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K
nowledge graphs are critical to many enterprises 
today: They provide the structured data and 
factual knowledge that drive many products and 
make them more intelligent and “magical.” 

In general, a knowledge graph describes 
objects of interest and connections between them. For 
example, a knowledge graph may have nodes for a movie, 
the actors in this movie, the director, and so on. Each 
node may have properties such as an actor’s name and 
age. There may be nodes for multiple movies involving 

a particular actor. The user can then traverse 
the knowledge graph to collect information on 
all the movies in which the actor appeared or, if 
applicable, directed. 

Many practical implementations impose 
constraints on the links in knowledge graphs by 
defining a schema or ontology. For example, a 
link from a movie to its director must connect 

an object of type Movie to an object of type Person. In 
some cases the links themselves might have their own 
properties: a link connecting an actor and a movie might 
have the name of the specific role the actor played. 
Similarly, a link connecting a politician with a specific role 
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in government might have the time period during which the 
politician held that role.

Knowledge graphs and similar structures usually 
provide a shared substrate of knowledge within an 
organization, allowing different products and applications 
to use similar vocabulary and to reuse definitions and 
descriptions that others create. Furthermore, they usually 
provide a compact formal representation that developers 
can use to infer new facts and build up the knowledge—for 
example, using the graph connecting movies and actors to 
find out which actors frequently appear in movies together.

This article looks at the knowledge graphs of five 
diverse tech companies, comparing the similarities and 
differences in their respective experiences of building and 
using the graphs, and discussing the challenges that all 
knowledge-driven enterprises face today. The collection 
of knowledge graphs discussed here covers the breadth 
of applications, from search, to product descriptions, to 
social networks: 

3 Both Microsoft’s Bing knowledge graph and the 
Google Knowledge Graph support search and answering 
questions in search and during conversations. Starting 
with the descriptions and connections of people, places, 
things, and organizations, these graphs include general 
knowledge about the world. 

3 Facebook has the world’s largest social graph, which 
also includes information about music, movies, celebrities, 
and places that Facebook users care about. 

3 The Product Knowledge Graph at eBay, currently 
under development, will encode semantic knowledge 
about products, entities, and the relationships between 
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them and the external world. 
3 The Knowledge Graph Framework for IBM’s Watson 

Discovery offerings addresses two requirements: one 
focusing on the use case of discovering nonobvious 
information, the other on offering a “Build your own 
knowledge graph” framework.

The goal here is not to describe these knowledge graphs 
exhaustively, but rather to use the authors’ practical 
experiences in building knowledge graphs in some of the 
largest technology companies today as a scaffolding 
to highlight the challenges that any enterprise-scale 
knowledge graph will face and where some innovative 
research is needed. 

WHAT’S IN A GRAPH? DESIGN DECISIONS
Let’s start by describing the five knowledge graphs and 
the decisions that went into each design and determining 
the scope of each graph. The different applications 
and product goals for each one resulted in different 
approaches and architectures, though many of the 
challenges are shared by all the enterprises. Table 1 
summarizes the properties of these knowledge graphs.

Microsoft
Engineers and scientists at Microsoft have been working 
on large-scale graphs for many years. This work included 
building the end-to-end system from the underlying 
research, as well as a global-scale service for hundreds of 
millions of users. Across the company, there are several 
major graph systems, each bringing specific challenges 
around creating the graph and keeping it up to date. Many 
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different products can use a knowledge graph to bring 
value to consumers. The following are some of the graphs 
at Microsoft:

3 The Bing knowledge graph contains information 
about the world and powers question answering on 
Bing. It contains entities such as people, places, things, 
organizations, locations, and so on, as well as the actions 
that a user might take (e.g., to play a video or buy a song). 
This is the largest knowledge graph at Microsoft, as its aim 
is to contain general knowledge about the entire world.
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Data model Size of the graph Development stage

Microsoft The types of entities, relations, 
and attributes in the graph are 
defined in an ontology.

~2 billion primary entities,  
~55 billion facts

Actively used in 
products

Google Strongly typed entities, 
relations with domain and 
range inference 

1 billion entities,  
70 billion assertions

Actively used in 
products

Facebook All of the attributes and 
relations are structured and 
strongly typed, and optionally 
indexed to enable efficient 
retrieval, search, and traversal.

