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Abstract. We call “natural” image any photograph of an outdoor or indoor scene taken by a standard camera.
We discuss the physical generation process of natural images as a combination of occlusions, transparencies and
contrast changes. This description fits to the phenomenological description of Gaetano Kanizsa according to which
visual perception tends to remain stable with respect to these basic operations. We define a contrast invariant
presentation of the digital image, the topographic map, where the subjacent occlusion-transparency structure is
put into evidence by the interplay of level lines. We prove that each topographic map represents a class of images
invariant with respect to local contrast changes. Several visualization strategies of the topographic map are proposed
and implemented and mathematical arguments are developed to establish stability properties of the topographic
map under digitization.
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1. Introduction

What are the basic, computable elements from which
the analysis of any natural image could start? The
edges, that is, the discontinuity lines in an image have
been and still are frequently considered as the basic ob-
jects in images, the “atoms” on which most Computer
Vision algorithms can be built (Marr, 1981). There is
no single definition for them, however. Many tech-
niques from functional analysis have been proposed.
A review of the variational approaches can be found
in (Morel and Solimini, 1994), where it is argued that,

knowingly or not, all edge detection methods are vari-
ational. To make short a long story, let us recall that
a digital image is modelled as a real functionu(x),
wherex represents an arbitrary point of the plane and
u(x) denotes the grey-level atx. In practice, an im-
age has discontinuities everywhere, so that some se-
lection process of the “true” discontinuities (or edges)
must be defined. One way to do the selection of the
“right” discontinuities is to smooth previously the im-
age by some convolution or diffusion process, after
which edges are detected as local extrema of the gra-
dient magnitude in the gradient direction (Marr, 1981;



6 Caselles, Coll and Morel

Canny, 1986). Then these points must be connected
to form curves. Another way to do this selection is to
have an a priori model of the image, describing which
kind of discontinuities are expected (and which kind of
regularity). These expectations are translated into an
energy functionalE(u,u0)whereu0 is the original dig-
ital image, andu an arbitrary element of an admissible
class of interpretable images (e.g. with smooth regions
and smooth discontinuity lines). Such a model for im-
ages is to impose (as proposed in (Rudin, 1987)) tou
that it belongs to BV (space of functions with bounded
variation), so that, by a classical theorem in geometric
measure theory, the discontinuity set is rectifiable, i.e.,
contained in a countable union of curves with finite
length.

Our aim here is to propose a different definition of
the basic curve structure of an image, the topographic
map, that is, a complete description of the image by its
levels lines and junctions of level lines. By a complete
description of the image, we mean a description from
which the image can be fully reconstructed. Our ar-
gumentation is as follows. First, we describe the main
physical accidents of the generation process of natural,
“real world” images. Then we deduce from invari-
ance requirements with respect to the accidents what
information is left: the level lines. In two words, the
main reason why level lines appear central is that they
contain all of the image information invariant with re-
spect to local constrast changes. The main operations in
the generation process areocclusion and transparency:
they generate junctions of level lines and leave as only
invariants the pieces of level lines joining them. As a
result, we propose a computational model for singular-
ities of Kanizsa (1979, 1991) theories: T-junctions.
Further technological applications have been devel-
oped since the first version of this paper and will be
discussed at the end of this paper. At the computa-
tional level, the algorithm computing the topographic
map of digital images is extremely simple, since it is
based on the computation of level lines as the topolog-
ical boundaries of level sets (which are computed by a
simple thresholding!).

As a first algorithm analysing the topographic map,
we propose a digital junction detector which works
without previous smoothing of the image. Among
works which have considered algorithms for the detec-
tion of T-junctions in images, we would like to mention
(Alison Noble, 1992), which proposes a rather success-
ful mix of edge detection techniques and mathemati-
cal morphology. Other attempts to obtain T-junctions

from a previous edge detection step are proposed in
(Deriche and Giraudon, 1993; Lindeberg, 1994;
Nitzberg and Mumford, 1990). These methods are all
based on a Gaussian-like convolution followed by an
analysis of edges and are not invariant with respect to
contrast changes. Now, as explained in (Deriche and
Giraudon, 1993; Alvarez and Morales, 1994), the T-
junctions detection methods using a previous smooth-
ing of the image tend to alter the junctions and let the
edges vanish precisely where they are needed: in a
neighborhood of the junction. So such methods ne-
cessitate, after the edge detection, a subsequent fol-
lowing up of the edges to restore the junctions. In
the same way as we do, Romeny et al. (1991) con-
sider geometric properties of isophotes and in particu-
lar their invariance under nonlinear intensity transfor-
mation. They propose to use the gradient of isophotes
curvature as a good candidate for a T-junction detec-
tor. This method requires a previous smoothing of the
image by heat equation and the computation of third
order derivatives. Brunnstr¨om et al. (1992) consid-
ered how junction detection and classification can be
performed in an active visual system. Beymer (1991)
analysed junctions defined as the intersection points of
three or more regions in an image, which is basically
what we also propose but without the need of a previ-
ous gradient computation. Deriche and Blaszka (1993)
proposed efficient models associated to edges, corners
and junctions to extract and characterize these features
directly from the image. In contrast, we do not push
the characterization or classification of T-junctions or
others, but argue that they might be selected among
the more general kind of junctions yielded without any
preprocessing by the topographic map. In particular,
we think that level lines and their junctions can be a
better starting point than edges in the clever non lo-
cal grouping algorithms developed by Heitger and von
der Heydt (1993) and Nitzberg-Mumford (1990) and
in the structural analyses performed by Malik (1987)
and Leclerc-Zucker (1987). In (Alvarez and Morales,
1994) is presented a rigorous theory for detecting cor-
ners. Now, the proposition made therein, that junctions
can be detected as the coincidence of several corners,
does not take advantage of the topological difference
between corners and junctions. Junctions, as meeting
points of level lines, are in fact easier to detect than
corners.

Our plan is as follows. In Section 2 we shall sketch
the process of image formation and show how this pro-
cess leads to invariance requirements for the image
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operators. We shall be particularly interested in the sin-
gularities which are inherent to the image formation
process (T-junctions). In Section 3, we deduce which
are the largest invariant objects in an image, containing
the basic information and being a full representation of
it. They constitute the basic structure of the image:
the topographic map. In Section 4, we formally define
the topographic map and prove it to be the invariant
structure of an image under local contrast changes and
we display some examples. In Section 5 we analyze
the stability properties of the topographic map under
digitization. Section 6 is devoted to the effective com-
putation of level lines and junctions of the image and
to first experiments. We then discuss different visual-
isation strategies for the topographic map. We finish
with a discussion in Section 7.

2. How Natural Images are Generated:
Occlusion and Transparency
as Basic Operations

We shall, following the psychologist and gestaltist
Gaetano Kanizsa, define two basic operations for im-
age generation:occlusion and transparency. In the
same way as in acoustics, where the basic operation,
the superposition of transient waves, is interpreted as
an addition of functions in a Hilbert space,we shall in-
terpret occlusion and transparency as basic operations
on images considered as functions u(x) defined on the
plane.

The description of image generation which follows
is intentionally sketchy, since our aim is to arrive at
invariance requirements from the most straightforward
accidents of image generation. Our description of im-
age generation will at first neglect the digitization ef-
fects (that is, convolution and sampling). Later, in Sec-
tion 5, we shall see how, assuming a simplified model
for image formation with a diffraction limited optical
system, the grey level quantization involved in the digi-
tization process comes to our help to maintain the basic
geometric structure of the scene which is distorted by
the convolution imposed by the finite aperture of the
optical system.

2.1. Occlusion

As common knowledge indicates, we only see parts of
the objects in front of us because they occlude each
other. Let us formalize the basic operation of adding a
new object in front of the scene. Given an objectÃ in

front of the camera, we callA the region of the image
plane onto which it is projected by the camera. We call
uA the grey level image of̃A thus generated, which is
defined in the plane regionA. Assuming now that the
object Ã is added in a real scenẽR of the world whose
image wasv, we observe a new image which depends
upon which part ofÃ is in front of objects ofR̃, and
which part in back. Assuming that̃A occludes objects
of R̃ and is occluded by no object of̃R, we get a new
imageuR̃∪Ã defined by

uR̃∪Ã = uA in A

uR̃∪Ã = v in R2 \ A.
(1)

Of course, we do not take into account in this basic
model the fact that objects iñR may intercept light
falling on Ã, and conversely. In other words, we have
omitted the shadowing effects, which will now be con-
sidered.

