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Abstract. In hydrology, two somewhat competing philoso-
phies form the basis of most process-based models. At one
endpoint of this continuum are detailed, high-resolution de-
scriptions of small-scale processes that are numerically in-
tegrated to larger scales (e.g. catchments). At the other end-
point of the continuum are spatially lumped representations
of the system that express the hydrological response via,
in the extreme case, a single linear transfer function. Many
other models, developed starting from these two contrasting
endpoints, plot along this continuum with different degrees
of spatial resolutions and process complexities. A better un-
derstanding of the respective basis as well as the respec-
tive shortcomings of different modelling philosophies has the
potential to improve our models. In this paper we analyse
several frequently communicated beliefs and assumptions to
identify, discuss and emphasize the functional similarity of
the seemingly competing modelling philosophies. We argue
that deficiencies in model applications largely do not depend
on the modelling philosophy, although some models may be
more suitable for specific applications than others and vice
versa, but rather on the way a model is implemented. Based
on the premises that any model can be implemented at any
desired degree of detail and that any type of model remains
to some degree conceptual, we argue that a convergence of
modelling strategies may hold some value for advancing the
development of hydrological models.

1 Introduction

Hydrological models are used to predict floods, droughts,
groundwater recharge and land–atmosphere exchange, and
are of critical importance as tools to develop strategies for
water resources planning and management. This is particu-
larly true in the light of the increasing effects of climate and
land use change on the terrestrial water cycle. Yet, in spite of
their central importance, these models are frequently plagued
by considerable uncertainties and unreliable predictions.

Models aim to encapsulate our understanding of the sys-
tem. Yet, their weakness for predictions suggests that, be-
sides the impact of observational uncertainties, at least some
of the processes that control how water and energy are stored
in, transferred through and released from different parts of a
flow system are not sufficiently well represented in state-of-
the-art models.

The hydrological modelling community sets out to design
system descriptions that are explicitly based on our under-
standing of the actual mechanisms involved. This is done
with a wide range of strategies along a two-dimensional con-
tinuum of different spatial resolutions and process complexi-
ties (Fig. 1). Note that hereafter we refer to process complex-
ity as the number of processes that are represented explic-
itly. At one endpoint of this continuum are detailed, high-
resolution descriptions of small-scale processes that are nu-
merically integrated to larger scales (e.g. catchments). At the
other endpoint of the continuum are spatially lumped rep-
resentations of the system that express the hydrological re-
sponse via, in the extreme case, a single linear transfer func-
tion. Many other models, developed starting from these two
contrasting endpoints, plot along this continuum with differ-
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ent degrees of spatial resolutions and process complexities.
Models are then often loosely and informally categorized
into these two model classes whose origins roughly reflect
the endpoints of the resolution–complexity continuum.

Over the past 5 decades innumerable studies have illus-
trated the value but also the limitations of models at different
positions in the resolution–complexity continuum (Clark et
al., 2017). Irrespective of their resolutions and complexities,
models can exhibit considerable skill in reproducing the sys-
tem response dynamics they have been trained for. In spite
of that, these models can frequently not simultaneously re-
produce aspects of the observed system response other than
the calibration objectives, and which may include descrip-
tors of emergent patterns, i.e. catchment signatures, such as
flow duration curves (e.g. Jothityangkoon et al., 2001; Eder
et al., 2003; Yadav et al., 2007; Martinez and Gupta, 2011;
Sawicz et al., 2011; Euser et al., 2013; Willems et al., 2014;
Shafii and Tolson, 2015; Westerberg and McMillan, 2015)
but also temporal dynamics and/or spatial patterns in state
and flux variables the model may not have been calibrated to,
such as snow cover (e.g. Parajka and Blöschl, 2008), ground-
water (e.g. Fenicia et al., 2008b) or soil water fluctuations
(e.g. Sutanudjaja et al., 2014).

This failure to mimic system-internal dynamics and pat-
terns in a meaningful way indicates that, while doing a good
curve-fitting job, many models may not represent the dom-
inant processes of the system in a meaningful way, thereby
providing the right answers for the wrong reasons (cf. Kirch-
ner, 2006). Together with the largely inevitable errors intro-
duced by data uncertainty (e.g. Beven and Westerberg, 2011;
Beven et al., 2011; Renard et al., 2011; Beven, 2013; McMil-
lan et al., 2012; Kauffeldt et al., 2013; McMillan and Wester-
berg, 2015; Coxon et al., 2015) and insufficient model evalu-
ation and testing (cf. Klemeš, 1986; Wagener, 2003; Clark et
al., 2008; Gupta et al., 2008, 2012; Andréassian et al., 2009),
models then often experience substantial performance de-
creases when used to predict the hydrological response for
time periods they were not calibrated for (e.g. Seibert, 2003;
Refsgaard and Henriksen, 2004; Kirchner, 2006; Coron et
al., 2012; Gharari et al., 2013).

Notwithstanding similar skills and limitations of many
models along the resolution–complexity continuum, as il-
lustrated by a range of model inter-comparison studies (e.g.
Reed et al., 2004; Breuer et al., 2009; Smith et al., 2012;
Lobligeois et al., 2014; Maxwell et al., 2015; Vansteenkiste
et al., 2014), there is surprisingly little fruitful exchange be-
tween the different modelling communities who start their
model development from the two contrasting endpoints in
the resolution–complexity continuum. Models at the low-
resolution and low-complexity end of the continuum are crit-
icized for lacking a robust physical or theoretical basis and
for their inability to meaningfully represent spatial patterns
(e.g. Paniconi and Putti, 2015; Fatichi et al., 2016), whereas
models at the high-resolution and high-complexity end are
often viewed as having inferior representations of sub-grid

variability (e.g. Beven and Cloke, 2012) and as being not
sufficiently agile to represent the dominant processes in dif-
ferent environments (e.g. Mendoza et al., 2015). Even more,
instead of appreciating the potential value of a convergence
between the approaches and joining forces to integrate the
respective efforts, communication between the communities
is often limited to mutually highlighting the deficiencies of
and dismissing the respective modelling strategies.

Building on early landmark papers that outline most of the
problems involved (e.g. Dooge, 1986; Beven, 1995, 2001;
Blöschl and Sivapalan, 1995; Blöschl, 2001), we think that
to achieve progress in the discipline of scientific hydrology
and to develop models for more reliable predictions, it is nec-
essary for the different hydrological modelling communities
to take a step back. Reflecting on failures and successes can
not only help to design better models, but also to better ap-
preciate the complementary nature and value of detailed, mi-
croscale process understanding on the one hand and the quest
for general laws at the macroscale on the other hand (Klemeš,
1983; Dooge, 1986; Sivapalan, 2005).

This commentary is based on detailed and, at times, re-
freshingly heated discussions during and after the 1st Work-
shop on Improving the Theoretical Underpinnings of Hy-
drologic Models (Bertinoro, April 2016; see also Clark et
al., 2016). Our aim is to identify, discuss and clarify com-
mon misunderstandings and misinterpretations of competing
modelling approaches, with the main points being that (1) all
models are, to varying degrees, spatially lumped, (2) all mod-
els contain, to varying degrees, conceptual elements, (3) all
models have, if well implemented, a sound physical basis,
albeit on different scales, and (4) the choice of a suitable
modelling strategy depends on the purpose of the applica-
tion. More generally, we intend to resolve the perceived di-
chotomy between the two modelling communities and their
modelling strategies. As many individual points addressed
hereafter may have already been discussed elsewhere in more
detail, we do not make a particular claim to originality.
Rather, we want to provide a synthesis of these points with a
subsequent perspective of how to take advantage of different
modelling philosophies and how convergence between them
may be key towards improving both our understanding of the
hydrological system and our hydrological predictions.