~50 million primary entities, 
~500 million assertions

Actively used in 
products

eBay Entities and relation, well-
structured and strongly typed

 Expect around 100 million 
products, >1 billion triples

Early stages of develop- 
ment and deployment

IBM Entities and relations 
with evidence information 
associated with them.

Various sizes. Proven on scales 
documents >100 million, 
relationships  >5 billion, 
entities >100 million

Actively used in 
products and  
by clients

TABLE 1: Common characteristics of the knowledge graphs
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3 The Academic graph is a collection of entities such 
as people, publications, fields of study, conferences, and 
locations. It allows a user to see connections between 
researchers and pieces of research that may otherwise be 
hard to determine.

3 The LinkedIn graph contains entities such as people, 
jobs, skills, companies, locations, and so on. The LinkedIn 
Economic graph is based on 590 million members and 
30 million companies, and is used to find economy-level 
insights for countries and regions.

The Bing search engine displays a knowledge panel from 
the Bing knowledge graph when there is additional useful 
information. For example, a search for the film director 
James Cameron reveals information such as his date of 
birth, height, movies and TV shows he directed, previous 
romantic partners, TED Talks he gave, and Reddit “Ask Me 
Anything” questions and answers (through partnership 
with Reddit). A search for a different type of entity returns 
completely different information—for example, searching 
for “Woodblock restaurant” results in an extract from the 
menu, professional critic and user reviews, as well as the 
option to book a table.

All of these graph systems—as would probably be 
the case with any large graph system—have three key 
determinants of quality and usefulness:

3 Coverage. Does the graph have all the required 
information? The answer is always effectively no, because 
developers are always looking for new ways to provide 
value to users and for new sources of information.

3 Correctness. Is the information correct? How do you 
know if two sources of information are actually about the 
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same fact, and what do you do if they conflict? Answering 
these questions is a huge area of study and investment by 
itself.

3 Freshness. Is the content up to date? It may have been 
correct at one time but gone stale. Freshness will vary for 
something that changes almost constantly (a stock price) 
compared with something that changes rarely (the capital 
of a country), with many different kinds of information in 
between.

To generate knowledge about the world, data is 
ingested from multiple sources, which may be very noisy 
and contradictory, and needs to be collated into a single, 
consistent, and accurate graph. The final fact that a user 
sees is the tip of an iceberg—a huge amount of work and 
complexity is hidden below. For example, there are 200 
Will Smiths in Wikipedia alone, and the Bing knowledge 
result for the actor Will Smith is composed from 108,000 
facts taken from 41 websites. 

From search to conversation
Knowledge graphs power advanced AI, allowing single 
queries to be turned into an ongoing conversation. 
Specifically, this allows a user to have a conversation with 
the system and to have the system maintain the context 
through each turn of the conversation. For example, in 
a future scenario a user could say to Bing, “Show me all 
the countries in the world where it’s over 70 degrees 
Fahrenheit right now,” and once the system returns the 
answer, the user could say, “Show me those within a two-
hour flight.”

You can take the same idea further to enable a full 
conversational experience. For example, a user could say, 
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“I want to travel to NYC two days before Thanksgiving and 
stay for a week,” and the system would use the underlying 
knowledge graph to make sense of the query and then 
request missing pieces of information. In this example, the 
system needs to know that “NYC” could mean “JFK Airport” 
and that Thanksgiving is November 22. It then must know 
how to carry out a flight search, which requires a start 
location and a destination location. The system would then 
have to know that the next line of the conversation needs 
to determine the start location, so it would say, “Okay, 
booking a flight to JFK from November 20 to 27. Where will 
you be flying from?”

Google
With more than 70 billion assertions describing a billion 
entities, the Google Knowledge Graph covers a wide 
swath of subject matter and is the result of more than a 
decade of data-contribution activity from a diverse set of 
individuals, most of whom have never had experience with 
knowledge-management systems.

Perhaps more important, Knowledge Graph serves 
as a long-term, stable source of class and entity identity 
that many Google products and features use behind the 
scenes. Outside users and developers can observe these 
features when they use services such as YouTube and 
Google Cloud APIs. This focus on identity has allowed 
Google to transition to “things not strings.” Rather than 
simply returning the traditional “10 blue links,” Knowledge 
Graph helps Google products interpret user requests as 
references to concepts in the world of the user and to 
respond appropriately.
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Google’s Knowledge Graph is perhaps most visible 
when users issue queries about entities and the search 
results include an array of facts about the entities that are 
served from Knowledge Graph. For example, a query for 
“I.M. Pei” produces a small panel in the search results with 
information about the architect’s education, awards, and 
the significant structures he designed.

