
1

Lossless Source Coding

Lempel-Ziv Coding

Lempel-Ziv 1977 (LZ77)

Gadiel Seroussi - Lossless Data Compression - April 2021

2

The Lempel-Ziv Algorithms

q A family of data compression algorithms introduced in

[LZ77] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Trans. Inform.Theory, vol. IT-23, pp. 337–343, May 1977

[LZ78] J. Ziv and A. Lempel, “Compression of individual sequences via variable rate
coding,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 530–536, Sept. 1978.

q Many desirable features, the conjunction of which was unprecedented at
the time
l simple and elegant
l universal for individual sequences in the class of finite-state encoders

u Arguably, every real-life computer is a finite-state automaton
l processing is sequential, symbol by symbol, but compression ratio approaches

entropy rate in the limit for stationary ergodic sources
l string matching and dictionaries, no explicit probability model
l very practical, with fast and effective implementations applicable to a wide range

of data types and applications

Gadiel Seroussi - Lossless Data Compression - April 2021

3

Two Main Variants

q [LZ77] and [LZ78] present different algorithms with common elements
l The main mechanism in both schemes is pattern matching: find string

patterns that have occurred in the past, and compress them by encoding a
reference to the previous occurrence

q Both schemes are in wide practical use
l many variations exist on each of the major schemes

u gzip, WinZIP, 7z, RAR, GIF, TIFF, PNG, ...
l we give a brief description of LZ77 and its properties, and then focus in more

detail on LZ78, which admits a simpler analysis with a stronger result

... r e s t o r e o n e s t o n e ...

Gadiel Seroussi - Lossless Data Compression - April 2021

4

…

LZ77: Sliding Window Lempel-Ziv

q Sequence 𝑥!" over alphabet 𝐴, 𝐴 ≥ 2.
q Say we have already processed the sequence up to the indicated point
q Fix a window size 𝑛# ≥ 1

a b c d e d e d a e d b b b a …

past sequence

Gadiel Seroussi - Lossless Data Compression - April 2021

5

…

LZ77: Sliding Window Lempel-Ziv

q Next phrase:
l find longest match to the look-ahead buffer, starting in the dictionary (but can

go into the look-ahead buffer): length 𝐿 ≥ 0

a b c d e d e d a e d a e d b …

𝑛!
fixed size window (dictionary) look-ahead buffer

past sequence

Gadiel Seroussi - Lossless Data Compression - April 2021

6

LZ77: Sliding Window Lempel-Ziv

q Next phrase:
l find longest match to the look-ahead buffer, starting in the dictionary (but can

go into the look-ahead buffer): length 𝐿 ≥ 0
l represent phrase as 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

phrase 1 (ded) : 𝑌# = (3, 2)

a b c d e d e d a e d a e d b …

𝑛!
fixed size window (dictionary) look-ahead buffer

2

…

Gadiel Seroussi - Lossless Data Compression - April 2021

7

a b c d e d e d a e d a e d b …

LZ77: Sliding Window Lempel-Ziv

q Next phrase:
l find longest match to the look-ahead buffer, starting in the dictionary (but can

go into the look-ahead buffer): length 𝐿 ≥ 0
l represent phrase as 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

phrase 1 (ded) : 𝑌# = (3, 2)
phrase 2 (a) : 𝑌$ = (1, a)

𝑛!
fixed size window (dictionary) look-ahead buffer

…

0

Gadiel Seroussi - Lossless Data Compression - April 2021

8

LZ77: Sliding Window Lempel-Ziv

q Next phrase:
l find longest match to the look-ahead buffer, starting in the dictionary (but can

go into the look-ahead buffer): length 𝐿 ≥ 0
l represent phrase as 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

phrase 1 (ded) : 𝑌# = (3, 2)
phrase 2 (a) : 𝑌$ = (1, a)
phrase 3 (edaedb) : 𝑌% = (5, 3)

a b c d e d e d a e d a e d b …

𝑛!
fixed size window (dictionary) look-ahead buffer

3

…

Gadiel Seroussi - Lossless Data Compression - April 2021

9

LZ77: Sliding Window Lempel-Ziv

q Next phrase:
l find longest match to the look-ahead buffer, starting in the dictionary (but can