2.2. Transparency (or Shadowing)

Let us assume first that one of the light sources is a point
in euclidean space, and that an objectÃ is interposed
between a scenẽR whose image isv and this light
source. We callS̃ the shadow spot of̃A and S the
region it occupies in the image plane. The resulting
imageu is defined by

uR̃,S̃,g = v in R2 \ S

uR̃,S̃,g = g(v) in S.
(2)

Here, g denotes a contrast change function due to
the shadowing, which is assumed to be uniform inS̃.
Clearly, we must haveg(s) ≤ s, because the bright-
ness decreases inside a shadow, but we do not know in
general howg looks. The only assumption for intro-
ducingg is that points with equal grey levels before
shadowing get a new, but the same, grey levelg(s) af-
ter shadowing. Of course, this model is not true on the
boundary of the shadow, which can be blurry because
of diffraction effects or because the light source is not
really reducible to a point. Another problem is thatg in
fact depends upon the kind of physical surface which is
shadowed so that it may well be different on each one
of the shadowed objects. This is no real restriction,
since this only means that the shadow spotS must be
divided into as many regions as shadowed objects in
the scene; we only need to iterate the application of the
preceding model accordingly.
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A variant of the shadowing effect which has been dis-
cussed in perception psychology by Gaetano Kanizsa
(1979) is, following Fuchs (1923),transparency. In the
transparency phenomenon, a transparent homogeneous
object S̃ (in glass for instance) is interposed between
part of the scene and the observer. SinceS̃ intercepts
part of the light sent by the scene, we still get a rela-
tion like (2), so that transparency and shadowing are
equivalent from the image processing viewpoint. If
transparency (or shadowing) occurs uniformly on the
whole scene, the relations (2) reduce to

ug = g(v), (3)

which means that the grey-level scale of the image is
altered by a nondecreasing contrast change functiong.

2.3. Requirements for Image Analysis Operators

Of course, when we look at an image, we do not know a
priori what are the physical objects which have left a vi-
sual trace in it. We know, however, that the operations
having led to the actual image may include formulas
(1, 2). Thus, any processing of the image should avoid
to destroy the image structure resulting from (1, 2).The
identity and shape of objects must be recovered from
the image by means which should be stable with respect
to those operations.Thus, our physical simple model
for image generation already imposes that image anal-
ysis operations should be invariant with respect to any
contrast change, a requirement proposed by Matheron
(1975). We shall say that an operationT on an image
u is contrast invariantif

T(g(u)) = g(T(u)) (4)

for any nondecreasing contrast changeg (classical ex-
amples of contrast invariant operators are erosion, di-
lation, opening and closing).

To further support the previous conclusion, we re-
mark that most light sensors have a nonlinear behavior
and, even worse, have a finite range. Whenever light
is too strong (or too weak), saturation of the sensors
occurs (see Fig. 1). The contrast changes are not only
caused by the sensors but also due to the changes of the
light intensity and the same objects. In other words,
not only there exists a global contrast change when il-
lumination intensity changes but also a contrast change
conditioned by the objects in the scene. This is one of
the informations provided by formulas (1, 2). We shall

Figure 1. Nonlinear response of sensors.

formalize this notion as local contrast change invari-
ance in Section 4, Definition 5.

By the contrast invariance requirement in computer
vision, we by no means suggest that human vision is
insensitive to contrast: It is plain that we do not see
the same objects when we change the contrast of an
image (see e.g. (Illueca, 1995)). In fact, the contrast
invariance requirement is nothing but a theory of infor-
mation requirement in the computational use of digital
images: we assert that even though some level lines can
be below our range of sensitivity, they contain useful
geometric information. Such information is typically
recovered by a viewer by adjusting the contrast of the
image he is looking at. In contrast, the fact that an
“edge” have a strength of say 10 or 30 does not change
at all its geometric contents. Wertheimer (1923) stated
this remark, the irrelevance of grey level, as a basic
principle of Gestalt theory.

In the same way, rotation invariance is generally as-
sumed in Computer Vision tasks, in contrast to our well
known preference for vertical and horizontal lines and
to the fact that our interpretation of objects is influenced
by our recognition and is certainly not rotationally in-
variant.

The evidence of contrast invariance in some tasks of
human shape recognition is only indirect, but strong.
Indeed, Julesz texton theory proposes extrema of cur-
vature (corners, terminators in his terminology) as well
as their orientation as clues to texture detection. In the
same way, Attneave’s theory of human shape recogni-
tion also relies on extrema of curvature and inflexion
points. Now, it is noticeable that both orientation and
curvature are invariant with respect to global and even
local contrast changes in the sense we have defined in
this paper. Indeed, the orientation is given by a vector
tangent to the isophote and is not altered by a contrast
change. In the same way, curvature is computed as
the curvature of the level lines and does not depend on
local contrast.
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3. The Basic Structure for Image Analysis

We callbasic objectsa class of mathematical objects,
simpler to handle than the whole image, but into which
any image can be decomposed and from which it can
be reconstructed. Two classical examples of image
decompositions are

• Additive decompositions into simple waves: Basic
objects of Fourier analysis are cosine and sine func-
tions, basic objects of Wavelet analysis are wavelets
or wavelet packets, basic objects of Gabor analy-
sis are gaussian modulated sines and cosines. In all
of these cases the decomposition is an additive one
and we have argued against it as not adapted to the
structure of images, except for restoration processes.
Indeed, operations leading to the construction of real
world images are strongly nonlinear and the simplest
of them, the constrast change, does not preserve ad-
ditive decompositions. Ifu = u1 + u2, then it is
not true thatg(u) = g(u1) + g(u2) if the constrast
changeg is nonlinear. This objection does not ap-
ply to image compression, because in compression
tasks, the fine scale structure of the image dominates
and this structure is linear: By Shannon sampling
theory, the image must be the result of a fine con-
volution, so that, at fine scale, the image indeed is a
sum of waves.
• Next, we have the representation of the image by a

segmentation, that is, a decomposition of the image
into homogeneous regions separated by boundaries,
or “edges”. The notion of edge as a discontinuity of
the imageu(x) is not against the contrast invariant
axiom. Indeed, ifg is any continuous and increasing
contrast change andu has a discontinuity atx0, then
g(u) is also discontinuous atx0, and conversely. The
notion of discontinuity does not impose a minimum
strength on the jump but, in practice, one cannot
compute them without fixing the strength of con-
strast on the edges, tipically a uniform value for the
whole image. This criterion is not invariant with re-
spect to contrast changes. Indeed∇g(u) = g′(u)∇u
andg′(u) is close to zero when the image is close to
obscurity or saturation. Moreover, classical edge de-
tection basically consists of a convolution ofu with
a kernelk, followed by a differential edge detector.
Now, clearly, ifg is nonlinear,k×(g(u)) 6= g(k×u).

Mathematical morphology offers an alternative: to
decompose an imageu into its binary shadows (or level
sets), that is, we setXλu = {x ∈ R2: u(x) ≥ λ}. The

setsXλu, or simply Xλ, are calledlevel setsof u. An
image can be reconstructed from its level sets by the
formula

u(x) = sup{λ,u(x) ≥ λ} = sup{λ, x ∈ Xλu}. (5)

The decomposition is therefore nonlinear, and reduces
the image to a family of plane sets{Xλ}. Obviously, if
we transform an imageu intog(u(x)), whereg is an in-
creasing continuous function (understood as a contrast
change), then it is easily seen that the set of level sets of
g(u(x)) is equal to the set of level sets ofu. A stronger
invariance is even possible if we note that by formulas
(1, 2) the contrast change can affect only the connected
parts of the level sets ofu. This contrast invariance will
be precisely defined in the next section. Let us begin
by defining the topographic map of an image.

Let Ä be a domain inR2. Let u:Ä → R be an
image, i.e., a bounded measurable function.

Definition 1. Given an imageu, we call upper level
set ofu any set of the form [u ≥ λ] whereλ ∈ R.

Definition 2. (Choquet, 1966) LetX be a topological
space. We say thatX is connected if it cannot be written
as the union of two nonempty closed (open) disjoint
sets. A subsetC of X is called a connected component
if C is a maximal connected subset ofX, i.e., C is
connected and for any connected subsetC1 of X such
thatC ⊆ C1, thenC1 = C.

Definition 3. The upper topographic map of an image
is the family of the connected components of the level
sets ofu, [u ≥ λ], λ ∈ R.

Note that, by (5), the upper topographic map asso-
ciated withu uniquely determines the functionu. We
could have also used the lower level sets ofu, [u ≤ λ].

We call level linesof u the boundaries of the upper
level sets ofu. If we assume that we can determine
the level sets ofu from their boundary level lines, then
we shall refer to the topographic map ofu as the fam-
ily of level lines ofu. This is the case if our image is
such that, for each level set [u ≥ λ], λ ∈ R the bound-
ary ∂[u ≥ λ] is made of a finite or countable union
of closed Jordan curves. Then the oriented level lines
perfectly define level sets, and, hence also the function
u. Recall that a continuous curve is called a Jordan
curve if it has no selfintersection, except possibly at its
endpoints (Examples: a circle, a segment, a parabola).
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This restricts our functional model for continuous im-
ages but does not represent any restriction for discrete
or digital images. Indeed, in the discrete framework (or
in any continuous interpolation framework for images),
we can associate with each level set a unique finite set
of oriented Jordan curves which define its boundary
and, conversely, the level set is uniquely defined from
those Jordan curves. We shall call themlevel curves of
the image. In the following, we assume that these level
curves exist, be it because the image is discrete or, e.g.,
in an adequate function space.

Definition 4. If u belongs to a function space, such
that each connected component of a level set is bounded
by a countable or finite number of oriented Jordan
curves, we call topographic map the family of these
Jordan curves.

