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Preface 

Extreme value theory is unique as a statistical discipline in that it develops 
techniques and models for describing the unusual rather than the usual. As 
an abstract study of random phenomena, the subject can be traced back 
to the early part of the 20th century. It was not until the 1950's that the 
methodology was proposed in any serious way for the modeling of genuine 
physical phenomena. It is no coincidence that early applications of extreme 
value models were primarily in the field of civil engineering: engineers had 
always been required to design their structures so that they would with
stand the forces that might reasonably be expected to impact upon them. 
Extreme value theory provided a framework in which an estimate of antic
ipated forces could be made using historical data. 

By definition, extreme values are scarce, meaning that estimates are of
ten required for levels of a process that are much greater than have already 
been observed. This implies an extrapolation from observed levels to un
observed levels, and extreme value theory provides a class of models to 
enable such extrapolation. In lieu of an empirical or physical basis, asymp
totic argument is used to generate the extreme value models. It is easy 
to be cynical about this strategy, arguing that extrapolation of models to 
unseen levels requires a leap of faith, even if the models have an underly
ing asymptotic rationale. There is no simple defense against this criticism, 
except to say that applications demand extrapolation, and that it is bet
ter to use techniques that have a rationale of some sort. This argument is 
well understood and, notwithstanding objections to the general principle 
of extrapolation, there are no serious competitor models to those provided 
by extreme value theory. But there is less common agreement about the 
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viii Preface 

statistical methodology with which to infer such models. In this book we 
adopt a likelihood-based approach, arguing that this affords a framework 
in which models can be adapted to the types of non-homogeneous patterns 
of extreme value variation observed in genuine datasets. Other advantages 
include the ease with which all relevant information can be incorporated 
into an inference and the facility to quantify uncertainties in estimation. 

There are many excellent texts on extreme value theory, covering both 
probabilistic and statistical aspects. Among these, Gumbel's Statistics of 
Extremes was pivotal in promoting extreme value theory as a tool for mod
eling the extremal behavior of observed physical processes. Of different 
emphasis, but similar impact, is Extremes and Related Properties of Ran
dom Sequences and Processes by Leadbetter, Lindgren and Rootzen. Their 
arguments greatly advanced the applicability of extreme value techniques in 
two fundamental ways: first, by the relaxation of classical arguments from 
independent variables to stationary sequences; second, by the development 
of broader characterizations of extremal behavior than had previously been 
given. The aim of the present text is to complement the earlier works with 
a contemporary statistical view of the discipline. 

This book is intended for both statisticians and non-statisticians alike. It 
is hoped, in particular; that it will appeal to practitioners of extreme value 
modeling with limited statistical expertise. The mathematical level is ele
mentary, and detailed mathematical proof is usually sacrificed in favor of 
heuristic argument. Rather more attention is paid to statistical detail, and 
many examples are provided by way of illustration. All the computations 
were carried out using the S-PLUS statistical software program, and corre
sponding datasets and functions are available via the internet as explained 
in the Appendix. 

A wide variety of examples of extreme value problems and datasets are 
described in Chapter 1. These are drawn from different fields - oceanog
raphy, wind engineering and finance, amongst others - and are used to 
illustrate the various modeling procedures in subsequent chapters. Chap
ter 2 gives a brief introduction to general techniques of statistical model
ing. This chapter could be skipped by readers with a reasonable statistical 
knowledge. 

The heart of the book is contained in Chapters 3 to 8. These chapters in
clude the classical block maxima models for extremes, threshold exceedance 
models, extensions to stationary and non-stationary sequences, a point pro
cess modeling framework and multivariate extreme value models. Chapter 
9 provides a brief introduction to a number of more advanced topics, in
cluding Bayesian inference and spatial extremes. 

The book has developed from introductory courses on extremes given 
at the Universities of Lancaster, Bristol, Padova and Lausanne (EPFL). I 
wrote the first draft of the book while on sabbatical at the University of 
Padova, and would like to thank especially Paola Bortot for sharing many 
happy days with me and for inspiring me to work on the book. Thanks 
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are also due to many other people. First and foremost, Jonathan Tawn, for 
teaching me extreme value theory and for being patient with me when I 
was slow to learn. I'd like also to acknowledge Richard Smith, both for his 
direct encouragement, and also for initiating an approach to extreme value 
modeling that emphasizes the role of contemporary statistical techniques. 
It is largely the fruits of this methodology that I have tried to set out in 
this book. Both Richard and Jonathan have also been generous in allowing 
me to use their own datasets in this book: the data of Examples 1.1, 1.3 
and 1.4 were provided by Jonathan; those of Examples 1.2, 1. 7 and 1.5 
by Richard. I'm grateful also to Jan Heffernan for developing some of the 
S-PLUS functions used in Chapter 8. The list of people who have helped 
me in less tangible ways is too long to include here, but I should mention in 
particular my former colleagues from Lancaster University- Peter Diggle, 
Mandy Chetwynd, Joe Whittaker and Julia Kelsall amongst others- my 
former Ph.D. students- Elwyn Powell, Ed Casson, Roberto Iannaccone and 
Francesco Pauli - and my long-term friends - Katherine Fielding and Dave 
Walshaw. Finally, the book was carefully read by Anthony Davison, whose 
very detailed comments have enabled me (hopefully) to improve beyond 
recognition the version he was subjected to. 

Stuart Coles Bristol 
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1 
Introduction 

1.1 Basic Concepts 

Extreme value theory has emerged as one of the most important statis
tical disciplines for the applied sciences over the last 50 years. Extreme 
value techniques are also becoming widely used in many other disciplines. 
For example: for portfolio adjustment in the insurance industry; for risk 
assessment on financial markets; and for traffic prediction in telecommuni
cations. At the time of writing, in the past twelve months alone, applica
tions of extreme value modeling have been published in the fields of alloy 
strength prediction (Tryon & Cruse, 2000); ocean wave modeling (Dawson, 
2000); memory cell failure (McNulty et al., 2000); wind engineering (Har
ris, 2001); management strategy (Dahan & Mendelson, 2001); biomedical 
data processing (Roberts, 2000); thermodynamics of earthquakes (Lavenda 
& Cipollone, 2000); assessment of meteorological change (Thompson et al., 
2001); non-linear beam vibrations (Dunne & Ghanbari, 2001); and food 
science (Kawas & Moreira, 2001). 

The distinguishing feature of an extreme value analysis is the objective to 
quantify the stochastic behavior of a process at unusually large - or small 
- levels. In particular, extreme value analyses usually require estimation 
of the probability of events that are more extreme than any that have 
already been observed. By way of example, suppose that, as part of its 
design criteria for coastal defense, a sea-wall is required to protect against 
all sea-levels that it is likely to experience within its projected life span of, 
say, 100 years. Local data on sea-levels might be available, but for a much 
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2 1. Introduction 

shorter period, of say 10 years. The challenge is to estimate what sea-levels 
might occur over the next 100 years given the 10-year history. Extreme 
value theory provides a framework that enables extrapolations of this type. 

In the absence of empirical or physical guidelines with which to formu
late an extrapolation rule, standard models are derived from asymptotic 
argument. In the simplest case this works as follows. Suppose we denote 
by X1, X2, ... the sequence of hourly sea-levels. Then 

(1.1) 

is the maximum sea-level over an "n-observation"period. If the exact sta
tistical behavior of the Xi were known, the corresponding behavior of Mn 
could be calculated exactly. In practice the behavior of the Xi is unknown, 
making exact calculations on Mn impossible. However, under suitable as
sumptions, the approximate behavior of Mn for large values of n follows 
from detailed limit arguments by letting n -+ oo, leading to a family of 
models that can be calibrated by the observed values of Mn. This approach 
might be termed the extreme value paradigm, since it comprises a prin
ciple for model extrapolation based on the implementation of mathematical 
limits as finite-level approximations. It is easy to object to this procedure 
on the grounds that, even with the support of asymptotic argument, there 
is an implicit assumption that the underlying stochastic mechanism of the 
process being modeled is sufficiently smooth to enable extrapolation to un
observed levels. However, no more credible alternative has been proposed 
to date. 

From the outset it is important to be aware of the limitations implied by 
adoption of the extreme value paradigm. First, the models are developed 
using asymptotic arguments, and care is needed in treating them as exact 
results for finite samples. Second, the models themselves are derived un
der idealized circumstances, which may not be exact (or even reasonable) 
for a process under study. Third, the models may lead to a wastage of 
information when implemented in practice. To make this last point clear, 
a common way of recording extreme data is to store only the maximum 
observed value over a specified period, perhaps the annual maximum. This 
corresponds to (1.1) in which n is the number of observations in a year. 
Assuming this value of n is large enough, the asymptotic arguments lead 
to a model that describes the variations in annual maxima from one year 
to another, and which can be fitted to the observed annual maxima. But 
in any particular year, additional extreme events may have occurred that 
are possibly more extreme than the maximum in other years. Because such 
data are not the annual maximum in the year they arose, they are excluded 
from the analysis. 

All of these points emphasize the importance of statistical implementa
tion as a complement to the development of appropriate models for ex
tremes. Four issues, in particular, need to be considered. 
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1. Method of estimation 
This is the means by which the unknown parameters of a model are 
inferred on the basis of historical data. Though many different ap
proaches have been proposed for the estimation of extreme value mod
els, we take a singular view and restrict attention to techniques based 
on the likelihood function. All estimation techniques have their pros 
and cons, but likelihood-based techniques are unique in their adapt
ability to model-change. That is, although the estimating equations 
change if a model is modified, the underlying methodology is essen
tially unchanged. Mostly, we adopt maximum likelihood, which has 
a convenient set of "off-the-shelf"large-sample inference properties. 
In Chapter 9 we also discuss briefly the use of Bayesian inferential 
techniques. 

2. Quantification of uncertainty 
In any statistical analysis, estimates are "best guesses" at the truth 
given the available historical information. It is implicit that other 
data, equally representative of the true process being studied, would 
have led to different estimates. Consequently, it is important to com
plement the estimate of a model with measures of uncertainty due 
to sampling variability. This is especially so in extreme value mod
eling, where quite small model changes can be greatly magnified on 
extrapolation. Despite this, the measurement of uncertainty has often 
been ignored in extreme value applications. There is some irony in 
this, as an analysis of extreme values is likely to have more sources 
of uncertainty than most other statistical analyses. Furthermore, es
timation of the uncertainty of extreme levels of a process can be as 
important a design parameter as an estimate of the level itself. We 
will see that, by basing inference on the likelihood function, estimates 
of uncertainty are easily obtained. 

3. Model diagnostics 
The only justification for extrapolating an extreme value model is the 
asymptotic basis on which it is derived. However, if a model is found 
to perform badly in terms of its representation for the extreme values 
that have already been observed, there is little hope of it working 
well in extrapolation. For each extreme value model introduced in 
subsequent chapters, we describe several methods for assessing the 
goodness-of-fit. 

4. Maximal use of information 
Though uncertainty is inherent in any statistical model, such uncer
tainties can be reduced by judicious choices of model and inference, 
and by the utilization of all sources of information. In an extreme 
value context, possibilities include the use of alternative models that 
exploit more data than just block maxima; the use of covariate in-
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formation; the construction of multivariate models; and the incor
poration of additional sources of knowledge or information into an 
analysis. Each of these approaches is discussed in subsequent chap
ters. 

1.2 Examples 
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FIGURE 1.1. Annual maximum sea levels at Port Pirie, South Australia. 

Example 1.1 Fig. 1.1 shows the annual maximum sea-levels recorded at 
Port Pirie, a location just north of Adelaide, South Australia, over the 
period 1923-1987. From such data it may be necessary to obtain an esti
mate of the maximum sea-level that is likely to occur in the region over 
the next 100 or 1000 years. This raises an important point - how can we 
estimate what levels may occur in the next 1000 years without knowing, for 
example, what climate changes might occur? There is no strong evidence 
in the figure that the pattern of variation in sea-levels has changed over the 
observation period, but such stability may not persist in the future. This 
caveat is important: although extreme value theory has indulged itself with 
terminology such as the "1000-year return level", corresponding to the level 
that is expected to be exceeded exactly once in the next 1000 years, this is 
only meaningful under the assumption of stability (or stationarity) in the 
prevailing process. It is more realistic to talk in terms of levels that, under 
current conditions, will occur in a given year with low probability. ~ 
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Example 1.2 The arguments used for the modeling of extremely large 
events work equally well for extremely small events, leading to another 
area of application: reliability modeling. At least conceptually, it is often 
reasonable to think of a large system as comprised of many smaller com
ponents, such that the overall system breaks down if any of the individual 
components fails. This is the so-called weakest link principle, since the 
strength of the whole system is equal to that of the weakest component. As 
with maxima, limiting arguments can be adopted to obtain an approxima
tion to the statistical behavior of this weakest link, providing a plausible 
model for the statistical properties of system failure. 

0 

0.0 0.5 1.0 1.5 2.0 2.5 

Brealdng Strength 

FIGURE 1.2. Histogram of breaking strengths of glass fibers: points indicate 
actual values. 

Fig. 1.2 displays data on breaking strengths of 63 glass fibers of length 
1.5 em, recorded under experimental conditions. The data are reported by 
Smith & Naylor (1987). The analogy of a weakest link is not perfect in this 
situation, but it is not unrealistic to consider a glass fiber as a "bundle" of 
many smaller fibers, such that if any of the small fibers breaks the entire 
fiber breaks. & 

Example 1.3 Like in Fig. 1.1, the data in Fig. 1.3 correspond to annual 
maximum sea-levels, but in this case recorded at Fremantle, near Perth, 
Western Australia. A careful look at these data suggests that the pattern of 
variation has not remained constant over the observation period. There is 
a discernible increase in the data through time, though the increase seems 
slighter in more recent years. 
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FIGURE 1.3. Annual maximum sea levels at Fremantle, Western Australia . 
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FIGURE 1.4. Annual maximum sea level at Fremantle, Western Australia, versus 
mean annual value of Southern Oscillation Index. 
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Identifying such variations in extreme value behavior may be the primary 
objective of an analysis- just a slight increase in extreme sea-levels could 
have significant impact on the safety of coastal flood defenses, for example. 
But even if patterns in variation are not of great interest, to ignore them and 
to treat the data as if they were time-homogeneous could lead to misleading 
results and conclusions. 

Variations in extreme value behavior can also be caused by other phe
nomena. For example, pollution levels are likely to be less extreme dur
ing periods of high winds, which have a dispersive effect. In the sea-level 
context, particularly in the southern oceans, extreme sea-levels could be 
unusually extreme during periods when the El Nino effect is active. As a 
partial exploration of this phenomenon, Fig. 1.4 shows a plot of the annual 
maximum sea-level data for Fremantle against the annual mean value of 
the Southern Oscillation Index (SOl), which is a proxy for meteorological 
volatility due to effects such as El Nino. It seems from Fig. 1.4 that the 
annual maximum sea-levels are generally greatest when the value of SOl 
is high. This may be due to the time trend in the data - annual maxi
mum sea-levels increase with SOl, which itself is increasing through time 
- but it is also possible that the SOl explains some of the variation in 
annual maximum sea-levels after allowance for the time variation in the 
process. Detailed statistical modeling is needed to disentangle these possi
ble effects. A 
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FIGURE 1.5. Fastest annual women's 1500 meters race times. 
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Example 1.4 A more recreational application of extreme value theory 
is to the modeling of sports data. Fig. 1.5 shows the fastest annual race 
times for the women's 1500 meter event over the period 1972-1992, which 
comprise a subset of the data analyzed using extreme value techniques by 
Robinson & Tawn (1995). By arguing that the fastest race time in a year 
corresponds to the fastest race time performed by many athletes within 
that period, the same argument as applied to the breaking strengths of 
glass fibers suggests that asymptotic extreme value models might be an 
appropriate way to model data of this type. Because of improvements in 
training techniques, race times would be expected to decrease through time, 
and this is borne out by Fig. 1.5. So, like for the sea-level data of Example 
1.3, the model structure should describe not just the pattern of variation of 
fastest race times within any given year, but also the systematic variation 
across years. A 

Example 1.5 As discussed in Section 1.1, it is vital to exploit as much 
relevant information as is available in an extreme value analysis. A direct 
approach is to model more of the observed extremes than the annual max
ima. For some processes, not just the largest observation in a year, but 
perhaps the largest 5 or 10 observations, are recorded. These are termed 
the largest 5 (or 10) order statistics. 
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FIGURE 1.6. Largest 10 annual sea-levels in Venice. 

As an example, Fig. 1.6 displays the 10 largest sea-levels each year in 
Venice for the period 1931-1981, except for the year 1935 in which only 
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the 6 largest measurements are available. The data were first studied using 
contemporary extreme value techniques by Smith (1986). The additional 
information that is available - relative to the annual maxima only - can 
be used to improve estimation of the variation within each year, as well as 
the apparent variation through time. & 
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FIGURE 1.7. Daily rainfall accumulations. 

Example 1.6 Methods for modeling either block maxima or the largest 
order statistics within blocks are of historical interest because of the way 
extreme value theory has developed as a scientific discipline. But if a com
plete time series of observations is available, then it is almost certainly more 
efficient to use alternative representations of extremes that enable more of 
the available information to contribute to the analysis. 

Fig. 1. 7 shows a time series of daily rainfall accumulations at a location in 
south-west England recorded over the period 1914-1962. These data form 
part of a study made by Coles & Tawn (1996b). If the appropriate statistical 
model for such data were known, the complete dataset could be used to 
estimate a model which might be extrapolated to high levels of the process. 
In the absence of such knowledge, we again use an asymptotic model as 
an approximation. But rather than artificially blocking the data into years, 
and extracting the maximum from each block, it is more efficient to define 
an event as being extreme if it falls above some high level, perhaps a daily 
rainfall of 30 mm in this case. This requires a different model development 
- extremes are now those observations that exceed a high threshold - so the 
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argument focuses on approximations for high thresholds, rather than long 
blocks. Efficiency is improved because all observations that are extreme in 
the sense of exceeding a high threshold can be used in model fitting. A 

.. 
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FIGURE 1.8. Negated Wooster daily minimum temperatures. 

Example 1. 7 A simplifying aspect of the rainfall data example is the ab
sence of any strong pattern of variation, either within a particular year, or 
from one year to another. Such series are said to be stationary. Though de
tailed analysis is likely to suggest that such an assumption is not completely 
accurate for the rainfall data, the near-stationarity makes the modeling of 
such data relatively straightforward. 

Most environmental datasets have a more complex structure than this. In 
particular, time-dependent variation and short-term clustering are typical 
phenomena for extreme value data, and it is crucial that both are properly 
accounted for when making inferences. For example, Fig. 1.8 shows a 5-year 
series of daily minimum temperatures recorded in Wooster, Ohio. Extremes 
of a longer version of this series were studied by Smith et al. (1997) and 
Coles et al. (1994). The data are plotted as degrees Fahrenheit below zero, 
so that large positive observations correspond to extreme cold conditions. 
There is a strong annual cycle in the data, so it would be unreasonable to 
use models that assume a time-constant random variation of the process. 
In particular, an exceptionally cold winter day has quite different charac
teristics from an exceptionally cold summer day. A tendency for extreme 
values to occur close to one another is also apparent in Fig. 1.8. A 
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Example 1.8 Extreme value techniques are becoming increasingly popu
lar in financial applications. This is not surprising: financial solubility of 
an investment is likely to be determined by extreme changes in market 
conditions rather than typical changes. The complex stochastic structure 
of financial markets does mean, however, that naive application of extreme 
value techniques can be misleading. 

~r-------------~ 
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FIGURE 1.9. Left panel: daily closing prices of the Dow Jones Index. Right panel: 
log-daily returns of the Dow Jones Index. 

Fig. 1.9 shows the daily closing prices of the Dow Jones Index over a 
5-year period. Evidently, the level of the process has changed dramatically 
over the observed period, and issues about extremes of daily behavior are 
swamped by long-term time variation in the series. Like the Wooster tem
perature data, the process is non-stationary, but now in a way that is not 
simply explained by trends or seasonal cycles. Many empirical studies on 
series of this type have indicated that an approximation to stationarity can 
be obtained by taking logarithms of ratios of successive observations- the 
so-called log-daily returns. For the Dow Jones Index data this series is also 
plotted in Fig. 1.9; it suggests a reasonably successful transformation to 
stationarity. Analysis of the extreme value properties of such transformed 
series can provide financial analysts with key market information. A 

Example 1.9 Another way to incorporate extra information in an extreme 
value analysis is to model more than one series simultaneously. For example, 
Fig. 1.10 shows the corresponding annual maximum wind speeds over the 
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FIGURE 1.10. Annual maximum wind speeds at Albany (NY) and Hartford 
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FIGURE 1.11. Concurrent wave and surge heights. 
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period 1944-1983 at two locations in the United States: Albany, New York 
and Hartford, Connecticut. From the figure there appears to be a tendency 
for a high annual maximum wind speed at one location to be associated 
with a correspondingly high value at the other. That is, the extreme val
ues are dependent, presumably because meteorological events occur on a 
spatial scale that includes both locations. Because of the dependence, infor
mation from either location may be useful in estimating the extreme value 
behavior at the other location. Furthermore, quantifying the dependence 
across locations may itself be informative: extreme wind speeds occurring 
over a large region can have more serious implications for risk assessment 
and environmental protection than localized extreme events. • 

Example 1.10 Restriction to annual maximum data is also a wasteful 
approach to extreme value modeling in a multivariate setting if complete 
data on each variable are available. For example, Fig. 1.11 shows concurrent 
measurements of two oceanographic variables - wave and surge height - at 
a single location off south-west England. The figure suggests a tendency for 
extremes of one variable to coincide with extremes of the other. Identifying 
such a phenomenon is likely to be important, as the impact of an event that 
is simultaneously extreme may be much greater than if extremes of either 
component occur in isolation. Multivariate extreme value models enable 
the calculation of the probability of simultaneously extreme events, though 
this requires an asymptotic approximation for the dependence at extreme 
levels, as well as the extreme value behavior of each individual series. • 

Example 1.11 As well as having a complex structure through time, finan
cial series may also be dependent with comparable series. Fig. 1.12 shows 
series of the log-daily returns of two exchange rates: UK sterling against 
both the US dollar and the Canadian dollar. Careful inspection of the series 
suggests that they vary in harmony with each other, a phenomenon that 
is due to synchronization of the US and Canadian financial markets. The 
effect is seen more clearly in Fig. 1.13, which shows concurrent values of 
one series against the other. 

Harmonization across financial markets is a major issue for risk analysts, 
particularly when risk or investment is spread across various commodities 
within a single portfolio. To understand the overall level of risk entailed 
by a specific portfolio, questions about the extent of dependence between 
extremes of a number of series become unavoidable. • 

1.3 Structure of the Book 

The aim of this book is not to give a complete overview of all approaches 
to extreme value analysis, but to describe and illustrate techniques for a 
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FIGURE 1.12. Log-daily returns of exchange rates. Top panel: UK sterling/US 
dollar exchange rate. Bottom panel: UK sterling/Canadian dollar exchange rate. 
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specific approach that exploits the opportunities made available by contem
porary techniques in statistical modeling. A general overview of statistical 
modeling techniques is described in Chapter 2. This chapter is also not 
comprehensive, but limited to results and procedures that are required in 
subsequent chapters. In particular, techniques of modeling via the likeli
hood function are discussed in some detail. Readers with statistical ex
pertise might prefer to skip this chapter, and refer back to it only when 
necessary. 

Subsequent chapters return to various specific themes of extreme value 
modeling. In order to keep the mathematical level of the book reason
ably elementary, some detail in model development is sacrificed in favor 
of heuristics. Rather more attention is given to the statistical modeling 
issues that arise in the implementation of the models, using the examples 
discussed in Section 1.2 to illustrate the various techniques. 

Chapter 3 deals with the classical theory of extremes. Primarily this 
concerns the development of models for block maxima (or minima) data, of 
the type discussed in Examples 1.1 and 1.2. The generalization that enables 
the modeling of the largest order statistics within blocks, as described in 
the context of the Venice sea-level data in Example 1.5, is also discussed. 

Chapter 4 develops threshold excess models, which are appropriate for 
modeling the extremes of data when a complete series is available, as in Ex
amples 1.6 and 1.7. Again, a heuristic argument is presented to justify the 
model, with an emphasis on procedures for statistical modeling in practice. 

The model development in Chapters 3 and 4 assumes an underlying series 
of independent and identically distributed random variables. This makes 
the arguments simpler, but the assumption is unrealistic for most prac
tical applications. Chapters 5 and 6 discuss the modeling of extremes of 
processes that are more plausible representations for genuine data series. 
Chapter 5 deals with stationary sequences - series that may be dependent 
through time, but have a homogeneity of stochastic behavior. In this case, 
though we give only brief details, broadly applicable models comparable to 
those of Chapters 3 and 4 are obtained. Chapter 6 deals with non-stationary 
processes - processes whose stochastic behavior changes through time, per
haps due to trends or seasonality. Several of the examples of Section 1.2 
are evidently non-stationary: the sea-level data of Example 1.3 and the 
athletics data of Example 1.4 have apparent trends, while the temperature 
data of Example 1. 7 display strong seasonality. In such cases, little can be 
derived in terms of formal probability results, and it is more fruitful to 
exploit statistical modeling techniques that allow for - and quantify - the 
non-homogeneity in extremal behavior. 

Chapter 7 gives a unifying characterization of the extremes of processes 
that encompasses each of the models derived in Chapters 3 and 4, and 
which also provides a more flexible framework for modeling extremes of 
non-stationary processes like the temperature series of Example 1. 7. This 
characterization is based on the theory of point processes. A brief intro-
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duction to this theory is given, though the main emphasis is on practical 
implementation for the modeling of extremes. 

Chapter 8 describes the basic theory of multivariate extremes ( cf. Ex
amples 1.9 and 1.10). The development given follows the treatment of uni
variate extremes: we start with block maxima, generalize to a threshold 
excess model and describe a point process representation that encompasses 
each of the other models. We also discuss the issue of asymptotic inde
pendence, which is a condition whose theoretical properties have been well 
understood, but which has only recently been recognized as an important 
consideration for statistical modeling. 

Through Chapters 3 to 8 we focus only on mainstream issues and tech
niques for modeling extreme values. Inevitably, this means that very many 
issues which may be important for specific applications are omitted. As a 
partial compensation for this, Chapter 9 comprises a brief introduction to 
a number of other topics: Bayesian inference, Markov chain models and 
spatial extremes. 

All of the computations in this book were carried out in the statisti
cal programming languageS-PLUS. Except for the specialized techniques 
required for Chapter 9, functions to carry out the examples discussed 
throughout the book are available for download over the internet. Details 
are given in the Appendix, together with a description of the available 
functions and a worked example. 

1.4 Further Reading 

Each subsequent chapter contains references to literature that either ex
pands on, or gives examples of, the material developed in that particu
lar chapter. However, there are a number of texts and articles that are 
more general in their scope. Leadbetter et al. (1983), Galambos (1987) and 
Resnick (1987) all provide rigorous treatments of the mathematical foun
dations of extreme value models. Galambos (1995) also gives a brief review 
of the subject's theoretical foundations. 

On the statistical side, the classic work by Gumbel (1958) is relevant for 
more than just its historical value. More recent works that offer an alter
native viewpoint from the present text are provided by Castillo (1988) and 
Reiss & Thomas (2001). The latter also includes software for carrying out a 
range of extreme value analyses. Kotz & Nadarajah (2000), like this book, 
aims to give an elementary survey of extreme value theory and practice. 
Smith (1991a) gives a brief contemporary overview of statistical techniques 
for extreme value modeling, from a similar perspective to that used in this 
book. 

A detailed treatment of the role of extreme value theory primarily for 
insurance and financial applications is given by Embrechts et al. (1998). 
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There has also been a recent explosion in the number of articles writ
ten on extreme value techniques in the financial literature. For example, 
Diebold et al. (1997}, McNeil & Frey (2000} and Longin (2000) give gen
eral overviews, while Wiggins (1992}, Koedijk & Kool (1992), Broussard & 
Booth (1998) and Ho et al. (2000) describe specific applications. 

Finally, Tiago de Oliveira (1984b) and Galambos et al. (1994) are com
pendiums of conference proceedings that contain a variety of articles ad
dressing specific theoretical and methodological aspects of extreme value 
theory. 



2 
Basics of Statistical Modeling 

2.1 Introduction 

It is easiest to introduce concepts by way of example. Suppose we are inter
ested in studying variations from day to day in rainfall levels measured at a 
particular location. The sequence of observed daily rainfall levels constitute 
the data, denoted x1 , •.• Xn. On any particular day, prior to measurement, 
the rainfall level is an uncertain quantity: even with sophisticated weather 
maps, future rainfall levels cannot be predicted exactly. So, the rainfall on 
day i is a random quantity, Xi. Once measured, the value is known to be Xi· 

The distinction between lower and upper case letters is that the upper-case 
Xi represents the random quantity, whose realized value is subsequently 
measured as the lower-case Xi. Obviously, alt4ough Xi is a random quan
tity, in the sense that until measured it could take a range of different 
values, some values are more likely than others. Thus, Xi is assumed to 
have a probability distribution which attaches probabilities to the various 
values or ranges of values that Xi might take, and values that are more 
likely have a higher probability than those which are not. 

The data, x1, ••. , Xn, are a complete record of the rainfall pattern that 
actually occurred. But the role of statistics is not so much to summarize 
what has already happened, but to infer the characteristics of randomness 
in the process that generated the data. For example, the mean daily rainfall 
over the observation period might have been 3 mm, but what could we then 
conclude about the mean daily rainfall over a much longer period? Maybe 
40% of the Xi were zero, corresponding to dry days, but what is the chance 

18 
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that tomorrow will be dry? And if6 em was the largest value of the Xi, what 
conclusions might we draw about the levels of heavy rainfall that can be 
anticipated in the future? Statistics addresses these questions by regarding 
the sequence x1 , ... , Xn as realizations of the sequence of random variables 
X 1, ... , X n, and by using the data to estimate the probabilistic structure 
of these random variables. 

It is simplest if the probability distribution on each day is identical. 
Over long periods, seasonal changes in meteorological conditions are likely 
to cause a change in patterns of variation of rainfall levels, but over short 
periods an assumption of similar day-to-day behavior might be reasonable. 
In this case, assuming that each of the observed data x1 , ... , Xn derives from 
the same probability distribution, relatively straightforward techniques of 
estimation can be applied. The situation is simpler still if it can be assumed 
that the daily observations are independent, so that variations in rainfall 
level on any particular day are not influenced by knowledge of the values 
for any other days. This also may be unrealistic: the chance of a day being 
free of rain may be substantially greater if the previous few days were dry 
rather than wet. That is, the probability distribution of the Xi may be 
altered by knowledge of x1, .•. , Xi-1· 

The remainder of this chapter formalizes these ideas and develops suit
able techniques of model estimation and validation. These techniques form 
the inferential methodology that is applied to the extreme value analyses 
in subsequent chapters. 

2.2 Basic Statistical Concepts 

2.2.1 Random Variables and Their Distributions 

The basic ingredients of a statistical model are the following. First, a ran
dom variable X, which represents a quantity whose outcome is uncertain. 
The set of possible outcomes of X, denoted n, is the sample space. Sec
ond, a probability distribution, which assigns probabilities to events 
associated with X. There are two distinct possibilities to consider. A ran
dom variable X is said to be a discrete random variable if its sample 
space is discrete: n = {0, 1, 2, ... }, for example. In this case, the probabil
ity distribution is determined by the probability mass function, which 
takes the form 

f(x) = Pr{X = x}, 

for each value of x inn. Thus, f(x) is the probability that the random 
variable X takes the value x. For example, if X= "number of consecutive 
dry days", f(2) would be the probability of 2 consecutive dry days. 

Most of the random variables to which extreme value techniques are 
applied are continuous random variables: they have a sample space, 
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n, that is continuous. For example, sea-levels, wind speeds, race times and 
breaking strengths all take values on a continuous scale. Because of the con
tinuity it is not possible to assign probabilities to all possible values of the 
random variable in a meaningful way. Loosely speaking, there are simply 
too many possible values on a continuous scale. Instead, probability dis
tributions can be specified by their probability distribution function, 
defined as 

F(x) = Pr{X ~ x}, (2.1) 

for each x in n. For the usual axioms of probability to be satisfied, F must 
be a non-decreasing function of x, such that F(x-) = 0 and F(x+) = 1, 
where x_ and x+ are the lower and upper limits of n, respectively. Though 
it no longer makes sense to talk about probabilities of individual values of 
x, we can calculate from (2.1) the probabilities of X falling within intervals 
as 

Pr{a ~X~ b} = F(b)- F(a). 

If the distribution function F is differentiable, it is also useful to define 
the probability density function of X as 

dF 
f(x) = dx, 

in which case 

F(x) = /_: f(u)du 

and 

Pr{a ~X~ b} = lb f(u)du. 

It is often convenient to summarize a probability distribution by one or 
two statistics that characterize its main features. The most common are 
the expectation and variance. In the case of a continuous random variable1 

with probability density function f, the expectation is 

E(X) = In xf(x)dx, (2.2) 

and the variance is 

Var(X) = l {x- E(X)}2 f(x)dx. (2.3) 

Expectation provides a measure of location, or average value, of the dis
tribution, while the variance measures the dispersion or spread of the dis
tribution. The standard deviation is defined as the square root of the 
variance, providing a measure of variability in the same units as X. 

1 For discrete variables similar definitions can be made, replacing density functions 
with mass functions and integration with summation. 
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2.2.2 Families of Models 

In both discrete and continuous cases there are standard families of prob
ability distributions. A simple e~ample in the discrete case is the binomial 
distribution, which arises in the following way. Suppose we look at a se
quence of n independent trials, in each of which the outcome is either a 
"success" or a "failure", with a common success probability of p in each 
trial. Denoting by X the total number of successes in the n trials, from 
elementary probability arguments the probability mass function of X is 

where 

(:) = x!(n~ x)! 

is the number of different ways of choosing x distinct objects from n. In 
this case, X is said to have a binomial distribution with parameters n 
and p, denoted X"' Bin(n,p). 

Another important example is the Poisson distribution, corresponding 
to a random variable having probability mass function 

e->.>.x 
f(x) = - 1-, X E fl = {0, 1, 2, ... }, 

x. 

where the parameter>. > 0. The Poisson distribution is fundamental as a 
model for the occurrence of randomly occurring events in time: if events 
occur randomly in time at an average rate of >., and the occurrence of one 
event neither encourages nor inhibits the occurrence of another, then X, the 
number of events arising in a unit time interval, has a Poisson distribution 
with parameter >.. 

A standard example in the continuous case is the normal distribution. A 
random variable X is said to have a normal distribution with parameters 
J.l and u, denoted X"' N(J.l, u2 ), if its probability density function has the 
form 

1 { (x- J.l)2} 
f(x) = vf(27Tu2) exp - 2u2 , x E IR, 

where J.l and u > 0 are fixed parameters that equate to the expectation 
and standard deviation of X. If X"' N(J.l, u2 ), it can easily be shown that 

X-J.L 
Z = -- "'N(O, 1). 

(j 

The standardized variable Z is said to follow the standard normal dis- 1 
tribution. The distribution function of the standard normal distribution, 
conventionally denoted by ~(z), is available from standard statistical tables 
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or software packages. This enables probability calculations on any normally 
distributed random variable. For example, if X"" N(JL,a2), 

Pr{ a :::; X :::; b} = Pr { a : JL :::; z :::; b : JL } 

= ~c:JL)-~(a:JL). 

A related distribution is the chi-squared distribution. If Z1, ... , Zk are 
independent standard normal random variables, the varial?le 

X= Z~+ ... +Zi 

is said to have a chi-squared distribution with k degrees of freedom, 
denoted X "" x~. Many standard test statistics are found to have a dis
tribution that is, at least approximately, a chi-squared distribution. The 
chi-squared distribution function also requires numerical evaluation from 
standard tables or software packages. 

2.3 Multivariate Distributions 

A multivariate random variable is a vector of random variables 

Notation is made more compact by writing X= (X1, ... ,Xkf, where 
the operator T denotes transpose. Each of the components Xi is a random 
variable in its own right, but specification of the properties of X as a whole 
requires information about the influence of every variable on each of the 
others. For example, the Xi might represent different oceanographic vari
ables, all of which are large during storms. Knowledge that one component 
is large therefore increases the probability that the other components are 
large. 

Generalizing the single variable case, the joint distribution function 
of X is defined by 

where x = {x1 , ... , Xk)· When the Xi are continuous random variables, 
and provided it exists, the joint density function is given by 
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In this case 

while for any set A c JRk, 

Pr{X E A}= J · · · L f(u)du. 

The probability density functions of each of the individual Xi, termed 
marginal density functions, are obtained by integrating out the other 
components. For example, 

is the marginal probability density function of the component X 1 . Similarly, 

fxt.x2(xl,x2) = /_: · · · /_: f(xl,x2,u3, ... ,uk)duk ... du3 

is the joint marginal density function of (X1 , X2). 

In the special situation where the outcome of one random variable has 
no effect on the probability distribution of another, the variables are said 
to be independent. Formally, the variables X1 and X2 are independent if 
their joint density function factorizes, i.e. 

This definition extends in the obvious way to an arbitrary set of random 
variables: the variables xl' 0 0 0 'xk are mutually independent if 

k 

!xt, ... ,xk (x1, ... , Xk) = IT /x, (xi)· (2.4) 
i=l 

More generally, the influence of one random variable on the probability 
structure of another is characterized by the conditional density func
tion: 

In the case of independent random variables, 

but generally the conditional density function depends also on the value of 
X2. 
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Definitions (2.2) and (2.3) apply to each margin in turn to give measures 
of the location and dispersion of each marginal component. It is also useful, 
however, to summarize the extent of dependence between components; that 
is, the extent to which the components increase or decrease in harmony. 
The usual summaries are pairwise. The covariance of the variables X and 
Y, having joint density function Jx,Y, is defined by 

Cov(X, Y) = /_: /_: {x- E(X)}{y- E(Y)} Jx,y(x, y)dxdy. 

The covariance is often re-scaled to obtain a measure on a fixed interval. 
This leads to the correlation coefficient, defined by 

Corr(X Y) = Cov(X, Y) 
' JVar(X)Var(Y) 

The correlation coefficient has a similar interpretation to the covariance, 
but is such that -1 ~ Corr(X, Y) ~ 1. For independent random variables 
the correlation is zero. The converse, however, is false, as the correlation 
is a measure only of the extent to which variables are linearly associated. 
Consequently, variables may have zero correlation if their association is 
non-linear. 

For a general random vector X = (X1, ... , Xk)T, it is usual to pack 
together all of the information on variances and covariances between each 
pair of variables into a matrix, the variance-covariance matrix, defined 
as 

Uj,i 

(J· . t,J 

where Ui,i = Var(Xi) and Ui,i = Cov(Xi, Xi) for i -:f:. j. 
Like in the univariate case, there are standard families of probability 

distributions for random vectors. In particular, the multivariate analogue 
of the normal distribution is the multivariate normal distribution: the ran
dom variable X= (X1, ... Xk)T is said to follow a multivariate normal 
distribution with mean vector 1-' = (J.£1, ... , J.Lk)T and variance-covariance 
matrix :E, denoted X "'MVNk(/-', :E), if its joint density function has the 
form 

1 { 1 T -l } fx(x) = (21r)k/2 j:Ejl/2 exp -2(x -I-') :E (x-I-') , X E IRk' 

where I:EI is the determinant of :E. This definition implies that each of the 
marginal distributions is normal and that the complete joint distribution 
is determined once the marginal means and the variance-covariance matrix 
are specified. 
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2.4 Random Processes 

2.4.1 Stationary Processes 

A sequence of random variables X1 , X2, ... is said to be a (discrete time) 
random process. 2 The simplest example of a random process is a sequence 
of independent and identically distributed random variables, though this 
model is usually too simple as a description of real-life phenomena. First, 
data series often display dependence through time - in particular, values 
of a process are often dependent on the recent history of the process. Sec
ond, their random behavior is often observed to vary over time - seasonal 
variations are intrinsic to many natural processes, for example. These two 
issues are usually addressed separately, and it is convenient first to study 
processes that may exhibit dependence, but whose stochastic behavior is 
homogeneous through time. This leads to the notion of stationarity. 

Definition 2.1 A random process X 1, X2, ... is said to be stationary if, 
given any set of integers { i1, ... , ik} and any integer m, the joint distribu
tions of (Xip ... , Xik) and (Xi1 +m• ... , Xik+m) are identical. t::. 

Stationarity implies that, given any subset of variables, the joint distri
bution of the same subset viewed m time points later remains unchanged. 
Unlike an independent series, stationarity does not preclude Xi being de
pendent on previous values, although Xi+m must have the same depen
dence on its previous values. On the other hand, trends, seasonality and 
other deterministic cycles are excluded by an assumption of stationarity. 

2.4.2 Markov Chains 

For some applications it is necessary to give a more detailed prescription 
of the stochastic behavior of a random process. For a stationary sequence 
of independent variables, it is enough just to specify the marginal distri
bution. More generally, it is necessary to specify the distribution of an 
arbitrary term in the sequence, Xi, conditional on all the previous values, 
X1, ... , Xi-1· Excluding independence, the simplest class is when this con
ditional distribution depends only on the most recent observation. That is, 
whilst the future evolution of the process may depend on its current value, 
once that value is known the earlier history is irrelevant. Such a series is 
said to be a first-order Markov chain. We give the definition for a process 
whose values occur on a continuous space; an analogous definition holds for 
processes taking values on a discrete space, with probability mass functions 
replacing density functions. 

2Continuous time random processes can also be defined. 
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Definition 2.2 A random process X1, X2, ... is a first-order Markov 
chain if, for every i = 2, 3, ... , the conditional density function satisfies 

Markov chain models are widely used in statistical modeling, partly be
cause they provide the simplest generalization of independent processes, 
partly because they are easy to estimate and partly because their proper
ties are well-understood. They can also be generalized to allow dependence 
on the most recent k observations rather than just the most recent - this is 
a kth-order Markov chain. Because of the dependence of consecutive values 
in a Markov chain, the distribution of any future value Xi+m is likely to 
depend on the current value Xi. However, for a wide class of Markov chains 
the dependence diminishes as m becomes large. In other words, a term in 
the sequence is influenced by the recent history of the series, but much 
less by its distant past. In this case the chain is said to have a stationary 
distribution, which is the distribution of Xn as n -t oo, the point being 
that the eventual stochastic properties of the process do not depend on the 
initial condition of the chain. 

2.5 Limit Laws 

It is often difficult to perform exact calculations with probability distribu
tions. This might be because the distribution is unknown, or simply because 
the analytical or computational burden is high. In these situations it may 
be possible to approximate the true distribution by a simpler distribution 
obtained by a limiting argument. This requires a definition of convergence 
of random variables. There are several possibilities, but the most useful for 
our purposes is convergence in distribution. 

Definition 2.3 A sequence of random variables X1 , X2 , .•. , having distri
bution functions F1 , F2 , •.• respectively, is said to converge in distribu
tion to the random variable X, having distribution function F, denoted 

Xn ~X, if 
Fn(x) -t F(x) as n -too 

for all continuity points x of F. ~ 

For statistical applications, the utility of establishing a limit distribution 
F for a sequence of random variables X1, X2 ... is usually to justify the use 
ofF as an approximation to the distribution of Xn for large n. 

The most celebrated limit law in statistics is the central limit theorem, 
stated here in its simplest form. 
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Theorem 2.1 Let X1, X2, ... be a sequence of independent and identically 
distributed random variables with mean J.L and finite, positive variance a2 • 

Then, defining 
- ·X1 +···+Xn 
Xn= , 

n 

as n--+ oo, where Z....., N(O, 1). 

(2.5) 

0 

The central limit theorem is generally used in statistical applications by 
interpreting (2.5) as an approximation for the distribution of the sample 
mean Xn for large n. That is, 

for large n, where the notation ,:.., denotes "is approximately distributed 
as". What makes the central limit theorem remarkable, and so useful for 
application, is that the approximating distribution of the sample mean is 
normal regardless of the parent population of the Xi. Analogous arguments 
are used in subsequent chapters to obtain approximating distributions for 
sample extremes. 

2.6 Parametric Modeling 

2. 6.1 The Parametric Framework 

As we have discussed, a common objective in statistical modeling is to 
use sample information to make inferences on the probability structure of 
the population from which the data arose. In the simplest case, the data 
x1, •.• , Xn are assumed to be independent realizations from the population 
distribution. Inference then amounts to estimation of this distribution, for 
which there are two distinct approaches: parametric or nonparametric. We 
concentrate on the parametric approach. The first step is to adopt a family 
of models within which the true distribution of the data is assumed to lie. 
This might be based on physical grounds: for example, idealized radioactive 
counts are bound to follow a Poisson distribution. More often, a model 
is chosen on empirical grounds, using exploratory techniques to ascertain 
families of models that look broadly consistent with the available data. 
Another alternative is the use of limit laws as approximations. We have 
already discussed this in the context of using the normal distribution as an 
approximation for sample means, and the approach will also be central to 
our development of extreme value models. 