The Knowledge Graph also recognizes that certain 
kinds of interactions can take place with different entities. 
A query for “The Russian Tea Room” provides a button to 
make a reservation, while a query for “Rita Ora” provides 
links to her music on various music services.  

At the scale of the Google Knowledge Graph, a single 
individual can’t remember, let alone manage, the detailed 
structures used throughout the graph. To ensure that 
the system remains consistent over time, Google built its 
Knowledge Graph from a basic set of low-level structures. It 
replicated similar structures and reasoning mechanisms at 
different levels of abstraction, conceptually bootstrapping 
the structure from a number of basic assertions. For 
example, to check specific invariant constructions, Google 
leveraged the idea that types were themselves instances 
of types to introduce the notion of metatypes. It could then 
reason about the metatypes to verify that the finer grained 
types did not violate the invariants it was interested in. It can 
validate that time-independent identities are not subclasses 
of structures, which are time-dependent. This scalable level 
of abstraction was relatively easy to add in a manner that 
worked out of the box because it was built upon the same 
low-level entailments on which the rest of the system was 
based.
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This meta-level schema also allows validation of data at 
scale. For example, you can validate that painters existed 
before their works of art were created by identifying the 
painters as the “origin” of their painted work “products” and 
applying a general check on all relations between these 
metaclasses.

At a slightly higher conceptual level, Knowledge Graph 
“understands” that authors are distinct from their creative 
works, even though these entities are frequently conflated 
in colloquial expressions. Similarly, creative works may 
have multiple expressions that are themselves distinct. 
This ontological knowledge helps maintain the identity of 
entities as the graph grows.

Building the Knowledge Graph through these self-
describing layers not only simplifies consistency checking 
by machines, but also makes the Knowledge Graph easier 
for internal users to understand. Once new developers 
have been trained on the fundamentals of Knowledge 
Graph organization, they can understand the full extent 
of its inventory of structures. Similarly, by keeping the 
structure of the graph tied to a few core principles and 
exposing meta-relations explicitly in schemas, finding and 
comprehending new schema structures is simplified for 
internal developers.

Facebook
Facebook is known for having the world’s largest social 
graph. Facebook engineers have built technology over the 
past decade to enable rich connections between people. 
Now they are applying the same technology to building 
a deeper understanding of not just people, but also the 
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things that people care about.
By modeling the world in a structured manner and 

at scale, Facebook engineers were able to unlock use 
cases that a social graph by itself could not fulfill. Even 
seemingly simple things, such as structured understanding 
of music and lyrics when combined with software that 
detects when people are referencing them, can enable 
serendipitous moments between individuals. Many 
experiences in Facebook’s products today, such as helping 
people plan movie outings on Messenger, are powered by 
the knowledge graph. 

Facebook’s knowledge graph focuses on the most 
socially relevant entities, such as those that are most 
commonly discussed by its users: celebrities, places, 
movies, and music. As the Facebook knowledge graph 
continues to grow, developers focus on those domains that 
have the greatest chance of delivering utility and delightful 
user experiences.

Coverage, correctness, structure, and constant change 
all drive the design of the Facebook knowledge graph:

3 Coverage means being exhaustive in a domain that 
is being modeled. The default stance is multiprovider, 
which means that the entire graph-production system is 
built with the assumption that data will be received from 
multiple sources, all providing (sometimes conflicting) 
information about overlapping sets of entities. The 
Facebook knowledge graph deals with the conflicting 
information in one of two ways: (1) the information is 
deemed to be sufficiently low confidence to justify 
dropping it; or (2) conflicting views are incorporated 
into the entity by retaining provenance and an inferred 
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confidence level about the assertion.
3 Correctness doesn’t mean the knowledge graph 

always knows the “right” value for an attribute, but rather 
that it is always able to explain why a certain assertion 
was made. Therefore, it keeps provenance for all data that 
flows through the system, from data acquisition to the 
serving layer.

3 Structure means that the knowledge graph must be 
self-describing. If a piece of data is not strongly typed or 
does not fit the schema describing the entity, then the 
graph attempts to do one of the following: (1) convert the 
data into the expected type (e.g., performing simple type 
coercion, handling incorrectly formatted dates); (2) extract 
structured data that matches the type (e.g., run NLP 
[natural language processing] on unstructured text such 
as user reviews to convert into typed slots); or (3) leave it 
out entirely.

