<u>Sistemas y Control – Parcial 2020 - Solución de los ejercicios 1, 2 y 3</u>

Ejercicio 1 (Total 9 puntos: 1 punto por cada resp. correcta; -1 punto por cada resp. incorrecta) Por favor responder en esta hoja.

Considere los siguientes sistemas. ¿Son causales? ¿Son lineales? ¿Son invariantes en el tiempo? Marcar la respuesta en la tabla (" $\sqrt{}$ ")

$$\begin{array}{c|c} u(t) & y(t) \\ \hline & -\infty < t < \infty \end{array}$$

con
$$u: R \to R$$

Sistema	¿Causal?		¿Lineal?		¿Invariante en t?	
	SI	NO	SI	NO	SI	NO
$y(t) = u (t^2 + 2t) + u (t)$		V	V			V
$y(t) = u (t^2 - 2t) + u (t)$		V	V			٧
$y(t) = u (t/2) + u^2 (t)$		V		V		V

Ejercicio 2

Considere el sistema de la figura, donde α y $\beta \in \mathbf{R}^+$.

(6 puntos)

1) El sistema no es BIBO estable.

2) a.- No todos sus polos tienen parte real estrictamente negativa

b.- Responde a la entrada U(t) = sen .t con una señal que diverge

c.- Su respuesta a impulso (h(t) = - α sen $\beta.t$) no tiende a cero y por lo tanto no es absolutamente integrable.

Ejercicio 3 (4 puntos)

La función de transferencia del lazo cerrado es:

$$H(s) = \frac{K}{(s^2 + 5.s + 7).s + K}$$

K G(s)

Aplicando el criterio de estabilidad de Routh - Hurwitz al denominador de H(s):

f3	1	7
f2	5	K
f1	(35-K)/5	
f0	K	

K<0 1 cambio de signo,0<K<35 0 cambios de signo,K>35 2 cambios de signo,

1 polo con parte real positiva 0 polos con parte real positiva

2 polos con parte real positiva

sistema inestablesistema establesistema inestable

<==

Sistemas y Control - Parcial 2020 - Solución del ej. 4

Parte 1

Aplicando la segunda ley de Newton a la masa m, se obtiene la ecuación diferencial que rige la dinámica del sistema de entrada u y salida y:

$$m\ddot{y} = -k(y-u-l) - b(\dot{y} - \dot{u}) - mg.$$

$$\tag{1}$$

Parte 2

La solución de equilibrio $y = y_0$ (constante) correspondiente a $u = u_0$ (constante dada), debe verificar (1):

$$0 = -k(y_0 - u_0 - l) - mg.$$

Despejando y_0 ,

$$y_0 = u_0 + l - \frac{mg}{k}. \tag{2}$$

Parte 3

Sean $\tilde{y} := y - y_0 \text{ y } \tilde{u} := u - u_0.$

Parte 3a

A partir de las definiciones anteriores, $y = y_0 + \tilde{y}$ y $u = u_0 + \tilde{u}$. Sustituyendo estas expresiones en (1),

$$m\ddot{\tilde{y}} = -k\left(y_0 + \tilde{y} - u_0 - \tilde{u} - l\right) - b\left(\dot{\tilde{y}} - \dot{\tilde{u}}\right) - mg. \tag{3}$$

Sustituyendo (2) en (3)

$$m\ddot{\tilde{y}} = -k\left(u_0 + l - \frac{mg}{k} + \tilde{y} - u_0 - \tilde{u} - l\right) - b\left(\dot{\tilde{y}} - \dot{\tilde{u}}\right) - mg.$$

Cancelando términos en la expresión anterior, se obtiene la ecuación diferencial que rige la dinámica del sistema de entrada \tilde{u} y salida \tilde{y} :

$$\boxed{m\ddot{\tilde{y}} = -k(\tilde{y} - \tilde{u}) - b(\dot{\tilde{y}} - \dot{\tilde{u}})}.$$
(4)

Parte 3b

Aplicando transformada de Laplace (con condiciones iniciales nulas) a (4),

$$ms^2 \tilde{Y}(s) = -k \left(\tilde{Y}(s) - \tilde{U}(s) \right) - b \left(s \tilde{Y}(s) - s \tilde{U}(s) \right).$$

Despejando Y(s),

$$\tilde{Y}(s) = \frac{bs+k}{ms^2+bs+k}\tilde{U}(s).$$

Entonces,

$$G(s) := \frac{bs + k}{ms^2 + bs + k}$$

es la función de transferencia del sistema entrada \tilde{u} y salida \tilde{y} .

