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Preface

This book is intended as a text for undergraduates in the atmospheric sciences. The
students are expected to have some calculus, general chemistry and classical physics
background although we provide a number of refreshers for those who might have
less experience or need reminders. Our students have also had a survey of the
atmospheric sciences in a qualitative course at freshman level. The primary aim of
the book is to prepare the student for the synoptic and dynamics courses that follow.
We intend that the student gain some understanding of thermodynamics as it applies
to the elementary systems of interest in the atmospheric sciences. A major goal is
for the students to gain some facility in making straightforward calculations. We
have taught the material in a semester course, but in a shorter course some material
can be omitted without regrets later in the book. The book ends with two chapters
that are independent of one another: Chapter 8 on thermochemistry and Chapter 9
on the thermodynamic equation.

This book is the result of teaching an introductory atmospheric thermodynamics
course to sophomores and juniors at Texas A&M University. Several colleagues
have taught the course using earlier versions of the notes and we gratefully
acknowledge Professors R. L. Panetta, Ping Yang, and Don Collins as well as
the students for their many helpful comments. In addition, we have received useful
comments on the chemistry chapter from Professors Sarah Brooks, Gunnar Schade,
and Renyi Zhang. We also thank Professor Kenneth Bowman for many fruitful
discussions. We are grateful for financial support provided by the Harold J. Haynes
Endowed Chair in Geosciences.

X1
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Introductory concepts

The atmosphere is a compressible fluid, and the description of such a form
of matter is usually unfamiliar to students who are just completing calculus
and classical mechanics as part of a standard university physics course. To
complicate matters the atmosphere is composed of not just a single ingredient, but
several ingredients, including different (mostly nonreactive) gases and particles in
suspension (aerosols). Some of the ingredients change phase (primarily water)
and there is an accompanying exchange of energy with the environment. The
atmosphere also interacts with its lower boundary which acts as a source (and
sink) of friction, thermal energy, water vapor, and various chemical species.
Electromagnetic radiation enters and leaves the atmosphere and in so doing it
warms and cools layers of air, interacting selectively with different constituents
in different wavelength bands.

Meteorology is concerned with describing the present state of the atmosphere
(temperature, pressure, winds, humidity, precipitation, cloud cover, etc.) and in
predicting the evolution of these primary variables over time intervals of a few
days. The broader field of atmospheric science is concerned with additional themes
such as climate (statistical summaries of weather), air chemistry (its present, future,
and history), atmospheric electricity, atmospheric optics (across all wavelengths),
aerosols and cloud physics. Both the present state of the bulk atmosphere and
its evolution are determined by Newton’s laws of mechanics as they apply to
such a compressible fluid. Dynamics is concerned primarily with the motion of
the atmosphere under the influence of various natural forces. But before one can
undertake the study of atmospheric dynamics, one must be able to describe the
atmosphere in terms of its primary variables. An essential tool needed in this
description is thermodynamics, which helps relate the fundamental quantities of
pressure, temperature and density as atmospheric parcels move from place to place.
Such parcels contract and expand, their temperatures rise and fall; water changes
phase, back and forth from vapor to liquid to ice; chemical constituents react,
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etc. The key to understanding these changes lies in applications of the laws of
thermodynamics which relate these changes to fluxes of energy and other less
familiar functions which will be introduced as needed.

1.1 Units

The units used in atmospheric science are the Standard International (SI) units.
These are essentially the MKS units familiar from introductory physics and
chemistry courses. The unit of length is the meter, abbreviated m; that for mass
is the kilogram, abbreviated kg; and for time the unit is the second, abbreviated s.
The units for velocity then are ms~!. The unit of force is the newron (1kgms~2,
abbreviated N). Tables 1.1-1.2 show the SI units for some basic physical quantities
commonly used in atmospheric science.

The unit of pressure, the pascal (1 Nm~2=1Pa), is of special importance in
meteorology. In particular, atmospheric scientists like the millibar (abbreviated
mb), but in keeping with SI units more and more meteorologists use the hectopascal
(abbreviated hPa, 100 Pa = 1 mb). The kilopascal (1 kPa = 10hPa) is the formal SI

unit and some authors prefer it. One atmosphere (abbreviated 1 atm) of pressure is

1 atm = 1.013 bar
= 1013.25mb
= 1013.25 hPa
= 101.325 kPa
= 101325Pa
= 1.01325 x 10° Pa (1.1)

and 1 mb = 1hectopascal = 100Pa. In some operational contexts and often in
the popular media one still encounters pressure in inches of mercury (in Hg) or
millimeters of mercury (mm Hg); 1 atm = 760.000 mm Hg = 29.9213 in Hg.

The dimensions of a quantity such as density, p, can be constructed from
the fundamental dimensions of length, mass, time and temperature, denoted by
L,M, T, Temp respectively. The dimensions of density, indicated with square
brackets [p], are ML 3. In the SI system the units are kg m—>. Many quantities are
pure numbers and have no dimension; examples include arguments of functions
such as sine or log. The radian is a ratio of lengths and is considered here to be
dimensionless.

Temperature in SI units is expressed in degrees Celsius, e.g. 20 °C; or Kelvin,

9

e.g. 285K. We say “285 kelvins” and omit writing the superscript “o” when
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Table 1.1 Useful numerical values

Universal

gravitational constant

universal gas constant (R*)
Avogadro’s number (Na) [gram mole]
Boltzmann’s constant (kg)

proton rest mass

electron rest mass

Planck’s constant

speed of light in vacuum

Planet Earth

equatorial radius

polar radius

mass of Earth

rotation period (24 h)

acceleration of gravity (at about 45°N)
solar constant

Dry air

gas constant (Ry)

molecular weight (My)

speed of sound at 0 °C, 1000 hPa
density at 0 °C and 1000 hPa

specific heat at constant pressure (cp)
specific heat at constant volume (c,)
Water substance

molecular weight (M)

gas constant for water vapor (Ry,)
density of liquid water at 0 °C

standard enthalpy of vaporization at 0 °C

standard enthalpy of fusion at 0 °C
specific heat of liquid water

STP

6.673x10"1"N'm? kg2
8.3145J K~ ! mol~!

6.022 x10%3 molecules mol~!
1.381 x10~2J K~ 'molecule™!
1.673 x10~%" kg

9.109 x103! kg

6.626 x107347Js

3.00 x 108 ms~!

6378 km

6357 km

5.983 x 10** kg
8.640 x 10* s
9.8067 ms 2
1370 Wm 2

287.0J K 'kg™!
28.97 gmol~!
331.3ms™!
1.276kgm™3
1004 T K~ kg~!
717K T kg™!

18.015 gmol ™!
461.5J K 'kg™!

1.000x 103 kg m~3

2.500x 100 Tkg™!

332.7kJ kg~!

4179kJ kg~ K~!

T =273.16K, p = 1013.25hPa

using degrees kelvin. In operational meteorology we sometimes find temperature
expressed in degrees Fahrenheit, e.g. 70 °F.

Each side of an equation must have the same dimensions. This principle can
often be used to find errors in a problem solution. The argument of functions such
as the exponential has to be dimensionless.

1.2 Earth, weight and mass

The Earth is an oblate spheroid, with slightly larger diameter in the equatorial plane
than in a meridional (pole-to-pole) plane. The distance from the center to the poles
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Table 1.2 Selected physical quantities and their

units

Quantity Unit Abbreviation
mass kilogram kg
length meter m

time second s

force newton N
pressure pascal Pa=Nm~2 = 0.01hPa
energy joule J
temperature  degree Celsius °C
temperature  degree Kelvin K
speed ms™!
density kgm™3
specific heat Jkg ' K™!

Table 1.3 Greek prefixes applied to SI units

Prefix Numerical meaning Example Abbreviation
nano 1070 nanometer nm
micro 107 micrometer pm
milli 1073 millimeter mm
centi 1072 centimeter cm
hecto 102 hectopascal hPa

kilo 103 kilogram kg
mega 109 megawatt MW
giga 10° gigawatt GW

tera 1012 terawatt tW

Table 1.4 Selected conversions to SI units

Quantity Conversion
energy 4.186J = 1cal
1kWh =3.6x107J
pressure 1 atm = 760 mm Hg
1 atm = 29.9213in Hg
distance I m=3.281ft
temperature T(K) =T(CC)+ 273.16

T(°F) = 2T(°C) + 32
T(°C) = 3(T(°F) — 32)
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Table 1.5 Some relationships
between SI units

Quantity Equivalent
IN 1kgms™?2
1] 1kgm?s—2
1Pa INm~

18 6356.91 km and the radius in the equatorial plane is 6378.39 km. About two thirds
of the Earth’s atmosphere lies below 10 km above the surface, hence the atmosphere
and the oceans (depth averaging 4-5 km) only form a very thin skin of about 1/60
the radius of the sphere.

The weight of a mass is the force applied to that mass by the force of gravity. It
may be expressed as the mass in kilograms times the acceleration due to gravity,
g=981ms %

W = Mg| [weight and mass]. (1.2)

Weight is expressed in newtons, abbreviated N; N = kgms~2. The acceleration
due to gravity varies slightly with altitude above sea level

2. = go(1 — 3.14 x 107 "7) z in meters. (1.3)

There is also a slight variation (< 0.3%) with latitude due to the ellipsoidal
shape of the Earth (due to both centrifugal force and the equatorial bulge). In
most meteorological applications these variations are negligible. However, in
calculations of satellite orbits such variations are extremely important.

Example 1.1 The density of water in old fashioned units (cgs) is

1 gram
Pwater = 3
cm

To express this in SI units, we can multiply by

lkg . . .
1 = ——— = unity (no dimension).
103 gram
We obtain:
k k
Pwater = 1 £ = l_g

103cm3  liter’
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This gives us an intuitive measure of the kilogram. Now we can multiply by

| — 10%2cm 3
h 1m

The final result is

Pwaer = 10 kgm ™.

Physics refresher: vertical motion of a particle The acceleration due to gravity is
g = 9.81 ms~2. A particle falling from a height zo with no initial velocity, has a
velocity —gt after time ¢. After the same time interval it will have fallen % gt* meters.
These are both obtained by simple integration:

t t
v () = / —gdt = —g/ dt = —gt, since g = constant 1.4
0 0

and
t t 1
z(t)—z(0)=/ vz(t)dtzf —gtdt = ——gr°. (1.5)
0 0 2

More vertical motion mechanics The minimum work necessary to lift a particle a
vertical distance z against the force of gravity is force x distance = Mgz (Mg is the
weight or vertical force necessary to lift the mass without accelerating it). This work
done in lifting the particle is equal to the change in its potential energy Mgz. If the
particle is released, work will be done by the gravitational force applied to the
particle. The kinetic energy of the particle during its fall is %/\/lvz. The conservation
of mechanical energy says the sum of these two forms of energy is conserved:

E = PE + KE = constant, or more explicitly

1 1
EM’U(Z) + Mgzo = EM’U? + Mgz, (1.6)

where the subscript 0 denotes the initial time and the subscript ¢ denotes evaluation at
a later time.
The conservation law is derived by first writing Newton’s Second Law:

d
M% —F, = —Mg. (1.7)

Now multiply through by v dt and integrate with respect to 7. The left-hand side
becomes
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! dv 1 s 1 )
/0 ’UME dr = EM’UI — EMUO. (1.8)
On the other side of Newton’s equation we have
t 2t
/ —vMgdt = / —Mgdz = —Mg(z; — 20). (1.9)
0 20
Equating these expressions gives our answer (1.6).

1.3 Systems and equilibrium

Thermodynamics is the study of macroscopic or bulk systems of masses and
their interrelations under conditions of steady state (no dependence on time). By
macroscopic we mean the system contains large numbers of individual molecules
(within a few orders of magnitude of a mole' which contains 6.02 x 102 molecules).
We call these states equilibrium states if they are not only time independent but
also stable under small perturbations. Thermodynamic states are describable by a
set of dimensional quantities which we refer to as coordinates. Thermodynamics is
concerned with the changes in energy-related quantities (certain of the coordinates)
when the system undergoes a transition from one state to another. A thermodynamic
system is a region of space containing matter with certain internally uniform
properties such as pressure and temperature. We will be concerned with the interior
of the system and the variables (coordinates) that characterize it. For example,
a mass of pure gas (only one chemical species) contained in a vessel may be
characterized by the pressure it exerts on the walls of the vessel, the volume
of the vessel and the temperature (p, V,T). These comprise the complete set of
thermodynamic coordinates for this particular system. For more general situations
such as mixtures of species or phases, the coordinates necessary to describe the
state have to be determined experimentally. It is important to note that an individual
thermodynamic system is uniform in its interior. There are no gradients of pressure
or temperature, for example, inside the system.”

I The mole is an SI unit defined as the number of carbon atoms in a mass of 0.012kg of pure carbon. The
number of moles of a substance is the number of multiples of this number (known as Avogadro’s number:
Np =6.02 x 1023). In formulas the unit is designated as “mol.”

2 Note that a column of air in the atmosphere is not a simple thermodynamic system because its pressure and
temperature vary with altitude. However, it is convenient to consider the column as composed of thin slabs,
each of which contains substance with approximately uniform temperature, pressure and composition. Then
each individual slab may be considered as a simple thermodynamic system for many purposes.



Introductory concepts

1.3.1 Examples of thermodynamic systems

Gas in a vessel Suppose a container holds a gas of uniform chemical composition. Let
the walls of the container be thermally insulating and let the volume be fixed. In a very
short time after fixing these conditions the gas will come to values of temperature and
pressure that are uniform throughout and independent of the shape of the container.
This is the simplest thermodynamic system in a state of equilibrium.

A second case is where the container’s walls are held at a fixed temperature and the
pressure is allowed to vary. Equilibrium will be established such that the temperature
of the gas becomes equal to that of the surrounding walls, the volume is given and
the pressure comes to some value that we can estimate.

A third case is where the container has a frictionless movable piston that is pushed
upon externally by a fixed pressure (such as the atmospheric pressure). This means
that the pressure in the vessel is held fixed along with that of the temperature. The
piston will shift in such a way to make the pressure inside equal to that outside, and
the volume will change until all these conditions are met.

Our gas might not be homogeneous, but instead it might be composed of a mixture
of chemically noninteracting gases, such as those in our atmosphere: nitrogen, oxygen
and argon. We still have a thermodynamic system as long as the composition does
not vary from location to location or from time to time. In each of the above cases let
two of the following be fixed: volume, temperature, or pressure. Then the remaining
variable is allowed to find its equilibrium value. Note that once in equilibrium, the
variables or coordinates are uniform throughout the vessel.

Two-phase system Suppose we have a liquid of uniform chemical composition such
as water in our vessel and vacuum above the liquid surface. Let the temperature and
volume be fixed. After a sufficient adjustment time some liquid will have evaporated
into the volume above its surface and an equilibrium will be established (the flux of
water molecules leaving the surface becomes equal to the flux entering and sticking
to the surface). There will be a gas pressure exerted on the walls by the vapor that
evaporated from the liquid surface. This is a two-phase system with liquid and gaseous
phases, but only one component (water) which depicts the number of distinct chemical
species. The pressure throughout will be uniform (ignore the pressure increase as
a function of depth due to gravity in the liquid). The temperature will also be
uniform throughout both phases of the system. This two-phase configuration is also a
thermodynamic system. The system can be made to pass through changes in volume,
temperature, etc., to establish new thermodynamic states of equilibrium. Note that
the temperature and pressure are uniform throughout but the density varies from one
phase to the other. As we shall see in a later chapter there is another quantity that
is also uniform in the two-phase system called the specific Gibbs energy (chemical
potential in the chemical literature when expressed as molar Gibbs energy). It acts as
an intensive variable (see Section 1.5) in such multicomponent systems similarly to
pressure or temperature.
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Aqueous solutions Imagine a vessel filled with water (at a fixed temperature and
pressure) and some salt is placed in the liquid. If we continue to put more salt into
the water eventually some salt will remain in crystal form sinking to the bottom
(but ignore gravity otherwise). We will have established an equilibrium between the
saturated saline solution and the precipitated crystalline salt. A change in temperature
will result in a new equilibrium state with a different concentration of salt in solution
(concentration of a species in solution is another thermodynamic coordinate). This is
an example of a thermodynamic system. Variations on this include allowing the water
vapor above the liquid to be in equilibrium with the saline solution. The presence
of salt in solution will alter the vapor pressure over the liquid surface (as well
as the freezing temperature). As the temperature changes the vapor pressure will
change, etc.