3 Lastly, the Facebook knowledge graph is designed for 
constant change. The graph is not a single representation 
in a database that is updated when new information is 
received. Instead, the graph is built from scratch, from the 
sources, every day, and the build system is idempotent—
producing a complete graph at the end of it.

An obvious place for a Facebook knowledge graph to 
start is the Facebook pages ecosystem. Businesses and 
people create pages on Facebook to represent a huge 
range of ideas and interests. Furthermore, having the 
owner of an entity make assertions about it is a valuable 
source of data. As with any crowd-sourced data, however, 
it isn’t without its challenges. 

Facebook pages are very public facing, and millions of 
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people interact with them every day. Thus, the interests of 
a page owner don’t always align with the requirements of a 
knowledge graph. 

Most commonly, pages and entities do not have a strict 
1:1 mapping, as pages can represent collections of entities 
(e.g., movie franchises). Data can also be incomplete or 
very unstructured (blobs of text), which makes it harder to 
use in the context of a knowledge graph. 

Facebook’s biggest challenge has been to leverage 
data found on its pages and to combine it with other more 
structured sources of data to achieve the goals of a clean, 
structured knowledge graph. A useful tool for Facebook 
has been to think of the graph as the model and a Facebook 
page as the view—a projection of an entity or collection of 
entities that reside in the graph.

eBay
eBay is building its Product Knowledge Graph, which will 
encode semantic knowledge about products, entities, 
and their relationships with each other and the external 
world. This knowledge will be key to understanding what a 
seller is offering and a buyer is looking for and intelligently 
connecting the two, a key part of eBay’s marketplace 
technology. 

For example, eBay’s knowledge graph can relate 
products to real-world entities, defining the identity 
of a product and why it might be valuable to a buyer. A 
basketball jersey for the Chicago Bulls is one product, 
but if it is signed by Michael Jordan, it is a very different 
product. A postcard from 1940 in Paris might be just a 
postcard; knowing that Paris is in France and that 1940 is 
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during World War II changes the product entirely.
Entities in the knowledge graph can also relate 

products to each other. If a user searches for memorabilia 
of Lionel Messi and the graph indicates that Lionel Messi 
plays for Futbol Club Barcelona, then, maybe, merchandise 
for that club is of interest, too. Perhaps memorabilia for 
other famous Barcelona players will be of interest to this 
shopper. Related merchandise should include soccer-based 
products such as signed shirts, strips, boots, and balls. 
This idea can extend from sports to music, film, literature, 
historical events, and much more.

Just as important as entity relations is understanding 
the products themselves and their relationships. Knowing 
that one product is an iPhone and another is a case for 
an iPhone is obviously important. But the case might fit 
some phones and not others, so eBay needs to model the 
parts and accessory sizes. Knowing the many variants 
and relationships of products is also important: Which 
products are manufacturer variants of one product? Do 
they come in different sizes, capacities, or colors? Which 
are comparable—meaning they have mostly the same 
specifications but perhaps different brands or colors? 
The system also needs to understand products that go 
together as a set, say in bundles, kits, or even fashion 
outfits.

As with other knowledge graphs, eBay must cope with 
scale. At any one time there may be more than 1 billion 
active listings across thousands of categories. These 
listings might include hundreds of millions of products and 
tens of billions of attributes specified for those products.

There are several different users of the eBay 
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Knowledge Graph, and these users have very different 
service-level requirements. When the search service 
needs to understand a user’s query, the knowledge graph 
must power an answer that takes milliseconds. At the 
other end of the scale, large graph queries could take 
hours to run. 

To cope with these challenges, eBay engineers have 
designed an architecture that provides them with 
flexibility, while ensuring that the data is consistent. The 
knowledge graph uses a replicated log for all writes and 
edits to the graph. The log provides a consistent ordered 
view of the data. This approach enables multiple back-end 
data stores that meet different use cases. Specifically, 
there is a flattened document store for serving search 
queries with low latency and a graph store for doing 
long-running graph analysis. Each of these stores simply 
appends its operations to the write log and gets the 
additions and edits to the graph in a guaranteed order. As a 
result, each store will be consistent.