Remark. When in the following we display the topo-
graphic map, we only display the Jordan curves, with-
out specifying their levelλ or orientation. Now, in
order to ensure reconstruction ofu, we of course need
this information.

If we assume that the level sets are closed Cacciopoli
subsets ofR2, that is, closed sets whose boundary has
finite length, then its essential boundary is a countable
or finite union of closed Jordan curves and, possibly,
a set of nullH1 Hausdorff measure (see (Caselles and
Morel, —)). In this case, we can describe the con-
nected components of level sets by their boundary (see
(Caselles and Morel, —)). This is an interesting case,
since it covers the case of functions of bounded vari-
ation (or simply,BV functions) which have been fre-
quently used as functional image models for purposes
of denoising, edge detection, etc. (Rudin et al., 1992).
If u is a function of bounded variation,u ∈ BV(Ä),
then almost all level sets [u ≥ λ] are closed Caccioppoli
sets (Evans and Gariepy, 1992). Then, the topographic
map ofu can be described in terms of the level lines of
u and Formula (5) holds as well.

Two objections.Before starting with the mathemati-
cal model, let us discuss two serious objections which
were raised by auditors and readers of a preliminary
version of the present paper. The first is concerned by
“shape from shading” models. Human performance in
recovering shape from shading has been demonstrated
in phenomenological rigorous experiences. Now, if
the image is known up to a contrast change, then there
is no way of recovering the 3D shapes from a single

view by the “shape from shading equation”. Contrast
invariance is nontheless a sound assumption when we
look at a photograph of, say, a statue. In that case, we
ignore lighting and photographying conditions. Thus,
the reconstruction of the 3D shape from a photograph is
in theory impossible without some further information.
Archeologists know this well, since they are not con-
tented with photographs of objects found, but ask for
a good conventional drawing. Lab. phenomenological
experiments are a different story, since the subject is
placed in known lighting conditions, so that the contrast
invariance assumption is not valid anymore.

Another objection of a different kind is whether level
lines can exist for textured image and yield a useful in-
formation. The answer is definitely yes. No matter
how complicated the patterns of the level lines may
look, they reflect the structure of the texture. We have
commented right above that level lines of a digital im-
age canalwaysbe computed (see e.g. Fig. 6.3 for a
detail of a textured image.) Texture classification by the
study of “granularity” is nothing but the exploration of
the structure of small level sets, the boundary of which
are small level lines (Serra, 1982).

4. Invariance Properties of the Upper
Topographic Map

We now prove that the topographic map is a contrast
invariant description of an image. We work in the con-
tinuous framework but all we shall say is obviously
true for digital images. LetÄ be a domain of the plane
(e.g., a rectangle). Given an imageu:Ä→ R, λ ∈ R
andx ∈ [u ≥ λ], we shall denote bycc([u ≥ λ], x) the
connected component of [u ≥ λ] in Ä containingx.

Definition 5. We say that a multivalued maph:Ä ×
R→ P(R) is a monotone multifunction if

(MM1) h(x, λ) is an interval ofR for any x ∈ Ä and
λ ∈ R.
Let h−(., λ) = inf{µ:µ ∈ h(x, λ)}, h+(., λ) =

sup{µ: µ ∈ h(x, λ)}.
(MM2) If λ > µ, then eitherh(x, λ) = h(x, µ) or

h+(., µ) ≤ h−(., λ).
(MM3) ∪λ∈Rh(x, λ) is an interval ofR.

Definition 6. Let u:Ä → [a,b] be a given image
and let{Xλ: λ ∈ [a,b]} be the family of its level sets.
We shall say that a multivalued mappingh:Ä×R→
P(R) is a local contrast change foru if
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(H1) h is a monotone multifunction such that for all
λ ∈ R, h−(., λ), h+(., λ) are measurable inÄ.

(H2) If u(x) < λ then h+(x,u(x)) = h−(x, λ) <
h+(x, λ), x ∈ Ä, λ ∈ R.

(H3) h+(x, λ) = h+(y, λ) for all x, y belonging to the
same connected component of [u ≥ λ] , λ ∈ R.

(H4) Let v(x) = h+(x,u(x)). If y ∈ cc([v ≥ µ], x)
whereµ ∈ h(x, λ) x ∈ Ä,λ ∈ R, thenh(x, λ) =
h(y, λ).

Definition 7. (Caselles et al., 1997) Letu:Ä→ [a,b]
be an given image. We shall say thatv is a local repre-
sentative ofu if there exists some local contrast change
h such thatv(x) = h+(x,u(x)), x ∈ Ä.

The next proposition states the fact, together with
some other information, that local contrast changes pre-
serve the upper topographic map and, therefore, also
the topographic map.

Proposition 1. Let u:Ä → [a,b] and let v(x) =
h+(x,u(x)), x ∈ Ä, be a local representative of u.
Then

(i) v(x) = sup{h+(x, λ): x ∈ Xλu}, x ∈ Ä. We
have that x∈ Xλu if and only if x ∈ Xh(x,λ)v,

x ∈ Ä, λ ∈ R.
(ii) v is a measurable function.

(iii) Let 0 (resp. 0′) be a connected component of
[v ≥ µ] (resp. [u ≥ λ]) containing x andµ =
h+(x, λ). Then0 = 0′.

(iv) For each connected component X of[u ≥ λ] there
existsµ and a connected component Y of Yµ such
that X= Y and conversely.

Let us state a converse statement to Proposition 1: If
two images have the same upper topographic map then
they are related by a local contrast change. Images
can be considered as equivalence classes of functions,
modulo local contrast changes. Proofs of Proposition
1 and Theorem 1 are given in the Appendix.

Theorem 1. Let u, v:Rn → R be two bounded
measurable functions(images) whose upper level sets
have, at most, countably many connected components.
Let Xλ, respectively Yλ, be the families of the level sets
of u, respectivelyv. Given a level set Xλ (or Yλ) and a
point x ∈ Rn, suppose that for each connected compo-
nent X of Xλ there existsµ and a connected component
Y of Yµ such that X= Y and a converse statement with

Xλ and Yµ interchanged. Then there exists a local con-
trast change g(x, λ) such thatv(x) = g+(x,u(x)).

In the next section, we shall study the stability of the
topographic map during the process of image forma-
tion. It is a basic and stable tool which permits to ma-
nipulate the image (Masnou and Morel, 1997, 1998a).
In (Caselles et al., 1998), a recovery by interpolation
of level lines lost in the quantization porcess is inves-
tigated. An intuitive interpretation of the topographic
map is contained in the following glossary:

• Connected components of level sets= Boolean
union of physical objects.
• Level lines=Concatenations of pieces of boundaries

of physical objects.
• Aligned junctions= Occlusion boundary.

Image 2.4 displays the topographic map associated
to Image 2.2. We immediately see that it is a com-
plicated object as far as visualization is concerned. In
fact, this experiment shows that even an apparently
simple image contains highly structured and abundant
information. This information cannot be considered
as “noise”. In Image 2.5 we show a partial view of
the same topographic map by displaying only the level
lines multiples of 10. Image 2.1 is an original image
and Image 2.3 is its topographic map in the same way.

5. Stability of the Topographic Map

Given an imageu, i.e., a bounded measurable function
which we shall assume to be defined inR2, the digiti-
zation process transforms it into a discrete versionU
defined on a lattice, sayZ2. What happened to the basic
structure ofu? Have the level sets, level lines and junc-
tions ofU any connection to the corresponding facts at
the continuous level?

We shall describe the digitization processu→ U as
the combination of the following operations:

1. Convolution with a filterG representing the point
spread function of the optical apparatus used to ac-
quire the image. We shall assume either thatG is
rotation invariant or that it has a square symmetry.
Its size will be given in terms of the parameterr1

described below.
2. Scanning modelled by a convolution (i.e., a moving

average centered on the pixel) with a square pattern
of the intensity over a regionQ (the size of the



Figure 2. Experiments on the topographic map. Image 2.1 and Image 2.2 are the original grey-level images. Image 2.3 shows the topographic
map of Image 2.1, for levels which are multiples of 30. Image 2.4 displays the topographic map associated with Image 2.2, for all level lines
multiples of 2. In Image 2.5, we can see the topographic map of Image 2.2 but showing only the level lines for levels which are multiples of 10.
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pixel). This defines an operatorAQ(u) = χQ × u.
Sampling will be modelled as the application of a
Dirac combS.

3. A uniform quantization operator, defined by
E(x) = k1 if x ∈](k− 1/2)1, (k+ 1/2)1].

Hence, we may writeU = E S AQG(u).
If the optical system is linear, translation invariant,

and the light sources incoherent, then the physical im-
age (the observed image intensity) at a pointx ∈R2 is

ũ(x) =
∫
R2

G(x − ξ)u(ξ)dξ (6)

whereG(x) is the incoherent point spread function and
u is the intensity distribution of the radiation field. In
the case of a circular aperture of diametera in a narrow
band incoherent light having center wavelengthλ, the
point-spread function is ((Castleman, 1996) chap. 15,
(Hecht and Zajac, 1986), chap. 10)

G(x) =
(

2
J1
(
π r

r0

)
π r

r0

)2

(7)

whereJ1(r ) is the first order Bessel function of the first
kind, r is the radial distance in the image plane and

r0 = λz

a
, (8)

z being the distance from the lens to the image plane.
In case of a square aperture [−a,a] × [−b,b]

G(x1, x2) =
sin2

(
π x1

x01

)(
π x1

x01

)2 sin2
(
π x2

x02

)(
π x2

x02

)2 (9)

where x01 = λz
2a , x02 = λz

2b ((Castleman, 1996),
chap. 15, (Hecht and Zajac, 1986), chap. 10).