Chemical equilibrium Imagine a gaseous mixture in our vessel at fixed temperature
and pressure composed of O and O;. There will be a reaction

0+0,+M— O3 +M, (1.10)

where M is a background molecule used to carry away momentum (e.g., Oz, N or
Ar in the atmosphere).> Some ozone will decay and after a while there will be an
equilibrium established and the reaction can be written:

O+ 0, +M = 03 + M. (1.11)

The amount of reactants (the left-hand side) may be more than the amount of products
(right-hand side) for a given temperature. But as the temperature is changed the
balance may shift. This is a thermodynamic system. The ratio of O, to O3 is now a
thermodynamic coordinate along with 7', p, V, Miotal-

Of course, there are many other types of thermodynamic systems, and we will
encounter several of them in due course.

Everything outside the system which may affect the system’s behavior is
called the surroundings. In atmospheric science, we can often approximate an
infinitesimal volume of gas embedded in the natural atmosphere as having uniform
interior properties. When appropriate, such an infinitesimal volume element can be
considered as a thermodynamic system. In many cases the “infinitesimal volume
element” might be as big as a classroom or sometimes as small as a cubic centimeter
depending on the application.

A thermodynamic system composed of a very large mass is called a reservoir
and is characterized by a temperature, Tr. If a finite system is brought into contact
with the reservoir through a diathermal membrane (one which allows the passage

3 Energy and momentum cannot be conserved simultaneously when two bodies go to one with a release of energy.
A third body in the collision can provide the means of conserving both.
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Figure 1.1 Isotherms for 1kg of dry air taken as an ideal gas. The vertical
coordinate is pressure in hPa, the abscissa is volume in m?. Upper curve, 300 K;
lower curve, 200 K.

of thermal energy,” but not mass), the smaller system will adjust the values of its
coordinates (for a gas, p, V,T) to new values, while the reservoir does not change
its state appreciably (this actually defines how massive the reservoir has to be). The
system is said to come into thermal equilibrium with the reservoir (its temperature
approaches that of the reservoir). In the case of a gaseous system, experiments
have shown that there is a locus of pairs of values (V, p) for which the system is
in equilibrium with a given reservoir — in other words, a curve p = pr(V) in the
V—p plane. To put it another way, if our system has a certain fixed volume, then
when it is brought into contact with the reservoir of temperature 7, the pressure will
always come to the same value, p = pr(V). As we do the experiment with different
control volumes we can sweep out the locus of points in the V—p plane. This curve
is called the isotherm of the system for that reservoir temperature (Figure 1.1). The
isotherm represents a series of equilibrium states that can occur while the system
is in contact with the reservoir (of fixed temperature). For example, the volume
might be forced to alter by a change in the wall dimension (e.g., a piston can have
different positions in a cylinder which contains the system in question). In this case
the pressure will change as a function of volume along the isotherm. While we could
invent an algorithm based upon a series of reservoirs of different temperatures to
build a temperature scale, it will suffice for our present purposes simply to use the
familiar thermometer.

4 Thermal energy refers to the microscopic motion of molecules in the system. When in diathermal contact, the
thermal energy of molecules from one system can pass from the system to its neighbor through collisions. In
time the thermal energies of the two systems will equalize. More on this in later chapters. The transfer of thermal
energy is loosely referred to as heat transfer.
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600
400

2001

Figure 1.2 Isotherm and adiabat for 1 kg of dry air taken as an ideal gas. The upper
curve (solid line) is the 300 K isotherm and the dashed curve is the adiabat passing
through the 300K isotherm at V = 1 m?3. The vertical coordinate is pressure in
hPa, the abscissa is volume in m3.

A system can also be in equilibrium when isolated (no mass or thermal energy
flows into or out of the system) from other systems. We call this an isolated system.
It can have coordinates just as in the case of a system in contact with a reservoir.
We call the locus of values of pressure in the isolated system for different volumes
of the system adiabats (Figure 1.2). We could find the temperature of the isolated
system at fixed values of p and V by bringing it into contact with different reservoirs
until we find one which does not cause the coordinates of the system to change.
The system has the same temperature as this reservoir. In this way we could map
out the locus of points defining the isotherm which crosses the adiabat at the point
in question. As a simpler alternative, we could insert a thermometer, whose mass
is so small that it will come to equilibrium with the system (which now acts as a
reservoir with respect to the tiny thermometer) without disturbing the state of the
system appreciably.

States of thermodynamic equilibrium must not involve time. They are steady and
only require a knowledge of the thermodynamic coordinates such as temperature,
pressure and volume. When the “states” traversed by a system involve the time
we cannot use thermodynamic equilibrium states to describe them. Conventional
thermodynamics cannot be used to describe what goes on in states that are not in
equilibrium.

Certain changes of a system can be made to occur through a sequence of
infinitesimally nearby equilibrium states. For example, we might bring the system
into contact one at a time with a series of reservoirs of infinitesimally differing
temperatures, and at each step we wait for equilibrium to be established. We call
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this a quasi-static process. Such quasi-static processes can be approximated in the
laboratory. From a molecular point of view the gas in the interior of the system
has to have time during each infinitesimal shift of the constraints to adjust to
a new equilibrium with its surroundings. In a gas this is roughly the time for a
typical molecule to make a few hundred collisions, but over a finite sized volume it
might be more appropriate to use the time for sound waves to traverse the volume
several hundred times. This multiple pass traversal time works for pressure, but
other properties might take considerably longer. For example, temperature and
species concentrations smooth out much more slowly because these differences
are smoothed out by diffusive processes such as thermal conduction. Stirring due
to turbulence can speed up the homogenization but even then the adjustment is
slower than for pressure differences. At each infinitesimal step (waiting for these
adjustments) along such a system path, we could reverse direction and retrace the
same steps. This is a reversible process.

Note that a system may go from one thermodynamic state to another by a path
which does not involve such a sequence of thermodynamic states. We call this an
irreversible change in state. An example of an irreversible process is the case of
a system which goes from state A to state B spontaneously, but not from B to A.
A concrete example is if two bricks, one hot and one cold, are brought into contact,
the result is two warm bricks. This is an irreversible process. Note that it never
happens that when we bring two warm bricks into contact we end up with a warm
brick and a cold brick (even though energy is conserved).

Reversible processes do not actually occur in nature. So why study them? The
reasons are pretty simple. First of all, irreversible processes are nearly impossible to
treat theoretically. Secondly, experience has shown that approximating the nearly
quasi-static processes that do occur in nature works reasonably well in many cases
when we treat them as exactly quasi-static. We proceed then to adopt the philosophy
used by practitioners for many years: we will freely approximate many processes in
the real atmosphere by idealized reversible analogies in order to obtain numerical
results that can be used in practical situations.

1.4 Constraints

An important concept in the study of thermodynamic systems is that of constraints.
This notion is best illustrated by example. Consider the gas in a cylinder whose
volume is determined by the position of a piston as in Figure 1.3. Several
constraints are operative in this case. Most obvious is the position of the piston.
It constrains the volume to have a certain value. If the piston is removed by a
small amount the constraint is said to be relaxed. Note that a force must be applied



1.5 Intensive and extensive quantities 13

Figure 1.3 Schematic diagram of a gas filled cylinder with adiabatic walls and a
movable piston.

(actually relaxed, then gradually reapplied) externally to implement this change in
the constraint. If the piston is removed by a small amount, some agent must perform
work to restore it to its original position. Similarly, the walls that are impervious to
the transfer of thermal energy form a constraint. If a leak of thermal energy were to
occur, such as on bringing the system into contact with a temperature reservoir at a
slightly different temperature, this constraint would be said to have been relaxed and
the thermodynamic coordinates of the system will have to be changed to restore
the original temperature. Thermodynamic systems are always subject to certain
constraints and their nature and number are essential ingredients in the description
of the system and its state.

Consider two thermally isolated chambers adjacent to one another separated by
a partition. On one side is gas A and on the other is gas B. Let the chambers have
the same temperature and pressure. The partition forms a constraint restricting the
two gases from mixing. If the partition is removed, the constraint is relaxed and
the two systems will pass through nonequilibrium states to their final well-mixed
equilibrium state. The irreversible process following removal of the constraint
represents one which for ideal gases involves no changes in pressure or temperature,
but external work must be performed to restore the original conditions.

1.5 Intensive and extensive quantities

Consider a thermodynamic system. The interior properties of the system are
uniform. Now, imagine subdividing the system into two equal parts (say, two
warm bricks in contact). If a variable is the same for the two individual parts
(e.g., pressure, temperature, chemical composition, density, etc.), the variable is
an intensive variable. On the other hand, if the thermodynamic variable for each
subsystem is proportional to the mass of the constituents in that subsystem (e.g.,
volume, mass), we call it an extensive variable.
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Figure 1.4 Schematic diagram of a gaseous pressure reservoir in contact with a
small system. The membrane between the system and the pressure reservoir is
movable so that the two systems can adjust their volumes in such a way that the
pressures equalize.

Example 1.2 An example of an isolated system is a 1kg mass of gaseous O»,
confined in a box with thermally insulating walls. Suppose the volume is 1 m?>.
This means the density of the gas is 1 kg m 3. If the temperature of the gas is given,
say 300 K, then the pressure will be determined (this is an experimental fact). The
thermodynamic coordinates of this (pure) system are: V, the volume; M, the mass;
T, the temperature; and p, the pressure. O

Example 1.3 A thermodynamic system might be in thermal equilibrium with a
reservoir. In the case of the mass of O, gas in a fixed volume of 1 m3, take the
gas to be in thermal contact with a reservoir at 350 K. The pressure will be quite
different from the last example. g

Example 1.4 We might have a pressure reservoir. Consider the box of gas to be in
contact with a reservoir with a slidable interface, such that the pressures can equalize
between the two systems. Let the system otherwise be insulated thermally from the
reservoir and the rest of the universe. If the gas has a given temperature initially, it
will expand or contract until its pressure equals that of the reservoir (please let it
happen gradually). The volume and temperature of the gas may change in order to
establish equilibrium with the pressure reservoir (see Figure 1.4). U

1.6 System boundaries

Before setting up a problem in thermodynamics it is extremely important to choose
the part of the universe you want to call your system. It might be a mass of matter or
it might be a certain volume in space. As in the atmospheric examples the mass or
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volume might be in motion. If we are considering a mass in space with no additional
matter allowed to enter or leave this fixed mass we say it is a closed system. In the
fixed volume case mass might enter or leave. We call this an open system.

Calculus refresher: the exponential function The function y(x) whose derivative
is itself is called the exponential function:

dy
— =y. 1.12
Y (1.12)
Suppose we try y = a*. Then
A x+Ax _ X Ax _ 1
or_d T _ e . (1.13)
Ax Ax Ax

The factor on the right must tend to unity as Ax — 0. It will be more easily seen if we
let Ax = 1/N where N is an integer. A little rearrangement yields

1\N
doo _ngnoo (1 +1V> (1.14)
and the number a, is given the symbol e whose numerical value turns out to be
2.718281.. .. To see how the limit comes about call the approximate value of

aso = ey . Simple computation gives, es = 2.48832, ej9 = 2.59374, e100 =

2.70481, e1000 = 2.71692, and ejgpop = 2.71815.. ..

Note thate? = 1, e~! = 0.367879.. ., and e* is called the exponential function. We
can easily derive a few properties of y = e*. From its definition, de*/dx = e*, and we
can use the chain rule to show that de**/dx = ae®*.

The function e~** decreases exponentially from a value of unity at x = 0 to a value

Figure 1.5 The exponential function e* as a function of x.
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Figure 1.6 The decaying exponential function e™ as a function of x.
ofe”! = 0.367879. .. at x = 1/a, which is called the e-folding distance if x is a
distance or the e-folding time or time scale if x is a time, see Figures 1.5 and 1.6.

1.7 Thermodynamics and atmospheric science

The plan of this book is to present the subject of thermodynamics in such a
way as to help us better understand the atmosphere, but also to give us some
rules and methods that can be used in the practical application of atmospheric
science. Thermodynamics is a huge subject more than a century old, treated
by excellent textbooks in physics, physical chemistry, chemical engineering,
mechanical engineering, etc. We cannot possibly cover all the material in these
fields. We cannot even cover all the basic theory of thermodynamics in a short
course intended for students majoring in atmospheric sciences — especially at
the sophomore/junior year level for undergraduates, where not much science and
mathematics can be required prerequisites. Some compromises will have to be
made. This means those who want to delve deeper into some of the derivations will
have to check elsewhere among the many sources listed at the ends of chapters.
Sometimes we will limit derivations or justifications to the point that it is clear
that enough information is there to determine that such and such a formula can be
derived by the methods already discussed.

So what problems in atmospheric science can be addressed by thermodynamics?
After all we have seen already that thermodynamics consists of a set of laws
applicable under conditions that are so idealized that they are rarely attainable
even in the laboratory let alone in nature. The processes that occur in nature
are spontaneous and virtually never do we find a system (perhaps our leading
application consisting of a parcel of air) in true thermodynamic equilibrium. The
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answer to these questions is that thermodynamics affords us a useful framework
in which some approximate calculations can be conducted. Over the years these
approximate results have proven to be useful.

The following is a list of applications that we will work on in this book.

Gaseous mixtures These occur in nature since the atmosphere is composed mainly
of several relatively inert gases (at typical atmospheric temperatures anyway) and
several other gases which occur in trace amounts (i.e., ozone, methane, carbon dioxide,
even water vapor). We will be concerned with how the pressures of these individual
gases add up to the total pressure and how the density of a local blob (or parcel) of
the gas might differ from that of its surroundings, which might give rise to parcels
lifting themselves from their present altitudes to somewhere above, just how high
and how fast depending on the parcel’s thermodynamic properties and those of the
surroundings.

Liquid—vapor equilibria Water exists in all three phases in the atmosphere. We
would like to know how the pressure of water vapor above liquid surfaces varies
with temperature. We would like to have useful ways of describing the amount of
water vapor in the air (humidity) and how this affects the air’s buoyancy and how
condensation leads to release of thermal energy and therefore changes in buoyancy.
Other related issues treatable in thermodynamics include how liquid water droplets
grow in humid environments. Does the presence of air affect the vapor pressure above
a liquid surface? Does the air dissolve appreciably in the liquid? Does the presence of
salt dissolved in the liquid affect the vapor pressure? Does the size of a droplet affect
its vapor pressure?

Dynamics of air parcels How can we tell whether a given environmental temperature
profile (function of altitude) leads to stable conditions or unstable ones (does the air
start to turn over spontaneously)? What is the role of moisture and cloud formation
in this process? As parcels rise, they expand and their temperature drops (why?).
Does this mean they are denser and they might return? What are the conditions for
continued rising? What temperature profiles are likely to lead to severe weather?