IBM
IBM developed its Knowledge Graph Framework, 
which is used by Watson Discovery Services, and its 
associated offerings, which have been deployed in many 
industry settings outside of IBM. IBM Watson uses the 
Knowledge Graph Framework in two distinct ways: First, 
the framework directly powers Watson Discovery, which 
focuses on using structured and unstructured knowledge 
to discover new, nonobvious information, and the 
associated vertical offerings on top of Discovery; second, 
the framework allows others to build their own knowledge 
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graphs with the prebuilt knowledge graph as the core.
The Discovery use case creates new knowledge that is 

not directly present in domain documents or data sources. 
This new knowledge can be surprising and anomalous. 
While search and exploration tools access knowledge that 
is already available in the sources available to the system, 
they are necessary but not sufficient for Discovery. 
Nonobvious discovery includes new links between entities 
(e.g., a new side effect of a drug, an emerging company 
as an acquisition target or sales lead), a potential new 
important entity in the domain (e.g., a new material for 
display technologies, a new investor for a particular 
investment area), or changing significance of an existing 
entity (e.g., an increasing stake by an investor in an 
organization, or increasing interaction between a person 
of interest and some criminal in an intelligence-gathering 
scenario). 

Given its wide enterprise customer base applying 
cognitive technologies in various domains, IBM focused 
on creating a framework for clients and client teams to 
build their own knowledge graphs. Industry teams at 
IBM leverage this framework to build domain-specific 
instances. Clients exist in several domains ranging from 
consumer-oriented research in banking and finance, 
insurance, IT services, media and entertainment, retail, and 
customer service, to industries focused almost entirely on 
deep discovery—especially scientific domains such as life 
sciences, oil and gas, chemicals and petroleum, defense, 
and space exploration. This breadth requires that the 
framework has all of the machinery that clients need to 
build and manage a knowledge graph themselves. Some 
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of the key technologies built into the framework include 
document conversion, document extraction, passage 
storage, and entity normalization.

Following are some of the key insights and lessons that 
IBM engineers learned from both building the knowledge 
graph for Watson Discovery and deploying the system in 
other industries. 

3 Polymorphic stores offer a solution. The IBM Watson 
Knowledge Graph uses a polymorphic store, supporting 
multiple indices, database structures, in-memory, and 
graph stores. This architecture splits the actual data 
(often redundantly) into one or more of these stores, 
allowing each store to address specific requirements and 
workloads. IBM engineers and researchers addressed 
a number of challenges such as keeping these multiple 
stores in sync, allowing communication between the stores 
through microservices, and allowing ingestion of new 
knowledge or reprocessing raw data in a way that does not 
require reloading or rebuilding the entire graph.

3 Evidence must be primitive to the system. The 
main link between the real world (which developers 
often try to model) and the data structures holding the 
extracted knowledge is the “evidence” of the knowledge. 
This evidence is often the raw documents, databases, 
dictionaries, or image, text, and video files from which the 
knowledge is derived. When it comes to making pointed 
and useful contextual queries during a discovery process, 
the metadata and other associated information often play 
a role in inference of the knowledge. Thus, it is critical not 
to lose the linkage between the relationships stored in the 
graph and where those relationships come from. 
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3 Push entity resolution to runtime through context. 
Resolving ambiguous references to entities referenced by 
partial names, surface forms, or multiple entities having 
the same names is a classic problem in understanding 
natural language. In the field of knowledge discovery, 
however, developers often look for the nonobvious 
patterns where an entity is not behaving in its well-
understood form or appears in a novel context. Thus, a 
disambiguation of an entity too early in the process of 
knowledge-graph creation conflicts with the very goal of 
discovery. It is better to leave those utterances unresolved 
or disambiguate them to multiple entities, and then during 
runtime use the context of the query to resolve the entity 
name.

CHALLENGES AHEAD
The requirements, coverage, and architectures of the 
knowledge graphs discussed here differ quite a bit, 
but many of the challenges appear consistently across 
most implementations. These include challenges of 
scale, disambiguation, extraction of knowledge from 
heterogeneous and unstructured sources, and managing 
knowledge evolution. These challenges have been at the 
forefront of research for years, yet they continue to baffle 
industry practitioners. Some of the challenges are present 
in some of the systems but may be less relevant in other 
settings.

