneficial or 
effective, that inter-study variance is high, and that publication 
bias might be an issue. It showed large and partly contradictory 
differences in overall effects, specifically with respect to duration 
and effort. 

Also, differences in research design and methodological rigor 
across the studies, makes it difficult to compare the findings. For 
example, some studies used student homework assignments as 
experimental tasks, some used repeated measure designs in which 
the same subjects worked individually as well as in pairs, while 
others employed quasi-experimental designs for the assignment of 
subjects to treatments. The approach to partner selection also 
differed considerably, ranging from self-selection by pairs to 
matching pairs on abilities or experience levels. Yet another 
source of variation is the unit of analysis employed in these 
studies. For example, certain studies used the programming team 
as the unit of analysis, whereas others used a dyad [3]. 

These issues point to a need for untangling the moderating factors 
of the effect of PP. The meta-analysis also concluded that the 
question of whether PP is better than solo programming is not 
precise enough to be meaningful, since the answer depends on 
other factors, for example, the expertise of the programmers and 
on the complexity of the system and tasks to be solved. 

Indeed, expertise and task complexity are perhaps the most central 
situation-independent predictors of SE performance [8]. Situation-
dependent factors, on the other hand, include more dynamic 
factors such as motivation, team climate, organizational issues, 
etc. Theory predicts that experts perform better on complex tasks 
than do novices because experts’ level of understanding 
corresponds to the deep structure of a complex task [22]. 

The collaborative nature of PP also influences what social 
mechanisms (e.g., social loafing, social laboring, social 
facilitation, social inhibition, and social compensation) are 
applicable. However, these social mechanisms also depend on a 
host of other factors. In a meta-analysis of social loafing (the 
phenomenon that individuals tend to expend less effort when 
working collectively than when working individually), Karau and 
Williams [31] identified several conditions in which such loafing 
is eliminated (e.g., by high group cohesion) and some in which the 
opposite phenomenon, social laboring, could be observed (i.e., 
greater effort on group tasks). Social laboring seems to occur 
when complex or highly involving tasks are performed, or when 
the group is considered important for its members, or if the 
prevailing values favor collectivism rather than individualism [9]. 

Group performance also depends on whether a task is additive, 
compensatory, disjunctive, or conjunctive [9]. For example, for 
conjunctive tasks, all group members must contribute to the 
solution, but for disjunctive tasks it suffices that one group 
member has the ability to complete the task. However, it is not 
obvious what sort of task PP is in this respect. 

Figure 2 is good example of the relationship between context and 
empirical studies. It shows the results of a large experiment, with 
295 professional developers, performed by Arisholm et al. [2] that 
found moderating effects of both task complexity and expertise. 
Overall, the results showed that the pairs had an 8% decrease in 
duration with a corresponding 84% increase in effort and a 7% 
increase in correctness. However, the main effects of PP were 
masked by the moderating effect of system complexity, in that 
simpler designs had shorter duration, while more complex designs 
had increased correctness.  

When considering the moderating effect of programmer expertise, 
junior pairs had a small (5%) increase in duration and thus a large 
increase in effort (111%), and a 73% increase in correctness. 
Intermediate pairs had a 28% decrease in duration (43% increase 
in effort) and a negligible (4%) increase in correctness. Senior 
pairs had a 9% decrease in duration (83% increase in effort) and 
an 8% decrease in correctness. Thus, the juniors benefited from 
PP in terms of increased correctness, the intermediates in terms of 
decreased duration, while there were no overall benefits of PP for 
seniors.  

When considering the combined moderating effect of system 
complexity and programmer expertise on PP, there appears to be 
an interaction effect: Among the different treatment combinations, 
junior pairs assigned to the complex design had a remarkable 
149% increase on correctness compared with individuals. 
Furthermore, intermediates and seniors experienced an effect of 
PP on duration on the simpler design, with a 39% and 23% 
decrease, respectively. However, the cost of this shorter duration 
was a corresponding decrease in correct solutions by 29% and 
13%, respectively.  
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Hence, based on this experiment, the overall answer to the 
question of whether PP is “better” than solo programming is a 
clear “No”. However, the more detailed examination of the 
evidence suggests that PP is faster than solo programming when 

programming task complexity is low and yields code solutions of 
higher quality when task complexity is high.  

