DISEÑO DE PAVIMENTOS ASFÁLTICOS MÉTODO SHELL 78

<u>INTRODUCCIÓN</u>

Es un método racional de diseño de espesores de pavimentos flexibles y/o semirígidos. Está basado en la teoría de la elasticidad, en la medición de las propiedades de los materiales de las distintas capas y en el análisis de la performance de esa estructura en el tiempo, en base a criterios de falla de los distintos materiales.

El manual brinda numerosas cartas de diseño, en las cuales están consideradas las variables de diseño: acción de las cargas del tránsito, propiedades mecánicas de la subrasante y materiales de las capas constitutivas, y el clima a través de la temperatura ambiente.

La estructura real del pavimento está modelizada como un sistema tricapa de comportamiento elástico lineal, en el cual los materiales son asumidos homogéneos e isótropos y están caracterizados por su módulo de elasticidad y coeficiente de Poisson.

Para una estructura de pavimento flexible, la capa superior está constituida por los materiales ligados con cemento asfáltico, la capa intermedia por los materiales no ligados, y la inferior por la subrasante.

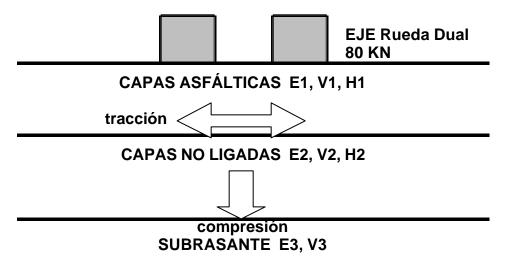


Figura 1. Modelización de la estructura

Como se indica en la Figura 1 los esfuerzos críticos considerados son: la deformación específica por tracción en la base de la capa asfáltica \mathring{a})(si es excesiva falla por fisuración de la capa), y la deformación específica de compresión en la superficie de la subrasante (\mathring{a}) (si es excesiva falla por ahuellamiento).

La Figura 2 muestra una carta simplificada de diseño, de la que pueden ser obtenidos los espesores de capas asfálticas \mathbf{H}_1 y de capas no ligadas \mathbf{H}_2 que verifican los criterios de falla planteados, la curva de diseño es la envolvente de ambas curvas.

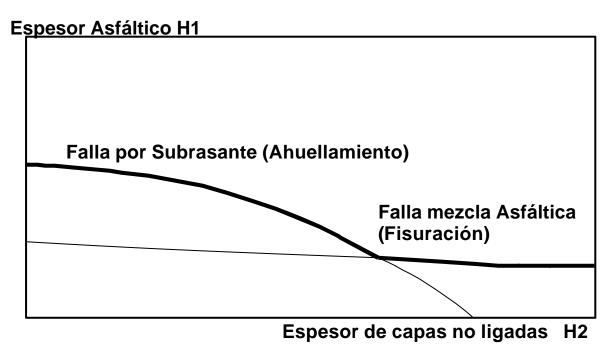


Figura 2. Esquema de Carta de diseño

VALORACIÓN DE LOS PARÁMETROS DE DISEÑO

TRÁNSITO

El tránsito de diseño se valora a través del número de aplicaciones **N** de un eje estándar de referencia de 80 KN.

El procedimiento para calcular ese número N a partir de un censo de cargas, consiste en aplicar a cada una de las cargas actuantes un coeficiente de equivalencia en efecto destructivo, para expresar esa carga en ejes de 80 KN. Ese coeficiente se obtiene de la siguiente expresión

$$n_e = (P/80)^4$$

Por ejemplo para P = 100 KN, $n_e = 2,40$

En la Figura 3 (planilla "A" del método) se encuentra un ejemplo completo de cálculo del tránsito de diseño N para un determinado censo de cargas, una determinada tasa de crecimiento del tránsito y un determinado período de diseño de la estructura del pavimento.