Entity disambiguation and managing identity 
While entity disambiguation and resolution is an active 
research area in the semantic web, and now in knowledge 
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graphs for several years, it is almost surprising that it 
continues to be one of the top challenges in the industry 
almost across the board. In its simplest form, the challenge 
is in assigning a unique normalized identity and a type 
to an utterance or a mention of an entity. Many entities 
extracted automatically have very similar surface forms, 
such as people with the same or similar names, or movies, 
songs, and books with the same or similar titles. Two 
products with similar names may refer to different listings. 
Without correct linking and disambiguation, entities will 
be incorrectly associated with wrong facts and result in 
incorrect inference downstream. 

While these problems might seem obvious in smaller 
systems, when identity management must be done with a 
heterogeneous contributor base and at scale, the problem 
becomes much more challenging. How can identity be 
described in a way that different teams can agree on 
it and know what the other teams are describing? How 
can developers be sure to have enough human-readable 
information to adjudicate conflicts? 

Type membership and resolution
Most knowledge-graph systems today allow each entity 
to have multiple types, and the specific type may matter 
in different circumstances. For example, Barack Obama 
is a person, but also a politician and actor—a vastly more 
popular politician and not a very well-known actor. Cuba 
can be a country or may refer to its government. In 
some cases, knowledge-graph systems defer the type 
assignment to runtime: Each entity describes its attributes, 
and the application uses a specific type and collection of 
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attributes depending on the user task. 
While criteria for class membership might be 

straightforward early on, as the universe of instances 
grows, enforcing these criteria while maintaining semantic 
stability becomes challenging. For example, when Google 
defined the category for “sports” in its knowledge graph, 
e-sports did not exist. So, how does Google maintain the 
category identity for sports while also including e-sports?

Managing changing knowledge
An effective entity-linking system also needs to grow 
organically based on its ever-changing input data. For 
example, companies may merge or split, and new scientific 
discoveries may break an existing entity into multiples. 
When a company acquires another company does the 
acquiring company change identity? What about a division 
being spun out? Does identity follow the acquisition of the 
rights to a name? 

While most knowledge-graph frameworks are 
becoming efficient at storing a point-in-time version of a 
knowledge graph and managing instantaneous changes 
to the knowledge graphs to evolve the graph, there is a 
gap in being able to manage highly dynamic knowledge in 
the graphs.4 A fundamental understanding of temporal 
constructs, history, and change with history is needed to 
capture these changes. Furthermore, the ability to manage 
updates through multiple stores (e.g., IBM’s polymorphic 
stores) is necessary. 

There are a lot of considerations around the integrity 
of the update process, eventual consistency, conflicting 
updates, and, simply, runtime performance. There may 
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be an opportunity to think of different variations of 
existing distributed data stores designed to handle 
incremental cascade updates. It is also critical to manage 
changing schemas and type systems, without creating 
inconsistencies with the knowledge already in the 
system. Google, for example, addresses this problem by 
conceptualizing the metamodel layer into multiple layers. 
The basic lower layers remain fairly constant and higher 
levels are built through the notion of metatypes (which are 
really instances of types), which can be used to enrich the 
type system. 

Knowledge extraction from multiple structured and 
unstructured sources 
Despite the recent advances in natural language 
understanding, the extraction of structured knowledge 
(which includes entities, their types, attributes, and 
relationships) remains a challenge across the board. 
Growing the graphs at scale requires not only manual 
approaches, but also unsupervised and semi-supervised 
knowledge extraction from unstructured data in open 
domains. 

For example, in the eBay Product Knowledge Graph, 
many graph relationships are extracted from unstructured 
text in listings and seller catalogs; the IBM Discovery 
knowledge graph relies on documents as evidence for the 
facts represented in the graphs. Traditional supervised 
machine-learning frameworks require labor-intensive 
human annotations to train knowledge-extraction 
systems. This high cost can be alleviated or eliminated by 
adopting fully unsupervised approaches (clustering with 
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vector representations) or semi-supervised techniques 
(distant supervision with existing knowledge, multi-
instance learning, active learning, etc.). Entity recognition, 
classification, text, and entity embeddings all prove useful 
tools to link our unstructured text to entities we know 
about in the graph.3 

Managing operations at scale 
It is probably not surprising that all of the knowledge-
graph systems described here face the challenge of 
managing the graphs at scale. This dimension often 
makes the problems that have been addressed in multiple 
forms in the academic and research community (such as 
disambiguation and unstructured data extraction) present 
new challenges in industry settings. Managing scale is 
the underlying challenge that affects several operations 
related to performance and workload directly. It also 
manifests itself indirectly as it affects other operations, 
such as managing fast incremental updates to large-scale 
knowledge graphs as at IBM or managing consistency on a 
large evolving knowledge graph as at Google.1 

OTHER KEY CHALLENGES
In addition to these truly pervasive challenges, the 
following challenges will be critical to the efforts 
described in this article. These are interesting and 
intriguing subjects for research and academic 
communities.