Atmospheric chemistry Most chemical reactions in the atmosphere are between trace
gases such as ozone and so-called air pollutants, but many occur between natural
constituents. What are the criteria for a reaction to proceed one way or another? How
are chemical equilibria between reactants and products established and how do these
equilibrium concentrations vary as the temperature varies?

Notes

A complete bibliography is given at the end of the book. All university level physics
books contain a few chapters on thermodynamics; the numerous editions of Sears
and Zemanski as well as those of Halliday and Resnick and the one by Giancoli
are good examples. Many general chemistry books also contain a good description
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of the subject, for example, Whitten, Davis and Peck (1996). The little paperback
titled simply Thermodynamics by Enrico Fermi has some marvelous descriptions
of thermodynamic states, equilibria, etc.

An older advanced book which contains specific applications to meteorology
and especially applications to cloud physics is that of Irebarne and Godson (1981).
Two newer books on applications of thermodynamics to atmospheric science and
oceanography are those by Bohren and Albrecht (1998) and Curry and Webster
(1999). Both are pitched at a higher level than the present text and both delve more

deeply into many aspects of the subject.

Notation and abbreviations for Chapter 1

R’ RGa Rda RW’ R*

atm pressure unit, one atmosphere

g:82,80 acceleration due to gravity, its value as a function of
altitude, its value at the surface (ms—2)

G gravitational constant (Table 1.1)

h height

kg Boltzmann’s constant (Table 1.1)

L dimension length

mb, pressure unit, one millibar (1mb =1 hPa)

M dimension mass

M mass of a macroscopic object or system (kg)

Mg mass of the Earth (kg)

Na Avogadro’s number (Table 1.1)

p pressure (Pa, hPa)

Pa unit of pressure, 1 Pa = I Nm~2

gas constants: no subscript indicates for an unnamed gas,
sometimes explicitly for a specific gas, G; the subscript d
for dry air, w for water vapor, and the superscript * for
the universal gas constant (Table 1.1)

SI Standard International system of units

T dimension time, also period of a repeating process, and
temperature

Temp dimension temperature

v speed (ms™!), sometimes with a subscript indicating
velocity component along a coordinate axis (e.g., vy)

\% volume of a system (m?)

Problems

1.1 A useful mathematical model of the vertical dependence of pressure is

p(2) = poe™/H
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where H is called the scale height. H is usually between 8 and 9 km. What is this in
thousands of feet? Compare to the altitude of typical jet air flights.

What is the ratio of the atmospheric scale height (Problem 1.1) to the Earth’s radius?
If pp is 1000 hPa, what is a typical pressure in Denver (mile high city)? Use the
expression in Problem 1.1 with H = 8§ km with 1 mile = 1.6 km.

(a) Compute the circumference of the Earth at the Equator in km. (b) How many km
are there per degree of longitude at the Equator? (c) How many km are there per degree
of longitude at 30°N?

A numerical model of the atmosphere has horizontal resolution (grid boxes) 2° x 2°.
What is the area of one of these boxes at the Equator, and at 30°N?

Use the conservation of energy to show that for a particle falling under gravity from
rest at a height zq, at height z its velocity is given by

vt =2g(z0 — 2)

where g is the acceleration due to gravity (9.81 ms™2).

Newton’s Law of Gravity says that the force on a particle of mass M is
G
F o GMEM
2

Use the fact that the acceleration of gravity at the surface is g¢ = 9.81m s~ along with
the mass of the Earth Mg = 5.983 x 10**kg and the radius of the Earth of 6365 km
to compute the gravitational constant G (see Table 1.1).

A particle falls from outer space to the Earth’s surface. Far away its potential energy is
zero. At the Earth’s surface the potential energy is —GMgM /Ry = —MgRg (relative
to r = o0) where Mg is the Earth’s mass, Rg its radius and M is the mass in question
(see Table 1.1). What is the velocity of the mass when it strikes the Earth’s surface?
(This is exactly the vertical velocity it would have to have if it were to escape the
Earth’s gravity field after being projected upwards from the surface. It is called the
escape velocity.)

Suppose a particle is dropped from a height / and it bounces elastically (i.e., no kinetic
energy is lost in the collision: Vafier = —Ubefore).- HOW long does the round trip take?



Gases

2.1 Ideal gas basics

Gases are a form of matter in which the individual molecules are free to move
independently of one another except for occasional collisions. Most of the time the
individual molecules are in free flight out of the range of influence of their neighbors.
Gases differ from liquids and solids in that the force between neighbors (on the
average over time) is very weak, since the intermolecular force is of short range
compared to the typical intermolecular distances for the individual gas molecules.

If an imaginary plate is held vertically in a gas as shown in Figure 2.1, there will
be a force exerted on the thin plate from each side. The forces on opposite sides of the
inserted plane are equal; otherwise, if forces on the opposing sides were unbalanced,
the plate would experience an acceleration. The force on the left side of the plate
is caused by the reflection of molecules as they hit the left face of the plate and
rebound. These impulsive forces are so frequent that the resulting macroscale force
is effectively steady. The force is perpendicular to the face and has the same value
no matter how the face is oriented. This can be seen by considering the collisions
with the wall and the tendency for no momentum to be transferred parallel to
the plane surface. The perpendicular component of the force per unit area on the
plane is called the pressure. Tangential components of the force cancel out (when
averaged over many collisions with the wall) and therefore vanish when averages
are taken over a large number of collisions with the surface. The pressure has units
of newtons per meter squared or Nm~2; 1 Nm~2 is called a pascal, abbreviated
Pa. Atmospheric scientists use hPa (hectopascals 1 hPa = 100 Pa) or the equivalent
mb (millibars). The more appropriate unit would be the kPa, but this is not used
much in practice. A newton is the force necessary to maintain an acceleration of
1 ms~2 on a 1 kg mass. The units of force may be decomposed to kg ms—2.

The state of a gas is characterized by three quantities: its pressure, p; (mass)
density, p (note that knowledge of density is equivalent to knowledge of the

20
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FORCES ON A VERTICAL PLATE
IN A GAS
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Figure 2.1 Tllustration of the forces exerted by a gas on a thin vertically oriented
plate. Since the plate does not feel a net force, Fp, = —FRr.

volume for a single-phase system of a given mass, p = M/V); and temperature,
T (in kelvins). In general, there is a mathematical relationship between the three
variables, or thermodynamic coordinates, called the equation of state. It is important
to remember that the density is uniform throughout the volume of a gas in
thermodynamic equilibrium.

The number density, ng, is the number of molecules per unit volume
([no] = molecules m—3). The equation of state of an ideal gas is given by

[Ideal Gas Law] Q2.1

where kg is called Boltzmann’s constant:
kg = 1.381 x 10723 JK~! molecule™!. (2.2)

Boltzmann’s constant is a universal constant independent of the molecular
species. Almost all gases behave as ideal gases if they are sufficiently dilute.
The condition for this is that the molecules spend a large fraction of their time
apart from one another so that the intermolecular forces are acting only a small
fraction of the time for a given molecule. This will become clearer in the next few
sections where some estimates of intermolecular spacings and distances between
collisions are compared to the sizes of the molecules. Typical intermolecular forces
for neutral molecules are appreciable only over distances of the order of the radius
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of a molecule. This is to be contrasted with the long-range electrical forces of an
ionic species (Coulomb’s Law) where the forces are of long range, varying as the
inverse square of distance.

Example 2.1 A gas is at standard temperature and pressure (referred to as STP:
p = latm = 1013 hPa, T = 273.16 K). What is its number density?

Answer: ng = p/(kgT) = 2.69 x 10®molecules m—>. This value is called the
Loschmidt number. t

2.1.1 Intermolecular spacing

The approximate intermolecular distance can be found by taking the molecules at
an instant of time to be uniformly distributed in space with number density ng.
Place a cube around each molecule in the gas. Then each molecule sits at the center
of a cube of side length d. The number of these cubes per unit volume is ng. The
volume of one of them is d> = 1/ng; or d ~ 1/n(1)/3 =334 x107"m =3.34 nm
(at STP). Note that the radius of a molecule rg is only a few times 10719m=0.1 nm
(several tens of times less than the intermolecular distance). In a liquid or a solid
intermolecular distances are on the order of the molecular sizes (see Table 2.1).

Atomic refresher The Bohr atom has radius a = h*ey/mmeQ2, where

€0 =8.85x 10712Fm™! (permittivity constant), 7 = 6.63 x 10734 s (Planck’s
constant), Q. = 1.60 x 10719 C (electron charge), me = 9.11 x 10731 kg (electron
mass). The Bohr radius for a hydrogen atom is @ = 5.29 x 10~ m = 0.0529 nm.
Most high school or college chemistry books describe the Bohr model of the
hydrogen atom.

2.1.2 Mean free path

The average distance a molecule travels in the gas before collision is called the mean
free path. To obtain an estimate of the mean free path imagine the background
gas particles to be stationary. Take our test molecule of radius rp to be moving
through the lattice of fixed points used in the last subsection. A collision between
our prototype molecule and a background molecule will occur when their centers
are within 2rg of each other (Figure 2.2). We can think of the test molecule having
radius 2rg and the lattice composed of stationary points (see Figure 2.3). Hence, as
the test molecule moves through the lattice it sweeps out a cylinder of radius 2r.
In time At the volume swept out is (2ro)%7 x vAf (number per unit volume times
volume). The cross-sectional area of the sweeper is sometimes given the symbol o,
and called the collision cross-section (see Table 2.2). The number of background
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Figure 2.2 At the moment of collision two spherical molecules have a distance
between their centers of 2ry.
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Figure 2.3 As a molecule moves a distance vAt, it encounters all the point centers
in the volume of the cylinder whose length is v At and whose cross-sectional area
is 4w r%. The number of point centers in the volume is nodmw r(z)vAt.

molecule centers in this cylinder is 79 x o v At (number per unit volume x volume of
the cylinder). Then the number of collisions per unit time (the collision frequency) is

[collision frequency]. 2.3)

We may calculate the average distance between collisions to be the [distance per
unit time] = [velocity] x [the time between collisions] (this last factor is the inverse
of collision frequency):

A=vX : = : [mean free path, approximate form]. 2.4)
npocv  Npoc
The Greek letter X is used in most texts to denote the mean free path. Actually,
it is possible to solve the problem when all the particles are in motion, and the
derivation can be found in books on the kinetic theory of gases. The same formula
occurs for the mean free path except for an additional factor of ~/2 = 1.414 .. .in
the denominator:

1

A= —
ﬁnoac

[mean free path, more exact form]. (2.5)
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Table 2.1 Some characteristic lengths in the
kinetic theory of gases at STP (all in units of
nanometers, 107° m )

Bohr  Intermolecular  Mean  Wavelength of
radius spacing free path  yellow light

0.053 33 52 500

Table 2.2 Some collision cross-sections o. for gases of
interest in nm?

For interspecies estimates use the average. Data from
Atkins and de Paula (2002).

Ar-Ar N2—N2 02—02 H2—H2

0.36 0.43 0.40 0.27

For a typical gas ro = 2 x 107! m (0.2 nm) and thus, o, = 47rr§ ~5x 10719 m?
(0.5 nm?). Using ng from above we have A & 5.23 x 1078 m (52.3 nm), which
is about an order of magnitude more than the intermolecular spacing at STP
(Table 2.1).

Example 2.2 Take as a model for the vertical dependence of number density:

no(2) = no(0)e™ /"

where z is the altitude above sea level and H is called the scale height (typically
8 km in midlatitudes, but up to 12 km in the tropics). Our exponential model was
just cooked up, but it turns out to be a very good approximation. What are typical
mean free paths at z = 0, H,2H, taking STP at z = 0?

Answer:
H
- 1 _ et/ _ Aer/H-
n(z)o.  n(0)o.
Then: A;—9 = 52nm, A,—g = 141 nm, A,y = 384 nm. ]

From the previous example we see that the mean free path is still very small
compared to our familiar everyday sizes of things, especially weather phenomena,
even at altitudes of several scale heights (well into the stratosphere). When the
dimensions of the body of gas (say, a storm or a cold air mass) are large compared
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to the mean free path, we can ignore the molecular motions and treat the gas as a
fluid, obeying the macroscopic laws of fluid mechanics. This is usually the case in
atmospheric science up to altitudes of about 100 km.

The mean free path also gives us an idea of the length scales over which transport
of properties occurs. If a property is transported via collisions between molecules it
has to happen over length scales comparable to the mean free path. Such processes
are said to be diffusive, and they are rather slow compared to some fluid motions
such as convection.

2.1.3 Pressure from kinetic theory

An intuitive feeling for the pressure of an ideal gas can be gained by considering a
gas enclosed in a cubical box of edge length L (see Figure 2.4). Imagine a molecule
going left and right across the box and bouncing back at the walls. A round trip takes
a time 2L/vg where vy is the speed of the molecule. At a reflection it experiences
a change of momentum A (mgvg) = 2mgug. Each reflection imposes an impulsive
force to the wall (see the physics refresher below). The frequency of such reflections
(by the entire box of molecules) is so large that the force is effectively steady (we
shall see later that typical molecular speeds are hundreds of ms™!). The rate of
such impulses by an individual molecule is the change in momentum divided by
the time interval between reflections, 2mqvg/(2L/vo) = mov(z) /L. If we suppose
that one third of the molecules are going left-right (the others are going up-down
and in-out), then the number going left-right is ngL?/3. The total force on the
wall is

F = (movg/L> (nOL3 /3) . (2.6)

Figure 2.4 A molecule moving left to right with velocity vy is elastically reflected
by the wall. After the collision the velocity is —vg. The side dimension of the
cubical box is L.
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This total force on the wall should also be the pressure x the area of the wall which
can be expressed as

F = pressure x area = pLz. 2.7)

Equating these we have
R N—— lated to v2 2.8
p= gnomovo [pressure related to vy] (2.8)

where the overbar indicates statistical averaging over the probability distribution
of molecular speeds, vg. Since we know the equation of state for an ideal gas (from
experiments), p = nokg T, we can use this along with the relationship just found to
identify the corresponding coefficients and arrive at the new relationship:

1 - 3
Emov% = EkBT [kinetic energy and Kelvin temperature]. (2.9)

Note that the left-hand side is just the average kinetic energy (%mov%) of a molecule
in the box. This relationship says that the femperature expressed in kelvins is
proportional to the average kinetic energy of individual molecules. The coefficient
of proportionality is thus determined to be % times the Boltzmann constant. Note that

when the absolute or Kelvin temperature 7 is zero, the molecules are at rest (U(z) =0).
All thermal motion is presumed zero at this temperature at least in the ideal gas as
we have defined it. Actually, there is no such thing as an ideal gas at 0 K (any real
gas would have been liquified or solidified well above 0 K). Moreover, quantum
mechanics tells us that there is motion even at this lowest of low temperatures.
Fortunately, we never encounter these low temperatures in meteorology and the
Ideal Gas Law virtually always applies to the gases of interest.

While the derivation above is highly simplified with many details omitted, such
as flights that are not perpendicular to the walls, distributions of the molecular
velocities, collisions between the molecules, etc., these details cancel out in the
more rigorous derivation. Hence, the formula and its interpretation are correct.