Carga por eje KN (1)	Número de ejes (2)	Factor de conversión n _e (3)	Número de ejes equiv. a 80 KN (4)=(2)x(3)
25	1103	0.01	11.0
44	654	0.09	58.9
62	447	0.35	156.4
80	379	1.00	379.0
94	226	1.87	422.6
116	73	4.35	317.6
133	13	7.51	97.6
148	3	11.51	34.5
155	2	13.85	27.7
Número total de ejes por línea y por día 2900 (5)		Número total de ejes equivalentes por línea por día 1505 (6) por año 5.5 x10 ⁵ (7)	
Tasa de crecimiento del tránsito por año "b" 2% (8)		Factor de sumatoria del tránsito "g" 18	
Vida de diseño del pavimento en años "B" 15 (9)		$g = O(1 + b/100)^{i}$ i=1 a B (10)	
(11)=(7)x(10) NUMERO ACUMULADO DE EJES ESTÁNDAR DE 80KN POR LÍNEA 10 ⁷			

FIGURA 3. PLANILLA "A". CALCULO DEL NUMERO N

TEMPERATURA

Se calcula una temperatura media anual ponderada del aire **WMAAT expresada en °C**, de manera de obtener con esta temperatura equivalente un deterioro igual al que sufriría la subrasante con las variaciones reales de temperatura a lo largo de un período generalmente anual.

Este procedimiento se realiza utilizando la gráfica de la Figura 4 (carta "W" del método) para obtener los factores de ponderación de cada uno de los meses, considerados con su temperatura media mensual del aire correspondiente (MMAT °C). Luego con el valor promedio de estos coeficientes se obtiene, de la misma gráfica pero en sentido inverso, la temperatura buscada (**WMAAT**).

Factor de Ponderación

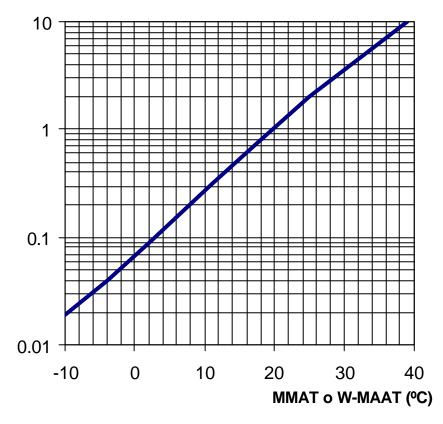


Figura 4. Curva de ponderación de temperaturas

En la Figura 5 (planilla "B" del método) se encuentra un ejemplo de esta metodología de cálculo.

SUBRASANTE

El método incorpora el módulo dinámico de la subrasante (módulo resiliente) como uno de los principales parámetros del diseño.

El valor de este parámetro tiene un comportamiento fuertemente dependiente del contenido de humedad y del nivel de tensiones a que está sometido el material de la subrasante. El mismo puede ser determinado a partir de mediciones de deflexión dinámica in situ o a través de ensayos de laboratorio.

Cuando esas determinaciones no son posibles de realizar, pueden utilizarse correlaciones empíricas entre el módulo dinámico y el valor soporte CBR, determinado sobre muestras preparadas en laboratorio en condiciones de humedad y densidad acordes a las condiciones en servicio de ese material en esa estructura. En esa relación el módulo, expresado en N/m², varía entre 5 x 10⁶ y 2 x 10⁷ del CBR; a los fines prácticos se recomienda en el método utilizar la siguiente relación:

$$E_3 = 10^7 \text{ CBR } (N/m^2)$$

una mejor relación planteada con posterioridad es: $E_3 = 18 \text{ CBR}^{0.64} \text{ (}10^6 \text{ N/m}^2\text{)}$

		FACTOR DE		
MES DEL AÑO	MMAT °C	PONDERACIÓN		
ENERO	8	0.21		
FEBRERO	8	0.21		
MARZO	12	0.36		
ABRIL	16	0.62		
MAYO	19	0.93		
JUNIO	22	1.40		
JULIO	26	2.35		
AGOSTO	28	3.00		
SEPTIEMBRE	22	1.40		
OCTUBRE	19	0.93		
NOVIEMBRE	12	0.36		
DICIEMBRE	6	0.16		
SUMATORIA DE FACTORES DE PONDERACIÓN 11.9				
FACTOR PRO	1.0			
	WMAAT °C	19.5 = 20		

Figura 5. Determinación de la temperatura media anual ponderada del aire

MATERIALES ASFÁLTICOS

Para los fines del diseño son consideradas dos propiedades de las mezclas asfálticas: el **módulo dinámico o Stiffness y la fatiga.**

Las cartas de diseño han sido confeccionadas para las siguientes condiciones:

por módulo dinámico: dos tipos de mezclas S1 y S2
 por resistencia a fatiga: dos tipos de mezclas F1 y F2
 por características del asfalto: dos tipos de penetración 50 o 100

Por combinación de todas estas condiciones se obtienen 8 tipos de mezclas, con distintos códigos S1-F1-50, S1-F1-100, S2-F1-50, etc., en forma genérica S-F-P.