2 Model taxonomy

Hydrology models are generally classified following a quite
loose and informal framework. Models at the low-resolution,
low-complexity end of the continuum (Fig. 1) are usually re-
ferred to as lumped, conceptual, bucket or top–down models.
In contrast, high-resolution, high-complexity models are re-
ferred to as distributed, physically based, process or bottom–
up models. In spite of having specific meanings and only par-
tial overlap, these individual terms for each modelling strat-
egy are commonly used interchangeably. This lack of a clear
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Figure 1. Conceptual sketch of approximate positions of a selection of typical applications of frequently used catchment-scale models on the
spatial resolution–process complexity continuum. The spatial resolution axis shows approximate ranges of numbers and associated scales
of individual spatial units (e.g. grid cells) within the model domain (e.g. catchment) for typical applications of the individual models. The
process complexity axis indicates the number of individual processes/processes within one spatial unit. The increasingly grey shaded area
indicates the transition from bucket-based (white) to continuum-based models. The red dots indicate the two endpoints along the resolution–
complexity continuum. Models: 1: unit hydrograph (Sherman, 1932); 2: HBV (Bergström, 1992); 3: SUPERFLEX (Fenicia et al., 2011);
4: FLEX-Topo (Gharari et al., 2014a); 5: mhM (Samaniego et al., 2010); 6: mhM-topo (Nijzink et al., 2016a); 7: SWAT (Arnold et al., 1998);
8: NWS-Sacramento (Burnash, 1995); 9: GR4J (Perrin et al., 2003); 10: HYPE (Lindström et al., 2010); 11: VIC (Liang et al., 1994);
12: TOPMODEL (Beven and Kirkby, 1979); 13: CRHM; 14: TACD (Uhlenbrook et al., 2004); 15: WASIM-ETH (Schulla and Kasper,
1998); 16: DHSVM (Wigmosta et al., 1994); 17: MIKE-SHE (Refsgaard and Storm, 1996); 18: PARFLOW (Kollet and Maxwell, 2008);
19: CATFLOW (Zehe et al., 2001); 20: HYDRUS-3D (Šimůnek et al., 2008); 21: CATHY (Camporese et al., 2010); 22: HydroGeoSphere
(Jones et al., 2006); 23: PIHM (Qu and Duffy, 2007).

and unambiguous terminology may be one of the reasons for
many misunderstandings between the different model com-
munities. We therefore think that a somewhat more rigorous
model taxonomy needs to be the first step to clarify these
misunderstandings and to pave the way for increased conver-
gence of the individual modelling strategies.

The most common model classifications are based on
(1) spatial simplification: spatially distributed and spatially
lumped; (2) system simplification: physically based and
conceptual; (3) model architecture: continuum-based and
bucket-based; and (4) model refinement/scaling strategies:
top–down and bottom–up. The following sections describe
each of these distinctions in detail.

2.1 Spatial simplification: spatially distributed vs.
spatially lumped

2.1.1 Spatially distributed models

Spatially distributed models provide, to varying degrees, spa-
tially explicit representations of natural heterogeneity within
the model domain. This can be achieved in three ways (e.g.
Ajami et al., 2004; Das et al., 2008; Euser et al., 2015):

(1) spatially distributed moisture accounting, i.e. each par-
allel model unit is represented by the same model parame-
ter values but forced with spatially varying model input (e.g.
precipitation, temperature), (2) spatially distributed model
parameters that account for heterogeneity in the natural
boundary conditions and (3) a combination thereof.

These models can then be further distinguished into two
broad functional classes, as suggested by Todini (1988), the
first class being a suite of one-dimensional column elements,
with no representation of direct lateral exchange between the
individual elements (“distributed integral models”). Rather,
the elements are merely connected by the channel network.
The second class explicitly accounts for lateral exchange of
water, solutes and energy between the individual columns
(“distributed differential models”).

In general, the term “spatially distributed” has limited dis-
criminatory power, as it always needs to be seen with re-
spect to the scale of a specific model application. In addition,
the term only describes the spatial axis in the resolution–
complexity continuum (Fig. 1). However, it is possible to
have many different types of spatially distributed models
with different degrees of process complexity, model archi-
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tecture, and model refinement/scaling strategies. In contrast
to what the terms imply, different applications of fully dis-
tributed models span several magnitudes of grid sizes from
centimetres to kilometres (e.g. Butts et al., 2004; Kollet and
Maxwell, 2006; Zehe et al., 2006; Samaniego et al., 2010;
Kumar et al., 2013), and thus do not necessarily describe
the system at a higher spatial resolution than so-called
semi-distributed models, as the applied grid cells can often
be larger than sub-catchments and/or hydrological response
units (e.g. Nijzink et al., 2016a).

It is in any case important to realize that any distributed
model application, irrespective of the spatial resolution and
scale of its individual model units, is an assemblage of
lumped representations of the system at the scale of the in-
dividual model units (Grayson and Blöschl, 2001; Wagener
and Gupta, 2005).

2.1.2 Spatially lumped models

Lumped models represent the model domain as one single
entity without further spatial discretization. They describe
the large-scale manifestation of small-scale natural hetero-
geneities of the system by making use of parsimonious flux
parameterizations that emerge as functional relationships at
the scale of the model domain. Lumped models can be used
for systems over a wide range of scales, from soil sample to
river basin scale, as long as the emergent relationships mean-
ingfully capture the effects of intra-domain heterogeneity.

2.2 System simplification: physically based and
conceptual

2.2.1 Physically based models

Physically based models provide a mechanistic description
of the flow system in the porous and heterogeneous soil col-
umn and at the land–vegetation–atmosphere interface, con-
sistent with our understanding of the forces acting on and
controlling the release of water, energy and solutes from
the control volumes under consideration. They attempt to
do so by explicitly representing as many processes as pos-
sible (Fig. 1). An ideal situation is where there is compre-
hensive knowledge of model parameters (e.g. effective soil
hydraulic conductivity), boundary conditions (e.g. precipita-
tion), system states (e.g. volumetric liquid water content) and
fluxes (e.g. canopy throughfall, infiltration, subsurface lat-
eral flow), and it is possible to define functional relationships
between states and fluxes (i.e. flux parameterizations), such
as storage–discharge relationships in the form of Q = f (S).
Such flux parameterizations, or closure relations, then di-
rectly emerge at the scale of the observation, fully satisfy-
ing the conservation laws of mass, energy and momentum
and, in theory, without the need for further assumptions or
calibration. As most direct observations of system boundary
conditions and states are only available at the point or plot

scale, models that are traditionally referred to as physically
based may also be considered as describing the system from
a microscale perspective.

There is an important distinction here. Individual obser-
vations provide lumped characterizations of a flow system,
integrating spatial heterogeneities and diversity in processes
at scales smaller than the scale of the observation (Grayson
and Blöschl, 2001). To be meaningful, so-called physically
based models are actually lumped at the scale of the obser-
vation, as any further discretization below the scale of the
observation needs to involve additional assumptions about
the sub-grid heterogeneity (“conceptualizations”). Likewise,
meaningful physically based models also need to explicitly
represent details of the landscape, and therefore need to be
spatially distributed at larger scales, transferring knowledge
inferred from observations across space.

It is worth noting that the term “physically based” benefits
from a misleading semantic–psychological bias. The term
“physically based” wrongly implies that these models are in-
herently “correct” descriptions of real-world systems, which
further implies the highly questionable notion that all other
models are not “physical” and thus less “correct”.

2.2.2 Conceptual models

Conceptual models provide a macroscale description of the
hydrological system with parsimonious and more abstract
representations of the processes involved. Here the term
macroscale is used to describe any scale larger than the
scale of individual microscale observations used in physi-
cally based models. Zooming out to the macroscale there-
fore integrates natural microscale heterogeneities and feed-
back between them over the entire model domain, in spite of
largely disregarding system-internal process complexity.

Relatively simple flux parameterizations are then the basis
of conceptual models and describe the large-scale manifes-
tation of small-scale heterogeneities that emerge at the scale
of the model application (e.g. catchment), as characterized
by the available integrated observations at that scale, such
as streamflow. For that reason, conceptual models explic-
itly represent fewer individual hydrological and, in particu-
lar, thermodynamic processes than physically based models
(Fig. 1). For example, evaporative processes are described by
the empirical concept of potential evaporation in place of the
detailed representations of land–atmosphere energy fluxes.

As many system boundary conditions and states cannot be
directly observed at the macroscale, the flux parameteriza-
tions in conceptual models, e.g. in the form of Q = f (S),
describe underdetermined systems and therefore require as-
sumptions about their functional shapes and/or calibration of
their parameters.

Conceptual models can be implemented as lumped or
(semi-)distributed formulations (e.g. Kumar et al., 2010; Gao
et al., 2014a; Fenicia et al., 2016). In spite of that they
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are sometimes collectively and inaccurately referred to as
“lumped” models.

The use of the terminology “conceptual model” to de-
scribe an abstract, macroscale representation of nature is re-
ally rather unfortunate, as it is also used both by field scien-
tists (e.g. McGlynn et al., 2004) and modellers (e.g. Gupta et
al., 2012) to describe the understanding of the system. When
viewed as abstract conceptual understanding, the “concep-
tual” model refers to all models, regardless of complexity,
since all models are necessarily an abstract depiction of na-
ture.

2.3 Model architecture: continuum-based and
bucket-based

2.3.1 Continuum-based models

Continuum-based models’ equations are developed at the
microscale and are applied directly to individual model el-
ements. For the sub-surface a common continuum-based
model is a three-dimensional implementation of Richard’s
equation (e.g. Zehe and Blöschl, 2004; Kollet and Maxwell,
2006; Zehe et al., 2006; Sudicky et al., 2008). A distinguish-
ing feature of continuum-based models is that model fluxes
are computed based on spatial gradients in model state vari-
ables, e.g. flows are explicitly computed based on the spatial
gradient in matric head. Continuum-based models are hence
inherently spatially distributed.

2.3.2 Bucket-based models

Bucket- or tank-based models rely on “conceptual” storage
elements (“buckets”) to describe the storage and transmis-
sion of water through the flow domain. The buckets typically
represent the storage of water at larger spatial scales, for ex-
ample a hillslope or a catchment. The vertical and horizontal
exchange of water between the buckets is then typically not
expressed by actual gradients, but rather, in a simplified way,
exclusively as a function of the water storage in the concep-
tually hierarchically “higher” bucket. For example, the flux
describing the infiltration from a bucket representing the un-
saturated zone to a bucket representing the groundwater is
often formulated exclusively as a function of the water stor-
age in the unsaturated zone.

Lumped implementations of conceptual models are in gen-
eral bucket-based. Yet, (semi-)distributed conceptual mod-
els can involve simple, gradient-like controls on model in-
ternal exchange fluxes between buckets of individual model
units (e.g. hydrological response units), resembling simpli-
fied continuum formulations (e.g. Weiler and McDonnell,
2004; Nijzink et al., 2016a).

2.4 Model refinement/scaling strategies: bottom–up
and top–down

The distinction between bottom–up and top–down strategies
describes broad modelling philosophies rather than specific
approaches to formulating models.

2.4.1 Bottom–up models

The bottom–up scaling strategy often entails estimating
large-scale fluxes by aggregating the output from individual,
small-scale control volumes, i.e. the boundary fluxes (Beven,
2006a), along their respective surface and subsurface flow
directions to the channel and eventually to the outlet of the
system. As such, bottom–up approaches are rooted in in-
ductive scientific reasoning: a set of (microscale) observa-
tions provides facts of the functioning of the system at that
scale. Formulating theories that allow a meaningful integra-
tion of the small-scale observations (i.e. facts), patterns and
general principles then emerge at larger scales (e.g. Ander-
sen and Hepburn, 2016). In the absence of suitable observa-
tions, this aspect is commonly the bottleneck in hydrology,
as many models rely on merely spatially aggregating fluxes
to estimate fluxes at larger scales instead of actually integrat-
ing processes according to meaningful scaling relationships
that account for the effect of heterogeneity, organization and
feedback. Thus, in spite of considerable success, the induc-
tive approach to science in general and in hydrology in partic-
ular has in the past raised considerable criticism, as it bases
its conclusions on incomplete facts, therefore making them
problematic to prove, i.e. the “black swan fallacy” (e.g. Pop-
per, 1959).

Bottom–up approaches are typically accomplished using
distributed and physically and continuum based models (e.g.
Kollet and Maxwell, 2008; Kumar et al., 2009; Camporese
et al., 2010; Kollet et al., 2010; Maxwell et al., 2015; Piras
et al., 2014), but strictly speaking, any kind of prediction or
virtual experiment is necessarily a bottom–up approach.

2.4.2 Top–down models

The top–down approach to modelling is a hierarchal model
refinement strategy that progressively tests and refines the
model based on learning from data (Sivapalan et al., 2003).
Crucially, the top–down approach is based on understand-
ing and testing different models as competing alternative
hypotheses of system functioning (e.g. Clark et al., 2011).
With the aim of understanding observed (macroscale) pat-
terns by iteratively narrowing the range of possible system
descriptions that can generate these observations and which
are typically assemblages of various individual mechanisms,
the top–down approach is therefore a reflection of the deduc-
tive scientific method (e.g. Popper, 1959; Salmon, 1967).
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Based on observations of system-integrated variables,
such as streamflow, top–down modelling applications at-
tempt to describe the system directly at the scale of the sys-
tem, which in hydrology frequently is the catchment scale
(Klemeš, 1983; Dooge, 1986). However, the approach can
in principle be applied at any desired scale, for example, to
understand which individual mechanisms, including for ex-
ample the effects of pore size distributions, particle charge
density or viscosity distributions, are necessary to describe
what emerges as Darcy’s law at the soil sample scale. The
top–down approach is criticized for lacking generally valid
criteria for rejection of hypotheses and for its dependence on
rigorous testing procedures, which are unavailable in reality
due to the absence of sufficiently detailed observations.

Being an iterative process, top–down approaches typically
start with simple spatially lumped, conceptual, bucket-based
models, but can, in principle, subsequently involve model
formulations at any point along the resolution–complexity
continuum. Some examples of studies applying the top–
down approach include Young (1998, 2003), Jothityangkoon
et al. (2001), Son and Sivapalan (2007), Fenicia et al. (2008a,
2016), Kavetski and Fenicia (2011), Gharari et al. (2014a),
Hrachowitz et al. (2014), Willems (2014) or more recently
Garavaglia et al. (2017).

3 Modelling myths – or not?

There is a wide range of frequently communicated beliefs
and assumptions about alternative approaches to modelling.
They reflect different perceptions of modelling limitations.
In the following sections we will contrast and scrutinize
modelling critiques commonly communicated by the two re-
spective modelling communities, discuss the extent to which
we believe they are justified, and describe how different
strengths of different approaches are complementary and
how combining them may benefit model convergence and
eventually improved predictions.

3.1 Critique: physical basis

3.1.1 “Bucket models have a poor physical and
theoretical basis”

Since bucket models originate from empirical approaches to
mimic the hydrological response based on observations at the
macroscale, such as streamflow, without further assumptions
about the system-internal processes, this statement certainly
does have an element of truth. However, evaluating this state-
ment requires consideration of the effects of the scale, orga-
nization and emergent properties of a system.

Models based on macroscale observations seek to de-
scribe the system-integrated observed response without loss
of essential information. There is no loss of information,
in theory, because the effects of sub-element information
(e.g. heterogeneity) remain implicitly encapsulated in the

large-scale functional relationships between model states and
model fluxes. In general, water flows follow the observ-
able, physical phenomenon of spatio-temporal dispersion of
discrete input signals controlled by water and energy in-
put, gravity, flow trajectories and flow resistances (e.g. Ri-
naldo et al., 1991; Snell and Sivapalan, 1994; Robinson et
al., 1995; Botter and Rinaldo, 2003). A hydrological sys-
tem, e.g. a catchment, therefore constitutes a low-pass fil-
ter. It disperses a random input signal (i.e. precipitation) by
buffering its high-frequency components in storage compo-
nents and by eventually releasing it with a suite of system-
specific time lags as streamflow or evaporation. Being in the
realm of organized complexity (Dooge, 1986), the hydrolog-
ical response at the catchment scale can in most cases not be
fully described by exclusively statistical methods and thus
by the simplest bucket models, such as single linear reser-
voirs, or related concepts such as the instantaneous unit hy-
drograph (Sherman, 1932). Typically adopting a top–down
approach, the development of bucket models is then the pro-
cess of meaningfully representing the large-scale manifesta-
tion of organized complexity, introduced by spatial hetero-
geneity, by identifying a range of different dominant func-
tional relationships between system input and the integrated
output emerging through organization at the macroscale, i.e.
the testing of competing hypotheses (e.g. Clark et al., 2011;
Fenicia et al., 2011) without the need to resort to small-scale
physics.

In spite of being mostly conceptual in their design and the
associated high level of abstraction, bucket models satisfy
conservation of mass and typically provide a conceptual, par-
simonious representation of the energy balance based on the
concept of potential evaporation. The energy balance can be
approximately closed if the model is carefully constrained
not only with respect to the hydrograph, but also with re-
spect to the actual evaporation. In the common absence of
more detailed observations, such energy balance constraints
can be imposed using observed runoff coefficients on a range
of scales (e.g. annual, seasonal and event-based), which de-
fine the partitioning between streamflow and evaporative
fluxes (e.g. Budyko, 1974; Donohue et al., 2007; Sivapalan
et al., 2011) plus potential deep infiltration losses (e.g. An-
dréassian and Perrin, 2012). Notwithstanding its value, this
strategy also illustrates one of the main weaknesses of many
conceptual, bucket models: the lack of a more detailed rep-
resentation of the energy balance only allows one to approx-
imate longer-term conservation of energy, but does not con-
tinuously guarantee it over shorter timescales. In addition,
the concept of potential evaporation effectively partitions net
radiation into sensible and latent heat fluxes but does not ex-
plicitly track the residual energy that is not used for evapo-
transpiration such as the feedback between the potential and
the capillary binding energy of water or the export of kinetic
energy in water fluxes leaving the system.

The purported physical basis of macroscale laws permits
that a physical meaning can (and actually should eventually)
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be assigned to all processes in (conceptual) bucket models.
Purely data-driven developments of bucket models, resem-
bling signal processing approaches and thus understanding
the hydrological system merely as a mathematical low-pass
filter whose properties need to be identified, mostly forgo
this process (e.g. Young, 2003). In contrast, for models that
were developed with a mindset directed more towards actual
process understanding, the hydrological function of individ-
ual model components has in the past often been casually
and loosely “interpreted”. However, without detailed testing,
such interpretations of their physical basis remain somewhat
ambiguous and subjective.

To strengthen the physical basis, it will eventually be nec-
essary to explore methods to more objectively and rigorously
test individual model sub-components against observations
(Clark et al., 2011) and/or to assign physical meaning to them
a priori (cf. Bahremand, 2016). A potentially effective start-
ing point for the latter is to use observations at the modelling
scale to infer information about the functional shapes and
to quantify the actual parameters of individual processes at
that scale. Examples include the concept of master recession
curves (Lamb and Beven, 1997) or the water holding capac-
ity in the unsaturated root zone (SU,max), which is the core
of many hydrological systems as it controls the partition-
ing of drainage and evaporative fluxes (Gao et al., 2014b;
de Boer-Euser et al., 2016; Nijzink et al., 2016b). These sys-
tem components integrate heterogeneities and quantify ac-
tual physical properties present and physical processes ac-
tive at the observation and modelling scale. Providing clear
physical meaning to different parts of a model will then nec-
essarily constrain the feasible model space and consequently
increase a model’s hydrological consistency while reducing
its predictive uncertainty (cf. Kirchner, 2006).

We therefore argue that bucket models developed based
on deductive scientific reasoning, do have, if well imple-
mented and tested, a robust physical and theoretical basis at
the macroscale, and that it is possible to relate their individ-
ual components to stores and fluxes in nature (e.g. Clark et
al., 2008; Fenicia et al., 2016; Gao et al., 2016), albeit at a
different spatial scale and process resolution than continuum-
based models. These types of models emphasize the value of
zooming out and understanding the system from the point of
holistic empiricism. Potential ways forward to better exploit
the potential of these models may involve explicit treatment
of the energy balance as well as detailed observation-based
process identification.

3.1.2 “Continuum-based models are applied at scales
for which their equations were not developed”

Continuum-based models are typically distributed, physi-
cally based models, frequently developed with a bottom–up
approach. The general theory behind the fundamental equa-
tions of such models is based on forces acting on and fluxes
passing through infinitesimal control volumes. This implies

homogeneity over the entire control volume and allows the
assumption of a local equilibrium (i.e. well-mixed condi-
tions), which is necessary for a meaningful definition of po-
tential gradients. However, it was shown that the assumption
of local equilibrium does not hold at scales above 1 m (e.g.
Or et al., 2015), which is exacerbated by the absence of suit-
able observations to formulate up-scaling relationships that
allow a meaningful representation of emergent processes at
larger scales. The Darcy–Richards formulation further posits
that water movement in porous media is (1) controlled by
equal flow resistances for both gravity- and capillarity-driven
fluxes and is (2) exclusively characterized by diffusive fluxes
and thus by the absence of kinetic energy. These assump-
tions may not be suitable for describing fluxes during wet
conditions, which in many systems are characterized by an
increased importance of advective and thus velocity- rather
than celerity-driven processes (e.g. McDonnell and Beven,
2014). As a consequence, the small-scale equations do not
necessarily represent the large-scale impact of sub-grid-scale
heterogeneities (Beven, 1989), and the spatial gradients in
model state variables do not have much meaning at the spa-
tial resolution of the model (e.g. 1 km grids).

On the other hand, continuum-based models are also crit-
icized because there are insufficient data to reliably describe
the spatial heterogeneity of the storage and transmission
properties of the sub-surface. Being a non-linear system, for
example averaging observed point-scale van Genuchten pa-
rameters, does not result in a meaningful representation of
the average water retention characterization for larger-scale
model elements.

These two issues are linked and exacerbated by the prob-
lem that the higher the spatial resolution of the model do-
main, the higher the number of exchange fluxes (i.e. bound-
ary fluxes; Beven, 2006a) between individual adjacent mod-
elling units in the model. Increasing the degrees of freedom
in a model, this leads to the situation in which a specific
choice of model parameters, no matter whether observed or
calibrated, remains problematic to test against observations.

A potentially valuable way forward to somewhat circum-
vent the above points may be to relax the assumptions re-
quired by the Darcy–Richards equation and to replace the
rigorous formulation with some degree of scale-independent
conceptualization (e.g. Craig et al., 2010). For example, in-
stead of averaging van Genuchten parameters, the ensemble
of actual observed water retention curves at different loca-
tions in the system could be used to estimate upper and lower
bounds of effective pedotransfer functions. As recently illus-
trated by Loritz et al. (2017), integrating some of the hetero-
geneity in such a way, these functions may be more repre-
sentative of larger areas. This in turn allows one to reduce
the spatial resolution of the model domain and the associated
problems.
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3.2 Critique: natural heterogeneity and model
complexity

3.2.1 “Conceptual models are too simplistic and cannot
adequately represent natural heterogeneity”

Simple lumped conceptual models, such as HBV, have a long
track record of, at first glance, successful applications in a
wide range of catchments worldwide. However, this success
is in many cases deceptive, as these models are often used
in a quasi-inductive way with an implicit a priori assump-
tion that they are a meaningful representation of the system,
thereby not treating the model as a hypothesis and not testing
alternative formulations.

The importance of adequate representations of natural het-
erogeneity is largely undisputed (e.g. Clark et al., 2011;
Gupta et al., 2012). However, frequently model calibration is
(unnecessarily) limited to a time series of streamflow obser-
vations which merely provides insight into a very small num-
ber of parameters (Jakeman and Hornberger, 1993). Thus,
although any additional model process has the potential to
improve the representation of heterogeneity, the required ad-
ditional calibration parameters increase the feasible model
(or parameter) space and the resulting potential for equifinal-
ity (Beven, 1993), thereby turning models into the oft-cited
“mathematical marionettes” (Kirchner, 2006). In spite of its
skill in reproducing the calibration objective, such a model
will in many situations struggle to simultaneously reproduce
different additional system-internal dynamics (e.g. ground-
water fluctuations) and emerging patterns (e.g. flow duration
curves), indicating its failure to meaningfully represent dom-
inant processes and their heterogeneity in a catchment, which
in turn often results in a poor predictive power of these mod-
els. This was in the past demonstrated by many studies (e.g.
Jothityangkoon et al., 2001; Atkinson et al., 2002; Fenicia
et al., 2008b, 2014; Euser et al., 2013; Coxon et al., 2014;
Hrachowitz et al., 2014; Willems, 2014).

The lack of an adequate model calibration, testing and
evaluation culture partly arises both from insufficient ex-
ploitation of the information content of the available data and
also from the real lack of suitable data (Gupta et al., 2008;
Clark et al., 2011). Under these conditions, many models
remain ill-posed inverse problems. To limit the associated
equifinality, Occam’s razor is commonly invoked to make
models “as simple as possible but not simpler” (e.g. Clark
et al., 2011). But how simple is “as simple as possible”? In
other words, how large a model space (i.e. possible param-
eterizations and prior parameter space) can be constrained
with available information to identify reasonably narrow pos-
terior distributions while ensuring as high as possible multi-
objective and multi-variate model performance? To analyse
this, the two axes of the spatial resolution–process complex-
ity continuum (Fig. 1) need to be considered separately.

The required spatial resolution for a model to represent
the major effects of heterogeneity on the hydrological re-

sponse depends not only on the degree of surface and sub-
surface heterogeneity, but also on the hydro-meteorological
conditions in the region of interest, as shown in an illus-
trative example in Sect. S1 in the Supplement. Briefly, in
cool, humid and thus energy-limited regions, the level of
water storage can remain elevated throughout the year, thus
providing only limited storage capacities. In such a situa-
tion, many of the processes that introduce non-linearity, e.g.
through spatially heterogeneous thresholds, and thereby con-
trol the emergence of hydrological connectivity, are not dom-
inant or are even negligible. This is in contrast to warm, arid
and thus water-limited regions, where heterogeneous storage
deficits over the model domain will exert much stronger and
often spatially heterogeneous controls on the hydrological re-
sponse. In summary, lumped conceptual models can be suit-
able macroscale representations of hydrological systems in
some regions, while in other regions more spatial discretiza-
tion is required. The relevant questions are the following.
How do different heterogeneities affect water storage and re-
lease in different environments? Which types of heterogene-
ity can be captured by a single emergent functional relation-
ship and for which types are several functional relationships
at the macroscale necessary to meaningfully describe obser-
vations?

Process complexity, i.e. the detail to which models ex-
plicitly represent specific processes in terrestrial hydrologi-
cal systems, is, at its fundamental level, characterized by two
major partitioning points that control how water is stored in
and released from systems through upward, downward or lat-
eral fluxes (e.g. Rockström et al., 2009; Clark et al., 2015;
Savenije and Hrachowitz, 2017). Near the land surface, pre-
cipitation is split into (a) evaporation and sublimation from
vegetation and ground surface interception (including snow)
as well as from open water bodies, (b) overland flow and
(c) infiltration into the root zone. Water entering into the root
zone is further partitioned into (d) soil evaporation, (e) plant
transpiration, (f) shallow, lateral subsurface flow through fea-
tures such as shallow high-permeability soil layers, soil pipe
networks or a combination thereof and (g) percolation to the
groundwater below the root zone.

As emphasized by Linsley (1982), all fluxes (a–g) are
present in essentially any catchment, albeit with different
relative importance in different environments, and therefore
need to be represented in a model. This can be illustrated
with the occurrence of weather events that are uncommon
for a specific region. In the Atacama Desert, one of the dri-
est places on earth with little or no vegetation under average
conditions, uncommonly high spring precipitation, such as in
2015, can cause episodic appearance of abundant vegetation.
This temporally changes the partitioning pattern and thus the
hydrological functioning of the region as plant transpiration
that is otherwise absent is “activated”. Similarly, rare occur-
rences of snowfall can cause temporal anomalies in the hy-
drological functioning of otherwise warm regions, such as
2013 in the Middle East. In spite of them being “deactivated”
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most of the time, such processes are in principle present and
therefore also need to be conceptually reflected in any hydro-
logical model structure. However, if considered negligible in
a specific environment during a modelling period of interest,
the modeller can decide to deactivate individual processes by
using informed prior parameter distributions. In other words,
the respective parameters will be set to suitable fixed values
that effectively switch off the process using Dirac delta func-
tions as prior distributions.

The key decision for the modeller is then to decide to
which level of detail the individual processes at the two parti-
tioning points will be resolved and how they can be parame-
terized (cf. Gupta et al., 2012). The questions to be answered
are the following. How much detail is necessary to reproduce
observed dynamics and patterns? How much detail is war-
ranted by the available data to meaningfully parameterize
and test the chosen process representation? An example to il-
lustrate the thought process involved is provided in Sect. S2.

Conceptualizing the hydrological system by zooming out
and explicitly representing only dominant processes by ex-
ploiting simple functional relationships (or patterns) emerg-
ing as a result of organization at the macroscale (e.g. Ehret
et al., 2014) has the advantage of significantly reducing the
number of required effective model parameters. Importantly,
this lumping process does not, as long as it is well tested
to encapsulate the relevant dynamics of the system, neces-
sarily involve a loss of information. It should therefore not
be understood as a “simplification” of the system. Rather, it
has the potential to integrate the interaction of heterogeneous
processes at the microscale over the entire domain of interest
and thereby to provide a system description that is consistent
with real-world observations at the scale of interest without
the need for further assumptions and the related uncertain-
ties.

It is true that untested and poorly evaluated applications of
standard lumped conceptual models are often oversimplifica-
tions that do not adequately reflect natural heterogeneity and
its effects on the hydrological response. However, conceptual
models can be formulated at any level of process and spatial
complexity, limited only by the available information. The
actual problem is therefore not the conceptual model per se
but rather the way it is implemented and applied. The deci-
sion, which degree of zooming out, i.e. which level of de-
tailed process representation is feasible and which level is
necessary, eventually needs to be made by the modeller on
the basis of the available observations, acknowledging that
all hydrological models at the catchment scale are to a cer-
tain extent conceptualizations. When carefully implemented,
spatially distributed formulations, e.g. based on hydrological
response units or related concepts (Beven and Kirkby, 1979;
Knudsen et al., 1986; Flügel, 1995; Winter, 2001; Seibert et
al., 2003; Uhlenbrook et al., 2004, 2010 Schmocker-Fackel
et al., 2007; Gharari et al., 2011; Zehe et al., 2014; Hagh-
negahdar et al., 2015), with an equilibrated balance between
process heterogeneity and information/data availability and

tested and evaluated against multivariate observed response
dynamics, and conceptual models have been shown to be
versatile enough to identify and represent the dominant hy-
drological processes and their heterogeneity in a catchment
(e.g. Boyle et al., 2001; Fenicia et al., 2008a, b; Winsemius
et al., 2008; Samaniego et al., 2010; Kumar et al., 2013; Hra-
chowitz et al., 2014; Nijzink et al., 2016a) within limited un-
certainty.

3.2.2 “Physically based models are too complex and give
a deceptive sense of accuracy”

Mirroring the statement that conceptual models are too sim-
plistic and do not represent heterogeneity, it may in a simi-
lar way be valuable to discuss the question whether, in the
absence of appropriate observations at the scale and reso-
lution of interest, distributed, physically based models with
high process and spatial complexity are not too complex and
somewhat deceptive about the accuracy that is implied by
their formulation.

Physically based models are frequently developed and ap-
plied under the implicit up-scaling and bottom–up premise
that the heterogeneous system boundary conditions and thus
the model parameters are known from observations and rep-
resentative of the scale of the modelling units of a given
model. However, three partly related points make this as-
sumption problematic for many model applications: (1) the
spatial resolution of observations, (2) the spatial scale of ob-
servations and (3) the accuracy of the observations.

There is often insufficient geophysical information to rep-
resent the heterogeneity of the subsurface over large domains
relevant for water resource planning and management. For
example, the low spatial resolution of many available soil
maps may incorrectly indicate that the storage and transmis-
sion properties of soil are spatially homogenous, i.e. a sin-
gle soil type over an individual modelling unit or even over
an entire catchment. Similarly, data on the root systems of
vegetation, used to estimate an important source of system
non-linearity and thus one of the core parameters in a model,
the storage capacity in the unsaturated root zone, are, at best,
available for a few individual plants. As such they do not
sufficiently account for distinct effects caused by different
ecosystem compositions in different parts of the system (e.g.
different mixtures of species), age distribution of the plants
in the system, the density of plants (i.e. individual plants
per unit area) or, being mostly snapshots in time, temporally
evolving root systems (de Boer-Euser et al., 2016; Nijzink et
al., 2016b; Savenije and Hrachowitz, 2017). In addition, the
available meteorological forcing data may be overly smooth
and/or unrepresentative due to the methods used to interpo-
late station data from sparse observing networks.

Related to the spatial resolution is the spatial scale of the
available observations. Many model parameters are directly
inferred from observations at small scales, e.g. core sample
or plot scale, assuming they are representative of the, often
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much larger, respective modelling unit. This is critical e.g.
for the determination of soil hydraulic conductivities or the
water retention curve, as the small scale of the observations
may often fail to meaningfully characterize larger features
in the soil matrix, such as macropores, together with their
spatial distribution.

Finally, with increasing complexity, non-linear systems
become increasingly problematic to predict with detailed,
small-scale descriptions, due to uncertainties in the neces-
sary observations of boundary conditions, forcing and system
states (e.g. Zehe et al., 2007) caused by the combined effects
of limited observation accuracy and representativeness.

Spanning several orders of magnitude in scale, from the
microscale (e.g. soil particles) to the continental scale (e.g.
mountain ranges), it is unlikely that observation technology
will ever enable a comprehensive and non-invasive descrip-
tion of the heterogeneity in hydrological systems, especially
for large model domains (Refsgaard et al., 2010).

From that perspective, it is not unreasonable to argue that
many implementations of distributed, physically based mod-
els are somewhat over-ambitious and overly optimistic given
our actual knowledge of the system, as their degree of spa-
tial resolution and/or process complexity is, strictly speaking,
not warranted by the available data. This is particularly true
for applications that make direct use of scarce small-scale
observations and, in spite of the associated limitations, ap-
plications that fail to provide a meaningful uncertainty anal-
ysis. As shown in the illustrative example in Sect. S2, each
process represented in a model, no matter at which scale, is
a larger-scale manifestation of the integration of the inter-
actions of individual heterogeneous processes at yet smaller
scales, down to molecular levels (or perhaps even beyond).
This implies that there is no “natural” cut-off point at which
all processes in the system are completely represented. All
process descriptions in a model thus involve at least some
degree of conceptualization, making use of functional rela-
tionships emerging at larger scales.

The relevant question therefore is up to which level we can
zoom out and integrate individual processes into conceptual
functional relationships at larger scales, without losing infor-
mation and thereby benefitting from a reduced dimensional-
ity of the parameter space. This question is tightly linked to
the question of which spatial resolution and which process
complexity are required to answer questions relevant for wa-
ter management purposes in specific cases. In other words,
apart from being theoretically satisfying, do we actually need
to discretize a catchment e.g. into 1 cm grids for a model to
be a useful tool?

The above points do however not contest the immense
value of physically based models as recently discussed in de-
tail by Fatichi et al. (2016). Rather, detailed implementations
of these models, in spite of the associated limitations, have
in the past been shown to be powerful tools to reproduce and
understand spatially heterogeneous system-internal flux and
state dynamics as well as patterns that emerge from the in-

teraction of small-scale processes (e.g. Kollet and Maxwell,
2008; Maxwell and Kollet, 2008; Vivoni et al., 2010; Bearup
et al., 2014; Sutanudjaja et al., 2014). As such they are very
well suited for virtual experiments at a range of scales (e.g.
Ivanov et al., 2010; Fatichi et al., 2014; Bierkens et al., 2015;
Maxwell et al., 2015, 2016). This is particularly true for un-
derstanding and assessing the impact of disturbances such
as climate and/or land use change in scenario analyses, as
systemic change or even tipping points can emerge from
changes in one or more individual small-scale model compo-
nents and the associated feedback (e.g. Maxwell and Kollet,
2008; Bearup et al., 2016).

3.3 Critique: hypothesis testing and calibration

3.3.1 “The top–down modelling approach successively
evaluates ad hoc formulations of untestable
hypotheses”

It is important to realize that the top–down approach is a
modelling strategy and not a specific model formulation. In
spite of that, many applications of conceptual bucket mod-
els are falsely referred to as “top–down models” while being
mere and unquestioned applications of off-the-shelf models
such as HBV or FLEX. Such insufficient model testing and
ad hoc model applications implicitly assume that these mod-
els can adequately represent observed hydrological response
dynamics in different catchments, thereby violating the fun-
damental requirement of top–down approaches: the testing of
alternative hypotheses. This largely ignores the fact that any
model is an assemblage of hypotheses consisting of individ-
ual building blocks and their parameterizations, encapsulat-
ing the modeller’s understanding of how a specific environ-
ment shapes the hydrological system. The point is that differ-
ent environmental conditions dictate the need to test whether
the prior information on the parameters needs to be changed
and/or relaxed so as to activate a process that was deacti-
vated in a model previously used in other environments (or
vice versa) to adjust the model to the prevailing environmen-
tal conditions.

A meaningful decision on the use of given prior parameter
distributions and their information content for a model ap-
plication in a specific environment can only be made if the
model hypothesis is carefully tested. However, it is some-
times argued that entire models are untestable hypotheses, as
they represent an ensemble of different processes or parts of
the system. Models, therefore, need to be seen as sets of dis-
tinct hypotheses that need to be tested independently to avoid
the adverse effects of equifinality (Clark et al., 2011), recall-
ing the above argument (see Sect. 3.2.2) that when disag-
gregating a system, the pattern emerging at each subsequent
level of detail results from interacting heterogeneous pro-
cesses at yet smaller scales. Thus, down to that level, every
hypothesis consists of several other, smaller-scale hypothe-
ses.
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The relevant question arising here is to which level model
components then have to be disaggregated to constitute
testable hypotheses. Thus, of course, treating a model as a
single hypothesis does not make the hypothesis untestable.
Rather, given the system-integrated nature of many obser-
vations and the frequently limited number of performance
indicators considered to test the model against, it may in
many cases remain a relatively weak test. In contrast, individ-
ually testing sub-components of the system will provide the
modeller with more information because its sub-components
are necessarily less complex than the overall model. This,
in turn, provides fewer possibilities for compensating mis-
representations of one process by wrongly adjusting other
processes. In other words, it will have higher potential to
avoid Type I errors (i.e. false positives), therefore resulting
in a stricter test.

The obvious problem arising here is less of a theoretical
than of a practical nature: besides epistemic uncertainties,
observations of system sub-components, including the often
cited boundary fluxes (Beven, 2006a), to test the model com-
ponents against are typically not available at the scale and/or
resolution of interest or not available at all, although with the
ever-improving spatio-temporal resolution and quality of re-
mote sensing products the problem will potentially be some-
what alleviated in the near future. Clearly, from that perspec-
tive, weak model tests are in the frequent absence of other
options preferable to no tests at all.

Given these practical constraints for model falsification,
systematic and exhaustive multi-objective and multivariate
calibration strategies and post-calibration evaluation proce-
dures need to be part of any top–down modelling approach
to ensure that the overall modelled system response, includ-
ing emerging patterns (e.g. flow duration curves), reproduces
the observed response dynamics in a meaningful way. The
above point is very closely related to the necessity for cali-
bration. If the system could be observed as a fully controlled
system at the scale and resolution of interest (e.g. catchment
scale for lumped models, grid scale for distributed models),
there would be little additional need for testing as the system
would be well constrained and its functioning well under-
stood. Thus, much of the problems discussed above is a direct
consequence of the absence of such observations. Whenever
no adequate observations are available, any model that aims
to represent a specific real-world system requires calibration.

We therefore argue that top–down modelling approaches
do not evaluate “ad hoc formulations of untestable hypothe-
ses” but rather that many hypotheses often remain untested,
the actual problem therefore not being the model strategy
(“top–down”) or type (“conceptual bucket”), but the way
these models are frequently applied in a careless way. This
is exacerbated by the fact that in the past only a few studies
attempted to develop a general framework for objective and
science-based model selection (e.g. Young, 2003) and thus a
general and systematic approach to learning from data (Siva-
palan et al., 2003).

3.3.2 “Physically based models have too many degrees
of freedom and cannot be meaningfully
constrained”

As argued above, detailed distributed implementations of
physically based models to represent specific real-world sys-
tems may provide a deceptive sense of accuracy if applied
as a bottom–up approach and thus operated with highly in-
formed prior parameter distributions (e.g. fixed parameter
values or regularized estimates), based on anecdotal or point-
or plot-scale observations that do not match the scale and res-
olution of the individual modelling units (e.g. grid cell). In
such a case, to avoid misrepresentations of the system, pa-
rameter values effective at the scale of the model grid cells
need to be selected otherwise, typically by calibration. The
high degree of freedom in the model, however, will result in
considerable equifinality.

Even if there was an adequate correspondence of the re-
spective scales of field observations and modelling units, two
further problems remain: observations of both system bound-
ary conditions as well as system states (e.g. groundwater lev-
els) or fluxes (e.g. evaporation) are typically, if at all, avail-
able at low spatial resolution. This implies (1) that the bound-
ary conditions in the remainder of the system are unknown
and that its heterogeneity is very likely to be misrepresented
in a model and (2) that modelled system states (e.g. ground-
water levels) or fluxes (e.g. evaporation) can only be tested
against observations for a small number of modelling units,
thereby only providing a weak test for the model.

Although the above limitations are in principle valid,
it has previously been shown that uncalibrated, physically
based models, operated with parameters from direct obser-
vations, can meaningfully and simultaneously reproduce dif-
ferent aspects of the hydrological response (e.g. Maxwell et
al., 2015). Fatichi et al. (2016) argue that this suggests that
uncertainties in observed system input and output data and
the resulting biased parameters in calibrated models (e.g. Re-
nard et al., 2010) outweigh uncertainties introduced by insuf-
ficient heterogeneity and/or an unsuitable scale.

The inherent strength of physically based models (see
Sect. 3.2.2) is their spatially explicit and detailed formulation
of processes which allows the analysis of emergent patterns
to the system, in particular after disturbance scenarios within
virtual experiments, leading to a better understanding of the
system’s overall behaviour. However, we think that, as every
model is a simplification of reality (Gupta et al., 2012), even
physically based models should, if used for actual hydrolog-
ical predictions in specific systems, be treated as hypotheses
and thus be subject to testing and evaluation procedures. For
example, relaxing, to some degree, the information on the
prior parameter distributions, i.e. replacing fixed parameter
values with reasonably narrow prior distributions, will allow
more flexibility and may therefore in a testing procedure al-
low the identification of parameters that provide a more suit-
able representation of the system (Mendoza et al., 2015).
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Given the high dimensionality of the parameter space, this
clearly also entails the need for additional model constraints
beyond traditional calibration. Apart from the use of simi-
lar multiple objective functions and multiple flux and state
variables for evaluating the model against observations as
used for conceptual models, the use of regularization (e.g.
Pokhrel et al., 2008; Samaniego et al., 2010), data assimila-
tion (e.g. Shi et al., 2014) and similar techniques (e.g. Ref-
sgaard et al., 2006) has proven helpful in identifying fea-
sible model parameters. Detailed physically based models,
furthermore, offer the opportunity to fully exploit the value
of additional and simultaneous evaluation against remotely
sensed spatio-temporal pattern, such as snowpack dynamics
using MODIS snow cover data (e.g. Kuchment et al., 2010),
estimates of water storage anomalies using GRACE (e.g.
Syed et al., 2008) and many others.

4 Implications

From the above discussion, a few relatively clear and un-
ambiguous points define the basis, functioning and limi-
tations of competing approaches for process-based hydro-
logical modelling. Condensing these points, the following
emerges.

1. All hydrological models are to some extent “concep-
tual” and to some extent “physical”; they largely only
differ in the degree of detail to which they resolve the
system, which in turn is dictated by the available data.
Conceptual bucket models approach the problem from
a macroscale physical understanding, while physically
based continuum models emphasize the microscale per-
spective. An ideal model would, almost needless to say,
provide good representations of both aspects.

2. Modelling strategies start at opposite ends and follow a
gradual transition along the resolution–complexity con-
tinuum (Fig. 1). While conceptual bucket-based models
constitute a physically based approach to hydrological
modelling that is rooted in holistic empiricism, similar
to statistical physics, physically based continuum mod-
els are based on mechanistic descriptions of small-scale
physics.

3. Different modelling strategies are complementary rather
than mutually exclusive as they have different strengths
and are thus suitable for different purposes. While con-
ceptual bucket-based models have advantages for oper-
ational predictions of specific real-world systems, phys-
ically based continuum models may in many cases be
preferable for more generally explaining multi-causal
relations in terrestrial systems, in particular the spatio-
temporal impacts of disturbances.

4. All models can, in principle, be implemented with any
desired detail. The key question is whether additional

process complexity can be tested against and is justi-
fied by the available data. This is true for both process
and spatial complexity, which also highlights that we
are really crossing a continuum of complexity, where
conceptual bucket models converge towards physically
based continuum formulations.

5. All models must reflect our conceptual understanding of
the system in regards to how water fluxes are partitioned
at the near-surface and unsaturated root zone. Since all
relevant fluxes can be present in any environment, al-
beit with different relative importance, all models there-
fore need to have the same fundamental model structure
(but not necessarily the same parameterization) to re-
flect these processes.

6. In the absence of sufficient observations at the mod-
elling scale and resolution, all hydrological models re-
main hypotheses and require rigorous testing and post-
calibration evaluation if used to represent specific real-
world systems.

7. All hydrological models applied at scales beyond the
plot scale and if used to represent specific real-world
systems require some degree of calibration, as direct
observations of effective parameters at these modelling
scales and resolutions are typically not available. Im-
proper application of parameters from observations that
do not match the modelling scale and/or resolution may
not provide a sufficient representation of the natural het-
erogeneity of this parameter and can lead to misrepre-
sentations of the system and give a deceptive impression
of accuracy.

8. The fundamental problems in catchment modelling do
not lie in the type of model used, but rather in the way a
model is applied.