By cooperating, programmers may complete tasks and attain goals 
that would be difficult or impossible if they worked individually. 
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Figure 2. The moderating effects of programmer expertise (left column) and system complexity (right column)  
on the relation of pair programming on duration, effort, and correctness (Arisholm et al., 2007). 
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Junior pair programmers, for example, seem able to achieve 
approximately the same level of correctness in about the same 
amount of time (duration) as senior individuals. However, the 
higher quality for complex tasks comes at a price of a 
considerably higher effort (cost), while the reduced completion 
time for the simpler tasks comes at a price of a noticeably lower 
quality. These relationships give rise to a few evidence-based 
guidelines for the use of PP for professional software developers 
[18]: If you do not know the seniority or skill levels of your 
programmers, but do have a feeling for task complexity, then 
employ pair programming either when task complexity is low and 
time is of the essence, or when task complexity is high and 
correctness is important. 

4. THE WAY FORWARD: 
CONTEXTUALIZING SE RESEARCH 
The examples in the previous section clearly show that an obvious 
problem with current empirical SE research is in the stage of 
asking questions. The initial question posed, “Is <technology x> 
better than <technology y?”, e.g., “Is pair programming better than 
solo programming?” is meaningless. SE covers a highly 
diversified set of sociotechnical tasks, procedures, and systems 
based upon more or less well-defined theoretical formulations. 
Narrowing the question down to “Does pair programming lead to 
higher quality than solo programming” is no more meaningful 
than the general question, since the range of tasks and systems 
remain as diversified as within SE in general. Furthermore, this 
question fails to take into account the skill of the developers who 
may contribute to quality.  

So, what is the appropriate question to be asked of empirical SE 
research? In all its complexity, the question towards which 
empirical SE research should ultimately be directed is the 
following:  

What technology is most effective for whom, performing that 
specific activity, on that kind of system, under which set of 
circumstances?  

This question resembles the goal part of the goal-question-metric 
(GQM) paradigm, which is a systematic approach for setting 
project goals tailored to the specific needs of an organization and 
defining them in an operational and tractable way [5]. Relating it 
to the omnibus context in Figure 1, and the example of PP in 
Section 3.2, we find:  

What technology (PP vs. solo programming), is most effective 
(in terms of improvement in correctness), for whom (highly 
skilled developers), performing that specific activity (change 
tasks), on that kind of system (complex system designed with 
a delegated control style), under which set of circumstances 
(in the subjects’ normal work environment for a full-day 
experiment)? 

Posing the question in this manner, it becomes obvious that in 
order for knowledge to meaningfully accumulate across separate 
studies and provide a solid empirical foundation for subsequent 
research, it will be necessary for every empirical investigation to 
adequately describe, measure, or control a potentially large 
number of discrete context variables. However, as we will 
demonstrate, applying an experimental logic to this problem based 
on ready-made lists of discrete context factors is not a viable 
option. 

The experimental logic, which underpins most empirical SE 
research, is to identify the ‘dependent variable’ that captures the 
‘outcome’ or ‘effect’ that needs to be explained, and the 
‘independent variables’ that have impact on, or explain variation 
in the dependent variable. A change in the independent variable 
(X) is said to ‘bring about’ change in the dependent variable (Y). 
The goal of an experiment is thus to isolate the critical causal 
condition, or treatment, (X1) by experimental manipulation, with 
other potential influences (X2, X3, X4, etc.) being held in control. 
The influence of X1 on Y can thus be observed and measured 
directly. Another strategy for achieving ‘control’ is by statistical 
means; by observing and including variables in post hoc analyses.  

The quasi-experimental and analytical modelling traditions in 
empirical SE research build on these strategies in which variables 
do the explanatory work and causal complexity is managed via the 
progressive addition of subsets of variables (like in the PP 
example). The prevailing view on context in empirical SE has the 
same variable oriented logic. 

However, if we were to evaluate only a small selection of discrete 
context variables that presumably would influence the main 
effects of a study using this logic, we would quickly find it 
difficult because of combinatorial complexity. As an example, 
Petersen and Wohlin [37] suggested a checklist for context 
documentation consisting of six facets: product, processes, 
practices and techniques, people, organization, and market, and a 
set of context elements describing each facet. However, Menzies 
et al. [33] criticize Petersen and Wohlin since “they offer no way 
to learn new contextualizations or … no experimental 
confirmation that their contexts are the ‘right’ contexts” (p. 350), 
claiming that context is interesting only if it results in different 
and better treatments. 