Physics refresher: impulse force When a particle reflects from a rigid surface it
exerts a force on the surface. The force on the wall is found by integrating Newton’s
Second Law over the time of the collision:

_ 1 /f+f/2 du(r)
F dr
t

T =
T

mq

—/2 dt

where t is the (very short) time interval during which the molecule is in contact with
the wall. Unfortunately, we do not know the value of t in general. However, over
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longer periods outside the interval (r — 7/2,¢ + t/2) the integrand vanishes so the
integration period can be extended from ¢ — Ty /2 to t + Ty /2 where T} is the length
of time for the molecule to make its round trip between collisions with the wall. The
force exerted on the wall during a round trip of a single molecule is then

_ 1 t+Tw /2
Frt

du(r) 2moyvg
= — mo dt = .
Ty t—Ty/2 dt Tyt

If the round trip time (T}x = 2L/vp) is short enough (compared to the sluggish wall’s
response time) the wall will feel a nearly steady force of this magnitude. Now if we
add the collisions of all the molecules, as in the derivation of pressure, we can be
assured of a steady force perpendicular to the wall.

There are a few loose ends that must be addressed. First, not all molecules are
traveling strictly in the x, y and z directions. This can be disposed of by noting that for
the wall perpendicular to the x direction only the x component of the motion matters.
The y and z components do not affect this wall. Do the collisions one by one cancel
their y and z components before and after the collision with the wall? After all, the
wall is not a smooth surface at the molecular level. The answer is that over the long
run and averaging over many particles this cancellation is complete. Lastly, the
molecules do not travel uninterrupted from one end of the box to the other. They go
only one mean free path (a few tens of nanometers at STP) before they suffer a
collision with another molecule. The solution to this problem lies in the conservation
of momentum. After a collision the x component of momentum is conserved for the
colliding pair and it is the momentum change at the wall that matters, whether it is the
same molecule or not.

In specific applications such as meteorology it is useful to cast the Ideal Gas
Law into yet another form by multiplying and dividing by the mass of an individual
molecule, myg:

k
p = mo no (—B) T = pRT (2.10)
mo

where p is the mass density (p = mong = M/V) in kg m~3, and the gas constant
defined by R is kg /myg (note: this is not the universal gas constant which is to be
defined later). For dry air

Rqg =287JK kg (2.11)

Note that this definition of the gas constant depends on the mass of individual
molecules mg. Dry air is a mixture of different ideal gases. The value of Ry takes
this mixture into account as will be explained shortly.
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Table 2.3 The composition of dry air

Percentage

by volume Percentage Molecular
Constituent (number count) by mass weight
nitrogen 78.09 75.51 28.02
oxygen 20.95 23.14 32.00
argon 0.93 1.30 39.94
CO, ~0.03 ~ 0.04 44.01

Table 2.3 gives the composition of dry air by volume percentage — this is the ratio
of the number density of a substance ng to the total number density. The same table
also gives the percentage by mass — the ratio (x 100) of the mass of the constituent
in a sample to the mass of the whole sample.

Example 2.3 What is the density of a parcel of dry air at 270 K at the 500 hPa level?
Answer: Use p = p/(RqT):
50000 Pa

_ _ -3
= (287Jkg_1K*1)(270 K =0.645kgm™". (2.12)

0

O

Example 2.4 What is the root mean square (rms) speed of a molecule of air at STP?
Answer: We can write

— kg

v2=3="T =3R4 T (2.13)
mo

Vrms = v/ 3R4T ~ 485ms . (2.14)

O

Example 2.5 What is the collision frequency of “air” at STP? (air is in quotes
because we imagine the air composed of a single species whose molecular weight
is 29.0, i.e., 29 times the mass of a proton).

Answer: We use the collision frequency formula: ~ ngocvmms = 2.69 X
10% moleculesm™3 x5x 10719 m? x485ms~! = 6.52x 10° collisionss~'. O

Example 2.6 What is the typical number of collisions with a wall perpendicular to
the x-axis per unit area per unit time? Let the conditions be STP.

Answer: The number of molecules impinging on the wall from the leftis (ng/4) (Av)
where ng is the number density, A is the area of the wall (1 m?), and T is the average
speed of the molecules as shown in Section 2.3. 19 = 2.69 x 10> molecules m >
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and v can be taken to be roughly the vy of the previous example. Hence, there
are about 10?7 collisions per second with the 1 m? wall at STP. So where did the
divisor 6 come from? It comes from a careful integration over all the angles, etc. A
simple minded (but correct) way of obtaining it is to note that % of the molecules
are going in the x direction, but only half of these are going in the +x direction.
With or without the 6, this is a very large collision rate. 0

Math refresher: probability density function (pdf) The quantity P (u) du is the
probability of finding the variable u to lie in the range (u, u 4+ du). The probability of
finding it to have any real value is unity; thus

/‘00 Pu)du = 1.

The mean value of u is defined to be

o0
Uy = / uPu)du
—0o0
and its variance or mean squared value is given by
2 > 2
o, =/ (u — py)“P(u) du.
—0o0

The variable u is called a random variable. In treating random variables we consider
independent realizations of the variable (like drawing values from a hat).

2.2 Distribution of velocities

Obviously the molecules in a box are not moving parallel to the x, y and z directions
exclusively. Instead molecules will have instantaneous velocity components vy, vy,
and v,. Consider the v, component for an individual molecule at a given time.
The value of v, will take on a range of values from one time to the next because
of collisions with other molecules (it can be thought of as a random variable).
Computer simulations suggest that after only a hundred or so collisions per molecule
the probability density of values of v, settles to a steady functional form. After this
equilibration or thermalization time v, is found to be distributed as:

Pvy) = e /2%, | [normal distribution] (2.15)

1
V2moy,
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P(vd
0.4

-4 -2

Figure 2.5 Graph of the normal distribution for o, = 1 and for o, = 2, where
oy = /R*T /M. The larger value of o, (higher temperature or lower molecular
weight) leads to a broader distribution, but still has the same area under it. In the
case of the x component of velocity, this means the velocity is expressed in units
of 280ms~! at 300 K. Note that this differs from the rms speed (485 ms~1), since
we are only considering one of the three components of velocity.

which is called the normal distribution. The normal (sometimes called the Gaussian)
distribution occurs often in nature. It generally comes about when the variable is
subjected to a long history of random jolts that add up to its current value. After
a long time (many additive increments to the value of the variable) its probability
distribution approaches the normal distribution. This can be proved under rather
general conditions in mathematical statistics under the heading of the Central Limit
Theorem. The normal distribution has the familiar bell shape shown in Figure 2.5.
This probability density function (pdf) is normalized such that

o
/ P(vy) dvy = 1| [normalization]. (2.16)
—00

The area under a portion of the curve between two values vy, and vy, is the
probability of a given molecule having its x component of velocity lying in that
range. Obviously the probability of its lying in the range (— 00, 00) is unity. The most
probable velocity is the one for which the pdf is maximum — it is called the mode
of the distribution; the mode is the value of v, for which dP/dvy = 0. The average
value of v, is given by

o
Ty = / vyP(vy) dvy = 0| [mean value] (2.17)
—00
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which vanishes because P(v,) is an even function on the integration interval and
it is multiplied by an odd function, vy.
The mean square of v, (also called its variance) is given by

(vy — Vy)2 = foo (vy — Ex)zp(vx) dv, | [variance] (2.18)

and this can be shown to be
(v — T2 =0, (2.19)

Example 2.7 The escape velocity of a molecule is the least vertical velocity vesc at
which the molecule can escape the Earth’s gravitational field. We can compute this
velocity by finding the velocity a (collisionless) molecule might have upon falling
from infinity to the Earth’s surface. The procedure is to equate the kinetic energy of
the particle %movgsc to the potential energy at the Earth’s surface GMmg/R. After
cancelling the mg on each side we find vese = +/2gR where g = 9.8 ms~2 and
R ~6400km. The final answer is vesc = 11.2kms~!, which is independent of

mass (molecular species). O

There are many interesting pdf forms that arise in nature. These next two examples
occur often. More cases can be found in elementary statistics books.

Example 2.8: uniform pdf

1 f0<u<l
P = { 0 otherwise.
After performing the integrals we find:
1 1
=5 0l = 7 o 0.289. O

Example 2.9: exponential distribution
This distribution is given by the formula

Pu) = ée‘“/ b (2.20)

which has mean value b and variance b2. O

We have already established the variance for an ideal gas from the relation
(see (2.13))
1

—- 1
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Note that the factor of 3 seen before is not present because of the consideration of
only the x component of velocity instead of all three components.

The three components of velocity are actually statistically independent of one
another, and one of the rules of probability is that under these circumstances the
Jjoint distribution of the three variates is just the product of the individual densities:

P (v, vy, v7) = P(vx) P(vy)P(v;) (2.22)
. mo 3/2 ex —mov)% n —mov)% n —m()vz2
“ \2ksT P\ 2keT " 2kgT T 2ksT

where exp(-) stands for e). And of course, the square of the velocity vector of a
molecule is given by the sum of the squares of its components:

v* =0} + v} +v7| [speed from velocity] (2.23)

or written more compactly

1 \3? a2
P(vy, vy, v7) dvy dvy dv, = (W) exp (?Uz) dvy dvy doy, (2.24)

where

2_ kT

mo

o [variance of velocity component]. (2.25)

The probability density function for molecular velocities (2.23) is called the
Maxwell-Boltzmann distribution (see Table 2.4).

The distribution of velocities has no dependence on direction, only on speeds
(i.e., it is isotropic). We can go to spherical coordinates in the velocity space and
replace dv, dvy dv; by v?sin 0 d6 d¢ dv. Since there is no 6 or ¢ dependence in
the integrand we can integrate over them and the differential becomes 47 v? dv.
The pdf (the remaining integrand) becomes a function of speed only:

N 1 \3? .2
Pv)dv = 47v? exp - dv | [speed pdf] (2.26)
2mo? 202

and the integrals now run from O to co. The last formula gives the probability of
finding the speed of a molecule in the infinitesimal interval (v, v + dv). A graph of
this function is shown in Figure 2.6.
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Table 2.4 Comparison of characteristic velocity scales for a
Maxwell-Boltzmann distribution, the values are for the “hypothetical” air
molecule (M = 29)

Value at
Quantity Math form Formula 300K (ms~ 1)
rms velocity Vrms = (v2)1/2 Wl — [T = J3RT 508
mean speed v ik%OT = 0.921vrms 811
mode speed Um W = 0.816Vs 415
speed of sound (air) Us % = 0.683vrms 331
standard deviation (air) o \/% = 0.577Vrms 293

v(ms-1)

200 400 600 800 1000 1200

Figure 2.6 Graph of the distribution of molecular speeds 47v>P(v) for air
molecules (M = 29) at a temperature of 300 K. The speed v is expressed in
units of ms~!. Recall that the escape velocity is 11.2km s~ ! independent of mass.
The value of the probability density function at v = 38¢ is 107313 sm~!, which
might help to explain why the Earth retains its atmosphere.

It is interesting to compare the escape velocity (11200ms~') with the
distribution shown in Figure 2.6. The value of the distribution is some 107313 s m~!.
The number of these molecules to escape even over the history of the planet
(4.7x10° years) is exceedingly small. The median of the distribution moves to
higher speeds if the temperature is raised or if the mass of the molecules is lowered.
For example, Figure 2.7 shows the case of hydrogen atoms (M = 1) at 350K, a
value characteristic of altitudes ~ 120 km. The value of the density distribution
at the escape velocity is 8 x 107'2sm™!, and after numerical integration of the
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0.00035 - atomic hydrogen at 350 K
0.00030 |

0.00025 -
0.00020

0.00015

0.00010

0.00005

1 1 I v(ms—‘)
2000 4000 6000 8000

Figure 2.7 Graph of the distribution of molecular speeds 47 v>P(v) for atomic
hydrogen (M = 1) at a temperature of 350K, a value for the upper atmosphere
(~ 120km). The speed v is expressed in units of ms~!. Recall that the escape
velocity is 11.2kms™! independent of mass. The value of the probability density
function at v = 11.2kms™! is 8 x 10~12sm™!, and the area under the rest of
the curve is 2x 1077, This is a value large enough that if H reaches the upper
atmosphere it will be depleted over planetary lifetimes. However, H is continually
produced in the upper atmosphere by photodissociation (see Chapter 8) of water
vapor.

density from the 11.2kms~! to infinity, we find that the probability of the speed
being higher than the escape value is 2 x 10~°. This is probably large enough for
H to escape, but small enough that water molecules steadily being disassociated
by hard (very short wave) solar radiation can maintain a presence at very high
altitudes.

Example 2.10 By contrast the Moon has a smaller radius (0.24 rg =1737 km) and
mass (7.349x 10?2 kg = 0.01229 M) than Earth. This means that the acceleration
of gravity is

8gMoon = GMMoon /RIZVIOOH = 163 m S_2

and

Vesc = / 2gMoconRMoon = 2380m S_l,

The maximum surface temperature on the Moon is about 400 K. Figure 2.8 shows
the distribution of speeds for this case. The integral from the escape velocity to
infinity is 2.73 x 1077, easily large enough for the Moon to lose its atmosphere
over its lifetime. U
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P(v) speed distribution for the Moon

v(ms=1)

500 1000 1500 2000

Figure 2.8 The distribution of molecular air molecules for the Moon at 400 K. The
escape velocity is 2380ms ™.

2.3 Flux of molecules striking a wall

There are many derivations of elementary processes in kinetic theory. We present
one more here since the result comes up often. We want to know the number of
molecules striking a wall (perpendicular to the x-axis) per unit time and area. This
is simply the number density times the x component of velocity averaged over the
velocity distribution. We proceed by finding ngv, using the Maxwell-Boltzmann
distribution for the x component (the other factors for the y and z components
integrate to unity). We consider only the positive component of vy:

00 2
flux/(L area) = ngvy = n()/ Avy exp <—U—x2> dv, 2.27)
0 20

with A = (mo/(2mkp T))l/ 2 and 02 = ksT /mg. The integral can be evaluated
to give

keT 172
flux/(_L area) = ngv, = nop ( ) . (2.28)
2mwmg
And finally:
I _ .
flux/(_L area) = Znov [flux of molecules hitting a wall]. (2.29)

If we apply this to leaks through a small hole in the wall the process is called
effusion. The formula holds when the hole is smaller than the mean free path of the
molecules so that they flow through the hole without collisions; otherwise the gas
acts like a fluid when passing through the opening and one must use fluid mechanics
methods rather than kinetic theory.
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Table 2.5 Gas notation

p pressure (N m~2 =Pa; 100 Pa = 1 hPa = 1 mb)

1% volume (m?)

0 mass density (kgm™)

o specific volume (m? kg’l), a=p!

mo mass of an individual molecule (kg); for H, my = 1.67 x 1027 kg
no number density (molecules m3 )

kg Boltzmann’s constant: 1.381x 1072 J K~! molecule™!

Mg gram molecular weight; for hydrogen, My =1 gmol~!
Mg the gram molecular weight divided by 1000
My dry air effective molecular weight, My = 28.97 gmol ™!

Mg effective gram molecular weight of a mixture of gases
M, bulk mass of constituent i (kg)

Na Avogadro’s number: 6.022 x 103 molecules mol !

v number of moles of a gas

R* universal gas constant: 8.3143 JK~! mol~!

Ry gas constant for dry air: 287 JK~! kg~!
R,Rg gas constant for a particular gas, G(JK~! kg™!)