DETERMINACIÓN DEL MODULO DINÁMICO

En la Figura 6 se muestran las curvas típicas que relacionan los módulos dinámicos de la mezcla **Smix** con la temperatura de la mezcla **Tmix** para las dos mezclas consideradas S1 y S2, para una frecuencia de aplicación de la carga considerada para el diseño que representa un tiempo de aplicación de la carga de 0,02 seg y una velocidad de circulación del tránsito de 50 - 60 Km/h.

Stiffness Smix N/m2

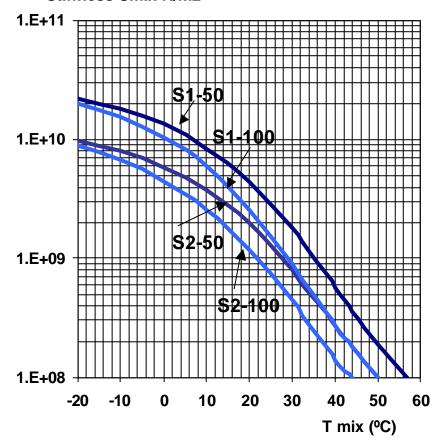


Figura 6.

Variación del módulo dinámico con la temperatura

A través de ensayos de laboratorio se pueden valorar los módulos dinámicos de la mezcla asfáltica a distintas temperaturas. Comparando luego la curva obtenida con las curvas del método (S1 y S2), se elige como tipificación para el diseño aquella que se asemeje o se acerque más a la curva de laboratorio.

Cuando no es posible realizar ensayos de laboratorio, puede determinarse la curva Smix -Tmix a través de una serie de nomogramas provistos por el método. El procedimiento a seguir es el siguiente:

a.- Determinación del Índice de Penetración **Ip** del cemento asfáltico a partir de los datos de los ensayos de penetración y punto de ablandamiento.

Por ejemplo: penetración a 25 °C (pen) = 23 décimas de mm temp. ablandamiento
$$T_{800 \, pen}$$
 = 64 °C
$$F = 50 \, Log \, (800 \, / \, pen) \, / \, (T_{800 \, pen} \, -25) = 1.98$$

$$Ip = (20 - 10 \, F) \, / \, (1+F)$$
 resulta $Ip = 0$

b.- Determinación de la temperatura a la cual va a trabajar la mezcla asfáltica, denominada temperatura de operación o Tmix.

Se obtiene utilizando la gráfica de la Figura 7, la cual da la temperatura de la mezcla Tmix en función del WMAAT calculado previamente y el espesor de material asfáltico a colocar en la estructura.

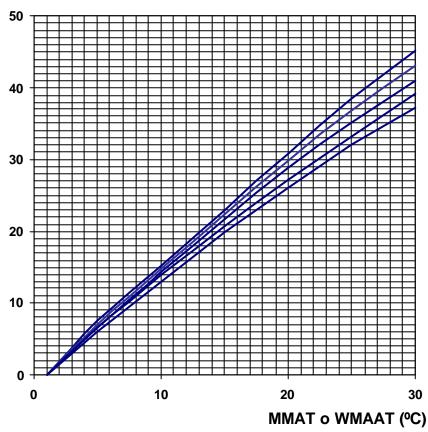


Figura 7.

Temperatura de la mezcla en función de la temperatura del aire.

c.- Determinación del módulo dinámico del cemento asfáltico **Sbit**, para cada condición de trabajo, o sea distintas temperaturas y distintos tiempos de aplicación de la carga, utilizando el nomograma de Van der Poel de la Figura 8. (para el diseño de un camino el tiempo de aplicación de la carga generalmente es de 0,02 seg).