In view of the previous discussion, we shall assume
that the optical system is described by a convolution
operator with a positive kernelG. Moreover, we shall
assume thatG is either rotationally invariant or has
a separable representation like the one in (9). Let us
finally discuss the size of the kernel and its relation with
resolution of the imaging system ((Castleman, 1996),
chap. 15, (Hecht and Zajac, 1986), chap. 10).

By resolution we mean the ability of the imaging
system to reproduce the contrast of objects of various
size. By contrast we mean the differences in intensity
within an object or between the object and the surround-
ing background. According to the Rayleigh criterion

of resolution, two point sources can be resolved if they
are separated, in the focal plane, by the distanceδ = r1

wherer1 is the first zero ofH , i.e., of the first order
Bessel function, i.e.,r1 = 1.22r0, r0 = λz/a wherez is
the distance from the lens to the image plane anda is the
diameter of the circular aperture.r0 is called the radius
of the Airy disk. A common way to specify the resolu-
tion of an imaging system is by the Rayleigh criterion.
Notice that the diameter of the PSF is given, to a good
approximation, by the Rayleigh distance ((Castleman,
1996), chap. 15, (Hecht and Zajac, 1986), chap. 10).
The optical cutoff frequency in the image plane co-
ordinate system of a camera with circular aperture of
diametera is

fc = a

λz
= 1

r0

assuming narrow-band incoherent light with center
wavelenghtλ. Let F = 1/T be the highest spatial
frequency of interest that is present in the image. Thus
T is the period of the smallest detail of interest. As a
rule of thumb, the diameterW of the scanning spot (the
imaging system PSF) should be no larger thatT/2, i.e.,

W ≤ T/2

Thus the scanning spot would fit within one half-cycle
of the highest frequency sine wave.

But independently of the frequencies present in the
object, the imaging system constraints the maximum
frequency to be no higher than the cutoff frequencyfc

of the optical transfer function of the primary imaging
lens. According to Nyquist criterion, we set the folding
frequency, which is half of the sampling frequency,
equal to fc. Thus, the Nyquist criterion gives us 2fc as
sampling frequency. This places the pixel spacing at

1

2 fc
= λ f ]

2
= r0

2
= 0.5r0

The Rayleigh criterion would give as sample spacing
one-half of the Rayleigh distance. Then pixels will fall
alternately upon and between (just resolvable) point
sources separated by that distance in the image. In this
case, point sources can be resolved in the digital image.
The finest possible pixel spacing is thus ((Castleman,
1996), chap. 15)

0.61r0.

According to the Rayleigh criterion, the folding fre-
quency is at 82% of the OTF cutoff frequencyfc.
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Aliasing is possible but it is unlikely to be significant
in practice ((Castleman, 1996), chap. 15).

5.1. Digitization of Level Sets

Let us see the effect of the operators involved in the
generation of physical images on the level sets ofu.
Taking realistic assumptions on the optical digital sys-
tem, we shall give estimates in terms of pixels of the
distance by which a level line can move in the digitiza-
tion process. ByµL we denote the Lebesgue measure
in R2. For eachr > 0, we shall denote byBr the open
ball of radiusr centered at the origin of coordinates.
Recall the definitions of erosion and dilation of a subset
X ⊆ R2 by a structuring elementY ⊆ R2

X ª Y = {x ∈ R2: x + Y ⊆ X}
X ⊕ Y = {x ∈ R2: (x + Y) ∩ X 6= ∅}.

Recall also that

R2 \ (X ª Y) = (R2 \ X)⊕ Y. (10)

If Y = Bε , ε > 0, thenX ⊕ Bε = {x ∈ R2: d(x, X) <
ε}.

Let G be the convolution operator whose kernel
G(x) is a positive radially symmetric function such
that ∫

R2
G(x)dx = 1. (11)

Let ε > 0 and letη > 0 be such that∫
R2\Bε

G(x)dx = η. (12)

Note that ifG is of compact support contained inBε
then we may takeη = 0.

Lemma 1. Let B be a measurable subset ofR2.
Then,

[G(χB) > η] ⊆ B⊕ Bε (13)

and

Bª Bε ⊆ [G(χB) ≥ 1− η]. (14)

Proof: If x 6∈ B⊕ Bε , then using (10) we have(x +
Bε) ∩ B = ∅. Then, settingχB(x) = 1 if x ∈ B,
χB(x) = 0, otherwise,

G(χB)(x) =
∫
R2

G(x − y)χB(y)dy

=
∫

x+Bε

G(x − y)χB(y)dy

+
∫
R2\(x+Bε )

G(x − y)χB(y)dy

=
∫
R2\(x+Bε )

G(x − y)χB(y)dy

≤
∫
R2\Bε

G(z)dz= η

Thus

R2 \ (B⊕ Bε) ⊆ [G(χB) ≤ η]

which gives (13).
If x ∈ Bª Bε , thenx + Bε ⊆ B. Hence

G(χB)(x) =
∫

x+Bε

G(x − y)χB(y)dy

+
∫
R2\(x+Bε )

G(x − y)χB(y)dy

≥
∫

x+Bε

G(x − y)χB(y)dy

=
∫

x+Bε

G(y− x)dy

=
∫

Bε

G(z)dz= 1− η

and (14) follows. 2

Consequence.Let u be an image andλ′ ∈ R. Then

G(u) ≥ λ′G(χ[u≥λ′]
) ≥ λ′(1− η)χ[u≥λ′]ªBε . (15)

Hence [u ≥ λ′] ª B(0, ε) ⊆ [G(u) ≥ λ] whereλ =
λ′(1− η).

To prove a similar inclusion in the other direction,
let M = sup{|u(x)|: x ∈ R2}. Let us writeξ = 1− η
which is a number close to 1. Observe thatM − u ≥
(M − λ0)χ[u<λ0] . Applying G to both sides and using
thatG(1) = 1 and (15) we get that

G(u) ≤ M − (M − λ0)ξχ[u<λ0]ªBε (16)
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Now assume thatG(u)(x) > λ, λ < M . Let λ0 be
such that

M − λ
(M − λ0)ξ

= 1, (17)

that is,λ0 = M − M
ξ
+ λ

ξ
. Then, from (16), it follows

that

χ[u<λ0]ªBε (x) <
M − λ

(M − λ0)ξ
= 1.

Henceχ[u<λ0]ªBε (x) = 0, i.e.,x ∈ [u ≥ λ0] ⊕ Bε . We
have shown that

[G(u) > λ] ⊆ [u ≥ λ0] ⊕ Bε (18)

whereλ andλ0 are related by (17). Obviously, ifλ =
M andG(u)(x) ≥ M then alsou ≥ M . Thus we have
proved the following Lemma.

Lemma 2.

(i) Letλ′ ∈ R, λ = λ′(1− η), λ0 = λ′ − ηM
1−η . Then

[u ≥ λ′] ª Bε ⊆ [G(u) ≥ λ] (19)

and

[G(u) > λ] ⊆ [u ≥ λ0] ⊕ Bε . (20)

(ii) In a similar way, if λ0 < λ′ − ηM
1−η

[G(u) ≥ λ] ⊆ [u ≥ λ0] ⊕ Bε . (21)

As a consequence, we obtain the following result.

Corollary 1. (Stability of step discontinuities) Let u
be an image. We shall assume that[u ≥ λ] is a constant
set D for allλ ∈ [a,b]. Let k≥ 0 and

η < η∗ = b− a− k

M + b− a
. (22)

Then

D ª Bε ⊆ [G(u) ≥ b(1− η)]
⊆ [G(u) > a(1− η)+ Mη + k]

⊆ D ⊕ Bε .

(23)

If k > 0 we may write[G(u) ≥ a(1− η) + Mη + k]
instead of[G(u) > a(1− η)+ Mη + k]. If G(x) has

compact support in Bε, then we may takeη = 0 and,
if k satisfies(22), we have

D ª Bε ⊆ [G(u) ≥ b] ⊆ [G(u) > a+ k]

⊆ D ⊕ Bε .

The value ofk may help to maintain separated two level
sets so that the quantization step does not destroy them.