2.4 Moles, etc.

The molecular weight, M , of a pure gas is the sum of the atomic weights of the
atoms making up the molecules. The molecular weight has dimensions grams per
mole, denoted g mol~! (see Table 2.5). In keeping with SI units one might choose
kgkmol ™!, which gives the same numerical value. For example, the molecular
weight of isotopically pure (no deuterium (®H) or tritium (*H) atoms in the gas) Hp
is 2 and that of CO; is 12 4+ 16 + 16 = 44. The chemical properties of the element are
determined by the number of protons in the nucleus, which is designated the atomic
number. The atomic weight is determined by the sum of the number of protons and
the number of neutrons. An element can have different isoropes, i.e., the number
of neutrons might vary slightly from atom to atom. But the most abundant isotope
found in nature is usually dominant, with only a small percentage of the other
isotopes present. If we take a random sample from nature this leads to a weighted
average of the atomic weight, and this is the value used in most computations.
For our purposes, we can simply use the numbers given in Table 2.6 which take
into account the distributions of naturally occurring isotopes. Strictly speaking the
standard is set by the most abundant isotope of carbon which is defined to have a
molecular weight of exactly 12.000 kg kmol .
The number of molecules in a gram mole is called Avogadro’s number

Na = 6.022 x 10%* molecules mol ! [Avogadro’s number]. (2.30)
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Table 2.6 Selected atomic and molecular weights in
grams per mole (equivalent numerically to kg kmol™")

Ar 39.948 N 14.0067
N> 28.0134 S 32.066
02 31.9988 H,O 18.01534
CH4 16.04303 dry air 28.97

C 12.01115 H 1.00794
H» 2.015%4 He 4.0026
o 15.9994

The number of moles of a substance is denoted by v. It is the number of molecules
N under consideration divided by Na:

N

v = — | [number of moles]. (2.31)
Na

In terms of number density (np = N/V), the number of moles is given as v =
noV /Na, where V is the volume occupied by the gas in m>. The mass (in grams!)
of an individual molecule is related to these quantities by my = Mg/Na, where
Mg is known as the (gram-)molecular weight of the gas G. (Avogadro’s number of
pure hydrogen atoms has a mass of 1g.) The gram-molecular weight is the one used
in most existing tables; hence, we use it here. But in keeping with our SI units, we
need to express myg in kilograms in most formulas. Thus the applicable expression is

Mg .
my = — | [mpin grams]. (2.32)
Na
However,
L vie. with itg = M o in kil ] (2.33)
myg = —Mg, wi = —— [mgpin kilograms]. .
0 Na G G 1000 0 g
The Ideal Gas Law can then be written:
p = pRcT (2.34)

= nomoRgT (p in kg m3, pinN m~2, mg in kg)

since p = ngmg. Now ng = vN /V, the total number of molecules per unit volume.
Also note that mq (in kilograms) is Mg/Na. Then

_VNa L ReT (2.35)
P = v NA GG .
= —RT (2.36)
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where

R* = Mg Rg | [relating R* and RG] (2.37)

is called the universal gas constant (R* = 8.31457 K~! mol_l).
Note the relationship:

[relating R* and kg]. (2.38)

In other words, the Boltzmann constant is the gas constant per molecule while R*
is the gas constant for a mole of molecules. The gas constant for a specific gas is
related to the universal gas constant by

R*
Rg = =— [inJK 'kg™!] (2.39)

Mg
kgN,

— B7A (2.40)
Mg
kg .

= — [mginkg]. (2.41)
mo

Again the use of Mg instead of Mg above simply converts to SI units; this is
because of the conventional definition of the mole in terms of grams instead of
kilograms.

Standard conditions (denoted STP) for a gas are 0°C and 1atm of pressure
(=1013 hPa). It is useful to know that 1 mol of an ideal gas occupies 22.4 liters
(1liter = 1000 cm® = 1073 m?) or 0.0224 m~3 at STP.

Example 2.11 Calculate the gas constant for dry air.
Answer: Use (2.39) with My = 28.97. Ry = 287 kg~ K~ O

Example 2.12 Calculate the gas constant for water vapor.
Answer: Same as above, My, = 18.015,R,, = 461.5Tkg~ ! K~!. O

Example 2.13 Calculate the densities of pure dry air and pure water vapor at STP.
Answer: Use the gas law, p = p/Rg T:

pd(STP) = 1.013 x 10° Pa/(287Tkg~! K~1)(273.2K) = 1.292kgm™> (2.42)

pw(STP) = 1.013 x 10° Pa/(461.5Jkg~ K—1)(273.2K) = 0.803kgm ™.
(2.43)

Water vapor at the same temperature and pressure is less dense than dry air. [J

Example 2.14 A vessel contains 1.2 kg of dry air at STP. How many moles of O,
N>, and Ar are there?
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Answer: 1200g =vgMy. Then vqg = 1200/28.97 = 41.4 mol of dry air. We know
that vo, = 0.21vg, vN, = 0.78v4, var = 0.0093v4. Inserting, we find: vo, = 8.70
mol, vn, = 32.3 mol, and va; = 0.41 mol. O

Example 2.15 How high would a molecule with upward directed speed 485 ms~!
go before turning back in the Earth’s gravity field?

Answer: From elementary mechanics the height of such a flight is given by
converting all the initial kinetic energy into potential energy:

1

Emvg = mgh (2.44)
orh = v(z) /(2g) ~ 12000 m = 12 km. This is just larger than the scale height of the
atmosphere. O

Example 2.16 What is the average force exerted by a molecule of mass my making
elastic reflections on the floor under the influence of gravity?

Answer: Let the molecule fall from a height 4. The time for its fall is t = \/2h/g.
Its speed upon impact is vg = \/2(?h The momentum change on a reflection is
2mgyvg = Zm()@. The force exerted on the floor is then 2mgvg/At; At is the
time for a round trip up and back down by the molecule. We finally obtain,

2mo/2gh
F= VAR e (2.45)
2 /2h/g

In other words, the average force on the floor is just the weight of the bouncing
molecule. Note that the result is independent of the initial dropping height 4. Is it
any wonder that atmospheric pressure measures the weight of air in the column
above a square meter? 0

2.5 Dalton’s Law

Dalton’s Law deals with a mixture of ideal gases. It states that the partial pressures

of the individual constituent gaseous components are additive. Based upon the

kinetic theory derivation above it is not surprising that the pressures would be

additive for mixtures of ideal gases with different molecular masses mp, my, . . ..
Writing the expression for the sum of partial pressures,

p=pi+p2+---. (2.46)

Once we accept this rule we can compute the effective gas constant for a mixture of
gases. To do so we substitute for the partial pressure of the different constituents:

p=(pPIR1+pR2+---)T. (2.47)
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After multiplying and dividing through by p, the mass density of the mixture,
p=p<%R1+%R2+“')T- (2.48)

After noting that the volumes are the same for p; and p, we can write

M M . .
Refr = —1R1 + —2R2 + --- | [effective gas constant for a mixture]. (2.49)
M M
Note that the coefficients in the last equation are mass fractions, not mole fractions.
It might be necessary to calculate the effective molecular weight of a mixture (as

we have used My = 29 gmol~! for dry air). We can start with
kg . kgNa _ R*

R* =kgNp, R= — = = —, 2.50
BNA mo ~ moNA M (2.50)
where M is the molecular weight (kg mol~!). Now return to (2.49) and set
R*
Regf = . (2.51)
¢ Mgt
This leads to
R*
Mg = R [effective molecular weight for a mixture]. (2.52)
eff

As a check let Ry = 287Tkg™ ' K~!, and we find Moy = 0.029kgmol ! =
29 gmol !,

Example 2.17 An argon atmosphere. What is Ra,?
Answer: Ray = R*/Ma;, = 8.31 x 103JK 'kmol™' / 39.94kgkmol~! =

208.2JK kg™l O
Example 2.18 What is the density of argon gas at STP?

Answer: p = p/(Ra:T) = (101325 Pa)/(208,2JK_1kg_1 x 273K) =
1.78kgm™3. O

Example 2.19 Suppose the atmospheric density is given by p(z) = poe*/# , where
z is altitude above sea level, pg = 1.2kgm™> and H is the scale height, nominally
10km. What is the mass of air above 1 m? at sea level?

Answer: dm for a slab of thickness dz is p(z)A dz where A is the horizontal cross-
sectional area of the slab. Adding up all the infinitesimal slabs in the column

amounts to

o0
M = / Apoe M dz = ApoH = 1m? x 1.2kgm™ x 10*m = 1.2 x 10* kg.
0
O



Notes

There are many good classical thermodynamics books. One which is very
readable and includes a mix of elementary kinetic theory as well is Sears (1953).
Another more recent but very readable account is by Houston (2001). A purely
thermodynamic treatment is given in the physics text by Zemansky (1968). Modern
physical chemistry books are perhaps best for discussions of gas thermodynamics,
for example Atkins (1994). For a readable but rigorous discussion of constraints,

Notation and abbreviations

etc., see Reiss (1965).

Notation and abbreviations for Chapter 2

a
F
h
ho
kg

Na
P,PG
P (vx, Vy, Uz)
P(z)
1o

R*
Rq
Reft
Ry

0

At

T

o

Bohr radius

force (N)

Planck’s constant (J s)

initial height

Boltzmann’s constant (Table 2.5)

length of box edge (m)

mean free path (m)

electron mass (kg)

mass of a single molecule (kg)

effective molecular weight (gmol™!)

gram molecular weight of a gas (g mol~!)

bulk mass of an object (kg)

molecular density as a function of height (molecules m—3)
total number of molecules

newtons

Avogadro’s number

pressure, partial pressure for gas G (Pa)

joint probability density function for velocity components
probability density function

effective molecular radius (m, nm)

universal gas constant (J mol~ ' K1)

gas constant for dry air (Jkg~! K1)

effective gas constant for a mixture of gases (Jkg~! K1)
gas constant for water vapor (Jkg~! K™1)

density (kg m™3)

time interval (s)

temperature (K)

standard deviation
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variance
collision cross-section (m?)

(u,v,w) velocity components (vy, vy, v;)

speed (ms™1)

mean speed (ms~!)

escape velocity (ms™!)

mean square velocity (m?s~2)

mean square of x component of velocity (m? s~2)
volume (m?)

elevation (m)

Problems

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
29

2.10

2.11

2.12

2.13

2.14

Calculate the mass of a 1 m? parcel of dry air at STP. Calculate its mass at the same
pressure but at 10 °C and 20 °C.

Calculate the mass of a 1 m? parcel of water vapor at STP.

What is the partial pressure of oxygen in a dry 1 m cube of air at STP?

What is the weight of the 1 m cube of dry air at STP? In newtons, in pounds? (Note:
1 kg weighs 2.21b at sea level.)

What is the number density of a volume of pure oxygen (O,) at STP?

Express Rq in terms of hPa instead of Pa.

Use dP(v)/dv = 0 to find a formula for the most probable speed of a molecule at
STP.

Compute the viys for O, Na, Ar, and Hy at STP. Compare to the escape velocity.
The mass of a certain air parcel is 1 kg, its temperature is O °C and it occupies a volume
of 1 m?>. It is known to have 5 g of water vapor and the rest is dry air. What is the
partial pressure of water vapor? What is the density of this moist air? Compare to the
density of dry air at the same overall pressure.

A cylindrical column of air has radius 1 km. The surface pressure is 1000 hPa. The
entire column is rising at a speed of 10cms~!. What is the kinetic energy of the
column?

The cylinder of the previous problem is rotating about its axis of symmetry at a rate of
27 radians per day (1 day = 8.64x 10* s). What is its rotational kinetic energy? (Hint:
The moment of inertia of a cylindrical slab is I = %mRZ; kinetic energy = %I w?
where o is angular velocity in rads~!.)

Suppose the number density of molecules in a column of air is given by ny(z) =
no(0)e~*/H_ What is the total number of molecules in a column with unit cross-
sectional area? What are reasonable values for n¢(0) and H? Use STP at z = 0.
Given the conditions of the last problem and a reasonable value for o, what is the
approximate altitude zy for which the mean free path, A, is equal to H?

Given that the molecules in a column of air are distributed vertically as in the last two
problems and that the temperature is constant in the column at Ty, what is the total
gravitational potential energy in the column in Jm~=2?
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2.15 Suppose the column of air in the last problem is isothermal at a temperature of 300 K.
What is the total kinetic energy of the molecules in the column?
2.16 Compare the collision frequency of “air” molecules at STP to the frequency of yellow

light. Note also for comparison that the lifetime of an excited state of an atom is about
1078
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Often in meteorology we deal with a fixed mass of a gas whose volume and other
characteristics may change as the air mass moves about. The particular mass of
gas may be thought of as a small parcel of matter that is transported through the
environment by natural forces acting upon it. We could also imagine moving it
virtually via an abstract thought experiment, for example to determine its stability
under small perturbations. As an air parcel rises for whatever reason in the real
atmosphere, it will almost instantaneously adapt its internal pressure to the external
pressure exerted by the local surroundings, but the temperature and composition
adjust more slowly. In convection, entrainment of neighboring air also speeds up
the process of equalizing the temperature between inside and outside air. Still there
is a huge separation of equalization times between pressure and temperature and/or
trace gas concentrations. This time scale separation has made the parcel concept
a useful and even powerful tool in the atmospheric sciences. We will return to it
often.

Thermodynamics is concerned with the state of a system (an example of which is
the parcel alluded to above now treated as an approximate thermodynamic system)
and the changes that occur in its state when certain processes occur (such as its
being lifted). In the case of a parcel composed of an ideal gas, the state is completely
described by the state variables p, V, M and T (actually in equilibrium only three
variables need to be specified, since the equation of state in the form of the Ideal
Gas Law can be used to calculate the fourth from knowledge of the other three). In
practice in our applications using parcels, the total mass M(M = >, M; where
i indicates different species such as Oy, N», etc.) is usually also held fixed (unless
otherwise specified), making only three state variables. There are some other state
variables more directly related to energetics that are convenient for certain purposes
and much of this chapter will be concerned with the first two of them, internal energy
and enthalpy.

44
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Figure 3.1 Illustration of an expansion of the system in the x direction by a
distance Ax. The force exerted by the system on the movable wall is pA, where A
is the area of the wall. The work done can then be expressed as pA Ax = p AV
where AV is the change in volume of the system.

The most basic energetic quantity to consider is the work performed by the gas
on its surroundings during an expansion of the system’s (e.g., the parcel’s) volume
(see Figure 3.1). If the system (whose shape we take to be the volume defined by
the cylinder of Figure 3.1) expands in the x direction by a distance Ax, then the
force exerted on the environment is /' = pA, where A is the area of the movable
wall in the cylinder and p is the pressure the system exerts on the wall. The amount
of work done by the parcel on the environment in this infinitesimal process is '

work done by the system = F Ax = pA Ax =p AV

where AV is the infinitesimal change in volume associated with the expansion in
the x direction. The expansion need not be solely along the x-axis as shown in the
figure, but can be a distortion in any or all directions. The formula W = pAV still
holds for infinitesimal AV'.

If the pressure is not constant during the expansion, we must sum the
contributions from a sequence of infinitesimal expansions

VB
Wy, v = / pdV | [expansion work done by the system]. 3.1)
v

A

On a coordinate plane with pressure and volume as ordinate and abscissa, the work
performed is the area under the curve of p versus V (Figure 3.2). This makes it
clear that the amount of work done by the system on its environment depends on
the path taken p = p(V), which defines a curve in the plane. One might imagine
a cyclic process in which the system expands from V4 to Vg along one path and
returns along another path. The area between the two curves represents the net work

1 In this text we use the sign convention that positive W means work done by the system on its environment.
Some textbooks use the opposite sign for work done by the system.
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Area = Work

Va Vg V

Figure 3.2 Graph of pressure p versus volume V for an expansion of a gaseous
system from V4 to Vg along a specified curve p(V). The area under the curve is
the work performed by the system on the environment.
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Figure 3.3 Graph of pressure p versus volume V for an expansion of a gaseous
system from Va to Vp along a constant pressure path (isobaric path). The area
under the curve is the work performed by the system on the environment.

done by the parcel on its surroundings during the cyclic process. When the parcel’s
volume decreases, it does negative work.