go into the look-ahead buffer): length 𝐿 ≥ 0
l represent phrase as 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

phrase 1 (ded) : 𝑌# = (3, 2)
phrase 2 (a) : 𝑌$ = (1, a)
phrase 3 (edaedb) : 𝑌% = (5, 3)
phrase 4 (b) : 𝑌& = (1, b)

a b c d e d e d a e d a e d b …

𝑛!
fixed size window (dictionary) look-ahead buffer

…

0

Gadiel Seroussi - Lossless Data Compression - April 2021

10

…

LZ77: Decoding

q Given 𝑌!, 𝑌$, 𝑌%, … , we can reconstruct 𝑥!"

q Say we have already decoded the sequence up to the indicated point

Encoder sent 𝑌#= (3, 2), 𝑌$ = (1, a), 𝑌% = (5, 3), 𝑌& = (1, b), …
l 𝑌' = 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

a b c d e

past sequence

Gadiel Seroussi - Lossless Data Compression - April 2021

11

…

LZ77: Decoding

Encoder sent 𝑌#= (3, 2), 𝑌$ = (1, a), 𝑌% = (5, 3), 𝑌& = (1, b), …
l 𝑌' = 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

a b c d e d

past sequence

2

Gadiel Seroussi - Lossless Data Compression - April 2021

𝑌# = (3, 2)

12

…

LZ77: Decoding

Encoder sent 𝑌#= (3, 2), 𝑌$ = (1, a), 𝑌% = (5, 3), 𝑌& = (1, b), …
l 𝑌' = 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

a b c d e d e

past sequence

2

Gadiel Seroussi - Lossless Data Compression - April 2021

𝑌# = (3, 2)

13

…

LZ77: Decoding

Encoder sent 𝑌#= (3, 2), 𝑌$ = (1, a), 𝑌% = (5, 3), 𝑌& = (1, b), …
l 𝑌' = 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

a b c d e d e d

past sequence

2

Gadiel Seroussi - Lossless Data Compression - April 2021

𝑌# = (3, 2)

14

…

LZ77: Decoding

Encoder sent 𝑌#= (3, 2), 𝑌$ = (1, a), 𝑌% = (5, 3), 𝑌& = (1, b), …
l 𝑌' = 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

a b c d e d e d a

past sequence

0

Gadiel Seroussi - Lossless Data Compression - April 2021

𝑌$ = (1, a)

15

…

LZ77: Decoding

Encoder sent 𝑌#= (3, 2), 𝑌$ = (1, a), 𝑌% = (5, 3), 𝑌& = (1, b), …
l 𝑌' = 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

a b c d e d e d a e d a e d

past sequence

3

Gadiel Seroussi - Lossless Data Compression - April 2021

𝑌% = (5, 3)

16

…

LZ77: Decoding

Encoder sent 𝑌#= (3, 2), 𝑌$ = (1, a), 𝑌% = (5, 3), 𝑌& = (1, b), …
l 𝑌' = 𝐿, Δ = (length, offset) if 𝐿 > 1, or 1, 𝑥" otherwise

a b c d e d e d a e d a e d b …

past sequence

0

Gadiel Seroussi - Lossless Data Compression - April 2021

𝑌& = (1, b)

17

LZ77: Binary Encoding of Phrases

q Phrase 𝑌& = 𝐿, Δ with 𝐿 > 1, or 𝑌& = 1, 𝑥'
lΔ : ⌈log 𝑛#⌉ bits (log in base 2)
l𝐿 : use prefix-free, variable length code for nonnegative integers

Example: let ℓ = ⌈log(𝐿 + 1)⌉, ℓ(= ⌈log(ℓ + 1)⌉

represent 𝐿 as 0ℓ!*!1 8 binary(ℓ)

ℓ

8 binary(𝐿)

ℓ!

total length for 𝐿 ≈ log 𝐿 +2 log log 𝐿

l𝑥' : ⌈ log 𝐴 ⌉ bits

q Appropriate conventions are needed for the first 𝑛# symbols
q Let ℒ"" 𝑥!" = total length (in bits) of representations of 𝑌!, 𝑌$, 𝑌%, …

q Compression ratio: 𝑅!(,! 𝑥
! = #

!
ℒ!(𝑥! (bits/symbol)

Gadiel Seroussi - Lossless Data Compression - April 2021

18

Optimality of LZ77

q Let 𝑋!+~𝑃 be a stationary ergodic process over 𝐴.
q Recall
𝑛-th order entropy rate: 𝐻" 𝑋!" = − !