Proof: The first inclusion in (23) is a consequence
of Lemma 2. The second inclusion follows from (22).
Observe that

[G(u) > a(1− η)+ Mη + k]

⊆ [G(u) > a(1− η)+ Mη]

Finally, the last inclusion in (23) follows from the above
observation and Lemma 2. Our last remark follows
from the observation that

[G(u) ≥ a(1− η)+ Mη + k]

⊆ [G(u) > a(1− η)+ Mη]

whenk > 0. 2

Practical Consequences.If a level setX is associated
with a jump of sufficient size, then after convolution
with a kernel of sizeε, a level set ofG(u)will be located
at a Hausdorff distanceε of X. To get a clearer idea let
us illustrate it with a numerical example. We recall that
the pixel spacing is 0.5r0 = 1

2ε. Thusε is interpreted
as a two pixel distance. Assume that we do not want to
destroy level sets which have a superliminal contrast.
Then, assumingM = 255, we shall takeb− a = 15,
k = 1 (All are standard values in digital processing
devices). If we computeη∗ = η15,1 = b−a−k

M+b−a =
14
270 = 0.0518. Then we need to chooseε such that∫

R2\Bε
G(x)dx = 0.0518

We recall thatG(x) = (2
J1(π

r
r0
)

π r
r0

)2 where r = |x|.
This amounts to 5 pixels as our bestε above. Assume
b− a = 15, k = 5, thenη = b−a−k

M+b−a = 10
270 = 0.037.

In the worst case, the level set may have displaced up to
say 6 pixels. Finally, assumeb− a = 10,k = 2, then
η = b−a−k

M+b−a = 8
265 = 0.03. This amounts to around 8

pixels in the worst case.
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If b−a = 30,k = 0,η∗ = η30,0 = b−a−k
M+b−a = 30

285 =
0.105263157 we obtainε = 3,5 pixels. Ifb−a = 50,
k = 0, η∗ = η50,0 = b−a

M+b−a = 50
305 = 0.163934426.

We almost get toε = 2 pixels.
Let us finally see the effect of the scanning operator.

Lemma 3. Let u be an image. We assume that[u ≥
λ] is a constant set D for allλ ∈]a,b]. Then

D ª Q ⊆ [ AQ(u) ≥ b]

⊆ [ AQ(u) > a] ⊆ D ⊕ Q,
(24)

i.e., the level set is displaced at most one pixel by the
scanning process.

Proof: Let d be the size of the pixel, i.e., the radius
of the square representing the pixel,x be such that
d(x,R2 \ [u ≥ b]) ≥ d. Then

AQ(u)(x) = 1

Area(Q)

∫
x+Q

u(y)dy≥ b (25)

HenceD ª Q ⊆ [ AQ(u) ≥ b]. Now if d(x, D) ≥ d,
then

AQ(u)(x) = 1

Area(Q)

∫
x+Q

u(y)dy≤ a. (26)

It follows that [AQ(u) > a] ⊆ D ⊕ Q. 2

Conclusion. We see from the former Lemma that if
an imaging system only consists of a scanning process
followed by sampling, then displacement of level lines
will be of at most two pixels on both sides of physi-
cal ‘edges’. Corollary 1 predicts a larger displacement
(up to 8 pixels in the worst case) for optimal imaging
systems like astronomic observation devices. Now, re-
turning to images generated by CCD cameras of the
today’s technology or scanners, it is easy to check that
the ratio between optimal pixel spacing (from the opti-
cal viewpoint) and actual pixel spacing is more than 10
(this is even the case for earth observation satellites, like
SPOT). Thus it is expected that each ‘edge’ in the im-
age generates about four or five level lines at a one pixel
distance from each other. In other words, the pixel dis-
placement predicted by Corollary 1, though existing,
is negligible as a displacement factor for all purposes
digital imaging systems. This is easily checked in ALL
topographic maps displayed here. In fact, a wider width
of ‘edges’ in terms of number of level lines is only ob-
served where the image is defocussed. The defocussing

can be evaluated by Lemma 3 again, since the defocus
kernel is compactly supported, in general some disk or
square.

5.2. Digitization of Junctions

We must be able to define the notion of analog and
discrete Junction so that the digitization process applied
to an ‘analog Junction’ creates a ‘discrete Junction’.
We shall assume that both the convolution kernel and
the scanning kernel have sizeε, i.e., we assume that
Q ⊆ B(x, ε).

Definition 8. Let δ, ρ, R > 0. Let u:Ä → R be
a bounded measurable function. We say that a point
p ∈ Ä is an analog Junction (at resolutions given by
δ, R, ε, ρ > 0) if

(i) it is locally stable in the following sense: there ex-
ist real numbersα(p), β(p) with α(p) ≤ β(p)−
2δ and connected componentscc([u < α(p)]),
cc([α(p)+ δ ≤ u < β(p)− δ]), cc([β(p) ≤ u])
of the sets [u < α(p)], [α(p)+δ ≤ u < β(p)−δ],
[β(p) ≤ u] such that

(cc([u < α(p)])ª B3ε) ∩ B(p, R) 6= ∅
(cc([α(p)+ δ ≤ u < β(p)− δ]) ª B3ε)

∩ B(p, R) 6= ∅
(cc([β(p) ≤ u])ª B3ε) ∩ B(p, R) 6= ∅

(ii) the setscc([u < α(p)]) ª B3ε , cc([α(p) + δ ≤
u < β(p)− δ])ª B3ε andcc([β(p) ≤ u])ª B3ε

are connected by arcs and have an area≥ ρ.

Definition 9. Letu be an image and letU be its digital
version. We say that there is a discrete Junction (at level
of resolutionδ1, ρ1, R> 0) atp ∈ Z2 if there exist real
numbersα1(p), β1(p) with α1(p) ≤ β1(p) − δ1 and
connected componentscc([U < α1(p)]), cc([α1(p) ≤
U < β1(p)]), cc([β1(p) ≤ U ]) of the sets [U <

α1(p)], [α1(p) ≤ U < β1(p)], [β1(p) ≤ U ] with
area≥ ρ1 such that

cc([U < α1(p)]) ∩ B(p, R) 6= ∅
cc([α1(p) ≤ U < β1(p)]) ∩ B(p, R) 6= ∅

cc([β1(p) ≤ U ]) ∩ B(p, R) 6= ∅
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Remark. The conditions defining analog and discrete
Junctions require some comments. In the definition of
analog Junction we assume that ’three objects’ arrive
at a pointp so that the point is a multiple singularity.
Moreover, in a neighborhood of the junction, the ob-
jects have some interior. This is required if we want
to find a trace of the set near the pointp after digitiza-
tion (convolution with a kernel of size or ‘aperture’ε).
Our assumptions are related to the notion of regular
model which in the context of mathematical morphol-
ogy guarantees that the discrete version of a connected
set belonging to the regular model will remain a digital
connected set ((Serra, 1982),Theorem VII.2, p. 216).

Lemma 4. Let p be an analog Junction on a con-
tinuous image u:Ä → [0,M ] at resolutions given by
δ, R, ε, ρ > 0. Let U be a digitization of u. Assume
that 2Mη

1−η ≤ δ, whereη is given by(12). Then there ex-
ists a digital junction at p, possibly at a different level
of resolution.

Proof: If x ∈ [u < α(p)]ªBε , thenB(x, ε) ⊆ [u <
α(p)], hence∫
R2

G(x − y)u(y)dy=
∫

B(x,ε)
G(x − y)u(y)dy

+
∫
R2\B(x,ε)

G(x − y)u(y)dy

< α(p)(1− η)+ Mη,

If x ∈ [α(p)+ δ ≤ u < β(p)− δ] ª Bε , then∫
R2

G(x − y)u(y)dy≥ (α(p)+ δ)(1− η)− Mη.

and∫
R2

G(x − y)u(y)dy< (β(p)− δ)(1− η)+ Mη.

If x ∈ [β(p) ≤ u] ª Bε then∫
R2

G(x − y)u(y)dy≥ β(p)(1− η)− Mη

Since 2Mη
1−η ≤ δ, we have thatα(p)(1− η) + Mη ≤

(α(p)+δ)(1−η)−Mη and(β(p)−δ)(1−η)+Mη <
β(p)(1− η)− Mη. Letα1(p) = α(p)(1− η)+ Mη,
β1(p) = β(p)(1− η)−Mη, α2(p) = (α(p)+ δ)(1−
η) − Mη, β2(p) = (β(p) − δ)(1− η) + Mη. Notice

we may takeδ1 ≥ δ. From the above inequalities, we
deduce

[u < α(p)] ª Bε ⊆ [G(u) < α1(p)]

[α(p)+ δ ≤ u < β(p)− δ] ª Bε

⊆ [α2(p) ≤ G(u) < β2(p)]

[β(p) ≤ u] ª Bε ⊆ [β1(p) ≤ G(u)]

Arguing for the first of these level sets, we have that

[u < α(p)] ª B2ε ⊆ [U < α1(p)], (27)

a priori also

[u < α(p)] ª B3ε ⊆ [U < α1(p)]. (28)

Now,

cc([u < α(p)])ª B3ε ⊆ cc([u < α(p)]ª B3ε) (29)

and we conclude thatcc([U < α1(p)]) has an area
≥ ρ. Similarly for the other two sets. Concerning the
connectedness assertion, letx, y ∈ cc([u < α(p)])ª
B3ε . Then there exists a curve0 ⊆ cc([u < α(p)])ª
B3ε joiningx andy. Let us denote byQ a generic pixel,
i.e., a square inR2 which we shall consider closed in
the argument below. We shall identify, by notation,
Q with its corresponding sampling point by the Dirac
comb. Let0̃ = {Q: Q∩0 6= ∅}. Then0̃ is connected
(4-connected). LetQ ∈ 0̃. Since the diameter of the
pixel is less thanε we have that

Q ⊆ 0 + B(0,2ε) ⊆ cc([u < α(p)])ª Bε

⊆ [G(u) < α1(p)].