Example 3.1 Consider a system composed of 2 kg of dry air at 0 °C. Let the system
expand isobarically from its initial volume of 1 m? to 3m3. How much work is
done by the system? (See Figure 3.3.)
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Answer: The amount of work done by the gaseous system on its environment is
given by the formula

Vs VB

W= padV =pA/ dV =pa(Ve — Va) (3.2)
Va Va

where Vo = 1 m?® and Vg = 3m>, pa = pRyT. The density is given by 2 kg/1 m>,
Ta = 273K,Rq = 287Jkg~ ' K~!';hencepp = 1.57x10° Pa.Finally, W = 3.13x
10° J = 313 kJ (kilojoules). O

Example 3.2 How much does the temperature change during the above process?
Answer: Tg = pa/(pBRq). We can compute pg = mass/Vp = 2kg/3 m? = 0.667
kgm™3. Then Tg = 820 K. Obviously an isobaric process leading to a tripling of
volume is very unlikely in the atmosphere. U

3.1 Reversible and irreversible work

In the preceding we assumed that the work done by the system was along a
well-defined path p(V). Actually this is a rather strong assumption — that at
each infinitesimal adjustment the curve p(V) exists. We are implicitly assuming
that we are in a state of thermodynamic equilibrium at each step — in other
words the system has time to come to equilibrium (i.e., uniform temperature
throughout, etc.) before the next infinitesimal step. In real processes such as
the compression of a piston in an internal combustion engine, the gas in the
chamber might be highly nonuniform and locally disturbed by such things as
shock waves during the next change in volume (perhaps the equation of state does
not even hold during this interval of time). For an irreversible change such as
in the internal combustion engine, an amount of work will be done, but it may
not be calculable using [pdV. In more advanced books on thermodynamics it is
shown that when the system does work (for example by expansion) [pdV is the
maximum work that can be done. But when the system is compressed, the reversible
(calculable) work (fpdV) is the minimal work done by the system during the
compression. In the high compression engine the amount of work done is seldom
more than 75% of the estimate based on the reversible assumption. The unfortunate
mechanical engineer simply cannot win in the face of irreversible processes.
Luckily, most natural processes of interest to the atmospheric scientist are better
behaved.

The idealization of reversible work allows us to do calculations using [p dV even
though in reality it never quite works that way. In most applications that follow in
this book the assumption of reversible work is adequate.
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3.2 Heating a system

In the expansion process undergone by a parcel (fixed mass) in moving
from (Va,pa) to (VB,pB), the parcel will do some work on the environment,

‘Xf p(V)dV. During this process some energy might be transported into the
system because of a temperature difference between the interior of the system and
the surrounding environment. This energy transported into the system is thermal
energy” as described in Chapter 2. Thermal energy consists of all the modes of
energy associated with individual molecules: translational kinetic energy, rotational
energy for polyatomic molecules and vibrational energy (potential and kinetic)
for polyatomic molecules that experience internal stretching oscillations. These
individual energy terms each contribute to the thermal energy of a molecule (but
only the translational kinetic energy contributes to pressure). In fact, the energy on
the average is shared equally between the different modes (translational kinetic,
etc.), although at atmospheric temperatures the vibrational modes are not excited
because of quantum threshold effects.”

This transport of heat is effected at the molecular level by the collisions of
individual molecules. If there is a gradient of temperature, molecules from the
warmer region will penetrate a distance of the order of a mean free path before
suffering a collision into the cooler region (and vice versa), causing the cooler region
to warm; molecules moving the other way cause the warmer region to cool through
individual collisions. The random motions of molecules crossing the boundary
bring the news of their different “temperature” via a random walk process (each
step forward or backward determined by the proverbial flip of a coin). The news
and conversion are brought about slowly but surely. The distance advanced by
the spreading edge of a “warm front” at the molecular level is proportional to
the square root of the time elapsed. This is in stark contrast to the propagation of
pressure differences which move via a sound-like wave (distance of advance of the
pressure front being proportional to time). To obtain an idea of this contrast consider
a one-dimensional gas (x direction only) and let an instantaneous hot spot develop
at x = 0 (perhaps a fire cracker explodes). It is possible to solve this problem
analytically, but the details need not be given here. The basic idea is that heat flux

In most texts this thermal motion is referred to as heat as though it were a material substance moving around
in space, but some authors (e.g., Bohren and Albrecht 1998) shun the use of the noun Aeat in favor of the verbs
heating or cooling as a transport process involving the energizing of neighboring molecules by their aggregate
being in contact with an aggregate of molecules of a different temperature. We will use the term heat to mean
the integral over the heating rate with respect to time. Just keep in mind that heat is not a fluid flowing about in
the medium.

The energy levels in quantum mechanics are discrete and the disturbing collisions need to have a sufficient
energy transfer to effect a transition to the next higher energy level. Typically, rotational levels are closely enough
spaced for them to be excited, but vibrational thresholds are much higher, requiring very high temperatures for
excitation.

w
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Figure 3.4 Spread in meters of a localized pulse of thermal energy due (only)
to molecular thermal conductivity in air at STP after 2 h and after 12 h. The

functional form is the normal distribution with standard deviation o = +/2Dt,
where D =iy /pc, 2 x 107> m? s ~! and # is time in seconds.

is proportional to —«yd7 /dx, where «y is the thermal conductivity of air (~0.024
Jm~!s~! K~1). The pulse spreads out in the shape of a normal distribution as shown
in Figure 3.4. The standard deviation of the spread of the elevated temperatures is
only about 3 m after 12 hours. This means that the concept of parcel integrity for
objects of the order of several hundred meters is safe for days if the only stirring
mechanism is molecular diffusion. There are other mechanisms that can shorten
the time of mixing depending on the conditions, but these are still usually slow
compared to the adjustment of the interior to the exterior pressure. Note that sound
waves travel at several hundred meters per second. The adjustment of pressures
should be accomplished in several hundred passes of sound waves back and forth
across the parcel — still very fast compared to molecular and even eddy (turbulent)
transport processes. The sound waves are eventually dissipated into thermal energy.

Thermal energy or heat as we have been discussing it can now be contrasted with
the work being done by a system during a process. The thermal energy is at the
molecular level and it migrates from place to place via gradients in the temperature
(say from the system to a reservoir), while work is at the truly macroscopic
level. Work is performed when one of the macroscopic dimensions (sometimes
called configuration coordinates), say the position of a piston, is altered a finite
(macroscopic) amount.

Returning to our system, heat can be transported into it because of small
differences in temperature between the system and its environment. The amount of
heat taken into the system during a finite process is traditionally given the symbol Q.
We say 4 OB as the system moves from the state denoted A to the state denoted B.

4 Note that in our notation if a positive amount of heat is absorbed by the system then Qa_, is assigned a
positive value. This is the sign convention followed by virtually all textbooks.
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Consider first the simple heating of a parcel where the volume is held fixed (an
isochoric process). The parcel is heated by an amount Q.5 and its temperature
undergoes a change AT = Tg — Ta. The heat energy absorbed and the temperature
change are related with the coefficient of proportionality being the mass times the
specific heat capacity ¢, (units J kg_1 K—; ¢, = Mc,, where C, (units JK1) is
called the total heat capacity:

’ Oa—B = Mcy, AT ‘ [heating at constant volume]. (3.3)

In general, ¢, might be a function of temperature, but for an ideal gas it is not.
For dry air the value of ¢, is 717 Jkg~' K~!. In this process no work is done by
the parcel on its environment, since the volume of the parcel does not change.
All the heat given to the system goes into its internal energy. From the molecular
relation %mv2 — 3kgT we recall that the average kinetic energy of the molecules
is proportional to the Kelvin temperature. Hence, a change in internal energy is
equivalent to a change in the kinetic energy (for an ideal monatomic gas). As we will
see later the kinetic energy of translation still has the same relation to temperature
for multi-atomic gases, but the internal energy in the multi-atomic case is modified
(next section).

In chemical applications (also chemical texts and handbooks) it is common to
use the molar specific heat for a substance, ¢, . In this case the total heat capacity
is C, = vc, where v is the number of moles in the system. In this formulation:

Q =vc, AT. (3.4)

Example 3.3 A sealed room with walls made of perfectly insulating material has
dimensions 4 m x4 m x3 m. The conditions are p = 1000 hPa, T = 300 K. What is
the mass of air in the room? How many joules are required to raise the temperature
by 1 K?
Answer: M = pV/RqT = (10°Pa x 48m3)/(287Tkg ' K~! x 300K) =
55.7kg.

Q =c,MAT =717 Tkg7' K™ x 55.7kg x 1K =4.0x10°J = 400kJ. O

Example 3.4 How many kilowatt hours of energy are expended in the last example?
Answer: 1 kWh = 3600kJ. So the result is 0.11 kWh. Note that the cost of 1 kWh
is a few cents (US). ]

Example 3.5 In the last example, consider the effect of thin walls. Let us take the
walls to be wood and 1 cm thick. What is the amount of heat necessary to bring
these walls (and floor) up 1°C?

Answer: The specific heat of wood is 1760 Jkg~! K~!, and the density of wood is
600 kg m—3. The walls, ceiling and floor have an area of 72 m?> making a volume
of 0.72 m3. The mass of this material is 600 kg m— x 0.72m> = 432 kg. The total
heat capacity of the solid matter is 760 kJ, nearly twice that of the air contained. []
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3.2.1 Internal energy and the First Law

When a system undergoes a transition from one state to another, energy passes
from the system to its environment or vice versa, since energy in all its forms is
conserved (even if the process is irreversible). The change in internal energy, AU,
for a system is defined to be

’ AU = Qa8 — Wa_B ‘ [internal energy]. 3.5)

The differential form is

|dU =dQ — dW| [First Law] (3.6)

where the bar crossing the d of dQ and d )V is to remind us that both of these
differentials depend on the path (it is not a perfect differential as in multivariable
calculus, whereas dU is). In the last expression dU is the infinitesimal change in
internal energy. The last equation is a statement of the conservation of energy. The
First Law of Thermodynamics actually goes much further and states that the internal
energy U is a function only of the state of the system. For the ideal monatomic
gas this is obvious from our simple kinetic theory model since the internal energy
is the total kinetic energy summed over all the molecules in the system and this is
proportional to the Kelvin temperature. For a given mass, being a function of the
state means its value is uniquely determined at each point in a V —p diagram. Note
that neither Q nor W are functions of state.

3.3 Ideal gas results
3.3.1 Internal energy of an ideal gas
In addition to the ideal gas equation of state another property is necessary to define

an ideal gas. We must specify its internal energy as a function of the thermodynamic
coordinates. This can be accomplished by laboratory experiments to yield:

U= J%NkBT [internal energy of ideal gas] 3.7)

where N is the number of molecules in the system. There are many alternative
forms of this relation because of the different ways we can describe an ideal gas:

U= ];nokBTV = ngTV = ng 3.8)
U = ]:MRT = JivR*T (3.9

2 2
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where kg is Boltzmann’s constant (Table 1.1), M is the mass of gas in the system,
and f is a constant equal to 3 for an ideal monatomic gas (e.g., Ar), and f = 5
for most diatomic gases at room temperature (e.g., air). The internal energy can
be determined by a series of experiments involving adiabatic processes in which
AU = —WAa_3p is easily measured. The constant f depends upon the internal
structure of the molecules; it is known as the number of degrees of freedom in the
molecule. For a diatomic molecule that is very stiff (does not stretch and contract
under the temperature conditions being considered) such as Oy and N, near room
temperature, the value of f is 5 because there are two more degrees of freedom due
to the ability of the molecule to rotate in a two-dimensional plane, but not about the
axis joining the two atomic constituents (its moment of inertia is too small about
the axis joining the two atoms). At high temperatures (not naturally occurring in the
lower atmosphere) the number of degrees of freedom goes up by two because of
molecular vibration due to the spring-like binding. Hence, for normal atmospheric
conditions such as encountered in the troposphere and stratosphere:

f =3 ideal monatomic gas (e.g., argon) (3.10)
f =5 N, Oy near STP 3.11)
f =6 CO,, H;O and other nonlinear molecules. (3.12)

It is not difficult to see why the specific heat should be larger for molecules with
larger f. Consider the constant volume heating case. If heating occurs in a box
of monotonic gas, all the energy must go into increasing the linear (translational)
kinetic energy of the molecules. If the molecule is spatially extended such as a
diatomic molecule, it can rotate as well as translate. The added energy can go into
rotational energy as well as translational energy. Hence, the heat capacity (amount
of heat necessary to raise the system’s temperature by 1 K) will be larger. Basically
the heat energy (that at the molecular level) must be shared among all the degrees
of freedom, but only the linear kinetic energy goes into causing pressure since it
carries momentum to the walls (or across boundaries).

Aremarkable theorem proved in the classical study of statistical mechanics shows
that in equilibrium the energy will be shared equally between each of the rotational
and translational modes (and vibrational modes when applicable): the principle
of equipartition of energy. In the case of a diatomic molecule only two rotational
modes are available, the rotation about the axis joining the two atoms does not
count. In the case of a triatomic molecule in which the atoms are not in a straight
line (e.g., COy), all three rotational modes are involved: f = 6. Molecules actually
can vibrate (stretching and contracting like masses joined by a spring) as well, and
at sufficiently high temperatures these modes can enter and raise f even more, but
as remarked above, this vibrational degree of freedom is not important in most
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applications of thermodynamics to the atmosphere. On the other hand, such modes
of vibration and rotation play an important role in the absorption and emission of
infrared radiation as it passes through air. In summary, each molecule on the average
possesses %kBT for each of its mechanical degrees of freedom. For 1 mol of such
molecules at 300 K this is %R*T = 2.5kJ for each degree of freedom. Hence for
argon itis 7.5kJ mol~! and for O, and N> it is 12.5kJ mol .

Example 3.6 Find the internal energy of a 1 kg mass of dry air at STP.
Answer: Wecanuse U = (f /2)pRqTV = (f /2) MRyTy, where M is the mass of
the gas in the system (here 1kg) and f is 5. Then U = 1.96 x 10°J = 196kJ. O

Example 3.7 Compare the rise in potential energy due to lifting the 1 kg parcel to
9 km, approximately one scale height.

Answer: The change in potential energy is Mgh=1.08 x 10°J = 108 kJ. Hence
the gravitational potential change is comparable to the internal energy for a lift of
one scale height. U

3.3.2 Heat capacities

If a system composed of an ideal gas absorbs heat at a constant volume, its
temperature will increase. Since the volume is held constant, the system can do
no work on its environment in the process, therefore

’ (AU), = Qo = Mc, AT | [constant volume]. (3.13)

Differentiating the equation for the internal energy of an ideal gas (3.9) we obtain

Cp = ]%R [specific heat at constant volume and R]. (3.14)

Note that R as used in this equation is for a particular gas such as dry air. The
heat capacity at constant volume, c,, is proportional to the number of degrees of

freedom.
Another important process is the heating of the gas at constant pressure. In this

case
Oa—B = Mc, AT | [heating at constant pressure]. (3.15)
We also have
Wa_B = pAV (3.16)
and
RAT
AV = M——-. (3.17)

p
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This leads to

AU = Mc, AT — MRAT. (3.18)

If U is a function of state as the First Law claims,’ then it is given by Mc, AT,
and we have an identity:

cyAT = ¢y AT — RAT (3.19)
or
R=c,—c,| [alsoR" =¢, — ¢yl (3.20)

which is a very important relation for ideal gases, holding independently of the
value of f. This last tells us that for an ideal gas

cp = (fi + 1) R |:a1s0 cp = (fi + 1) R*] : (3.21)

That ¢, is always greater than c, has an easy interpretation: some of the heat
absorbed in the isobaric case is “wasted” by the expansion (work done by the
system on the environment) rather than being devoted to raising the temperature.