"
∑,#∈.# 𝑃 𝑥!" log 𝑃 𝑥!"

entropy rate: 𝐻 𝑋!+ = lim
"→+

𝐻" 𝑋!" (in bits/symbol, limit exists)

LZ77 average compression ratio: H𝑅""," = 𝐸1 𝑅"","(𝑋!
")

q Theorem
lim
""→+

lim
"→+

H𝑅""," = 𝐻

l Optimal due to Shannon’s lower bound
l Universal: achieves optimal compression ratio without any prior knowledge

of 𝑃
l Proof : A. D. Wyner and J. Ziv, “The sliding-window Lempel-Ziv algorithm is

asymptotically optimal,” Proc. IEEE, vol. 82, pp. 872--877, June 1994.
l Original LZ77 paper did not show optimality in a stochastic sense

Gadiel Seroussi - Lossless Data Compression - April 2021

19

gzip: An application of LZ77 (+Huffman)

q A popular lossless compression program available in most computing
platforms (Windows, Linux, MacOS, etc.)

q Used for general purpose file compression
q The main compression algorithm in gzip is called deflate, a variant of

LZ77 (+Huffman)
l blocks of data can also be stored uncompressed
l deflate also at the core of zip, PKzip, Winzip, PNG, and others

q Main elements of deflate:
l a block of data is encoded as a sequence of tokens
l each token is encoded with a prefix-free (Huffman) code, and can represent

u a literal byte (0 .. 255)
u a length in a <length, offset> pair (3 .. 258) minimal match length is 3
u an offset in a <length, offset> pair (1 .. 2#))

l Two alphabets, and two Huffman codes are used
u one for literals and match lengths (merged into one alphabet)
u one for offsets

l Huffman codes can be fixed (pre-defined defaults) or dynamic (described in
the encoded stream)

Gadiel Seroussi - Lossless Data Compression - April 2021

20

Encoding of literals/match lengths

Codes 0 .. 255: literal bytes
Code 256: end of block
Codes 257.. 285: match lengths

A Huffman code over the alphabet 0,1, … , 285 is used for these codes
+ an appropriate number of extra bits

Gadiel Seroussi - Lossless Data Compression - April 2021

21

Encoding of offsets

A Huffman code over the alphabet {0,1, … , 29} is used for these codes +
an appropriate number of extra bits.

Gadiel Seroussi - Lossless Data Compression - April 2021

22

Encoding algorithm

q The description so far specifies how the encoded stream is interpreted,
not how it is generated

q There are many ways to generate gzip-compliant streams
l in case of multiple matches, prefer the closest one (smaller offsets will tend to

have shorter Huffman codes)
l matches described need not be maximal : decoder will not complain!
l lazy matching :

u find longest match from current position 𝑖, then check for longest match from
position 𝑖 + 1

u Choose the most economical encoding: describe match starting at position 𝑖, or
describe 𝑥! as literal + match starting at position 𝑖 + 1

… 𝒙𝒊 𝒙𝒊3𝟏 … … …

𝑳𝟏

𝑳𝟐 second option may be better if 𝑳𝟐 ≫ 𝑳𝟏

𝑳𝟑

Gadiel Seroussi - Lossless Data Compression - April 2021

23

Some comparisons

q Input file: Don Quijote de la Mancha, HTML
file size: 2,261,865 bytes

Compressor Output bytes bits/symbol
Huffman 1,284,323 4.54
vanilla LZ77 1,310,561 4.63
gzip -1 994,295 3.52
gzip -9 816,909 2.89

Gadiel Seroussi - Lossless Data Compression - April 2021