It follows that AQG(u) < α1(p) on Q. Hence
Q ∈ [U <α1(p)]. Therefore0̃ ⊆ [U <α1(p)]. We
have shown that the set [U < α1(p)] contains an
arcwise-connected subsetcc([u < α(p)])ª B3ε of
area≥ ρ which, according to (i) intersectsB(p, R).
Thus cc([U < α1(p)]) ∩ B(p, R) 6= ∅. A similar
result holds for the other two sets. 2

Remark. In the same line of argument as the conclu-
sions we derived for level sets, if the scanning dom-
inates the image formation process, we can expect a
displacement of about two pixels on the location of
the digital junction with respect to the position of the
analogous one.
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5.3. Phenomenological Interpretation of the
Topographic Map

Since the image formation, either continuous or digi-
tal, may include anunknown and non recoverable lo-
cal contrastchange, we have reduced the image to
its parts invariant with respect to contrast changes,
the connected components of the level sets of the im-
age. (This invariance requirement was first observed
by Wertheimer (1923) who argued that the grey lev-
els in an image are not physically observable.) For
digital images (or for continuous ones, if we assume
an adequate functional model) the level sets may be
described by their boundaries which we called level
curves. Thus, for computational purposes, the topo-
graphic map of an image may be described by the fam-
ily of its level curves. Let us discuss on an example
how the level lines structure reveals the object occlu-
sion structure.

Figures 3–7 is an elementary example of image gen-
erated by occlusion. A grey disk is partly occluded by
a darker square (a). In (b) we display a perspective

Figure 3. An elementary example of image generated by occlusion.

Figure 4. Choice of the parameters. Image 4.1 displays the result
of the Junction Detection Algorithm applied to Image 2.2 with area
thresholdn = 40 and grey level thresholdb = 2 with (in white) small
“T”s indicating locations of detected junctions. Image 4.2 displays
the same experiment but using an area thresholdn = 100. We can
compare these two results on the same image and we can see the
effects on the number of junctions found.

view of the image graph. In (c) and (d) we see two of
the four distinct level sets of the image, the other ones
being the empty set and the whole plane. It is easily
seen that none of the level sets (c) and (d) corresponds
to physical objects in the image. Indeed, one of them
results from their union and the other one from their
set difference. The same thing is true for the level lines
(e) and (f): they appear as the result of some “cut and
paste” process applied to the level lines of the original
objects. Following Kanizsa, we define significant parts
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Figure 5. Examples of junctions. Image 5.1 is the result of the ap-
plication of the Junction Detection Algorithm with an area threshold
n = 40 and grey level thresholdb = 2. The same parameters are
used for SPOT Image 5.2.

of images as the result of a segmentation of level lines
by T-junctions. The level lines (e) and (f) represent two
level lines at two different levels and in (g) we have su-
perposed them in order to put in evidence how they are
organized with respect to each other and the resulting
T-junctions. We have displayed one of them as a thin
line, the other one as a bold line and the common part
in grey.

Remark. We shall not go into the classification of
Junctions (asT,Y, X, τ, . . .-junctions). For a more de-
tailed discussion we refer to (Caselles et al., 1995).

Let us summarize the main invariance argument.

Invariance Argument

• Since the image formation may include an unknown
and non recoverable contrast change: We can re-
duce the image to its parts invariant with respect to
contrast changes, that is, the level lines.
• Since,every time we observe two level lines (or more)

joining at a point, this can be the result of an occlu-
sion or of a shadowing,we must break the level lines
at this point: indeed, the branches of level lines ar-
riving at a junction are likely to be parts of different
visual objects(real objects or shadows). As a conse-
quence, every junction is a possible cue to occlusion
or shadowing.

This Invariance Argument needs absolutely no as-
sumption about the physical objects, but only on the
“final” part of image generation by contrast changes,
occlusions and shadowing. The conclusion of In-
variance Argument coincides with what is stated
by phenomenology (Kanizsa, 1979, 1991). Indeed,
Gaetano Kanizsa proved the main structuring role of
junctions (T and X-junctions) in our interpretation
of images.

6. Computation and Visualization of the
Topographic Map

6.1. Computation of Level Lines and Junctions

In this section, we discuss how level lines and junctions
can be computed in digital images and we present ex-
perimental results.

In a digital image, the level sets are computed by
simple thresholding. A level set{u(x)≥ λ} can be im-
mediately displayed in white on black background. In
the today’s technology,λ=0,1, . . . ,255, so that we
can associate with an image 255 level sets. The Jordan
curves limiting the level sets are easily computed by
a straightforward contour following algorithm, which
yields chains of vertical and horizontal segments lim-
iting the pixels. In the numerical experiments, these
chains are represented as chains of pixels by simply
inserting “boundary pixels” between the actual image
pixels.

According to Definition 9, in the discrete framework,
we define “junctions” in general as every point of the
image plane where two level lines (with different lev-
els) meet (in a neighborhood of the point). In the ex-
periments below, we take into account junctions if and
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Figure 6. Image 6.1 is Image 2.1 in which we have removed all connected components whose area is less than 80 pixels. Image 6.2 displays
the level lines of Image 6.1 which are multiples of 20. Image 6.3 is the original image and Image 6.4 shows the Image 6.3 after removing all
connected components of area less than 100 pixels. Image 6.5 and Image 6.6 display the level lines of Image 6.3 and Image 6.4, respectively,
which are multiples of 30.



Figure 7. Image 7.1 is the original image and in Image 7.2 is Image 7.1 after removing all connected components whose area is less than 80
pixels. Image 7.3 shows the level lines of Image 7.2 which are multiples of 20. Image 7.4 is Image 2.2 after removing all connected components
of area less than 40 pixels. Image 7.5 displays the level lines of Image 7.4 which are multiples of 10. We note that we can compare this last
image with Image 2.5 which gives us the level lines multiples of 10 for the original image.
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only if the area of the occulting object, the apparent
area of the occulted object and the area of background
are large enough.

Discrete Junction Detection Algorithm

• Fix an area thresholdn (in practice,n = 40 pixels
seems sufficient to eliminate junctions due to sam-
pling effects) and a grey level thresholdb (in practice:
b = 2 is sufficient to avoid grey level quantization
effects). These values are more optimistic than the
ones computed in a ‘worst case’ in Section 5.2.
• At every pointx where two level lines meet: define
λ0 < µ0 the minimum and maximum value ofu in
the neighboring pixels ofx.
• We denote byLλ the connected component ofx in the

set{y,u(y) ≤ λ} and byMµ the connected compo-
nent ofx in the set{y,u(y) ≥ µ}. Find the smallest
λ ≥ λ0 such that the area ofLλ is larger thann. Call
this valueλ1. Find the largestµ, λ1 ≤ µ ≤ µ0,
such that the area ofMµ is larger thann. We call
this valueµ1. If µ1 − λ1 ≥ 2b, and if the set
{y, µ1−b ≥ u(y) ≥ λ1+b} has a connected compo-
nent containingx with area larger thann, then retain
x as a valid junction. In Fig. 4 and 5, we display the
computation of junctions on different images.

We thank the anonymous second referee for the fol-
lowing remark: “The discrete junction algorithm only
appears to work when there is a variation in background
contrast; this induces a “T” junction between the level
lines of the background and the level lines bounding
the foreground object; when there is no background
variation, there is no junction (according to our defini-
tion) and nothing is signaled by our algorithm.” This
observation is quite true. In fact, the boundary of the
foreground object will have T-junctions in the inside if
it is well-contrasted itself and T-junctions on the out-
side if the background has some contrast. Thus, and
although we have seen no instance of it in experiments,
an occluding boundary without T-junctions is possible
if both foreground and background are strictly constant
in grey level.

6.2. Visualisation of the Topographic Map

In this section, we discuss several strategies for visual
inspection of the topographic map of a digital image.
Clearly, we can see on a screen all level lines of a dig-

ital image by simply zooming the image by a factor 2.
This method, however, yields in a good quality im-
age a dense set of lines, so that the structure of the
topographic map is too rich to be apparent. Thus, we
propose to define strategies for partial, but structured
presentation of the topographic map. In contrast with
edge maps, to a simplified topographic map is associ-
ated a simplified image, so that we can check by visual
inspection whether the simplification is not excessive.
The main objective of simplifying the topographic map
for visual inspection is to single out basic objects, that
is, level lines and junctions.

6.2.1. Removal of Small Connected Components.
As a first tool, related to denoising, permitting a good
visualization of the topographic map, one can apply the
Vincent-Serra algorithm (Vincent, 1993). This contrast
invariant algorithm removes all connected extremal re-
gions of the image whose area is less than a fixed
number of pixels. This can also be formalized in the
Matheron theory as an opening with all connected sets
with area less than a threshold, followed by a closing
with the same set of structuring elements (see (Masnou
and Morel, 1997, 1998a)). As a consequence of this op-
eration, it can be checked in experiments that the topo-
graphic map becomes readable, a tipical area threshold
being between 10 and 30 according to the image size.