Example 3.8 Dry air: what are c,, ¢, using ideal gas rules?
Answer: We have ¢, = 3Ry = 717.5Jkg™'K~!, and ¢, = (f/2 + DRq =
Co 4+ Rq = (717 4+ 287) = 1004 Tkg ' K~ 1. O

Example 3.9 How much heat is required to raise the temperature of a 1kg
parcel of air at constant pressure (constant altitude in the atmosphere) by 1°C?
Answer: 1004 1]. g

Example 3.10 A mass of 2kg of dry air is heated isobarically from a temperature
of 300K to 310 K. How much heat is required?
Answer:

0 = Mc, AT = (2kg)(1004Tkg '"K~1)(10K) = 200807 = 20.1kJ. (3.22)

O

5 A subtle thing is about to happen here: even though the process is occurring at constant pressure from one
temperature to another, we can use the formula AU = Mcy AT. This is because U is a function of state. No
matter how we go from T to Tg, the change in U is the same. Here we see one of the most powerful tools
in thermodynamics, the invoking of a state function’s being a function only of its state (not path). Remember,
however, that for many substances other than the ideal gas U might depend on more than just temperature;
nevertheless, it is only a function of state.
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Example 3.11 For Example 3.10, what is the change in internal energy?
Answer:

5
AU :J;MRdAT =3 X (2kg) (287 Tkg 'K~ (10K)
= 14350] = 14.35kJ. (3.23)
O

Example 3.12 For Example 3.10, what is the amount of work done?
Answer: Use the First Law:

W =0 — AU =5.72kl. (3.24)
O

Example 3.13 A column of dry air 1km thick (approximate thickness of the
atmospheric boundary layer) and unit cross-section (1 m?) is heated by sunlight
at a rate dQ/dr = 250Js~!. If the heating takes place at constant pressure
(p = 1000 hPa, T = 300 K), by how many degrees per day is the column heated?
(Assume the air above and the ground below are insulated from the well-mixed air
in the boundary layer.)

Answer: M =1.16 x 103 kg,

dT _ do/dr
dr cpM

where dQ/dr is the rate of heating (Js~!). Then d7/dr = 2.14 x 107*
Ks~! = 18.5Kday~!. This of course is a large rate of increase for normal
conditions. The assumption of 250 W is the problem. The next example shows a
more realistic case in which the heating is accomplished by black carbon particles
in the air. Much of the heating in the atmospheric boundary layer comes from the
absorption of infrared radiation as well as solar radiation by water vapor. g

Example 3.14: black carbon aerosol in air Suppose there are 100 black carbon
particles per cubic centimeter in the air (108 particles m~). Let us take the radius
of one of these particles to be 1 wm. This means the cross-sectional area of an
individual particle is 3.14 x 10~'2m?. The total area of intercepting carbon in
a 1m> block of air is 3 x 107*m?. (Note that this is only a tiny fraction of
the 1 m? cross-sectional area of the cube of air.) If the sun is straight overhead
its flux is 1370 Wm™2. The heating rate of this cubic meter of aerosol-loaded

air is then 0.43 W. If the air is at sea level its density is about 1.2kgm™>, and
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cp = 1004J kg~! K~!. After some arithmetic we find that the air will experience
an increase of temperature of .29 Kh~!. U

Calculus refresher: the natural logarithm The natural log of x is denoted by
y = Inx (Figure 3.5) and is defined by

e =x.

We can deduce a few values, for example, forx = 1,y =0,asx — 00,y — coand y
is only defined for x positive. As x — 0,y — —oo. Moreover,

— =" =x.
dy

We can turn this into dy = dx/x, and then integrate:

y X dx
[o=) %
0 -4

which leads to an alternative definition of In x:

/x dx
Inx = —.
1 X

Now a few properties. First the wonderful identity: x = e™* which follows from the
definition. This can be used to derive a number of useful things: ab = e!"%e"? =
elna+1nb — elnab = Ilnab=1Ina+1nb.x* = elnxa — (elnx)a — ealnx = lnx% =

a In x. Finally, we already found that

— Inx = —.
X

dx

[ Inx

0.5 1.0 1.5 2.0 2.5

Figure 3.5 The natural logarithm In x as a function of x.
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3.3.3 Adiabatic processes and potential temperature

Many processes in meteorology involve parcels of air moving in such a way that
no heat is exchanged with the environment during passage from one location to
another, i.e., Q = 0. The parcel effectively is surrounded by a thermally insulating
blanket. A key point here is that it takes a long time for temperature differences
to diffuse into a parcel from outside compared to the relatively short time for the
pressures inside and outside to equalize. This means that in many situations we
can regard the process as being adiabatic, that is, isolated from diathermal contact.
In that case for an infinitesimal displacement

dU =0 — pdV (3.25)
or
Mc,dT = —pdV = —g av (3.26)
or
dTT = _ngV. (3.27)

The next steps become smoother if we use the identity ¢, = ¢, — R, leading to:

( R) 7 RdV (3.28)
¢y —R)— = —R—. .
P T %
Next we use the Ideal Gas Law
pV = MRT (3.29)
and take natural logs to obtain
Inp+InV=InMR+InT. (3.30)
Taking the differentials we find:
dp dvV dT . o
— 4+ — = —| [logarithmic derivative]. 3.31)
p \% T

The term d(In MR) disappears because it is constant. Now we can substitute in our
original adiabatic equation to eliminate the V dependence:

(cp — R)d?T - R (d—T — d—p> (3.32)
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and finally,

dT dp

After dividing through by ¢, and defining

R
k = — | [0.286 for dry air] (3.34)
Cp

we can integrate from (7, po) to (T, p) to find

T P
In— =«kIn— (3.35)
To Do
or taking the anti-log: ©
p K
T =Ty (—) [Poisson’s equation]. (3.36)
Po

In atmospheric science the formula (3.36) is very important; one usually sees it in
the form

r ( p )K in hP (3.37)
—_— = —— m a .
o ~ \1000nPa) ?

where 0 (0 = Tp at p = 1000 hPa) is called the potential temperature. We often
see it in the following form:

K
=T (Q) [potential temperature]. (3.38)
p

The last equation is called Poisson’s equation. It gives the temperature that
a parcel of dry air would have if it were brought adiabatically to a pressure
of 1000 hPa. No matter where the parcel lies as a piece of the environment, its
potential temperature is well defined. If the parcel moves adiabatically its potential
temperature will not change. When we find a quantity describing the system (defined
here as the parcel) which does not change as the parcel moves about (in this case
adiabatically), we refer to it as a conservative property. In practice parcels do
move adiabatically in convective motions to a good approximation. Moreover,

6 Taking the anti-log means raising each side to be the power of e: y = f(x) = eV = e/ ™ Now using x = el

means the anti-log of In x is just x.
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Table 3.1 Important formulas for ideal gases

in adiabatic processes

Variables Formula
T.p T/To = (p/po)*
9’T9p 0= T(PO/P)K
p.V pVY =poV]
T,V VY=t =TV~
K R/cp = 0.286 for dry air
y z—z = 1.400 for dry air
z/H, =—In (p/po)
2.00 N
1.75¢ N
N
1501 N
AN
1.25¢ AN
AN
1.00¢ N
N
0.75¢ N
N
0.50+ N
025! RN
N

: : : : —— - T(K)
175 200 225 250 275 300 325
Figure 3.6 Dry adiabat for a parcel of air whose potential temperature is 300 K.
The abscissa is T in K, and the ordinate is — In(p/po) = z/H,. The value z/H, is

the height above sea level in units of the scale height, H,, which is typically about
8 km in midlatitudes.

parcels moving horizontally move along constant 6 surfaces (isentropic motion)
(see Table 3.1).

Tip 1t might be difficult to remember the form of (3.38) (Poisson’s equation), since it
will appear in a variety of forms: is the x with a negative sign? Is pg on top or not?
etc. Just remember: let a parcel rise, in doing so 6 stays constant, so that as T goes
down, so must p. This can help us to obtain the correct formula.

Figure 3.6 shows how the temperature of a parcel is lowered if it is lifted in
an atmosphere whose pressure follows p(z) = poe~¥/H2, which is a reasonable
approximation to the actual behavior of the pressure. Here H, is called the scale
height of the atmosphere. Typically in midlatitudes, H, ~ 8 km.

Example 3.15 Air in a jet plane near the tropopause is taken into the plane and
compressed adiabatically from an outside pressure of 300 hPa to 1000 hPa. The
temperature outside is 255 K. What must be done to the air to bring it to an inside
temperature of 300 K?
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Answer: In adiabatically compressing the gas the Kelvin temperature is raised by a
factor of 1.411 to 360 K. The air must now be cooled at constant pressure to 300 K
by the air conditioning system. Recalling that 3600 J = 1 Wh, this requires 60 kJ =
0.0167 kWh for each kilogram of air brought into the plane from the outside. [J

Example 3.16 A 1kg parcel of dry air is located at the 500hPa level in the
atmosphere. Its temperature is 246 K. What is its potential temperature?
Answer: 6 = (1/2)79286T We find 6 = 300K. O

Example 3.17 A 1kg mass of dry air is located at 500 hPa. Its potential temperature
1s 8 = 300K (as above). 1 kJ of heat is absorbed by the parcel at constant pressure.
What is the change in the parcel’s potential temperature?

Answer: First, compute the change in temperature, AT = Q/(Mc,) = 1kl/
(1.004 kI kg~ ' K~! x 1kg) = 0.996 K. Next, use Poisson’s equation at 500 hPa:

AO = AT/(0.5)%3¢ = 121 K. (3.39)
O

Example 3.18 A 50kg parcel of dry air has temperature 300K at the surface
(1000 hPa). It is lifted adiabatically to the 700 hPa level. What is its potential
temperature?

Answer: 6 = 300 K. What is its temperature at the 700 hPa level?

T=0 (L)K — 300K x (0.7)0286) = 270.9K. (3.40)
1000 mb

O

Example 3.19 Air at 300K is forced up a mountain slope adiabatically through a
vertical height of 2 km. Suppose the pressure is given by p(z) = poe /", H =
10 km. How much is the temperature changed? By what ratio is the volume of such
a parcel changed?

Answer: p(2km) = poe=2/10 = 0.819 py. T/300K = (0.819)-286. T = 283 K.

VB/Va = (I pa)/(Ta p) = 1.15. O

Example 3.20: other forms of the adiabatic curve Returning to the relation (3.27),
use R = ¢, — ¢, then divide through by c,. We obtain

dT__( _])dV (341)
7= vy |

where y = ¢, /c, is called the ratio of specific heats. For an ideal diatomic gas (and
air acts like one) y = 1.400. We can integrate as in the text and obtain

In— +(1 =)l v (3.42)
n— = —y)In — .
Ty v Vo
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and finally

TVl = TOV&/_1 [adiabatic process (7', V form)]. (3.43)

Another form useful in physics and engineering can be derived:

pVY = pOV(;/ [adiabatic process (p, V form)]. (3.44)

3.4 Enthalpy

In many meteorological and chemical applications the internal energy is not
the most ideal state function for describing energetic changes during transitions.
The classical form of the First Law is especially useful for transitions in which
the volume is held fixed (dV = 0) since the volume-work term vanishes, but
in atmospheric applications most changes in the state of a parcel occur either
adiabatically or isobarically. Hence, it becomes convenient to introduce a new
function of state called the enthalpy, H, defined by

H =U +pV | [enthalpy]. (3.45)
Take the differential to obtain
dH =dU +pdV 4+ Vdp. (3.46)

After substituting the earlier form of the First Law in terms of the internal energy
we obtain

dH =dQ + Vdp| [enthalpy form of the First Law]. (3.47)

Very often atmospheric processes take place at a fixed pressure (altitude). These
include heating of a parcel by solar radiation at a particular altitude, condensation
heating, and contact heating at the surface. In this case the enthalpy is a very
convenient function to describe the parcel’s thermodynamic state. Note that the
change in enthalpy under a constant pressure process is just

(dH), = d,0 = Mc,dT (3.48)

or

BH)
— ) = Mec,. (3.49)
(8T » P
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Integrating the last equation:
H = Mc,T+F(V) (3.50)

where F (V) is an arbitrary function of volume appearing here as an integration
constant. We can find this function by noting that U = Mc,T and using the
definition of H, (3.45), to obtain

[enthalpy for an ideal gas]. (3.51)

In other words, the arbitrary function F'(V) is identically zero for the ideal gas.
The adiabatic process is expressed as

(dH)dQ=0 =0+ Vdp (3.52)
and for the ideal gas,
RT
cpdT = s dp (3.53)
and
deTT = Rd?p (3.54)

which will quickly lead us to Poisson’s equation (3.36).

Calculus refresher: partial derivatives Thermodynamic functions nearly always
involve more than one variable as we have seen already, e.g., V(T', p). The “partial”
of V(T, p) with respect to p holding 7' constant is defined by

VY _ . V(Tp+Ap) —V(T.p)
op/)r T Ap—0 Ap '

In most fields the subscript 7" following the large parentheses is omitted, but in
thermodynamics it is conventional (and useful) to retain this reminder of which
variable is being held constant. Sometimes especially in mathematics and physics, the
partial derivative is denoted by a subscript. For example, let f be a function of x and
y, then df /0x = fi, etc. You simply take the ordinary derivative but hold all variables
constant except the one being varied. For example, take the ideal gas: V = MRT /p,
then (3V /dp); = —MRT /p>.
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This is a good time to search out your old calculus book and review the chapter on
partial differentiation. An important result to remember is that if we go to second
partial derivatives such as fy or f,y, the order does not matter:

Sy = fox- (3.55)
The differential of f (x,y) is
df = fidx +fy dy. (3.56)

If we divide through by dx and set dy to zero we obtain

(%> = fx. (3.57)
dx dy=0

Suppose the function f (x, y) is held constant. Then

frdx+f,dy=0 (3.58)
and we find
d
dr_ S (3.59)
dx f

The notation in the last equation will be encountered often.

Example 3.21 A1kgparcel is heated at the surface (p = 1000 hPa) ataratedQ/d¢ =
20Wkg~! (W = watts). What is the rate of change of enthalpy?
Answer: Note that dp/dt = 0. Then, dH /dt = dQ/dzt. O

Example 3.22 A parcel moves along an isobaric surface (constant pressure) and is
heated at a rate dQ,/dr = 10 Wkg~!. What is the rate of change of T along the
path of motion?

Answer: (dH /dt) = McpdT/dt = dQn/dt; dT/dt = (dQm/dD)/c, =
10Wkg=1/1004J 'kg™! = 0.01 Ks~!. O

3.5 Standard enthalpy of fusion and vaporization

Enthalpy is a very useful function in describing the energy transfers in processes
involving a change of phase (e.g., liquid to vapor). Enthalpy is especially useful
since these processes often take place at constant pressure. An example is the
evaporation of 1 mol of water. In this case the system (the volume containing
the water) is heated by maintaining a small temperature differential with its
surroundings at constant pressure and constant temperature. The heat (now we
can call it enthalpy) absorbed to effect this transition is often called the latent heat
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Table 3.2 Standard enthalpies of transition for selected
compounds

The standard enthalpies of fusion and vaporization are
evaluated at the freezing and boiling points (K)
respectively at I atm of pressure. Units in this table for
the enthalpies are kJmol™", but be careful in using
tables since the units of energy might be in kcal (4.18 kJ
= [ kcal). In the table T; is the freezing point and Ty, is
the boiling point at I atm of pressure.