Por otro lado, según el diagrama de bloques, la misma función de transferencia es

$$\frac{L(s)}{1+L(s)}.$$

Alcanza con imponer la igualdad

$$G(s) = \frac{L(s)}{1 + L(s)},$$

entre ambas funciones de transferencia, para que el diagrama de bloques represente al sistema entrada \tilde{u} y salida \tilde{y} . Despejando L(s) de la expresión anterior:

$$L(s) = \frac{G(s)}{1 - G(s)} = \frac{bs + k}{ms^2}.$$
(5)

Parte 4

Se requiere que ante una entrada $\tilde{u}(t)=\frac{1}{2}gt^2$ se verifique que:

- 1. $\tilde{y}(t)$ no presente oscilaciones,
- 2. $\lim_{t \to \infty} e(t) < y_0 u_0$ donde $e(t) := \tilde{u}(t) \tilde{y}(t)$.

Para cumplir con la condición (2) todos los polos de G(s) deben tener parte real negativa y debe cumplirse:

$$\frac{g}{K_a} < y_0 - u_0 \tag{6}$$

donde K_a es la constante de aceleración del sistema:

$$K_a := \lim_{s \to 0} L(s) = \frac{k}{m}. \tag{7}$$

De (6) y (7),

$$\frac{mg}{k} < y_0 - u_0, \tag{8}$$

donde $y_0 - u_0 = l - \frac{mg}{k}$ según (2). Entonces,

$$\frac{mg}{k} < l - \frac{mg}{k}. (9)$$

La condición que debe verificar k es:

$$k > \frac{2mg}{l},\tag{10}$$

Para cumplir con la condición (1) todos los polos de G(s) deben ser reales. Sean

$$\zeta := \frac{b}{2\sqrt{km}}$$
 y $\omega_n := \sqrt{\frac{k}{m}}$,

de forma tal que

$$G(s) = \frac{\frac{b}{m}s + \frac{k}{m}}{s^2 + \frac{b}{m}s + \frac{k}{m}} = \frac{2\zeta\omega_n s + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}.$$

Como los polos de G(s), además de ser reales, deben ser negativos, se debe cumplir que la relación de amortiguamiento, ζ , sea mayor o igual que 1:

$$\boxed{\frac{b}{2\sqrt{km}} \ge 1}. (11)$$

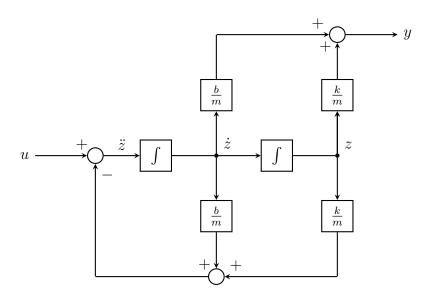
En definitiva, las dos condiciones que deben cumplirse son (10) y (11).

Parte 5

Una realización posible para la función de transferencia

$$G(s) = \frac{\frac{b}{m}s + \frac{k}{m}}{s^2 + \frac{b}{m}s + \frac{k}{m}}$$

es la siguiente (forma canónica controlador):



A partir de la realización anterior, tomando como variables de estado las salidas de los integradores, se construye la siguiente representación en variables de estado:

$$\begin{bmatrix}
\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} z \\ \dot{z} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} z \\ \dot{z} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tilde{u} \\
\tilde{y} = \begin{bmatrix} \frac{k}{m} & \frac{b}{m} \end{bmatrix} \begin{bmatrix} z \\ \dot{z} \end{bmatrix} \tag{12}$$

Parte 6

Sean

$$x := \begin{bmatrix} z \\ \dot{z} \end{bmatrix}, \quad A := \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \quad B := \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{ y } \quad C := \begin{bmatrix} \frac{k}{m} & \frac{b}{m} \end{bmatrix}.$$

Sustituyendo los valores numéricos:

$$A = \begin{bmatrix} 0 & 1 \\ -21 & -10 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{y} \quad C = \begin{bmatrix} 21 & 10 \end{bmatrix}.$$

La matriz de transición de estados asociada a la representación en variables de estados (12), es:

$$e^{At} = \mathcal{L}^{-1} \left\{ (sI - A)^{-1} \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{(s+3)(s+7)} \begin{bmatrix} s+10 & 1\\ -21 & s \end{bmatrix} \right\}.$$