6.2.2. Quantization. Another way to make the topo-
graphic map readable is to take advantage of the redun-
dancy of the topographic map, particularly on edges,
where level lines accumulate. Presenting all level lines
with levels multiples of a fixed amount, say 10, will
preserve all edges whose contrast is larger than 10. It
must be emphasized, however, that we do not pretend
that the removed information in the above processes is
irrelevant. We simply take advantage of the possibility
offered by the topographic representation of a partial,
coherent view of the image structure.

Figure 6 and 7 show the result to apply these strate-
gies for the visualization of the topographic map.

6.3. Conclusions

We have shown that a basic structure of an imageu
invariant to local contrast changes, is given by its to-
pographic map. Its ‘atoms’ are the junctions and the
pieces of level lines joining them.

The topographic map has several structural proper-
ties, not true for other image descriptions:
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1. It contains all the image information, with an obvi-
ous reconstruction algorithm, provided we keep the
level and orientation of each level line.

2. It needs no scale space, that is, no additional scale
parameter. By this, we mean that level lines are,
like edges attend to be, global structures and require
no parameter for their computations. If we intend to
simplify the image, in the scale space sense, that is
the removal of small details, this can be performed,
as indicated in Section 6, by removing small level
lines, in which case a scale parameter is introduced.
The need for a more classical scale space can arise
when we wish to smooth each level line as well. This
is possible by using curve scale spaces (Kimia et al.,
1992; Alvarez et al., 1993; Sapiro and Tannenbaum,
1993, 1994), who use variants ot the Osher-Sethian
curve evolution computational theory.) From the
viewpoint adopted in (Caselles et al., 1993), and fur-
ther on in (Malladi et al., 1995), image scale space
is performed separately on each level line of the
image.

3. In contrast with “edges”, level lines need no con-
nectedness algorithm to be computed: they are im-
mediately connected curves. The question must be
raised, of how the topographic map can help to get
back to the physical structure of underlying objects.
As far as shape recognition is concerned, it must be
emphasised that pieces of level lines between junc-
tions perform an easy to compute grouping which
can be used for shape recognition, in the same way
as edges are.

4. Its structure is preserved under standard digitization
processes.

7. Discussion

The mathematical discussion of the stability of level
lines and junctions performed in Sections 5.1 and 5.2
by no means pretends to lead to a detection theory.
It only proves that under certain conditions of contrast
and size of the regions in the analogous image, the level
lines and junctions will be preserved in the digitization
process. Now, we do not exclude the creation of spu-
rious level lines and junctions due to the digitization
process.

As noticed by the second, anonymous reviewer, the
definition of junction corresponds to the conjunction of
multiple conditions, some of which are introduced to
guarantee the existence of intensity relationships (the
α’s and β ’s) that persist over a neighborhood given

some erosion. This is analogous, in a sense, to the more
recent attempts to define nonlinear edge detectors (see
e.g. (Iverson and Zucker, 1995)).

Between the first submission of this paper and the
final revision, three years have transcurred, and this has
the main advantage of having given time to several tech-
nological developments. It had to be demonstrated that
the local contrast invariant structure given by the topo-
graphic map can be used in applications. The first obvi-
ous idea has been to use it for the comparison of images
taken at different times and under different illumination
or weather conditions. This is performed in (Ballester
et al., 1998) on satellite images. The idea is to compare
all connected components of level sets in both images
and, more generally, all “sections”, that is, connected
components of bilevel sets [λ ≤ u ≤ µ], λ,µ ∈ R.
Thanks to this algorithm, images of the same scene with
very different radiometry can be compared and it has
been experimentally shown that they have many parts
of their topographic maps in common. In addition, the
complete description given by a topographic map per-
mitting reconstruction, the comparison algorithm also
yields an intersection image, that is, an image hav-
ing roughly for topographic map the intersection of
topographic maps of both compared images. A fur-
ther extension of this idea is performed in P. Monasse,
who uses Jordan curves of the topographic map of two
views in order to perform registration. P. Monasse and
F. Guichard have proposed a Fast Level Set Transform
in (Monasse and Guichard, 1998), which defines the
topographic map as a tree of Jordan curves. All op-
erations mentionned above (intersection, registration,
Vincent-Serra filters, etc.) can be performed in “real
time” thanks to the FLST. Simon Masnou uses the topo-
graphic map in order to perform disocclusion, that is, a
reconnection of level lines arriving to junctions bound-
ing a spot in the image (Masnou and Morel, 1998a). In a
forthcoming paper, Jacques Froment uses explicitly the
level-lines-junctions as described in this paper to pro-
pose a structured compression algorithm which selects
the most significant part of the topographic map and
also uses the possibility offered of reconstructing an im-
age from a part of a topographic map (Froment, 1998).

Appendix: The Upper Topographic Map

During the proof of Theorem 5 we shall need the notion
of maximal monotone graph. A monotone graph is a
set-valued functionR → P(R) such that for every
λ ∈ R, G(λ) = [g∗(λ), g∗(λ)] is a closed interval
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andλ > µ implies g∗(λ) ≥ g∗(µ). Hereg∗ (resp.
g∗) is a non-decreasing lower semicontinuous (resp.
upper semicontinuous) function fromR toR. We say
that a monotone graphG is continuous or maximal
monotone if, in addition, the range ofG has no gaps,
that is,∪λG(λ) is an interval ofR. Note thatG can be
recovered fromg∗ (resp.g∗) by setting

g∗(λ) = sup{g∗(µ):µ < λ} (30)

in the first case and

g∗(λ) = inf{g∗(µ):µ > λ}

in the second case.
Condition (H1) in Definition 6 is justified by the

following result.

Lemma 5. Let f :Ä × R → R be a function such
that

(i) f (x, λ) is increasing upper semicontinuous as a
function ofλ for all x ∈ Ä.

(ii) f (x, λ) is measurable as a function of x for each
λ ∈ R.

Then for any bounded measurable function u:Ä→
[a,b] the functionv(x) = f (x,u(x)) is also measur-
able.

Proof: Recall that a functionv(x) is measurable if
and only if for everyλ ∈ R the level sets [x: v(x) ≤ λ]
are Lebesgue measurable. Recall also that countable
unions and intersections of measurable sets are mea-
surable. Now [x: v(x) ≤ λ] = [x: f (x,u(x)) ≤ λ].
Let us choose a dense sequence(bk)k∈N in R. Since
f is upper semicontinuous as a function ofλ for all
x ∈ Ä, we have that f (x, r ) ≤ λ if and only if
for all n ∈ N, there existk ∈ N such thatr ≤ bk

and f (x,bk) ≤ λ + 1
n . Thus, [x: v(x) ≤ λ] =

[x: ∀n, ∃k,bk ≥ u(x) and f (x,bk) ≤ λ + 1
n ] =

∩n∪k ([x: u(x) ≤ bk]∩ [x: f (x,bk) ≤ λ+ 1
n ]). Hence

v is measurable. 2

Proof of Proposition 1:

(i) If x ∈ Xλu, λ ∈ R, then u(x) ≥ λ and
v(x) = h+(x,u(x)) ≥ h1+(x, λ), i.e., x ∈
Xh+(x,λ)v. Conversely, ifx ∈ Xh+(x,λ)v, then
h+(x,u(x)) ≥ h+(x, λ). By (H2), this implies
thatu(x) ≥ λ, i.e.,x ∈ Xλu. It is also easy to see
thatv(x) = sup{h+(x, λ′): x ∈ Xλ′u}.

(ii) Define

h−∗(x, λ) = inf
µ>λ

h−(x, µ)

By (H2), h−∗:Ä× R→ R. Since

h−∗(x, λ) = inf
µn↘λ

h−(x, µn),

h−∗(x, λ) is measurable inx for all λ ∈ R. We
know also thath−∗(x, λ) is an increasing upper
semicontinuous function (hence, continuous on
the right) ofλ for all x. By Lemma 5, we know
that h−∗(x,u(x)) is a measurable function ofx.
Now, using (H2),

h−∗(x,u(x)) = inf
µ>u(x)

h−(x, µ) = h+(x,u(x)).

We conclude thatv(x) = h+(x,u(x)) is measur-
able.

(iii) If y ∈ 0′ = cc([u ≥ λ], x), then, by (H3),
h+(x, λ) = h+(y, λ) ≤ h+(x,u(y)) = v(y).
Sinceµ = h+(x, λ), v(y) ≥ µ. Hence,0′ ⊆
[v ≥ µ]. Since0′ is connected and contains
x, it follows that 0′ ⊆ cc([v ≥ µ], x) = 0.
Now, if the inclusion were strict, then for some
z ∈ cc([v ≥ µ], x), u(z) < λ. If h+(x, λ) ∈
h(x, λ), then, using (H4),h(x, λ) = h(z, λ). If
h+(x, λ) 6∈ h(x, λ), then there exists someµ′ <
µ such thatµ′ ∈ h(x, λ) andz ∈ cc([v ≥ µ′], x).
Again, by (H4),h(x, λ) = h(z, λ). In any case,
µ = h+(x, λ) = h+(z, λ). On the other hand,
by (H2), h+(z, λ) > h+(z,u(z)) = v(z) ≥ µ, a
contradiction.

(iv) Let X be a connected component of [u ≥ λ] and
let x ∈ X. Then, using (iii), X = cc([u ≥
λ], x) = cc([v ≥ µ], x) whereµ = h+(x, λ).
Conversely, letY = cc([v ≥ µ], x), µ ∈ R.
If v takes values in [c,d], without loss of gen-
erality, we may assume thatµ ∈ [c,d]. Let
λ ∈ R such thatµ ∈ h(x, λ). We know that
cc([u ≥ λ], x) = cc([v ≥ h+(x, λ)], x) ⊆
cc([v ≥ µ], x). If the inclusion is strict, then
u(y) < λ for somey ∈ cc([v ≥ µ], x) Since, by
(H4),h(x, λ) = h(y, λ), thenµ ∈ h(y, λ). Using
(H2), we may write

µ ≤ v(y) = h+(y,u(y)) = h−(y, λ) ≤ µ.

Hence,µ = h+(y,u(y)). Now, using (iii), we
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have

cc([v ≥ µ], x) = cc([v ≥ h+(y,u(y))], y)

= cc([u ≥ u(y)], y).

In other words, there is someα = u(y) and some
connected componentX of Xα such thatX = Y.

2

Let us prove the converse of Proposition 1 given by
Theorem 1.

Theorem 1. Let u, v:Rn→ R be two bounded mea-
surable functions(images)whose upper level sets have,
at most, countably many connected components. Let
Xλ, respectively Yλ,be the families of the level sets of u,
respectivelyv. Suppose that for each connected com-
ponent X of Xλ there existsµ and a connected compo-
nent Y of Yµ such that X= Y and a converse statement
with Xλ and Yµ interchanged. Then there exists a local
contrast change g(x, λ) such thatv(x) = g+(x,u(x)).

Proof: Suppose thatu takes values in [a,b] and v
takes values in [c,d]. Let x ∈ Rn andλ ∈ R. If
a ≤ λ ≤ u(x), then x ∈ Xλ and we define the set
(nonempty, by assumption)

G(x, λ) = {λ′ ∈ [c,d]: cc(Xλ, x) = cc(Yλ′ , x)}.

If λ > u(x) we defineG(x, λ) = [v(x),d + 1]. If
λ < a, we defineG(x, λ) = [c− 1, c]. Let us prove
thatG is a monotonous multifunction.

Step 1. G(x, λ) is an interval. We may assume that
a ≤ λ ≤ u(x). If λ′ andλ′′ belong toG(x, λ) , then
for everyλ′ < µ < λ′′, we have

cc(Xλ, x) = cc(Yλ′′ , x) ⊆ cc(Yµ, x)

⊆ cc(Yλ′ , x) = cc(Xλ, x),

so thatµ ∈ G(x, λ). Consequently,G(x, λ) is
an interval. Letg−(x, λ) = inf{µ:µ ∈ G(x, λ)},
g+(x, λ) = sup{µ:µ ∈ G(x, λ)}. Observe that,
whena ≤ λ ≤ u(x), g+(x, λ) ≤ v(x).

Step 2. We wish to show that ifλ > µ, then ei-
ther G(x, λ) = G(x, µ) or g−(x, λ) ≥ g+(x, µ).
We may assume thata ≤ µ < λ ≤ u(x). In-
deed, sinceλ > µ, we have thatcc(Xλ, x) ⊆
cc(Xµ, x) and thereforecc(Yλ′ , x) ⊆ cc(Yµ′ , x)
for every λ′ ∈ G(x, λ) and µ′ ∈ G(x, µ). If

cc(Xλ, x) = cc(Xµ, x), we immediately see from
the definition ofG that G(x, λ) = G(x, µ). If
cc(Xλ, x) 6= cc(Xµ, x), then for everyλ′ ∈ G(x, λ)
andµ′ ∈ G(x, µ) we havecc(Yλ′ , x) ⊆ cc(Yµ′ , x)
andcc(Yλ′ , x) 6= cc(Yµ′ , x), so thatλ′ > µ′.

Step 3. Let x ∈ Rn. We finally show thatG(x, .) is
onto in the sense that∪λG(x, λ) = [c− 1,d + 1].
Let λ′ ∈ [c − 1,d + 1]. By definition of G we
may assume thatc ≤ λ′ ≤ v(x). By assumption
for everyλ′ ∈ [c, v(x)] and every connected com-
ponent ofYλ′ containingx, cc(Yλ′ , x), there exists
someλ ∈ R such thatcc(Yλ′ , x) = cc(Xλ, x). Thus
λ′ ∈ G(x, λ).

Step 4.By definition ofG we have thatg+(x,u(x)) ≤
v(x). Now, since

v(x) = sup{µ: x ∈ Yµ}
= sup{µ:µ ∈ G(x, λ) λ s. t. x ∈ Xλ}
= sup{g+(x, λ): λ s. t. x ∈ cc(Xλ, x)}
≤ g+(x, sup{λ: x ∈ cc(Xλ, x)}),

we have thatv(x) = g+(x,u(x)).

We finish the proof with the next Lemma.

Lemma 6. G(x, λ) is a local contrast change of u.

Proof:

(H1) Letλ ∈ R. Let us prove that the correspondence
x ∈ Ä→ Ḡ(x, λ) = the closure ofG(x, λ) has
a measurable graph. Since it is a correspondence
whose values are closed sets this is equivalent to
prove thatx ∈ Ä → Ḡ(., λ) is weakly mea-
surable, that is, for any open setO in R, the
set {x ∈ Ä: Ḡ(x, λ) ∩ O 6= ∅} is measurable
((Aliprantis, 1994), chap. 14). It is sufficient to
consider the case whereO is an interval(α, β).
If λ < a this set is obviously measurable. As-
sume thatλ ≥ a. Observe that we may write
{x ∈ Ä: Ḡ(x, λ) ∩ O 6= ∅} as the union of two
sets:

A = {x ∈ Ä: u(x) ≥ λ, Ḡ(x, λ) ∩ O 6= ∅}
B = {x ∈ Ä: u(x) < λ, Ḡ(x, λ) ∩ O 6= ∅}.

Since

B = {x ∈ Ä: u(x) < λ, [v(x),d+ 1]∩O 6= ∅},
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it is obviously measurable. Ifu(x) ≥ λ ≥ a,
observe thatḠ(x, λ) ∩ O 6= ∅ if and only if
there exists someµ ∈ O such thatcc(Xλ, x) =
cc(Yµ, x). Now, if for somex ∈ Ä, Ḡ(x, λ) ∩
O 6= ∅, then for all y ∈ cc(Xλ, x) there ex-
ists someµ ∈ R (the same as above) such
that cc(Xλ, y) = cc(Xλ, x) = cc(Yµ, x) =
cc(Yµ, y). Thus, for anyx ∈ Ä we have either

cc(Xλ, x) ⊆ A

or

cc(Xλ, x) ∩ A = ∅.
We may write

A = ∪{cc(Xλ): ∃µ ∈ O s. t.

cc(Xλ) = cc(Yµ)}. (31)

Since the connected components ofXλ, being
closed in Xλ, are measurable and there are,
at most, countably many, it follows thatA is
a measurable subset ofÄ and the multifunc-
tion Ḡ(., λ) is weakly measurable. According
to the measure theoretic analogue of Berge’s
theoremg+(x, λ) = sup{µ:µ ∈ G(x, λ)} =
sup{µ:µ ∈ Ḡ(x, λ)} is a measurable function
((Eatwell et al., 1994), vol. 1, p. 680).

(H2) If u(x) < λ, by the definitions aboveg+(x,
u(x)) = g−(x, λ) < g+(x, λ).
Note that infx∈Ä g−(x, λ) ≥ c − 1 and
supx∈Ä g+(x, λ) ≤ d + 1, for eachλ ∈ R.

(H3) Let λ ∈ R, x, y in the same connected com-
ponent of [u ≥ λ]. If λ′ ∈ G(x, λ), then
cc(Xλ, x) = cc(Yλ′ , x). Sincey ∈ cc(Xλ, x) =
cc(Yλ′ , x) then cc(Xλ, y) = cc(Xλ, x) =
cc(Yλ′ , x) = cc(Yλ′ , y). Hence,λ′ ∈ G(y, λ).
Therefore G(x, λ) ⊆ G(y, λ). The other
inequality being proven similarly, it follows
that G(x, λ) = G(y, λ) and, in consequence,
g+(x, λ) = g+(y, λ).

(H4) Assume thaty ∈ cc([v ≥ µ], x) with µ ∈
G(x, λ), x, y ∈ Ä, λ ∈ R. Then cc([v ≥
µ], x) = cc(Xλ, x). Hence y ∈ cc(Xλ, x).
Thus cc(Xλ, x) = cc(Xλ, y) and G(x, λ) =
G(y, λ) follows. 2

(H5) If u, v of Theorem 1 are lower semicontinuous
functions then almost all upper level sets have,
at most, countably many connected components
(moduls a null set). The Proof of Theorem 1 can
be easily adapted to this context. 2
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