Por ejemplo:

temperatura de operación = 11 °C
 tiempo de carga = 0,02 seg
 asfalto T_{800 pen} = 64 °C
 IP = 0

resulta **Sbit** = $2.0 \times 10^8 \text{ N/m}^2$

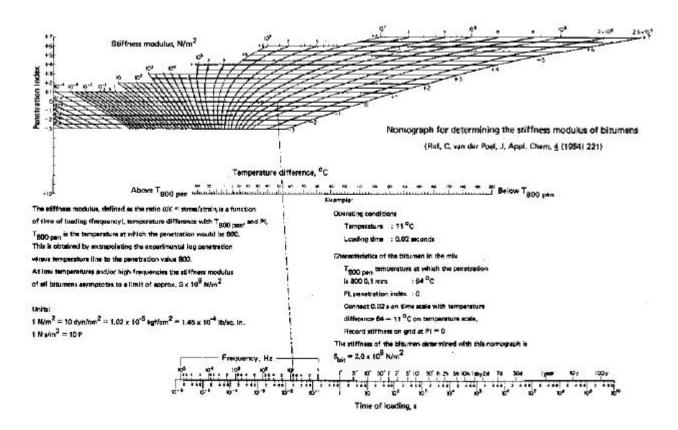


Figura 8. Nomograma de Van der Poel. Determinación del Sbit.

d.- Determinación de la composición en volumen de la mezcla asfáltica.

Cuando la cantidad de asfalto adsorbido por los agregados puede ser considerara despreciable, el pasaje de dosificación en peso a dosificación en volumen puede realizarse de la siguiente manera:

- el % de vacíos Vv ya está expresado en volumen
- % asfalto en volumen Vb = Pb x densidad Marshall mezcla
- luego los agregados en volumen Vg = 100 Vb Vv
- e.- Determinación del módulo dinámico de la mezcla asfáltica **Smix** para cada condición de trabajo, a partir del Sbit y la composición en volumen de la mezcla, utilizando el nomograma de la Figura 9.

Por ejemplo: Sbit = $2 \times 10^8 \text{ N/m}^2$ % vol. asfalto = 13.1 %% vol. agregados = 80,5 %

resulta **Smix** = $1.1 \times 10^{10} \text{ N/m}^2 = 11000 \text{ MPa}$

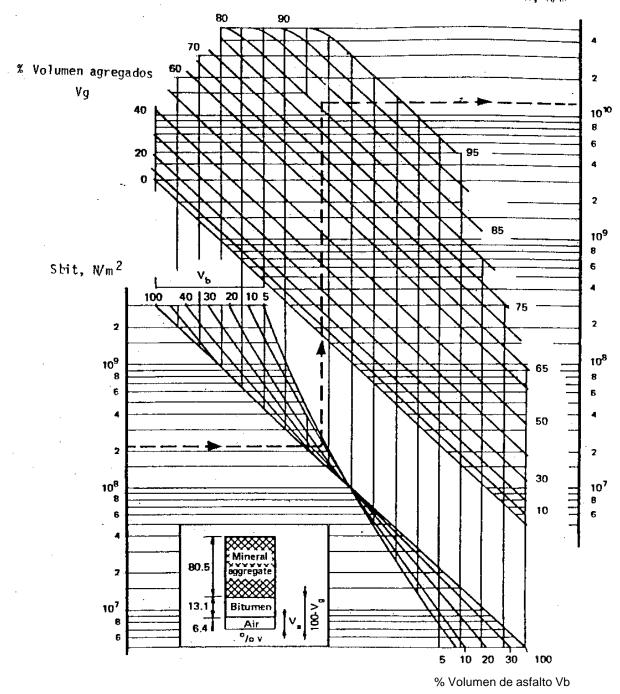


Figura 9. Nomograma para el cálculo de Smix.

Aplicando este procedimiento para distintas temperaturas de operación se puede elaborar la curva Smix-T de la mezcla considerada, y proceder luego a compararla con las especificadas en el método, al igual que si hubiera sido determinada en laboratorio.

Siguiendo el ejemplo anterior, con los datos de la mezcla analizada, corresponde tipificarla como **\$1-50**.

CARACTERIZACIÓN A FATIGA DE LA MEZCLA ASFÁLTICA

Han sido seleccionados dos grupos de curvas de fatiga que corresponden a dos tipos de mezclas, las F1 y las F2. A título indicativo, para determinar cual grupo de curvas corresponde a nuestra mezcla asfáltica puede decirse que:

- . las F1 corresponden a mezclas con un moderado contenido de asfalto y de vacíos.
- . las F2 a mezclas con relativamente alto contenido de vacíos.