Calculando las antitransformadas de Laplace,

$$e^{At} = \begin{bmatrix} \frac{1}{4} (7e^{-3t} - 3e^{-7t}) & \frac{1}{4} (e^{-3t} - e^{-7t}) \\ -\frac{21}{4} (e^{-3t} - e^{-7t}) & -\frac{1}{4} (3e^{-3t} - 7e^{-7t}) \end{bmatrix}.$$

Parte 7

Como $\tilde{u}(t)=0$, para $t\geq 0$, la respuesta $\tilde{y}(t)=0$, para $t\geq 0$, es la respuesta libre del sistema, es decir

$$\tilde{y}(t) = Ce^{At}x_0$$

donde x_0 es el estado en t = 0. Este estado es el estado de régimen ante una entrada en forma de escalón unitario:

$$x_0 = \lim_{s \to 0} s \left[(sI - A)^{-1} B \right] \frac{1}{s} = \lim_{s \to 0} (sI - A)^{-1} B = \lim_{s \to 0} \left[\frac{1}{\frac{s^2 + 10s + 21}{s}} \right] = \left[\frac{1}{21} \right]$$

Entonces,

$$\tilde{y}(t) = Ce^{At}x_0 = \begin{bmatrix} 21 & 10 \end{bmatrix} \frac{1}{21} \begin{bmatrix} \frac{1}{4} (7e^{-3t} - 3e^{-7t}) \\ -\frac{21}{4} (e^{-3t} - e^{-7t}) \end{bmatrix}$$

Operando,

$$\tilde{y}(t) = Ce^{At}x_0 = -\frac{3}{4}e^{-3t} + \frac{7}{4}e^{-7t}$$
 para $t \ge 0$.

Del divisor de tensión

$$v_+ = \frac{V_{cc}(R - R_d)}{R + R_d}$$

Como el operacional funciona en configuración de seguidor

$$V = \frac{V_{cc}(RP - Cx^2)}{RP + Cx^2}$$

Aplicando Lev de Mallas en el motor

$$KV = R_m I_m + \epsilon_m$$

Ecuaciones del motor de DC

$$\tau_m = A_{\phi} I_m$$

$$\epsilon_m = A_{\phi}\dot{\theta} = \frac{A_{\phi}\dot{x}}{\alpha}$$

Combinando ecuaciones

$$KV = R_m I_m + \frac{A_{\phi}}{\alpha} \dot{x} \rightarrow I_m = \frac{KV - \frac{A_{\phi}}{\alpha} \dot{x}}{R_m}$$

Segunda cardinal del motor

$$J\ddot{\theta} = -b\dot{\theta} + \tau_m \rightarrow \frac{J}{\alpha}\ddot{x} = -\frac{b\dot{x}}{\alpha} + A_{\phi}I_m$$

Combinando

$$\ddot{x} = \frac{\alpha}{J} \left(-\frac{b\dot{x}}{\alpha} + A_{\phi} I_{m} \right) = \frac{\alpha}{J} \left(-\frac{b\dot{x}}{\alpha} + A_{\phi} \left(\frac{KV - \frac{A_{\phi}}{\alpha} \dot{x}}{R_{m}} \right) \right)$$

$$\ddot{x} = \frac{\alpha}{J} \left(-\frac{b\dot{x}}{\alpha} + A_{\phi} \left(\frac{K \left(\frac{V_{cc}(RP - Cx^2)}{RP + Cx^2} \right) - \frac{A_{\phi}}{\alpha} \dot{x}}{R_m} \right) \right)$$

$$\ddot{x} = -\left(\frac{b}{J} + \frac{A_{\phi}^{2}}{JR_{m}}\right)\dot{x} + \frac{A_{\phi}}{JR_{m}}K\alpha\left(\frac{V_{cc}(RP - Cx^{2})}{RP + Cx^{2}}\right)$$

c) Linealizo la ecuación dinámica del sistema en el punto de equilibrio P_{0}

$$0 = \frac{A_{\phi}}{JR_{m}} K\alpha \left(\frac{V_{cc}(RP_{0} - Cx_{0}^{2})}{RP + Cx^{2}} \right) \rightarrow x_{0} = \sqrt{\frac{RP_{0}}{C}}$$