Knowledge-graph semantic embeddings
With a large-scale knowledge graph, developers can 
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build high-dimensional representations of entities and 
relations. The resulting embeddings will greatly benefit 
many machine-learning, NLP, and AI tasks as sources of 
features and constraints, and can form the basis for more 
sophisticated inferences and ways to curate training data. 
Deep-learning techniques can be applied to problems of 
entity deduplication and attribute inference.2 

Knowledge inference and verification
Making sure that facts are correct is a core task in 
constructing a knowledge graph, and with a huge scale it 
is not remotely possible to verify everything manually. This 
requires an automated approach: advances in knowledge 
representation and reasoning, probabilistic graphical 
models, and natural language inferences can be used to 
construct an automatic or semi-automatic system for 
consistency checking and fact verification.

Federation of global, domain-specific, and customer-
specific knowledge 
In a case like IBM clients, who build their own custom 
knowledge graphs, the clients are not expected to tell 
the graph about basic knowledge. For example, a cancer 
researcher is not going to teach the knowledge graph 
that skin is a form of tissue, or that St. Jude is a hospital in 
Memphis, Tennessee. This is known as “general knowledge,” 
captured in a general knowledge graph.  

The next level of information is knowledge that is well 
known to anybody in the domain—for example, carcinoma 
is a form of cancer or NHL more often stands for non-
Hodgkin lymphoma than National Hockey League (though 
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in some contexts it may still mean that—say, in the patient 
record of an NHL player). The client should need to 
input only the private and confidential knowledge or any 
knowledge that the system does not yet know. Isolation, 
federation, and online updates of the base and domain 
layers are some of the major issues that surface because 
of this requirement.

Security and privacy for personalized, on-device 
knowledge graphs
Knowledge graphs by definition are enormous, since they 
aspire to create an entity for every noun in the world, and 
thus can only reasonably run in the cloud. Realistically, 
however, most people don’t care about all entities that 
exist in the world, but rather a small fraction or subset 
that is personally relevant to them. There is a lot of 
promise in the area of personalizing knowledge graphs 
for individual users, perhaps even to the extent that they 
can shrink to a small enough size to be shippable to mobile 
devices. This will allow developers to keep providing 
user value in a privacy-respecting manner by doing more 
on-device learning and computation, over local small 
knowledge-graph instances. (We’re eager to collaborate 
with the research community in pursuit of this goal.)

Multilingual knowledge systems
A comprehensive knowledge graph must cover facts 
expressed in multiple languages and conflate the concepts 
expressed in those languages into a cohesive set. In 
addition to the challenges in knowledge extraction from 
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multilingual sources, different cultures may conceptualize 
the world in subtly different ways, which poses challenges 
in the design of the ontology as well.

CONCLUSIONS AND FINAL THOUGHTS
The natural question from our discussion in this article is 
whether different knowledge graphs can someday share 
certain core elements, such as descriptions of people, 
places, and similar entities. One of the avenues toward 
sharing these descriptions could be to contribute them 

to Wikidata as a common, 
multilingual core. In the nearer 
term, we hope to continue 
sharing the results of research 
that each of us may have 
done with researchers and 
practitioners outside of our 
companies. 

Knowledge representation 
is a difficult skill to learn on the 
job. The pace of development and 
the scale at which knowledge-
representation choices impact 
users and data do not foster 
an environment in which to 
understand and explore its 
principles and alternatives. 
The importance of knowledge 
representation in diverse 
industry settings, as evidenced 
by the discussion in this article, 
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should reinforce the idea that knowledge representation 
should be a fundamental part of a computer science 
curriculum—as fundamental as data structures and 
algorithms.

Finally, we all agree that AI systems will unlock new 
opportunities for organizations in how they interact 
with customers, provide unique value in their space, and 
transform their operations and workforces. To realize this 
promise, these organizations need to figure out how to 
build new systems that unlock knowledge to make them 
truly intelligent organizations.

The article summarizes and expands on a panel discussion 
that the authors conducted at the International Semantic 
Web Conference in Asilomar, California, in October 2018 
(http://iswc2018.semanticweb.org/panel-enterprise-scale-
knowledge-graphs/). The discussion is based on practical 
experiences and represents the views of the authors and 
not necessarily their employers.