En la Figura 10 se muestran las curvas de fatiga correspondientes a los dos tipos de mezclas citadas.

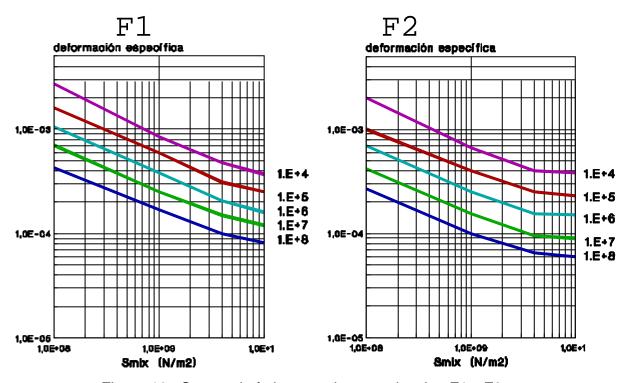


Figura 10. Curvas de fatiga para las mezclas tipo F1 y F2

Para definir mejor cual de las tipificaciones corresponde a la mezcla asfáltica, puede seguirse el siguiente procedimiento:

- calcular la deformación admisible de fatiga **a**at para que la mezcla soporte un determinado número de ciclos Nfat sin fallar por fatiga, utilizando la siguiente expresión:

$$\tilde{a}$$
at = (0,856 x Vb + 1,08) x Smix^{0,36} x Nfat^{0,2}

Calculando los at para distintos Nfat se puede trazar la curva de fatiga de nuestra mezcla, y proceder luego a compararla con las del método, y decidir así cual de las tipificaciones le corresponde.

Por ejemplo: para la mezcla considerada anteriormente con:

Vb = 13,1 %
Smix = 1,1 x
$$10^{10}$$
 N/m²
Nfat = 1 x 10^{6}

resulta **a**at = 1,88 x 10⁻⁴ y luego corresponde tipificarla como **F1**

DISEÑO ESTRUCTURAL

El método resuelve el diseño estructural de los pavimentos a través de una serie de cartas, de las cuales pueden ser obtenidos los espesores de las distintas capas requeridos para satisfacer las deformaciones admisibles críticas, para las condiciones de solicitación de servicio.

En las cartas de diseño los parámetros asumen valores fijos por intervalos entre los cuales se pueden realizar interpolaciones, ellos son:

WMAAT = $4, 12, 20 \text{ y } 28 \text{ } \circ \text{C}$

 $E_3 = 2.5 \times 10^7, 5 \times 10^7, 1 \times 10^8 \text{ y } 2 \times 10^8. \text{ N/m}^2$

mezcla asfáltica = S1-F1-50, S1-F1-100, S1-F2-50, S1-F2-100, S2-F1-50, S2-F1-100, S2-F2-50 y S2-F2-100.

Tránsito N = 10^4 , 10^5 , 10^6 , 10^7 y 10^8 . ejes 80 KN

En cada una de esas cartas, de los 4 parámetros de diseño descriptos (N, WMAAT, código de la mezcla y E₃), 3 de ellos son prefijados y el restante es variable dentro de la carta, y existen 4 distintas presentaciones de las cartas para facilitar posibles interpolaciones:

- en las HN están graficados los pares H1 H2 para distintos tránsitos N
- en las HT están también graficados los pares H1 H2 pero para distintos WMAAT
- en las TN está graficado el espesor H1 en función del WMAAT para distintos tránsitos N (H2 permanece fijo)
- en las EN está graficado el espesor H1 en función de los módulos E₃ de la subrasante para distintos tránsitos N.

Por ejemplo en las cartas HN, como la de la Figura 11, el parámetro que queda variable es el tránsito. De este tipo de cartas se obtienen los espesores H1 de capas asfálticas y H2 de capas no ligadas que pueden ser combinados para satisfacer un determinado tránsito de diseño N.

De esas cartas también se obtiene otra información para el diseño, y es la posible subdivisión de espesores de las capas de materiales no ligados y los módulos resilientes mínimos que las mismas deben poseer.