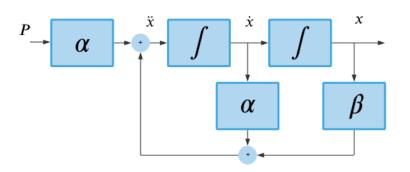
$$\tilde{x} = \frac{\delta \ddot{x}(\dot{x}_{0}, x_{0}, P_{o})}{\delta \dot{x}} \tilde{x} + \frac{\delta \ddot{x}(\dot{x}_{0}, x_{0}, P_{o})}{\delta x} \tilde{x} + \frac{\delta \ddot{x}(\dot{x}_{0}, x_{0}, P_{o})}{\delta P} \tilde{p}$$

$$\frac{\delta \ddot{x}(\dot{x}_0, x_0, P_0)}{\delta \dot{x}} = -\left(\frac{b}{J} + \frac{A_{\phi}^2}{JR_m}\right) = \alpha$$

$$\frac{\delta \ddot{x}(\dot{x}_0, x_0, P_0)}{\delta \dot{x}} = A_{\phi} K_{\phi} A_{\phi} V_{\phi} \left(-2Cx_0(RP_0 + Cx_0^2) - 2Cx(RP_0 - Cx_0^2)\right) A_{\phi} K_{\phi} \alpha.$$

$$\begin{split} \bullet & \quad \frac{\delta \ddot{x} (\dot{x}_{0}, x_{0}, P_{o})}{\delta \dot{x}} = -\left(\frac{b}{J} + \frac{A_{\phi}^{2}}{JR_{m}}\right) = \alpha \\ \bullet & \quad \frac{\delta \ddot{x} (\dot{x}_{0}, x_{0}, P_{o})}{\delta x} = \frac{A_{\phi}.K.\alpha.V_{cc}}{JR_{m}} \left(\frac{-2Cx_{0} (RP_{0} + Cx_{0}^{2}) - 2Cx(RP_{0} - Cx_{0}^{2})}{\left(RP_{0} + Cx_{0}^{2}\right)^{2}}\right) = \frac{A_{\phi}.K.\alpha.V_{cc}}{JR_{m}} \left(\frac{-4Cx_{0}}{\left(RP + Cx_{0}^{2}\right)^{2}}\right) = \beta \end{aligned}$$

$$\bullet \quad \frac{\delta \ddot{x}(\dot{x}_{0}, x_{0}, P_{o})}{\delta P} = \frac{A_{\phi}}{JR_{m}} K\alpha V_{cc} \left(\frac{R(RP_{0} + Cx_{0}^{2}) - R(RP_{0} - Cx_{0}^{2})}{\left(RP_{0} + Cx_{0}^{2}\right)^{2}} \right) = \frac{A_{\phi}}{JR_{m}} K\alpha V_{cc} \left(\frac{2RCx_{0}^{2}}{\left(RP_{0} + Cx_{0}^{2}\right)^{2}} \right) = \gamma$$



$$\begin{bmatrix} \ddot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{x} \\ x \end{bmatrix} + \begin{bmatrix} \gamma \\ 0 \end{bmatrix} [P]$$

$$[x] = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ x \end{bmatrix}$$

d)

$$\tilde{\ddot{x}} = \frac{\delta \ddot{x}(\dot{x}_0, x_0, P_o)}{\delta \dot{x}} \tilde{\dot{x}} + \frac{\delta \ddot{x}(\dot{x}_0, x_0, P_o)}{\delta x} \tilde{x} + \frac{\delta \ddot{x}(\dot{x}_0, x_0, P_o)}{\delta P} \tilde{P}$$

$$\tilde{\ddot{x}} = \alpha \dot{x} + \beta x + \gamma \tilde{P}$$

Calculando las transformadas de Laplace

$$xs^2 = \alpha xs + \beta x + \gamma P$$

$$x(s^2 - \alpha s - \beta) = \gamma P$$

$$\frac{x}{P}(s) = \frac{\gamma}{(s^2 - \alpha s - \beta)}$$

e)

$$x_{no\ lineal_{t\to\infty}} = \sqrt{\frac{RP_0'}{C}}$$

$$x_{lineal_{t\to\infty}} = \sqrt{\frac{RP_0}{C}} + \lim_{t\to\infty} \mathcal{L}^{-1} \left\{ \frac{\gamma}{(s^2 - \alpha s - \beta)}. -10mW \right\}$$