Species T Afusﬁo Ty Avapﬁo

CO, 217.0 8.33 194.6 25.23 (sublimation)
H, 3.5 0.021 4.22 0.084

H,O 273.16 6.008 373.15 40.656

Ar 1.188 87.29 6.506

of vaporization in the older literature, but in keeping with current convention it is
called the enthalpy of vaporization. Many tables give values in terms of moles rather
than kilograms of the substance. To make useful standardized tables, conventions
have been adopted. In the case of evaporation for example, Avapﬁo indicates that
1 mol of the substance is being considered (the overbar) and the superscript o
indicates that it is at a standard temperature (units should be indicated in the table).
See Table 3.2.

By definition, the standard enthalpy for vaporization, Avapﬁo, is the heat
transferred to the system at constant pressure per mole in the process of vaporization
of the substance from its liquid to its vapor form. The standard quantity is defined
at the boiling point (373 K for water) at 1 atm of pressure.

Similarly the standard enthalpy for fusion is the heat transferred by the system to
the surroundings at constant pressure per mole in the process of fusing the substance
from its liquid to its solid form. It is labeled ApsH . By convention the standard
quantity is evaluated at the freezing point at 1 atm of pressure.

Example 3.23 We have 36 g of liquid water at 373 K and 1 atm of pressure. We
wish to evaporate the water and raise its temperature to 473 K at constant pressure.
What is the change in enthalpy for the two steps? (cpvap =~ 2kJ kg7' K1)

Answer: 36 g is 2.0 mol of water. We must then give the system 2 mol x 40.656
kJmol~! = 81.31217 for step 1. Step 2 is a heating at constant pressure. AH, =
Mc, AT = 0.036kg x 2kIkg 'K~ x 100K = 7.2kJ. O

Example 3.24 Two grams of liquid water are evaporated into 1 kg of dry air at 1
atm constant pressure. The temperature is 300 K. What is the change in enthalpy
of the system?
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Answer: The dry air is irrelevant. We must do several steps to accomplish our goal.
To use the value in Table 3.2 we must heat the 2 g of water to its boiling point. The
change in enthalpy for this is AH| = McjjqAT =2¢g x 418JK g7 x 13K =
6101J. Next the water is evaporated: AH, = (2/18) mol 40.7 kI mol~! = 4.52kJ.
In step 3 we must cool the vapor back down to its starting temperature: AH3 =
2kIK™! kg_l x0.002kg x (=73 K) = —292.0J. Combining all three steps: AH; +
AH> + AH3; = 4.84K]. Il

Example 3.25 In the last example, what is the temperature and density change for
the original 1 kg of air which holds the 2 g of liquid water?

Answer: AT = AHM'c;! = 484kI/(1kgl004Jkg™ 'K~ =
45K. The change in density is Ap = —pAT/RqT?> = 10°Pa x
45K /(287 Tkg 'K~ (300K)? = 0.019kgm>. This represents a 1.6% change
in the density, enough to cause important buoyancy effects. U

In these examples we made liberal use of the fact that the enthalpy of a system
depends only on its state, not on the path through which the state is found. This
freedom allows us to use standard tables.

Notes
Most of the good thermodynamics books referred to in earlier chapters work well

for this one.

Notation and abbreviations for Chapter 3

Cu, Cp specific heats (heat capacity per kg) at constant volume, pressure
Jkg 'K

Cy, Cp molar specific heats (J mol~! K=1)

Cy,Cp heat capacities at constant volume, pressure (J K1

(dH), change in enthalpy at constant pressure (J)

dH /dt,dQ/dt time rate of change of enthalpy, heat transfer rate (Js~')

do,aw differentials for heat, work, the bar emphasizes path
dependence (J)

AV change in volume (m3)

ApsH (X) standard enthalpy of fusion of substance X (J mol™!)

AvapH change in enthalpy during vaporization (J)

AvapH C)(X ) standard enthalpy of vaporization of substance X, the overbar
indicates 1 mol of substance, the superscript o indicates at
standard conditions (usually 25 °C) (J mol~1)

Ax displacement in x

f number of degrees of freedom of a molecule
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Problems

The First Law of Thermodynamics

partial derivative with respect to x
force (N)

ratio of specific heats ¢, /c, (dimensionless)
enthalpy (J)

scale height of the atmosphere
Boltzmann’s constant
(dimensional)

thermal conductivity (J m K1
bulk mass (kg)

number density (molecules m~3)
number of moles

pressure (Pa, hPa)

rate of heating per unit mass (J kg™!

mol~1 s~ 1)

gas constant (Jkg~! K™1), gas constant for a gas G, for dry air,
universal gas constant (J K~ mol™1)

density (kg m~3)

temperature (K)

potential temperature (K)

volume (m?)

initial and final volumes

work in going from Vj to Vp

work done by the system, heat taken into the system

3.1 Suppose p(z) = poe ¥/ . Evaluate the following.
(a) dp/dzatz = H/3.
) fo°p2)dz.
© [i,p@) dz.
(d) op/oH atz = H/2.
3.2 Let p = pRT. Evaluate the following.

(a) ap/dT.

(b) 3p/dT.

(¢) 3p/d (1/T).
3.3 The compressibility of a substance is defined by

1 [aV
oy = — (_> (3.60)
V\ap/x

where X is the variable being held constant. We can compress the gas isothermally (k7)

or adiabatically (kg) (0 is the potential temperature). Calculate both for an ideal gas.
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3.5

3.6
3.7

3.8

3.9

3.10

Problems 67

The coefficient of expansion is defined by

1 [0V
=== . 3.61
() con

Compute 8 for an ideal gas.
Show that for any gas

0

Py _ P (3.62)

8T 4 KT

(Hint: dV = (%)T dp + (%)p dT, see the Calculus refresher in this chapter.)
Find the internal energy of 1 kg of dry air at STP.

Suppose the atmosphere has its pressure given by p(z) = poe with po = 1atm
and T'(z = 0) = 273 K. Now suppose a 1 kg parcel is lifted adiabatically one scale
height H. How much work does the parcel do on the environment in the process?
What is the change in its specific internal energy, Au?

Isobaric process A 1kg parcel of dry air has temperature 285K and pressure
1000 hPa. It is heated by contact with the dry ground to a temperature of 295 K.
(a) What is Q? (b) What is the change of the parcel’s specific internal energy? (c)
What is the change in the parcel’s specific enthalpy?

Isothermal process 1kg of dry air at 300 K and 1000 hPa is expanded isothermally
(pretty unusual in the atmosphere) from a volume of 2 m? to twice that value. (a) What
is the work done by the gas in this expansion? (b) What is the heat absorbed? (c) What
is the change in enthalpy?

Isochoric process 1 m? of dry air at 1000 hPa and 290 K is enclosed in a rigid box.
What is its density (kgm™3)? 3 g of liquid water are evaporated into the box. What
is the increase of temperature in this box whose volume is held fixed? What are the
changes in internal energy and enthalpy? Sketch a diagram of the change in the V—p
plane.

—z/H

3.11 Adiabatic process A parcel of mass 1 kg is lifted adiabatically from 800 hPa, where

3.12

3.13

its temperature is 270K, to 600 hPa. What is the new temperature? What are the
changes in internal energy and enthalpy? Sketch a diagram of the change in the V—p
plane.

Isobaric process A parcel of essentially dry air is held at a fixed altitude where the
pressure is 950 hPa. It is heated by infrared radiation being absorbed by some water
vapor in the parcel. The heating rate is 20 Jkg~! s~'. What is the rate of change of the
temperature, specific enthalpy and specific internal energy? How does the potential
temperature change per unit time? Sketch a diagram of the change in the V—p plane.
An air column is composed of dry air and the density of the air is given by p(z) =
poe M where pg = 1.25kgm™> and H = 10km.

(a) What is the mass of air (kg) lying above 1 m2?

(b) How many idealized “air” molecules are above the 1 m2?
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(c) Then approximately how many “air molecules” are there in the entire Earth’s
atmosphere?

3.14 The speed of sound in air can be computed from the formula vsoung = /1/0kx , where
kx is the compressibility holding the parameter X constant. Compare the sound speeds
(taking p = p/RT) when X = k7 and X = k. The latter fits the data. Do you recall
from physics why the adiabatic compressibility gives the correct answer instead of
the isothermal compressibility? See Problem 3.3 above.

3.15 Suppose the atmosphere satisfies p(z) = poe_z/ H and that it is isothermal (7'(z) = To).
What is the potential temperature 6 as a function of z? Sketch a graph.



4

The Second Law of Thermodynamics

The Second Law of Thermodynamics deals with changes in the conditions of
a system and its surroundings under transitions from one thermodynamic state
to another. We will introduce a new function of state by considering a simple
quasi-static series of changes for an ideal gas. First recall that some quantities are
functions of the state only, while others depend on the path taken between two
states. According to the First Law, the internal energy U is a function only of
state with changes in going from state A to state B, denoted AU, depending only
on the initial state coordinates (e.g., pa, Va, Ta) and the final state coordinates
(pB, VB, T). Recall that the enthalpy H is also a function of state. Changes in other
quantities such as the amount of work done by the system on the surroundings in
the (quasi-static) transition depend upon the path taken between the two states. In
this case the work done by the system on the surroundings may be written,

B

Wan = [ pviav @.1)
A

and the function p(V) is a specific curve in the V—p plane defining the path taken

in going from A to B. The path must be quasi-static and reversible, otherwise the

path p(V) may not even be defined, nor could we use pdV in computing dWV. The

change in internal energy depends only on the difference

AU = Ug — Uy 4.2)

no matter what the path (even if the process is irreversible). For example, in the case
of the ideal gas the internal energy (and enthalpy) depend only on the temperature,
independent of the history of the system. For more complex systems U and H
might depend on other state variables as well, but not on the history of the system.
Note that the heat (induced by a temperature difference between the system and its
environment) taken into the system during the transition must also depend on the

69
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p

%

Figure 4.1 Tllustration of two paths joining points A and B in a V—p state diagram.

path since

Oa—B =WaB+ U — Ux 4.3)

and the work done by the system surely depends on path as we have seen earlier (see
Figure 4.1). Next we explore quasi-static transitions of an ideal gas to see whether
there might be another function of the state of the system.

Consider the case of an ideal gas where the mass M is fixed. We can use the
definition of the enthalpy to obtain:

dH = Mc,dT =dQ + Vdp. 4.4)

If we multiply through by the integrating factor 1/T we obtain

ar _ do
+M - v 45
S =7 VT .5

Using the Ideal Gas Law, V /T = MR/p and solving for dQ/T:

do
T

dTr
= —MR M
» —l— Cp— T

=—-MRdInp + Mc,dInT

i)

=d [Mc, In(Tp™™)] (4.6)

where as before k = R/c,. The last expression says that dQ/T is a perfect
differential. That is, its change in going from A to B does not depend on the path
chosen for the sequence of quasi-static infinitesimal steps. A necessary and sufficient
condition for the differential to be perfect is that integrals around arbitrary closed
loops result in no change in the function.
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Calculus refresher: perfect differential Suppose F is defined by:
F= / A(x,y) dx + / B(x,y) dy 4.7)
path path

where A(x,y) and B(x, y) are well-behaved functions. It might happen that there exists
a function f (x, y) such that

a a
—f =A(x,y) and l = B(x,y), (4.8)
ax ay
if so
af af 0A 0B
df = —d —dy, or — = — 4.9
i/ dax x+8yy0r8y dax 4.9)
is the exact differential of f and
F = / df = f (upper) — f (lower) 4.10)
path

which means that F' is independent of the path along which the integral is taken
joining the upper and lower limits. It might be easier to see this if we introduce a
parameter ¢ which defines the curve

x=x@), y=y@® (4.11)

(for example, a parabola y = x? could be written x(¢) = ¢, y(r) = ¢?) this defines a
curve in the x—y plane (the path). The integral can be written:

2/ d d
F:/ <A—x+B—y>dt

Lo \de e
2 ofde 9fd

_ / <_f_x+_f_y) ds
n \dxdr = dydt
ndq f (x(22),y(12))

:/ idt:/ df
no dr (et (1)

=f(x(12), y(12)) —f (x(11), y(11))- (4.12)

Example 4.1 Consider the function

f(x,y) = sinxy. (4.13)
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Then f,(x,y) = y cosxy and f,(x,y) = x cos xy. Then

df = ycosxydx 4 xcosxydy = d(sinxy). (4.14)
0

Example 4.2: integrating factor Consider the first-order linear differential equation
for the function y(¢):

dy
oty =20 (4.15)

where b is a constant and g(¢) is a given function. Now multiply through by the
integrating factor e?*. We can show that

d
- {e’”y} ) (4.16)

and the left-hand side is rendered a perfect differential, by virtue of our knowing the
proper integrating factor. Now we are in position to solve the differential equation
by integrating each side:

b ! tb/ / /
e”'y(1) =f e g()dr. 4.17)
t() ZO
Then
t
y(1) = y(tg)e PU=10) 4 =0t / P g (1) dr. (4.18)

to D

Example 4.3 Consider the differential expression
dZ = 2xy® dx + 3x*y? dy. (4.19)

We want to consider integrals of this differential from the point (0,0) to the point
(1,1) along some different paths. First consider the straight line path, y = x, which
connects the two points. Then,

dZ = 2x* + 3x*) dx = 5x* dx, (4.20)

1
AZstraight line = / Sxtdx = 1. (4.21)
0

Next consider the parabolic path, y = x%,dy = 2xdx, which also passes through
the two points:

dZ = 2x"dx + 3y3 dy, (4.22)
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1 1 2 3
/ dz=/ 2x7dx+/ Wdy=24>=1. (4.23)
parabolic 0 0 8 4

We obtain the same answer for the two different paths. In fact, it is possible to write
dZ = d(x%y). (4.24)

In other words, dZ(x, y) is a perfect differential. Integrating from one point in the
x—y plane to another always yields the same answer.
On the other hand, suppose we had the function

dP = 2xy dx + 3x* dy. (4.25)

This differential is not perfect, but with the aid of the integrating factor, y?, we can
create the perfect differential, dZ. O

Example 4.4 In classical mechanics we encounter the same concept with
conservative forces, which implies the existence of a potential energy function.
If a force can be described by a potential energy function V (x,y, z) and if the force,
F(x,y,z) can be written as the gradient of the force:

F(x,y,z) -dr = —VV(x,y,z) - dr

() ()0 ()

= —dV. (4.26)
Or we can write
F(r)=-VV(r). 4.27)
Hence the work done in going from A to B:
B
WaoB = / F.dr

A

——

path
= VA)-V(@B) . (4.28)

—_—

independent of path O

4.1 Entropy
In the case of the ideal gas mentioned above, we can use Poisson’s equation,

T =6 (£> (4.29)
Po
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or
Tp™* =06(po)™* (4.30)
and inserting into (4.6) we obtain:
d7Q = Mc, d1In (6(1000 hPa) ™)
= Mc,dInf
=dS (4.31)

where S is called the entropy. In chemistry and physics the entropy is usually
denoted S and the entropy per unit mass s; in some older meteorology contexts it
is denoted ¢. The important thing is that entropy is a function only of state and
that its change in going from one state to another can be calculated by choosing a
reversible path joining initial and final states.

For an infinitesimal displacement along a reversible path (for a general
thermodynamic system, not just an ideal gas),

_ erev
T

ds [Second Law of Thermodynamics]. (4.32)

Th