In total, Petersen and Wohlin suggested 21 context elements [37]. 
Even with simplified assumptions and a very conservative 
estimate for the number of legal values per context element, we 
get more than 4 billion combinations! Making matters even worse, 
Clarke and O’Connor [12] proposed a reference framework of 
situational factors for software development processes consisting 
of 44 factors and 170 sub-factors. Assuming only two legal values 
for each sub-factor this results in a minimum of: 

2170 = 1.5x1051 combinations of context factors. 

As a comparison, there are:  

1.33x1050 atoms in the world1, 

which shows the absurdity of the variable oriented logic. 
Consequently, we need to shift focus away from a checklist-based 
approach to context in favor of a more dynamic view of software 
practice. Instead of viewing context as a set of discrete variables 
that statically surround parts of practice, we argue that context and 
practice stand in a mutually reflexive relationship to each other, 
with software practice, and the interpretive work it generates, 
shaping context as much as context shapes the practice.  

On the one hand the traditional variables of empirical phenomena 
have to be supplemented by sociotechnical attributes and patterns 
that are intrinsic to the activity of software practice. On the other, 
the characteristics of research evidence as an interactive 
phenomenon, challenges the traditional notions of empirical SE 
                                                                    
1 http://education.jlab.org/qa/mathatom_05.html 
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research, suggesting a view of the relationship between evidence 
and context as a process that emerges and changes through time 
and space.  

Given that in any study, there are an infinite number of contextual 
factors and combinations to consider, the decision as to which 
parameters along which to contextualize should be no different 
from the decision regarding which variables to control. Both 
decisions should be grounded in theory relevant to the 
phenomenon under study, or as Menzies et al. [33] formulated it: 
“Rather than focus on generalities (that may be irrelevant to any 
particular project), empirical SE should focus more on context-
specific principles.” 

Therefore, we do not expect a single, precise, technical definition 
of context in SE. The term means quite different things within 
alternative research paradigms, and even within particular 
traditions seems to be defined more by situated practice, by use of 
the concept to work with particular analytic problems, than by 
formal definition [24]. Like Goodwin and Duranti [24], we do not 
see the lack of a single formal definition, or even general 
agreement about what is meant by context, as a situation that 
necessarily requires a remedy. We clearly dispute any attempt at 
providing a general framework or checklists of specific factors 
intended at describing the context of local, situated practice. 

Instead, we encourage SE researchers to take a broad, omnibus, 
perspective to context in their studies and to actively take part in 
explaining how phenomena works, for whom, where, when, and 
why. Context is shaped by the specific activities being performed. 
It is crucial, therefore, to acknowledge that any definition of 
context can only be done in relation to a specific practice situation 
[17].   

However, simply naming an organization, describing a site in 
detail, or doing a longitudinal study does not constitute a 
contextual contribution. Rather, these means of fostering context 
have to be used in a way that adds explanatory value to a study. 
So, if we are to move beyond simple assertions that the context is 
important, we need to articulate more clearly how contextual 
influences operate. Perhaps the best question to ask oneself is this:  

Does the inclusion of this information explain the constraints 
on, or the opportunities for, the phenomenon I am studying? 

There are several ways to explore and exploit contextual impact in 
empirical SE research. Menzies et al. [33], for example, suggest 
that, rather than seeking general principles that apply to many 
projects, empirical SE should focus on ways to find the best local 
lessons for groups of related projects. Following Johns [30], we 
mention a few ways to explore and exploit contextual impact that 
are related to research design, measurement, analysis, and 
reporting. However, to succeed with such contextualization, a 
prerequisite is theoretical grounding and familiarity with the 
research site(s). 

• Perform cross-level comparative research that explicitly 
demonstrate how higher-level situational factors such as 
environmental uncertainty and market conditions affect lower-
level factors such as individual behavior and team autonomy.  

• Perform longitudinal research that studies processes and 
examines how behavior unfolds over time or how software 
teams and organizations configure themselves to deal with 
recurrent problems. 

• Study critical events that can punctuate context and make 
possible research and theory that form part of a larger whole, 
such as Moe et al.’s [35] study of the introduction of self-
managing teams. 

• Collect qualitative data that illuminate context effects and 
interactions that might affect behavior in a studied setting, or 
that can aid in making inferences about the situation. 

• Measure multiple dependent variables that can uncover 
situational context when used in conjunction with one another 
or explain the gap in meaning, such as Dybå et al.’s [20] 
multiple measurement of software methodology usage. 

• Use analytic strategies that are sensitive to the distributional 
properties of data, rather than simply exploring means, and 
contextual control variables that can explain interactions with 
main effects, as shown in the pair programming example. 