En la misma Figura 11 se encuentra una aplicación de esta metodología, o sea: se obtienen las subdivisiones de espesores sobre la línea horizontal que une el punto de diseño elegido con el eje de los espesores H1 al interceptar las líneas de trazo inclinas, siendo el módulo mínimo de la capa el que se indica en cada uno de los sectores.

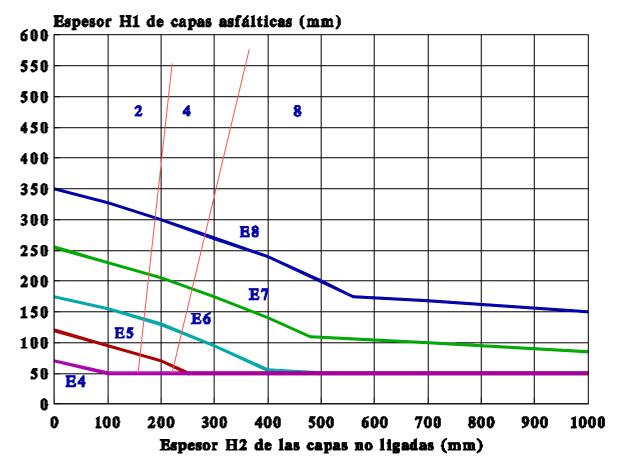


Figura 11. Ejemplo de carta de diseño HN 49

EJEMPLO DE DISEÑO

Datos: mezcla asfáltica S1-F1-50

módulo subrasante 5 x 10⁷ N/m² tránsito N 10⁷ ejes 80KN

temperatura 20 ° C

De la carta de diseño HN49, pueden obtenerse muchos pares de H1 y H2 que satisfagan los requerimientos del diseño, siendo luego elegido aquel que resulte más económico.

Por ejemplo: H1 = 13 cm

H2 = 43 cm

con la siguiente partición tentativa de las capas no ligadas:

módulo $8 \times 10^8 \text{ N/m}^2$ CBR >= $80 \times 10^$

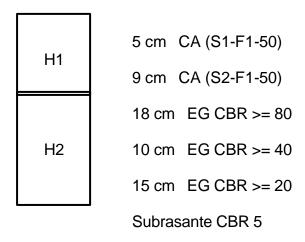
A estos espesores así obtenidos, tanto de las capas ligadas como las no ligadas, se les debe realizar un ajuste por tipo de materiales y espesores constructivos de los mismos.

En caso de tener que subdividir la capa asfáltica por tener que respetar espesores constructivos y por tener que colocar materiales de diferente calidad(por ejemplo:

concreto asfáltico de rodamiento y concreto asfáltico de base),el procedimiento a realizar varía según las tipificaciones de las mezclas a utilizar:

- * si las mezclas de rodamiento y base poseen distinta característica a fatiga(F1 ó F2), el diseño del espesor total corresponde hacerlo con la curva de diseño correspondiente al material de base.
- * si las mezclas poseen distinta característica modular(S1 ó S2), y el punto de diseño elegido se encuentra sobre la zona de la carta gobernada por la falla de la subrasante se debe realizar lo siguiente:
 - definido el espesor H2 obtener de las cartas correspondientes a los dos tipos de mezclas los respectivos espesores H1
 - calcular la relación existente entre los H1 (o sea los aportes relativos de los dos materiales)
 - dividir entonces el espesor H1 de uno de los materiales, por ejemplo elegir la mezcla de rodamiento y descontar los cinco cm de esta capa
 - el resto del espesor a cubrir por la mezcla de base será luego aumentado por la relación previamente calculada entre los dos materiales

Por ejemplo, siguiendo el diseño elegido previamente, queremos subdividir el espesor H1 de capa asfáltica S1-F1-50 en dos partes, la parte superior con la mezcla de rodamiento ya utilizada y la inferior por una mezcla asfáltica de base tipificada como S2-F1-50.


Corresponde entonces aplicar en este caso el procedimiento citado en segundo lugar:

para la mezcla S1-F1-50 H1 = 13 cmpara la mezcla S2-F1-50 H1 = 15 cm

o sea que si colocamos 5 cm de la mezcla de carpeta, de la mezcla de base quedará el siguiente espesor:

$$H1' = (13 - 5) \times (15 / 13) = 9.2 \text{ cm}$$

El esquema estructural obtenido resulta entonces:

