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[1] This paper introduces a flexible framework for conceptual hydrological modeling,
with two related objectives: (1) generalize and systematize the currently fragmented field
of conceptual models and (2) provide a robust platform for understanding and modeling
hydrological systems. In contrast to currently dominant ‘‘fixed’’ model applications, the
flexible framework proposed here allows the hydrologist to hypothesize, build, and test
different model structures using combinations of generic components. This is particularly
useful for conceptual modeling at the catchment scale, where limitations in process
understanding and data availability remain major research and operational challenges.
The formulation of the model architecture and individual components to represent distinct
aspects of catchment-scale function, such as storage, release, and transmission of water, is
discussed. Several numerical strategies for implementing the model equations within a
computationally robust framework are also presented. In the companion paper, the
potential of the flexible framework is examined with respect to supporting more
systematic and stringent hypothesis testing, for characterizing catchment diversity,
and, more generally, for aiding progress toward more unified hydrological theory at the
catchment scale.
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1. Introduction
1.1. Modeling Paradigms in Hydrology: Fixed Versus
Flexible Model Structures

[2] A major challenge in hydrology and broader environ-
mental studies is the development of more scientifically
meaningful and operationally reliable models [e.g., Beven,
2001; Singh and Woolhiser, 2002; Sivapalan, 2009]. Many
distinct model-building paradigms have been proposed,
ranging from simple bucket models [Sugawara, 1995] to
conceptual models such as TOPMODEL [Beven, 1997],
VIC [Wood et al., 1992], and HBV [Lindström et al., 1997]
to physically based distributed models such as SHE [Abbot
et al., 1986]. Approaches such as transfer function model-
ing [e.g., Young, 1998] and neural networks [e.g., Kingston
et al., 2005] have also been used. The current lack of uni-
fied theories of hydrology at the catchment scale has been
noted by several commentators [e.g., Sivapalan, 2005;
McDonnell et al., 2007; Troch et al., 2009; Clark et al.,
2011b]. This paper focuses on conceptual hydrological
models, which seek to represent dominant catchment dy-
namics in a physically meaningful way while remaining

parametrically parsimonious and computationally efficient.
They are also increasingly forming the basis for semidis-
tributed environmental models [e.g., Ajami et al., 2004;
Uhlenbrook et al., 2004].
1.1.1. Fixed Model Structures

[3] Perhaps paradoxically, despite the proliferation of
hydrological models (e.g., see collections in the work by
Singh and Woolhiser [2002]), it could be argued that hydro-
logical model development has been largely guided by a
‘‘one model fits all’’ paradigm, effectively seeking a single
general model applicable to every catchment. For example,
while acknowledging the diversity of environmental proc-
esses, Linsley [1982, p. 14] suggests that ‘‘these differences
do not mean that a single model cannot be applied in all
cases.’’ A typical example of the development of a fixed
model structure is the GR4J model [Perrin et al., 2003].
Over a series of case studies, some involving hundreds of
catchments [e.g., Edijatno et al., 1999; Perrin et al., 2001],
this four-parameter model has been refined to provide, on
average, a better performance than the considered alterna-
tives. GR4J is now widely used in hydrological research
[e.g., Le Moine et al., 2007; Thyer et al., 2009], and a
modified version, GRP, is used by the French flood fore-
casting services [Berthet et al., 2009].

[4] In principle, a fixed model structure has several
appealing features. Repeated use of the same model facili-
tates the process of model application and improvement
[Linsley, 1982], simplifies training, and prevents potential
confusion arising because of differences in the behavior of
different models. Large-scale applications of the same
model to different catchments make it easier to identify
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and, possibly, interpret the dependencies of its parameters
on catchment properties, benefitting model interpretation
and regionalization. From an operational perspective, the
use of a fixed model structure reduces effort and training
requirements for practitioners and researchers [Le Moine
et al., 2007], standardizes model applications by different
users, etc.

[5] On the other hand, a strong case can be made for a
flexible modeling paradigm, which allows the hydrologist to
adapt the model to the catchment of interest. While Linsley
[1982, p. 14] suggests that ‘‘it seems axiomatic that the fun-
damental processes of hydrology are the same in all catch-
ments,’’ (italics added), the search for a single ‘‘universal’’
model structure at a coarse lumped scale seems difficult to
reconcile with the subscale heterogeneity and variability of
catchment systems [McDonnell et al., 2007], the related per-
ception of ‘‘uniqueness of place’’ [Beven, 2000], the require-
ment to ‘‘work for the right reasons’’ [Kirchner, 2006], and
the impact of type, quality, and resolution of available data
on identifiable complexity [e.g., Jakeman and Hornberger,
1993; Schoups et al., 2008; Kavetski et al., 2011]. From a
more practical perspective, flexible models also allow adapt-
ing the model structure to the objectives of a particular
application, such as the prediction of low versus high flows,
forecasting at a particular lead time, etc. While such de-
pendence of model structure on modeling objectives is argu-
ably unsatisfactory from a physical point of view, it is often
the case in practice, especially in engineering contexts [e.g.,
Butts et al., 2004; Refsgaard and Henriksen, 2004].

[6] A simple illustration of the practical limitations of a
fixed model structure is the need to add specialized modules
for specific catchment conditions. For example, in many
models, the simulation of snowmelt requires the addition of
an external snow module, already implying that the overall
model structure requires customization for a specific cli-
matic region. For highly urbanized catchments, it may be
necessary to add a representation of impervious areas [Cuo
et al., 2008]; models for catchments with significant ground-
water exchange need corresponding external flux terms [Le
Moine et al., 2007] and so forth.

[7] Although a model could be designed such that certain
components could be ‘‘turned off’’ a priori, more subtle
adjustments are often suggested by the data. For example,
TOPMODEL applications suggest exponential transmissivity
profiles in some catchments versus parabolic and even linear
profiles in others [Ambroise et al., 1996]. In the dynamic
TOPMODEL [Beven and Freer, 2001], the assumption of a
quasi-steady state saturated zone is replaced by kinematic
wave routing. Similarly, while many models assume the base
flow–storage relation is linear (e.g., HBV [Lindström et al.,
1997]) or a power law (e.g., TOPMODEL [Beven, 1997] and
GR4J [Perrin et al., 2003]), recession analysis often suggests
different shapes [Lamb and Beven, 1997; Rupp and Woods,
2008]. For example, the base flow response of the Maimai ba-
sin in New Zealand appears piecewise linear [Fenicia et al.,
2010]. It is dubious to disregard such direct independent
insights, yet attempting to develop a single constitutive func-
tion that includes linear, exponential, sigmoid, and other
shapes is parametrically cumbersome and, in many cases,
will result in insensitive and nonidentifiable parameters.
Moreover, Uhlenbrook et al. [1999] report a case study where
several variants of the HBV model were examined, differing

both in the overall connectivity of its comprising reservoirs
and in the structure of individual reservoirs. Overall, given an
arguably poor current understanding of hydrology at the
catchment scale [e.g., Sivapalan, 2005; McDonnell et al.,
2007; Clark et al., 2011b] and the effect of large observatio-
nal data errors on model identification [e.g., Beven, 2008;
Renard et al., 2010], attempting to limit the analyses to a sin-
gle lumped model structure could be currently premature and
may overlook better alternative representations.

[8] The proliferation of hydrological models, differing in
all aspects of their process conceptualization, spatial distri-
bution, number of states and parameters, etc, is perhaps in
itself an empirical manifestation that the ‘‘one model fits
all’’ ideal may be unattainable, at least given current hydro-
logical data. For example, TOPMODEL and SHE are fre-
quently used in many European countries, NWS and MMS
are standard in various U.S. agencies, ARNO/TOPKAPI is
adopted in Italy, the Xinanjiang is used in China, and so
forth [Singh and Woolhiser, 2002]. Even for the HBV
model popular in Scandinavia, Uhlenbrook et al. [1999]
detail Swiss, Swedish, and ‘‘new’’ variants.

[9] Given these considerations, at least in the context of
rainfall-runoff modeling, we do not see a strong a priori rea-
son why the dynamics of catchments that are widely differ-
ent in their geomorphology and climatology should always
reduce to a single common form at coarsely lumped scales.
Should we then be surprised at the empirical difficulties in
obtaining spatially transposable models [e.g., Andréassian
et al., 2009], or that some compromises are needed when
deciding on a single ‘‘best’’ model structure for thousands
of catchments [Perrin et al., 2003]? On the other hand, tem-
poral transposability is generally a necessity if the model is
to be used for predictive purposes, and achieving this is not
unprecedented in practice (although factors such as land use
change may need to be included in the modeling process
[e.g., Croke et al., 2004]). In our opinion, it is not unreason-
able to hypothesize, on average, less difference in behavior
for the same catchment at different times than for different
catchments altogether (especially across differences in size,
climate, and physical attributes).

[10] Finally, consider model comparison studies, such as
the recent Model Parameter Estimation Experiment (MOPEX)
[Duan et al., 2006], the earlier Project for Intercomparison of
Land-surface Parameterization Schemes (PILPS) [Henderson-
Sellers et al., 1993], and the comparison of 19 model struc-
tures on 429 catchments performed by Perrin et al. [2001].
Such experiments are valuable hypothesis-testing exercises,
providing empirical indications of best performing models
and thus potentially guiding model improvement. However,
such comparative studies have arguably been quite rare, and
in many cases their findings may have been confounded by
multiple unaccounted differences and interactions between
model components, numerical implementation aspects, soft-
ware settings, calibrations schemes, etc. [Clark et al., 2011b].
This stresses the need for a more systematic pursuit of hypoth-
esis testing, even if searching for a best compromise model.
1.1.2. Flexible Model Structures

[11] The arguments above suggest that a fixed yet parsi-
monious model structure, attractive as it may be, may not
be (at least currently) achievable in its pure form. In prac-
tice, modelers may need to include additional components
to emphasize processes that are significant and/or dominant,
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adjust constitutive functions to better match independent
diagnostic evidence obtained from recession analysis, etc.
Indeed, Vaché and McDonnell [2006] advocate ‘‘malleable’’
model structures in their hypothesis-testing study. Yet when
hypothesizing and testing competing models, ad hoc meth-
odologies may yield confounding results. What is needed,
then, is a systematic and robust platform for carrying out
model development, evaluation, and comparison [e.g.,
Refsgaard and Henriksen, 2004; Young and Ratto, 2009;
Clark et al., 2011b].

[12] Recognizing these challenges, a number of modular
toolkits have been developed. For example, the Modular
Modeling System (MMS) [Leavesley et al., 1996] allows
combining different submodels (e.g., linking a surface water
model with a groundwater model such as MODFLOW).
The Rainfall-Runoff Modeling Toolkit (RRMT) [Wagener
et al., 2002] allows a selection of different moisture
accounting and routing modules, importantly, also provid-
ing a suite of diagnostic options to facilitate model evalua-
tion and comparison. The Framework for Understanding
Structural Errors (FUSE) [Clark et al., 2008] provides a
selection of alternative representations of the catchment soil
store based on several existing models such as Sacramento
[Burnash, 1995] and TOPMODEL [Beven, 1997], and it can
be extended to include components such as vegetation and
so on. Similar developments are taking place in the distrib-
uted modeling community, with models such as MIKE-SHE
and MIKE-11 being extended to accommodate different
processes representations [Butts et al., 2004; Refsgaard and
Henriksen, 2004], and in the ‘‘data-based mechanistic’’
(DBM) community [Young, 1998; Young and Ratto, 2009].
Overall, these approaches facilitate the application of the
method of multiple working hypotheses to hydrological
modeling [Clark et al., 2011b]. In this paper, we advocate
these principles for conceptual hydrological models.

[13] In conceptual hydrological modeling, flexible and
multimodel frameworks have been already used to investi-
gate questions such the patterns of structural errors across
multiple catchments [Clark et al., 2008], mean residence
time and catchment mixing mechanisms [Fenicia et al.,
2010], representations of plot-scale surface and ground-
water dynamics [Krueger et al., 2010], model component
fidelity to its intended process [Clark et al., 2011a], time
scale control on model parameters and inferred complexity
[Kavetski et al., 2011], and others.

[14] Finally, there are increasing calls for a more ‘‘holis-
tic’’ view of catchment-scale hydrology, moving beyond a
‘‘mere’’ description of heterogeneity and toward a more uni-
fied theory that recognizes the self-organization, optimality,
and human influences that shape the traits and patterns of
specific catchments as well as entire classes of environmen-
tal systems [Sivapalan, 2005; McDonnell et al., 2007;
Troch et al., 2009; Sivapalan, 2009]. Here a flexible model
structure can accommodate the diversity of the climato-
logic, geomorphologic, and anthropogenic factors operating
at specific locations [Sivapalan, 2009].
1.1.3. Numerical Robustness Issues in Conceptual
Hydrological Modeling

[15] Conceptual model design generally begins with a per-
ceptual model, proceeding through a mathematical formula-
tion of the hypothesized structure (e.g., linking model
components, relating fluxes to storages, etc.) to the numerical

implementation in a computer code [e.g., Beven, 2001; Clark
et al., 2008]. Given the extent of process approximations
made in conceptual hydrological modeling, it has been often
tempting to disregard careful numerical implementations in
favor of computationally simplistic schemes (e.g., see review
by Clark and Kavetski [2010]). However, unless adequately
controlled, numerical errors can easily overwhelm data and
structural uncertainty and lead to major errors in model iden-
tification and interpretation, in uncertainty and sensitivity
analyses, and, quite troublingly, in operational predictions
[e.g., Kavetski et al., 2003; Kavetski and Clark, 2010;
Michel et al., 2003, 2005; Schoups et al., 2010]. Numerical
robustness is hence a key design consideration in the hydro-
logical modeling methods presented in this paper [Clark and
Kavetski, 2010].

1.2. Aims and Significance
[16] This two-part paper formulates and illustrates a flex-

ible framework for conceptual hydrological modeling, with
two related objectives : (1) to generalize and systematize
the field of conceptual models and augment existing flexi-
ble frameworks and (2) to provide a practical platform for
pursuing process-oriented insights into catchment-scale
water cycle dynamics as well as more robust and reliable
performance in operational contexts.

[17] The SUPERFLEX modeling framework presented
here is based on generic building blocks, such as reservoirs,
junctions, and constitutive functions, implemented using
robust numerical techniques. We argue that the richer set of
model structures and parameterizations, which can be
obtained by mix and matching generic components, is par-
ticularly well suited to supporting hydrologists’ analyses,
decisions, and testing with respect to which processes to
include in the analysis and how to represent them. It also
supports the incorporation of catchment-specific experi-
mental insights as part of iterative model improvement
[Fenicia et al., 2008a].

[18] The proposed flexible framework provides a unified
platform that not only includes many existing precipitation-
streamflow models, but also simplifies the generation of
new hypotheses (model configurations) as opposed to com-
binations of existing models. This extends the capabilities
currently available in models such as FLEX [Fenicia et al.,
2008b] and other flexible frameworks such as FUSE [Clark
et al., 2008], which tended to outline an overall model
architecture and then ‘‘populate it’’ using subcomponents of
existing models. For example, the current version of FUSE
[Clark et al., 2008] hypothesizes a two-layer soil store com-
prising subcomponents and constitutive functions adapted
from successful existing models, and RRMT [Wagener
et al., 2002] assumes a four-component configuration with
interception, root zone, and fast/slow routing, etc.

[19] Our presentation further stresses the key distinction
between the model hypothesis and its numerical implemen-
tation, and illustrates computational design considerations
in hydrological model building. This is an often-neglected
aspect in hydrological modeling, unnecessarily risking
major numerical artifacts. Addressing this is critical for
meaningful advances in hydrological science and opera-
tions [e.g., Kavetski et al., 2011].

[20] In the companion paper [Kavetski and Fenicia,
2011], the potential of the flexible framework to provide
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scientific insights and operational reliability in diverse
catchment conditions is appraised through a series of case
studies and is compared to the insights and performance
achievable using a fixed model structure (here the GR4H
model, which is an hourly version of the widely used GR4J
model [Perrin et al., 2003]).

[21] The ability to robustly implement and systemati-
cally evaluate different model hypotheses (formulated at
any level, including architecture, connectivity, individual
process representation, etc.) within a single framework
facilitates learning from model comparison and hypothesis
testing, unencumbered by confounding differences in con-
ceptualization philosophy, numerical algorithms, software
implementation, etc. [Clark et al., 2011b]. Elements of the
proposed framework, named SUPERFLEX as it develops
the earlier FLEX model [Fenicia et al., 2008b], have al-
ready shown promise in recent applications that explored
the mean residence time of the Maimai basin [Fenicia et al.,
2010] and the interaction between calibration data resolu-
tion and model inference in the Weierbach basin [Kavetski
et al., 2011]. In this paper, the focus is on challenging the
prevalent ‘‘fixed’’ model paradigm and on motivating and
formulating SUPERFLEX as a multihypothesis framework
[Clark et al., 2011b] that seeks to provide physically inter-
pretable analysis of catchment dynamics and diversity.

2. Model Architecture, Governing Equations,
and Constitutive Functions
2.1. Model Architecture and General System
Functionalities

[22] The overall model architecture, which defines and
couples the dominant systems processes, is a key hypothe-
sis. It is known that the connectivities between catchment
compartments and their dependencies on storage thresholds,
soil properties, and surface and bedrock topography signifi-
cantly influence the hydrological [McGuire and McDonnell,
2010], ecological [Pringle, 2003], and morphological [Reid
et al., 2007] behavior of natural systems. Therefore, process

interactions and the influence of common controls (such as
topography, as in TOPMODEL [Beven, 1997]) must be
reflected in the hypothesized model structure [see also
Sivapalan, 2005].

[23] From a functional (mechanistic) perspective, catch-
ment dynamics include partition, storage, release, and
transmission of water [e.g., Wagener et al., 2007]. In the
SUPERFLEX framework, a hypothesized model structure
can be implemented using generic components intended to
approximate these functions:

[24] 1. Reservoir element: represents storage and release
of water ;

[25] 2. Lag function element: represents the transmission
and delay of fluxes;

[26] 3. Junction element: represents the splitting, merg-
ing, and/or rescaling of fluxes.

[27] These components constitute the main building
blocks of many existing conceptual models. In SUPERFLEX
these elements are generalized and can be arranged into dif-
ferent flow configurations representing alternative conceptual
hypotheses of catchment function. The model hypotheses are
further characterized by selecting their constitutive functions
(e.g., relating fluxes to reservoir storage) and associated
parameters.

2.2. Storage-Release Processes: The Generic
Reservoir Element

[28] A ‘‘generic’’ reservoir conceptualizes catchment-
scale processes involving storage and release of water. It is
shown schematically in Figure 1a and, mathematically, is
described using ordinary differential equations (ODEs):

dS tð Þ=dt ¼ gS S tð Þ;X tð Þ hj½ �; ð1aÞ

Q tð Þ ¼ gQ S tð Þ;X tð Þ hj½ �; ð1bÞ

where S(t) are conceptual storage values at time t, X(t) is
the (time-dependent) forcing and Q(t) is the response, g()

Figure 1. Generic building blocks of the flexible framework: (a) generic reservoir and (b) lag function.
Connection elements : (c) union and (d) splitter. Splitters can be used to represent (e) the subtraction of
evaporation from rainfall and (f) the threshold-type occurrence of Hortonian flow.
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are the input-output fluxes associated with the component,
and h are parameter values (section 2.5).

[29] Depending on its internal structure (see section 2.4),
a reservoir can exhibit strong nonlinearities, including
threshold behavior. Widely used in hydrological modeling,
reservoirs can parsimoniously represent the dynamics of
interception, soil moisture, groundwater, etc. (e.g., see
Clark et al. [2008] for an overview). In addition, they can
represent snow accumulation and melting dynamics [Smith
and Marshall, 2010].

[30] While most conceptual hydrological models use
multiple single-state reservoirs, more complex coupling
can be supported within ODE (1), including mass and/or
energy balances. For example, Fenicia et al. [2010] detail
the inclusion of tracer balance as part of using a flexible
model framework to investigate the influence of mixing
assumptions on mean residence time estimation using ex-
perimental tracer data. Given the similarities between the
conservation laws governing hydraulic, thermal, and other
systems, suitably enhanced reservoir-type components can
also be used to formulate other natural laws, such as con-
servation of energy, momentum, and mass (e.g., as in the
temperature ‘‘reservoir’’ model of Westhoff et al. [2007]).

2.3. Flow Routing: Lag Function (Convolution
Operator) Elements

[31] In many catchments, using a single reservoir, or
even a few reservoirs, may be insufficient to represent the
routing of water through extended flow networks. Instead, a
different mathematical representation based on the convolu-
tion operator can be exploited (Figure 1b). Many existing
models, including HBV [Lindström et al., 1997], GR4J
[Perrin et al., 2003], and FUSE [Clark et al., 2008], use
convolutions to represent delays arising from channel rout-
ing. In models such as HBV and FUSE, a single convolution
is applied to the output from the system of reservoirs. Here,
in order to provide further flexibility, we allow lag functions
to be included at any location within the system. This is the
approach taken in GR4J and in the earlier FLEX model
[Fenicia et al., 2007], where the output of the lag function
is fed into reservoirs farther downstream. For example, this
can be useful when representing drainage from the unsatu-
rated zone to the saturated zone in situations where the
water table is several meters below the ground surface and
the travel time is therefore not instantaneous.

[32] There is a close mathematical connection between
reservoirs and lag function elements. In particular, the lag
function represents the response of a (possibly multistate)
linear system to a unit impulse [e.g., Oppenheim et al.,
1999]. Hence, the distinction between a ‘‘reservoir’’ and a
‘‘lag function’’ is, at least for linear systems, essentially
semantic, reflecting different mathematical formulations of
the same concept. For example, Nash [1958] showed that
the impulse-response (lag) function associated with a
sequence of N identical linear reservoirs (the ‘‘Nash cas-
cade’’) is the Gamma function. As a result, many models,
including rainfall-runoff models such as FUSE [Clark
et al., 2008] and HYMOD [e.g., Wagener et al., 2001] as
well as tracer models [e.g., Weiler et al., 2003; Hrachowitz
et al., 2010], use the Gamma function in their convolutions.
Other models, such as HBV [Lindström et al., 1997], use
triangular lag functions, sometimes allowing for curvature

in their limbs, as in GR4J [Perrin et al., 2003]. Transfer
function modeling also underlies the DBM philosophy
[Young, 1998; Young and Ratto, 2009] for characterizing
the input-output behavior of a general system, with suitable
enhancements to represent system nonlinearities [Young,
2003; Young and Garnier, 2006]. Hence, a flexible frame-
work should support the specification of Gamma, triangu-
lar, and other lag functions.

[33] More general parametric and nonparametric forms of
lag functions can also be accommodated. These allow repre-
senting the behavior of multiple linear reservoirs, including
serial and parallel connections, and not necessarily with equal
time constants. However, the impulse response of nonlinear
systems (reservoirs) is more complex than for linear systems
because of state dependencies and cannot be described using
standard linear transfer functions [e.g., Vidyasagar, 2002]. In
this respect, the nonlinear reservoir conceptualization is more
general. Yet it is also more computationally expensive than a
linear store, especially in multireservoir models.

2.4. Process Connectivities and Interactions: Junction
Elements

[34] As elaborated in section 2.1, the overall system
architecture is a key hypothesis within model development.
Within a single model configuration, multiple reservoirs
and lag functions are coupled using junction elements. Junc-
tions are ‘‘zero-state’’ components, which may also contain
parameters. For example, the junction component combines
several fluxes, e.g., outputs from different reservoirs (Figure
1c). A splitter component can describe the separation of a
single upstream flux into two or more downstream fluxes,
e.g., as in GR4J [Perrin et al., 2003] and HYMOD [Wage-
ner et al., 2001] (see Figure 1d). It can also be used to
remove evaporation from rainfall, e.g., as in the interception
module of GR4J (Figure 1e). With suitable specification of
constitutive functions, e.g., with the splitting fractions de-
pendent on the input, splitters can also simulate Hortonian
overland flow occurring when precipitation intensity exceeds
the soil infiltration capacity [e.g., Beven, 2004] (Figure 1f).

[35] More generally, the model architecture should also be
reflective of spatial characteristics of the catchment. For
example, separate storage and lag function elements can be
used as part of a discretization of the catchment into areal
elements [e.g., Uhlenbrook et al., 2004] or into process-
oriented classes of elements (e.g., as in the topographic index
classes of TOPMODEL [Beven, 1997]). While such semidis-
tributed approaches are beyond the scope of this presentation,
they represent an important direction of ongoing studies.

2.5. Constitutive Functions
[36] The properties of individual components and hence

the entire model are defined by the constitutive functions
that represent hypothesized storage-discharge relations of
reservoirs, shapes of lag functions, and characteristics of
junction elements. We envisage, on the basis of experien-
ces gained through the application of the framework, that
constitutive functions will form part of an extendable
‘‘library’’ (e.g., some typical options are listed in Table 1,
illustrated in Figure 2a, and explored as part of the empiri-
cal case studies in the companion paper).

[37] For example, a typical conceptualization of saturation–
excess runoff is gS S;P hjð Þ ¼ 1� A S hjð Þ½ �P and gQ S;P hjð Þ
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¼ A S hjð ÞP, where A S hjð Þ is the ‘‘saturated area’’ fraction,
e.g., A S hjð Þ ¼ S �j 1

� ��2 . This formulation can be interpreted
from an ‘‘infiltration capacity distribution’’ perspective
[Moore and Clarke, 1981] and underlies the saturation–
excess runoff mechanism in TOPMODEL [Beven, 1997]
and VIC [Wood et al., 1992].

[38] The form of the constitutive functions can be hypothe-
sized parametrically a priori or estimated empirically from in-
dependent data analysis (e.g., a topography-based saturation
function [Beven, 1997]). More general nonparametric forms
can also be accommodated. For example, (1) recession
analysis can be used to specify the storage-discharge rela-
tionship [e.g., Lamb and Beven, 1997; Rupp and Woods,
2008; Fenicia et al., 2010], and (2) spatial analysis, e.g.,
using digital elevation maps, can be used to derive topo-
graphic-based saturation functions for TOPMODEL-like
conceptualizations of saturation overland flow and so on
[Beven, 1997; see also Moore, 1985]. This provides the
flexible framework with capabilities to exploit independent
information in addition to the rainfall-runoff time series
typically used in hydrological calibration.

[39] ‘‘Composite’’ functional relationships can also be
constructed. For example, the ‘‘leaky catchment’’ structure
of Wagener et al. [2002], which represents a reservoir with
multiple outlets at different storage ‘‘depths’’ (Figure 2b),
can be accommodated in the general formulation using
storage-discharge relations with (smoothed) piecewise
linear or curvilinear segments (Figure 2c; see application
of Fenicia et al. [2010]).

3. Computational Implementation
[40] Linear reservoir models and some simple nonlinear

cases can be solved analytically. However, general exact
solutions are rare. For example, while the power reservoir
dS=dt ¼ P� kS� can be solved analytically when P ¼ 0,
we are not aware of analytical solutions for P > 0. When
considering multiple coupled equations (e.g., for a coupled
multicompartment system), analytical solutions are even
more restrictive. Numerical approximations are hence nec-
essary (e.g., see the recent review by Clark and Kavetski
[2010]). Here we apply time stepping schemes over fixed
discrete steps �t ¼ tnþ1 � tn, where the subscript n indexes
the time step. The models are forced with data �Xnþ1=2 rep-
resenting the observed average of X(t) over each such
‘‘data resolution’’ step.

[41] The importance of mathematically well-behaved
hydrological models was recognized decades ago by Ibbitt
and O’Donnell [1971] and Moore and Clarke [1981]. De-
spite an apparent simplicity, the numerical design of a con-
ceptual hydrological model requires careful attention to
avoid harmful numerical artifacts [Kavetski et al., 2011].
For example, explicit methods, such as the explicit Euler
(EE) scheme S EEð Þ

nþ1 ¼ Sn þ�t g Sn; �Xnð Þ, are quite widely
used in conceptual hydrological models (e.g., see the
review by Clark and Kavetski [2010]). However, though
superficially attractive because of algorithmic simplicity
and low cost per step, fixed step explicit integration is only
conditionally stable and can generate very large errors. It

Table 1. Examples of Constitutive Functionsa

Function Name

fp (xjm) ¼ xm power function

fr (xjm) ¼ 1 � (1 � x)m reflected power function [Moore, 1985]

fm x mjð Þ ¼ 1þ mð Þ x
xþ m

Monod-type kinetics, adjusted so that fm(1jm) ¼ 1

fh x mjð Þ ¼ 1� 1� xð Þ 1þ mð Þ
1� xþ m

reflected hyperbolic function, scaled to the unit square

fe (xjm) ¼ 1 � e�x/m Tessier function (note that fe(xjm)! 1 as x!1)

f� x mj ; �ð Þ ¼
1þ e�m 1��ð Þ� �

e�mx � 1ð Þ
1þ e�m x��ð Þð Þ e�m � 1ð Þ modified logistic curve, scaled to the unit square

aAdditional shapes can be accommodated within the flexible framework and its software implementation. Here e ¼ 2.71 . . . denotes the natural loga-
rithm base.

Figure 2. (a) Representative shapes of constitutive functions listed in Table 1 (parameter values indi-
cated in brackets). (b) Reservoir with multiple outflow thresholds and (c) the corresponding ‘‘composite’’
constitutive relationship. Here parameters m1 and m2 control the smoothness of the transitions and would
normally not be calibrated [Kavetski and Kuczera, 2007].
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should not be used in practical computing unless imple-
mented with adaptive substepping and numerical error con-
trol [e.g., Kahaner et al., 1989]. Consequently, the fixed
step EE method is not used in this paper.

[42] Sections 3.1 and 3.2 outline more reliable numerical
strategies as well as their limitations.

3.1. Time Stepping Implementation
3.1.1. Fixed Step Implicit Approximations

[43] The implicit Euler (IE) method,

S IEð Þ
nþ1 ¼ Sn þ�t g S IEð Þ

nþ1;
�Xnþ1=2

� �
; ð2Þ

is an unconditionally stable approximation of equation (1)
[e.g., Kahaner et al., 1989]. Despite requiring potentially ex-
pensive iterative solutions (since equation (2) is, in general,
nonlinear), the implicit Euler scheme is generally robust
even for large step sizes. It is widely used in standard engi-
neering software, e.g., the MODFLOW package for ground-
water simulations, the ECLIPSE tool in the petroleum
industry, geotechnical consolidation codes, etc. [e.g., Clark
and Kavetski, 2010, and references therein]. Importantly,
when implemented using fixed steps and a tight Newton-
Raphson tolerance, the implicit Euler solution is smooth
with respect to its forcings and parameters, resulting in a
smooth objective function of the hydrological model. This
significantly facilitates calibration and prediction. Given
these considerations, we implemented the fixed step implicit
Euler scheme as a solution option. Note that for closer corre-
spondence with rainfall observation systems that report rain-
fall depths over discrete time intervals, equation (2) uses the
step-averaged forcing rather than an ‘‘end-of-step’’ forcing.
3.1.2. Adaptive (Explicit or Implicit) Solutions

[44] From a strict numerical analysis perspective, uncon-
ditional stability is neither necessary nor sufficient to guar-
antee an accurate approximation. This is easily shown for
systems with rapidly varying forcing. Implicit schemes are
also computationally inefficient compared to explicit
schemes when the governing equations are not ‘‘stiff’’
(e.g., see Appendix A of Clark and Kavetski [2010] for an
outline or Lambert [1991] for a full exposition). Conse-
quently, the numerical ODE literature discourages using
fixed step methods at all, whether explicit or implicit [e.g.,
Shampine and Reichelt, 1997]. From this perspective,
adaptive substepping within each ‘‘data resolution’’ step is
a safer solution option because it produces near-exact solu-
tions of the hypothesized model equations. This could be
accomplished, e.g., using an adaptive fifth-order explicit
Runge-Kutta method or adaptive implicit or semi-implicit
methods [e.g., Press et al., 1992; Butcher, 2008].

[45] However, in the context of model parameter optimi-
zation, adaptive substepping has an undesirable property.
Unless very tight truncation temporal error tolerances are
imposed in the ODE integrator, the objective function of
the hydrological model will be discontinuous at the micro-
scale, degrading the performance of gradient-based optimi-
zation and other derivative-based analysis (e.g., linearized
covariance estimation). As discussed by Kavetski and
Clark [2010], the trade-off between the fixed step implicit
Euler versus adaptive schemes is not necessarily clear-cut
and may depend on the modeling context.

[46] By formulating its governing equations in continu-
ous-time state-space form, hydrological software can be
much more readily upgraded to a different numerical solver
if necessary. This should be contrasted to developing a model
directly in discrete-time form, where it is not clear where the
process conceptualizations end and numerical approxima-
tions begin, how to change the model step size, etc. See also
Young and Garnier [2006] for a fuller discussion of the
advantages of continuous-time models of physical phenom-
ena, and see Kavetski et al. [2011] for a case study on the
impact of data resolution on identifiable model complexity.
3.1.3. Alternative Implementation Approaches Such as
Operator Splitting

[47] Operator-splitting (OS) numerical approximations
integrate each flux sequentially in a predetermined order to
estimate the overall solution [e.g., Press et al., 1992] (see
also Kavetski et al. [2003] and Schoups et al. [2010] for a
discussion in hydrology). OS approaches are extremely
useful for solving large systems of nonlinear partial differ-
ential equations (PDEs) with multiple components, such as
those coupling advection, reaction, and diffusion, espe-
cially when dealing with large spatially distributed systems.
In such cases, specialized numerical and/or semianalytical
techniques can be applied to each flux separately [Steefel
and MacQuarrie, 1996], making it possible to approximate
problems that are otherwise computationally intractable.

[48] In conceptual hydrological modeling, OS schemes
are appealing in the specific case of implementing a fixed
model structure, especially in a context where computa-
tional speed is a strongly dominant factor and hence a cus-
tomized implementation is needed (e.g., see the evaluations
for an exponential-type reservoir model by Schoups et al.
[2010]). However, in the more general case of hypothesis
testing in hydrological modeling, especially when flexible
configurations need to be supported, OS approaches have
several important limitations:

[49] 1. They correspond to the physically unsatisfying
assumption that hydrological processes operate in a certain
predetermined order, for example, evaporation first, fol-
lowed by percolation, surface runoff, etc.

[50] 2. Even if the individual fluxes are integrated ana-
lytically, which is possible for certain flux forms (although
usually for single reservoirs only, as detailed by Schoups
et al. [2010]), the final solution will still contain numerical
(‘‘splitting’’) errors, which are a consequence of approxi-
mation listed in point 1.

[51] 3. When the hydrological model has coupled com-
partments, it is usually impossible to jointly integrate their
fluxes analytically. But integrating them numerically fore-
goes a major potential advantage of OS in the context of
rainfall-runoff modeling: the use of analytical solutions for
individual fluxes.

[52] 4. OS can result in very complicated computer code,
with multiple branches depending on the availability of an-
alytical solutions and so on. This is especially problematic
for a flexible framework, which must support a variety of
flow networks, connectivities between storage elements,
and different forms of constitutive fluxes. For most config-
urations, analytical solutions will not be available, and nu-
merical techniques will again be needed.

[53] Given these considerations, we have not used operator-
splitting solutions for the flexible models in this study.
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3.2. Ensuring Smoothness in the Model Components
[54] System analyses and predictive applications can

benefit significantly when the model response surface is
smooth and well behaved [e.g., Ibbitt and O’Donnell,
1971; Kavetski and Clark, 2010]. For example, avoiding
artificial discontinuities with respect to the model inputs is
useful when exploring system sensitivities with respect to
changes in future forcing. In terms of model building, this
requires continuity and microscale smoothness with respect
to forcing, states, and parameters in the model’s constitu-
tive functions, governing equations, and numerical approxi-
mations [Kavetski et al., 2006; Kavetski and Kuczera,
2007; Clark et al., 2011a]. In calibration, this also requires
the objective function to be continuous and smooth with
respect to the model response.

[55] In order to support overall model smoothness, the
building blocks of the SUPERFLEX framework are imple-
mented using smoothed techniques. This includes the stor-
age-flux relationships in the reservoir elements, the lag
functions in basin routing elements, and any parameteriza-
tions in the junction elements. Many smoothing techniques
can be exploited for this purpose, including smoothed piece-
wise linear approximants [e.g., Koutsoyiannis, 2000; Kavetski
and Kuczera, 2007] and more general smoothed piecewise
curvilinear functions such as (cubic) splines and Bezier
curves [e.g., Kahaner et al., 1989]. These are not demon-
strated in this work but are quite readily implemented. Note
that smoothness should be enforced with respect to states, pa-
rameters, and forcing functions [Kavetski and Kuczera,
2007].

[56] Smoothing is more than a numerical approximation
and as such represents a genuine alteration of the model equa-
tions. Since many environmental processes exhibit marked
threshold behavior [Zehe and Sivapalan, 2009; Spence,
2010], the degree of smoothing can be controlled so that it
facilitates mathematical analysis but does not materially
affect the model predictions [Kavetski and Kuczera, 2007].
However, while many environmental dynamics have pro-
nounced thresholds at a point spatiotemporal scale, they have
much smoother behavior when integrated over catchment-
scale areas [e.g., Moore, 1985]. This may explain improve-
ments in hydrological model performance when stronger
smoothing is applied. For example, see Figure 1 of Kavetski
et al. [2006] and the discussion by Clark et al. [2011a,
section 7.4].

4. Discussion
4.1. A Broader View on Modular Frameworks

[57] Many of the concepts and rationale behind flexible
(‘‘modular’’) model development are not new or unique to
hydrology. It has long been recognized that at least in prac-
tical contexts, the degree of detail, resolution, and compre-
hensiveness of a model will usually depend on the study
objectives, data constraints, spatial and temporal scales of
application, and other factors [e.g., Wagener et al., 2001;
Leavesley et al., 2002; Refsgaard and Henriksen, 2004;
Clark et al., 2011b].

[58] Several modular frameworks have been developed and
applied in hydrological modeling. Depending on their ‘‘granu-
larity’’ and underlying rationale, they could be loosely classi-
fied into ‘‘model-interfacing frameworks’’ versus ‘‘flexible

process representation frameworks.’’ In the former, the
building blocks are often entire hydrological models in
their own right, and the objective is to exploit existing
models to build increasingly larger-scale integrated envi-
ronmental models [e.g., Kumar et al., 2006]. However, our
aim in this paper is not to build larger-scale models but to
provide finer-scale flexibility in hypothesizing and testing
the overall catchment system architecture, component con-
nectivity, and representation of individual processes. Hence,
a key criterion is the ‘‘granularity’’ of the model hypotheses
(see discussions by Clark et al. [2011b]).

[59] When viewed from this hypothesis-based perspec-
tive, SUPERFLEX and the earlier FLEX model [Fenicia
et al., 2008b] share their motivation with the FUSE frame-
work [Clark et al., 2008]. FUSE relaxed several significant
restrictions of modular methodologies where the overall
model architecture is fixed to contain certain functional
components (e.g., interception, soil store, groundwater, and
routing) in a predetermined order and the flexibility con-
sisted in specifying the constitutive functions for these
components. For example, see the schematic of the Cold
Region Model [Pomeroy et al., 2007, Figure 4]; an analo-
gous structure is adopted in the RRMT [Wagener et al.,
2002]. FUSE allows considerably more flexibility in the
architecture of the model. However, its current implemen-
tation remains restricted to a two-layer hypothesis of the
soil store, which is then ‘‘populated’’ using components
and constitutive functions from existing models such as
TOPMODEL, ARNO/VIC, and others [e.g., see Clark et
al., 2008, Figure 3]. Conversely, this paper argues that an
even richer set of model hypotheses can be constructed
using generic model components such as those listed in
section 2. For example, the model structures applied in the
case studies in the companion paper vary, in a controlled
way, in the number of reservoirs, their connectivities, and
the constitutive relationships used (e.g., see Figure 2 of the
companion paper).

[60] Yet we do not argue for ‘‘black box’’ models such as
neural networks [e.g., Kingston et al., 2008], which are not
easily physically interpretable and are prone to overparame-
terization. To the contrary, we seek maximum incorporation
of physical insights into hydrological model development
and scrutiny of response signatures and individual compo-
nents against all available observed data (e.g., as advocated
by Seibert and McDonnell [2002], Freer et al. [2004], Gupta
et al. [2008], Fenicia et al. [2008b], Yilmaz et al. [2008],
and Clark et al. [2011a]).

[61] The SUPERFLEX framework introduced in this pa-
per is a generalization of the FLEX model [Fenicia et al.,
2008b]. It is a more comprehensive application of the for-
malism of nonlinear differential equations, transfer functions,
and connection elements to build conceptual hydrological
models in a way that seeks to combine the perceptual under-
standing that is often available from experimental work with
statistical inference of model parameters and structures. This
helps pursue the dialog between ‘‘modeler’’ and ‘‘experimen-
talist’’ advocated by Seibert and McDonnell [2002]. An im-
portant practical advance relative to the earlier FLEX
applications is the implementation of all components using
robust numerical techniques (section 1.1.3). A broader objec-
tive relative to previous conceptual modeling methods,
including FLEX, is the finer granularity of the supported
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model decisions and wider range of possible model archi-
tectures and constitutive relationships between the state
variables, fluxes, and parameters. As discussed, this allows
implementing both the hypotheses implemented in existing
hydrological models and multiple alternative hypotheses
such as those presented in Part 2 of this paper [Kavetski
and Fenicia, 2011]. This allows a broader and more thor-
ough exploration of the model hypothesis space.

[62] While this paper focuses on conceptual hydrological
models, useful connections can also be made to the class of
DBM methods [Young, 1998], which use transfer function
modeling to approximate the input-output behavior of a
general system. Physical interpretability is an explicit
objective of the DBM philosophy [Young, 2003]; model
parsimony is sought using Dominant Mode Analysis
[Young and Ratto, 2009]. DBM has been applied in many
areas of science, engineering, and economics [Young, 1998,
2003; Young and Ratto, 2009]. When using lag functions
and linear reservoirs, the framework in this paper is mathe-
matically analogous to DBM models: continuous-time
transfer function models are an alternative representation
of linear differential equations [Young and Ratto, 2009].
However, in terms of model structure development, the
conceptualization and mathematical handling of nonlinear-
ities are different. In hydrological applications of DBM,
system nonlinearities have been handled either (1) through
a nonlinear transformation of the rainfall or runoff to esti-
mate the ‘‘effective input,’’ followed by an assumption that
the subsequent routing dynamics can be approximated
using linear components, or (2) using state- and/or time-
dependent parameters in the transfer function representa-
tion [e.g., Young, 2002, 2005]. Conversely, SUPERFLEX
can represent system nonlinearities using nonlinear differ-
ential equations or using lag functions.

[63] Consider the direct representation of nonlinearities
in any system component using nonlinear differential equa-
tions (conceptualized as reservoirs with nonlinear discharge
relationships), as carried out here and in similar conceptual
models such as FUSE [Clark et al., 2008] and PDM [Moore
and Clarke, 1981]. In our opinion, this formalism may be
better suited to hydrologists, both in the process of model
building based on independent field insights (e.g., through
the choice of components that more closely resemble the
perception of physical processes by hydrologists and exper-
imentalists) and in the process of model interpretation.
Relevant considerations here are the incorporation of inde-
pendently determined storage-discharge relationships (e.g.,
using recession analysis [Lamb and Beven, 1997; Rupp and
Woods, 2008; Kirchner, 2009; Clark et al., 2009]) and the
generality of the framework to accommodate hydrological
hypotheses where spatial variability is represented using
systems of coupled nonlinear PDEs. Note that while nonlin-
ear DE models do not require time-varying parameters to
represent system nonlinearities, stochastic parameter varia-
tion may still be exploited to represent structural uncertainty
(e.g., such as that due to lumping [Kuczera et al., 2006]).
The combination of DBM-type model structure identification
techniques (e.g., Dominant Mode Analysis [Young and
Ratto, 2009]) and Bayesian-type techniques for incorporating
independent insights into nonlinear ODE and PDE models
could represent a major step forward in hydrological model-
ing. Although it is a considerable challenge, we are seeing

useful progress in this broad direction [e.g., Bulygina and
Gupta, 2009].

[64] Finally, we stress that the focus of this paper is not
on a particular computer code or on software design aspects.
Rather, the focus is on the conceptual elements supporting
controlled flexibility in hydrological models and on explor-
ing their potential to improve hypothesis testing over a
diverse range of environmental conditions. With suitable
modifications, existing modular hydrological software may
be extended to implement structures such as those applied
in the companion paper and other model hypotheses. This
is, indeed, the key appeal of a well-designed ‘‘plug-and-
play’’ modular framework and software [e.g., Leavesley
et al., 2002; Pomeroy et al., 2007; Clark et al., 2008].

4.2. The Challenge of ‘‘Uniqueness of Place’’
[65] The concept of ‘‘uniqueness of place’’ alludes to the

diversity of nature and the consequent difficulty of formulat-
ing general hydrological models [e.g., Beven, 2000]. This
concept in itself has generated debates, e.g., the exchange
between Beven and Pappenberger and Abbot et al. [Beven
and Pappenberger, 2003], where Abbot et al. challenged
‘‘uniqueness of place’’ as an artifact of the crudeness of
model representations, such as the lumping of distinctly dif-
ferent hydraulic controls such as flood plains, barriers, etc.
We agree that knowledge of the heterogeneities within a
catchment could support models based on independently
derived physical laws (which, as vividly pointed out by
Abbott et al., are equally valid in central Africa as on the
North Pole). However, it is not clear whether sufficiently
accurate and precise distributed information, especially for
the subsurface of a catchment, can become feasibly and rou-
tinely available in the foreseeable future [e.g., Beven, 2000;
Kirchner, 2006]. Hence, ‘‘uniqueness of place’’ could be
viewed as arising when the current lack of reliable prior
parameterization data and current limitations in process rep-
resentation are ‘‘handled’’ by formulating lumped conceptual
models directly at the catchment scale. In other words, appa-
rent ‘‘uniqueness of place’’ could be the price of the apparent
‘‘simplicity’’ of lumped models. Yet catchment-scale behav-
ior could also be simpler than suggested purely by subscale
complexities [e.g., McDonnell et al., 2007; Savenije, 2009;
Sivapalan, 2009]. In either case, we believe the extent of
resulting ‘‘uniqueness’’ and/or ‘‘generality’’ is amenable to
careful quantitative analysis and is far from a theoretical or
practical impasse (see Sivapalan [2009] for examples).

[66] The community response to the challenge of ‘‘catch-
ment uniqueness’’ has taken several forms. For example, a
focus on specific ‘‘idiosyncrasies’’ of individual catchments
has resulted in a largely ad hoc development of a plethora of
fixed structure models differing uncontrollably in many dis-
tinct respects such as level of process conceptualization, spa-
tial discretization, implementation details, etc. [McDonnell
and Woods, 2004]. Many models with alternative conceptu-
alizations have also been applied to the same areas (e.g., see
section 4.4.1 in the companion paper [Kavetski and Fenicia,
2011] for a brief review of models previously developed for
the Maimai area). As pointed out by McDonnell and Woods
[2004], little has been done to compare and generalize these
findings and use them to explain the behavior of different
basins and to provide reliable practical guidelines for hydro-
logical model development based on process understanding.
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A flexible model framework can help organize insights from
multiple existing models.

[67] Another approach to the catchment diversity prob-
lem has been the ongoing search for good ‘‘compromise’’
models, e.g., the multicatchment studies used to derive the
GR4J model [e.g., Edijatno and Michel, 1989; Edijatno
et al., 1999; Perrin et al., 2003; Le Moine et al., 2007]. In
these studies, the comparison was carried out between sev-
eral fixed model structures applied to many different catch-
ments. This may simplify application in operational
purposes but, in our opinion, is not the most effective strat-
egy for elucidating differences and similarities of catch-
ments. Instead of comparing the errors of a fixed structure
in different catchments, it could be equally or more insight-
ful to examine differences between models that provide a
good description of these basins. To avoid either masking
or exaggerating intercatchment differences, such analysis
requires rigorously accounting for data uncertainty [e.g.,
Renard et al., 2010] and scrutinizing each individual appli-
cation using multiple diagnostics [e.g., Gupta et al., 2008].
Unfortunately, as critiqued by Pappenberger and Beven
[2006], recognition of uncertainties and their interactions
with model development and scrutiny remains far from
established and routinely used in environmental research,
let alone practice. Indeed, previously reported findings and
this study both suggest that fixed structure applications
would be unlikely to pass a stringent degree of scrutiny.
For example, large multicatchment studies [e.g., Perrin
et al., 2001; Le Moine et al., 2007] by necessity relied on
quite limited performance measures, most often the Nash-
Sutcliffe index applied to streamflow series alone, i.e.,
omitting more robust uncertainty analysis and cross valida-
tion using different data types. Even the range of Nash-
Sutcliffe performance values reported in applications of a
single fixed model to multiple basins is often discouraging
(e.g., Perrin et al. [2001] report ranges from 0.0 to 0.9).

[68] On the other hand, previous analyses of different
models in different basins have offered limited insights in
terms of process understanding (e.g., see the critique by
Dunn et al. [2008]). In particular, intercomparison studies
such as MOPEX [Duan et al., 2006] have not found a sin-
gle ‘‘best’’ model structure that outperformed competing
alternatives under all conditions and have been inconclu-
sive in examining why this happens, how to account for it,
and what can be learned in terms of process representation
(but note that their primary objective was to determine
strategies for a priori parameter estimation, rather than
diagnose intermodel and intercatchment differences). As
argued by Clark et al. [2011b], the lack of reliable generaliz-
able insights is, at least partially, a consequence of multiple
uncontrolled differences in the model structure (including
both process representation and numerical implementation),
objective function, and calibration algorithms, which make
it impossible to unambiguously disaggregate the influence of
these distinct factors.

[69] The recent study of Krueger et al. [2010] provided
important insights into model hypothesis testing using the
generalized likelihood uncertainty estimation (GLUE)
method. Given its focus on small areas (six fields of about
100 m2 in the Rowden Experimental Research Platform,
United Kingdom), the comparison focused on a single-
bucket model where alternative runoff and base flow

components were evaluated. This yields important insights
into plot-scale variability, yet these insights do not seem im-
mediately transferable to much larger catchments, to catch-
ments with different climatology, or to catchment with
different geomorphology.

[70] It is clear that rigorously understanding and quantify-
ing ‘‘uniqueness of place’’ is a difficult task. However, we
anticipate that comparison studies exploiting advances in
data collection as well as more robust and informative mod-
eling and analysis tools are likely to bring progress in this
respect. The case study in the companion paper suggests
that depending on their specific characteristics, different
catchments may require different conceptual model repre-
sentations. More importantly, it indicates a likely connection
between catchment-scale properties and appropriate model
structure. While further research is clearly needed, flexible
frameworks combined with a fieldwork-based understanding
of processes may provide a more systematic basis for com-
paring distinct hydrological model hypotheses for distinct
types of catchment systems.

5. Conclusions
[71] In this paper, we propose a flexible model frame-

work for conceptual hydrological modeling to explore impor-
tant contemporary challenges of catchment-scale hydrology.
Within this framework, model structures are hypothesized
and constructed using generic components such as reservoirs
and lag functions, assembled (connected) into a coupled sys-
tem model using junctions and fluxes, and parameterized
using constitutive functions relating internal states and fluxes.

[72] Importantly, all model components are built with
attention toward important mathematical aspects of model
design, including the use of robust numerical approxima-
tions and numerically smooth constitutive functions (even
when representing threshold behavior). This prevents
avoidable numerical artifacts from corrupting the model
equations and obscuring the model analysis, interpretation,
and predictive use.

[73] The flexible framework proposed here aims to
organize and systematize the fragmented field of concep-
tual modeling and provides a platform for more systematic
and robust hypothesis testing. In addition to their ability to
reproduce many existing models within a single mathe-
matically consistent and robust framework, a flexible
framework can be used to generate a large variety of alter-
native hypotheses describing different catchment functions
and their connectivities within the overall system architec-
ture. Importantly, by operating within a single framework,
hypothesis testing can proceed unobscured by uncontrolled
and/or unaccounted differences in overall model philoso-
phy and/or component implementation and software, all of
which can arise when simply combining together disparate
and separately developed process modules. In more prag-
matic applications, the flexibility of the framework permits
tailoring, in a controlled way, specific model configurations
to specific modeling contexts (e.g., specific catchments,
specific data availability, etc.).

[74] We stress that the generation and testing of multiple
model alternatives should be carefully controlled. For
example, while it is reasonable to hypothesize that catch-
ments with different hydrological regimes may require
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different model structures, it is equally important to avoid
spuriously ‘‘overfitting’’ a model structure. In this respect,
the application of a flexible modeling framework is subject
to the same advantages and limitations with respect to justi-
fiable complexity as any other modeling endeavor.

[75] The fixed model structure, on the other hand, may
be advantageous in many operational contexts, in particu-
lar, when there are insufficient time and/or human resour-
ces to set up and trial multiple model structures. Yet even
for proponents of fixed model structures, a flexible frame-
work offers a much more systematic platform for the
ongoing model comparison and refinement needed for
improving a single fixed model. Indeed, essentially regard-
less of their research or operational aims and philosophical
motivation, large-scale multimodel and multicatchment stud-
ies benefit from a controlled way of trialing different com-
peting hypotheses and representations and improving them
as new data and independent insights become available.

[76] Flexible modeling frameworks are relatively new in
catchment-scale hydrology, and their advantages and limi-
tations remain to be investigated in more comprehensive
applications. As argued here and in the companion paper,
they hold significant promise for addressing important con-
temporary challenges, including incorporating fieldwork
insights as part of ongoing dialogue between modelers and
experimentalists, exploring potential theoretical relation-
ships between catchment properties, climatology, and con-
ceptual model structure and complexity, more stringently
examining the concept of ‘‘uniqueness of place,’’ and pur-
suing more unified theories of catchment function at the
catchment scale.
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