References
1.  Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, 

J., Ngonga Ngomo, A.C. 2017. Survey on challenges of 
question answering in the semantic web. Semantic Web 
8(6), 895-920.

2.  Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X. 2015. Learning 
entity and relation embeddings for knowledge graph 
completion. Proceedings of the Association for the 
Advancement of Artificial Intelligence (AAAI) 15, 2181-2187.

3.  Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E. 2016. A 
review of relational machine learning for knowledge 

25 of 28

http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/
http://iswc2018.semanticweb.org/panel-enterprise-scale-knowledge-graphs/


acmqueue | march-april 2019   26

knowledge graphs

graphs. Proceedings of the IEEE 104(1), 11-33.
4.  Paulheim, H., 2017. Knowledge graph refinement: a 

survey of approaches and evaluation methods. Semantic 
Web 8(3), 489-508.

Natasha Noy is a scientist at Google, where she works on 
making structured data accessible and useful. Prior to joining 
Google, she worked at Stanford Center for Biomedical 
Informatics Research, where she made major contributions 
in the areas of ontology development and alignment, and 
collaborative ontology engineering. She is the immediate past 
president of the Semantic Web Science Association and is on 
the editorial boards of several semantic web and information 
systems journals.

Yuqing Gao is the general manager of Microsoft’s Artificial 
Intelligence – Knowledge Graph organization. As a technology 
pioneer recognized globally for data science breakthroughs, 
she has been a key leader behind intelligent features for 
Microsoft Office products, Bing Entity Search, and other 
prominent AI knowledge-driven Microsoft technologies. Her 
work has been featured by MIT Technology Review, Time 
Magazine, CNN, ABC, BBC, and many major media outlets. 
Gao is an IEEE Fellow for her distinguished contributions to 
speech recognition, speech-to-speech translation, and natural 
language understanding. She was also an IBM Distinguished 
Engineer (2013-2014). 

Anshu Jain works at IBM Watson, where he is responsible 
for the architecture of the core knowledge and language 

26 of 28



acmqueue | march-april 2019   27

knowledge graphs

capabilities. This includes Knowledge Graph, natural language 
understanding, and Watson Knowledge Studio, among 
others. He has extensive background in Knowledge Discovery 
and Knowledge Graphs, serving as dev lead of the early 
knowledge-graph implementations of IBM Watson. He most 
recently is leading the design of a framework to provide rich 
and consistent domain-specific knowledge across the full AI 
stack.

Anant Narayanan is an engineering manager at Facebook, 
where he helps build knowledge platforms to support a 
range of products by developing a deeper understanding 
of entities and relationships. Prior to joining Facebook, he 
led the development of large-scale data pipelines at Ozlo to 
support conversational AI systems. He was an early engineer 
at Firebase, a developer tools company now part of the 
Google Cloud Platform. Earlier in his career, Narayanan was a 
software engineer at Mozilla, working on a variety of projects 
powering Firefox, most notably WebRTC.

Alan Patterson is a Distinguished Engineer at eBay, heading 
up eBay’s efforts to build a product knowledge graph. The 
graph contains eBay’s knowledge of products, relationships, 
variations, and the surrounding world such as organizations, 
brands, people, places, and standards. Previously, he worked 
at a startup called True Knowledge (also Evi.com) that 
developed a knowledge graph and question-answering 
service. True Knowledge was acquired by Amazon and now 
forms a core part of Alexa.

27 of 28



acmqueue | march-april 2019   28

knowledge graphs

Jamie Taylor manages the Schema Team for Google’s 
Knowledge Graph. The team’s responsibilities include 
extending KG’s underlying semantic representation, growing 
coverage of the ontology, and enforcing semantic policy. 
He joined Google following the acquisition of Metaweb 
Technologies, where he was the minister of information, 
helping organize data in Freebase and evangelizing semantic 
representation to web developers. Prior to Metaweb, he 
worked in enterprise software as CTO of Determine Software, 
and before that he started one of the first ISPs in San 
Francisco. He is co-author of the O’Reilly book Programming 
the Semantic Web. Taylor has a Ph.D. from Harvard University 
and earned his bachelor’s degree from Colorado College, 
where he graduated magna cum laude.
Copyright © 2019 held by owner/author. Publication rights licensed to ACM.

28 of 28