5 Steps towards convergence of modelling strategies

Taken together, the above arguments suggest that the per-
ceived and somewhat arbitrary dichotomy between differ-
ent modelling strategies leads to some degree of confusion.
Acknowledging that all models are to some degree concep-
tual, and that often not the actual models are the problem but
the inadequate way they are applied, may open up the view
towards the real fundamental questions in catchment-scale
modelling: how much detail do we need in our models and
how much detail is warranted by data for different applica-
tions? Finding a balance that allows us to best describe the
system based on scientifically robust grounds and thus a way
towards a convergence of different modelling strategies will
benefit from exploiting the features of macroscale organiza-
tion and pattern formation as well as from adopting a general
culture of rigorous hypothesis testing.
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5.1 Organized complexity and catchment similarity

Progress in catchment-scale understanding of hydrological
functioning and the related development of models for more
reliable predictions hinge on a better understanding of how
natural heterogeneities at all scales aggregate to larger scales
and how this influences the hydrological response. As al-
ready emphasized previously by many authors (e.g. Beven,
1989, 2001, 2006a; Kirchner, 2006; Zehe et al., 2014), these
efforts to approach the closure problem in hydrology need to
involve both, ways to reliably determine effective model pa-
rameters, i.e. the system boundary conditions, that integrate
and reflect the natural heterogeneity within the model do-
main, as well as the development of equations that are phys-
ically consistent at the scale of application.

These scale and heterogeneity issues were acknowledged
already in the early 1980s to be at the core of many problems
for our understanding and modelling of hydrological systems
(e.g. Dooge, 1986; Wood et al., 1988, 1990; Blöschl and
Sivapalan, 1995; Blöschl, 2001). It was, for 2 decades or so,
indeed a very active and fruitful field of research, but it has
somewhat lost momentum. Ten years after the landmark pa-
pers of Beven (2006a) and Kirchner (2006), remarkably little
progress has been made, and many ideas and concepts have
not found their way into mainstream hydrology. Neverthe-
less, it is imperative to understand how processes scale, het-
erogeneity aggregates and how this controls the emergence
of patterns at the large scale. This then has the potential to
enhance our understanding of what controls catchment func-
tioning and our ability to develop models (e.g. Vinogradov et
al., 2011).

A potential way forward towards achieving this may be the
much advocated large sample, comparative hydrology and
similarity analysis to identify patterns and generally applica-
ble functional relationships (e.g. Sivapalan et al., 2003; Mc-
Donnell et al., 2007; Blöschl, 2013; Sivakumar et al., 2013;
Gupta et al., 2014). Recently receiving increased attention
(e.g. Lyon and Troch, 2007; Carrillo et al., 2011; Sawicz et
al., 2011; Coopersmith et al., 2012; Berghuijs et al., 2014,
2016; Fenicia et al., 2014; Li et al., 2014; McMillan et
al., 2014), using similarity analysis to improve our under-
standing of the link between catchment structure and hy-
drological functioning at the macroscale will be instrumen-
tal in guiding the development of meaningful model hy-
potheses and to constrain the feasible parameter space in a
way that forces the model to reproduce these characteristics
emerging at the macroscale. A recent example includes Ye et
al. (2012), who identified dominant process controls underly-
ing regional differences in regime and flow duration curves.
Similarly, Gao et al. (2014b) demonstrated how the model
parameter representing the water storage capacity in the un-
saturated root zone at the macroscale can be considerably
constrained exclusively based on water balance data.

5.2 Spatial patterns

Being one of the main advantages of most physically based
continuum models, the value of representing spatial differ-
ences in model fluxes and states as manifestations of het-
erogeneities in the system is considerably under-exploited in
conceptual bucket models. It is well established that hydro-
logical connectivity exhibits not only temporal but also spa-
tial dynamics and that therefore source areas of flow gener-
ation vary over time (e.g. Lehmann et al., 2007; Spence et
al., 2010; Jencso and McGlynn, 2011; Ogden et al., 2013).
Adapting the spatial resolution of models to the spatial res-
olution of available observations offers considerable poten-
tial to improve the representation of process dynamics across
the model domain. This is particularly true as observations
of spatial patterns in one or more variables, such as snow
cover or evaporation, can then be used as additional model
constraints to offset the adverse effects of increased de-
grees of freedom (e.g. Immerzeel and Droogers, 2008; Xu
et al., 2014; López López et al., 2017).

5.3 Models as hypotheses

There is a clear need to establish a mainstream culture of
robust model calibration and rigorous post-calibration test-
ing/evaluation of alternative model formulations (i.e. hy-
potheses) for any type of model. Such work is necessary to
achieve progress in catchment-scale modelling and advance
the use of models as scientific tools.

Stronger and more meaningful model tests with respect
to multiple variables, model states and hydrological signa-
tures need to become a standard procedure (e.g. Willems et
al., 2014; Clark et al., 2015) as it was previously shown that,
although models frequently exhibit considerable skill in re-
producing the hydrograph during both calibration and “val-
idation”, many of these models struggle to reproduce other
system-relevant features. This includes for example ground-
water table fluctuations (e.g. Fenicia et al., 2008b), long-
term average runoff coefficients as a proxy of average ac-
tual evaporation (e.g. Gharari et al., 2014b; Hrachowitz et
al., 2014) and solute dynamics (e.g. Birkel et al., 2010; Feni-
cia et al., 2010) as well as hydrological signatures of the sys-
tem, e.g. duration curves (e.g. Euser et al., 2013; Pfannerstill
et al., 2014; Guse et al., 2016; Kelleher et al., 2017). In ad-
dition, model calibration and/or evaluation against observed
spatial patterns remains currently still under-exploited.

In spite of the computational costs involved, we argue that
development of detailed physically based continuum models
would also strongly benefit from adopting more of a top–
down perspective. This would be beneficial for, in particular,
highly conceptualized model components, such as, but not
limited to, those related to preferential flow.

In any case, comprehensive model calibration and/or test-
ing strategies have the potential to identify and reject mod-
els (i.e. parameters and parameterizations) that “do not meet
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minimum requirements” (Vaché and McDonnell, 2006),
which can considerably reduce type I errors, i.e. falsely ac-
cepting poor models when they should be rejected (“false
positive”; Beven, 2010).

5.4 Model uncertainty

We are currently in a position where we, in an exaggerated
way, feed wrong models with wrong input data and calibrate
them to wrong output data to obtain wrong parameters. In the
light of so many unknowns, comprehensive, systematic, end-
to-end uncertainty analysis needs finally to become a stan-
dard component of any modelling study (e.g. Beven, 2006b;
Pappenberger and Beven, 2006). This applies to any type of
model. However, as full uncertainty analysis of physically
based continuum models may remain computationally chal-
lenging for the foreseeable future, it may be worth consider-
ing reporting results in model ensembles, similar to what is
common practice, for example, in atmospheric sciences. In
any case, systematic uncertainty analysis has the potential to
significantly reduce type II errors, i.e. rejecting a good model
when it should have been accepted (“false negative”; Beven,
2010), and is thus instrumental in avoiding giving a false im-
pression of accuracy in our models.

6 Concluding remarks

On balance, we believe that modelling of catchments will
significantly benefit from and may even require a conver-
gence of different modelling strategies, in particular with re-
spect to exploiting the features of organization in these com-
plex systems (Dooge, 1986) in a hierarchical way, as for
example suggested by Zehe et al. (2014). Combining this
with large sample comparative studies and more efficiently
exploiting the information content of available data over a
range of scales may eventually pave the way towards the for-
mulation of meaningful and general scaling relationships that
will be key to understanding how large-scale patterns emerge
from first principles. The aim has then to be the development
of models that are linked by these scaling relationships across
the entire resolution–complexity continuum so that, zoom-
ing out from detailed, microscale representations, observed
large-scale patterns are reproduced and, vice versa, that dis-
cretizing macroscale representations will result in meaning-
ful representations at the microscale. In that sense we would
like to strongly encourage researchers to not only acknowl-
edge, but also actively make use of a diverse range of mod-
elling strategies in order to strengthen their own models.
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