• Report contextual information that has theoretical bearing on 
the study’s results or that might be useful to others (e.g., meta-
analysts) in the future [13], [14]. A good place to begin is to 
ensure that the elements of omnibus context are addressed in 
adequate detail: what was studied, who was studied, where 
were they studied, when were they studied, and why were 
they studied? 

The last point is especially important to enable the identification 
of recurring themes or common contextual factors across studies. 
Systematic reviews conducted with respect to the determination of 
why study results differ (as they are likely to do), and the 
evaluation of the potentially contrasting insights from empirical 
studies will generally be more helpful than those that focus on 
identifying average effects [13]. Seemingly unpatterned and 
disagreeing findings from quantitative studies may have 
underlying consistency when omnibus context is taken into 
account. Qualitative data may also be useful in capturing 
developers’ subjective evaluations of organizational- or project-
level interventions and outcomes. In addition, qualitative findings 
can be used to develop theories and to identify relevant variables 
to be evaluated in future quantitative studies. 

However, the presence of contextual variables does not mean they 
will shape software practice or be of theoretical interest. The 
context must act on, be noticed by, and be construed as important 
by individuals and groups before it can influence practice. 
Discovering that contextual variables are present but do not 
appear to be influential is often as important from a research 
perspective as confirming their power [36]. 

Maybe the most critical issue in contextualizing empirical SE 
research is our willingness, as researchers, to immerse ourselves 
in the context. Empirical studies in leading SE conferences and 
journals are often based on laboratory studies using students as 
subjects. About 90% of the subjects who take part in these 
experiments are students [44]. The applicability of most 
experimental results to an industrial setting may, therefore, be 
questioned. 

When researchers move into the field, it is often to administer 
questionnaires to anonymous respondents who return them by 
mail, or by performing online surveys of organizational members 
or various online software communities. Thus, software practice is 
often studied without going near the organization and without 
talking to any of its members. Doing research so remote from the 
industrial context has costs, both in terms of the depth of 
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understanding researchers can achieve and with respect to the 
inspiration that leads to new, relevant areas of inquiry.  

In general, the more similar the research setting of a study is to the 
context in which the results will be applied, the more directly 
relevant the study is perceived. Fenton et al. [23], for example 
stated that “evaluative research must involve realistic projects 
with realistic subjects, and it must be done with sufficient rigor to 
ensure that any benefits identified are clearly derived from the 
concept in question. This type of research is time-consuming and 
expensive and, admittedly, difficult to employ in all software-
engineering research. It is not surprising that little of it is being 
done.”  

In this situation, the most realistic research setting is found in 
action research studies, because the context of the study is the 
same as the context in which the results will be applied for a given 
organization, apart from the presence of the researcher(s). The 
context of industry-based case studies is also generally very 
similar to the setting of application, although researchers may 
study phenomena that might not be regarded as very relevant by 
the studied organization. Hence, more (high-quality) action 
research and case studies should be conducted. The increasing 
number of qualitative studies appearing in our leading journals 
may suggest a positive trend in this direction [21]. 

5. CONCLUSION 
The aim of this paper was to provide an overview of how context 
affects empirical research and how empirical SE research can be 
better ‘contextualized’ in order to provide a better understanding 
of what works for whom, where, when, and why. 

Empirical SE is concerned with different technologies, actors, 
activities, and systems, and therefore contexts, which demand 
higher levels of contextualization for accuracy in empirical 
generalization. Progress in this area is unlikely, however, if 
research is conducted with students in academic settings, through 
online surveys, or through short visits to companies during which 
questionnaires are distributed to convenience samples.  

Contextualization requires immersion and a focus on relevant 
phenomena, which means that SE researchers need to invest 
considerable time within the practice they wish to understand. 
Action research and case studies applying qualitative and 
ethnographic methods are examples of approaches that will aid 
this immersion. Immersion will also enable us to move the 
discipline into a more useful direction that will counter the 
common criticism that much empirical SE research is irrelevant 
for software organizations and their members. 

Empirical SE research only becomes comprehensible when one 
takes into account the larger sociotechnical frameworks within 
which it is embedded. It is all about context, interpretation, and 
evaluation. However, what counts as context will depend on the 
substantive problem under scrutiny; it cannot be captured by 
generalized lists of discrete variables. So, if we are to move 
beyond simple assertions that the context is important, we need to 
articulate more clearly how contextual influences operate. 
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