In the subsequent discussion we restrict discussion to the case of a con
tinuous random variable whose probability density function exists, though 
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the arguments apply more widely. We also suppose that the data x1 , ... , Xn 

comprise independent realizations of a random variable X whose probabil
ity density function belongs to a known family of probability distributions 
with density functions :F = {f(x;8): 8 E e}. We denote3 the true value of 
the parameter 8 by 80 . Inference is therefore reduced to estimation of the 
true parameter value 8o from within the parameter space e. The parameter 
8 may be a scalar, such as 8 = p in the binomial family, or it may represent 
a vector of parameters, such as 8 = (J.L, a) in the normal family. 

2.6.2 Principles of Estimation 

Assume for the moment that the parameter 8 in :F is scalar rather than vec
tor. A function of random variables that is used to estimate the true param
eter value 80 is called an estimator; the particular value of the estimator 
for an observed set of data is the estimate. Since the data are outcomes of 
random variables, repeats of the experiment would generate different data 
and hence a different estimate. Thus, randomness in the sampling process 
induces randomness in the estimator. The probability distribution induced 
in an estimator is said to be its sampling distribution. 

It is desirable that estimates are close to the parameter value they are 
estimating. This leads to two definitions. The bias of an estimator 00 of 8o 
is defined by 

and the mean-square error by 

An estimator whose bias is zero is said to be unbiased; this corresponds 
to an estimator whose value, on average, is the true parameter value. It is 
usually difficult to arrange for estimators to be unbiased, but anticipated 
that the bias is small. A more common criterion for estimator assessment 
is that its MSE should be small. Since the MSE measures variation of the 
estimator around the true parameter value, low MSE implies that in any 
particular sample the estimate is likely to be close to the true parameter 
value. 

As the sampling distribution determines the variability of an estimator, 
simple summaries of the distribution lead to measures of accuracy. The 
standard deviation of the sampling distribution of 00 is called the stan
dard error, denoted SE(Bo). Usually, an approximation of SE(Bo) can be 
calculated using the observed sample. Since this measures the extent of 
variability in the estimator, and provided the bias of the estimator is neg-

3 In subsequent sections, we drop the distinction and use 0 to denote both an arbitrary 
parameter value and the true parameter value. 
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ligible, SE(Do) is implicitly a measure of how precise the estimator is: the 
smaller the standard error, the greater the precision. 

Quantifying the precision of an estimator can usually be made more 
explicit by calculating a confidence interval. This is especially easy if a pivot 
is available. A pivot is a function of Do and 90 whose distribution does not 
depend on 9o. If r/J = g(D0 , 90 ) is a pivot, since its sampling distribution 
does not depend on unknown parameters, for any value of 0 < a < 1 it is 
possible to find limits r/Ju and r/Jt such that 

Pr{ rPI ~ r/J ~ rPu} = 1- a. 

This can be rearranged to give 

Pr{9t ~ 9o ~ 9u} = 1 -a, 

where 9t and 9u are functions of r/Jt, r/Ju and Do. The interval [9t, 9u] is said 
to be a (1- a) confidence interval for 9o. 

The rationale for a confidence interval is that it expresses a range of 
values for which we can be "confident" that the true parameter value lies. 
The choice of a is arbitrary: small values give high confidence but wide 
intervals; large values give small intervals but low confidence. This implies a 
trade-off between the width of the interval and the degree of confidence that 
the interval contains the true parameter value. Commonly used values are 
a = 0.05, 0.01 and 0.001, corresponding to 95%,99% and 99.9% confidence 
intervals respectively. 

As an example, suppose we want to estimate a population mean f.t on 
the basis of independent realizations x1 , ••. Xn drawn from the population. 
Assume also that the variance of the population, u2 , is unknown. A natural 
estimator of f.t is the sample mean 

- 1 X = n- (Xt + · · · + Xn), 

which is easily checked to be unbiased for f.t· Also, Var(X) = u2 In, so that 
SE(X) = u I .,fii. Approximating the unknown value of u with the sample 
standard deviation s leads to SE( X) ~ s I .,fii. 

Approximate confidence intervals can also be obtained since, by the cen
tral limit theorem, 

X- f.t,.:.., N{O, u 2 In), 
so that X - f.t is a pivot. By standard manipulation, 

where z~ is the (1 - al2) quantile of the standard normal distribution. 
Rearranging {2.6) gives 

Pr{X- z~ul.fii ~ f.t ~X+ z~ulvn} = 1- a, 
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so that 

[X- Zfa/Vn, X+ Zfa/VnJ 

is an approximate (1 -a:) confidence interval for 1-L· Provided the sample 
size is reasonably large, this approximation is not adversely affected by 
replacing the unknown a by the sample estimate s, leading finally to the 
confidence interval 

[X- zttsf..;n, X+ z'tsfv'n]. 

2.6.3 Maximum Likelihood Estimation 

A general and flexible method of estimation of the unknown parameter 90 

within a family :F is maximum likelihood. Each value of 9 E 9 defines a 
model in :F that attaches (potentially) different probabilities (or probability 
densities) to the observed data. The probability of the observed data as a 
function of 9 is called the likelihood function. Values of 9 that have high 
likelihood correspond to models which give high probability to the observed 
data. The principle of maximum likelihood estimation is to adopt the model 
with greatest likelihood, since of all the models under consideration, this is 
the one that assigns highest probability to the observed data. 

In greater detail, referring back to the situation in which x1 , ... , Xn are 
independent realizations of a random variable having probability density 
function f(x; 9o), the likelihood function is 

n 

L(9) = IT !(xi; 9). (2.7) 
i=l 

The factorization in (2.7) is due to (2.4) for independent observations. It is 
often more convenient to take logarithms and work with the log-likelihood 
function 

n 

€(9) = log£(9) = I)ogf(xi;9). (2.8) 
i=l 

Both (2. 7) and (2.8) generalize in the obvious way to the situation where 
the Xi are independent, but not necessarily with identical distributions. In 
this case, denoting the density function of Xi by fi(xi; 9), we obtain 

n 

L(9) = IT h(xi; 9), 
i=l 

and 
n 

€(9) = L:)og h(xi; 9). 
i=l 
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More generally still, if F = {f(x; 9) : 9 E S} denotes a family of joint 
probability density functions for a set of (not necessarily independent) ob
servations x = {x1, .•• , Xn), then the likelihood is 

L(9) = f(x; 9), 

regarded as a function of 9 with x fixed at the observed value. 
The maximum likelihood estimator Bo of 9o is defined as the value of 

9 that maximizes the appropriate likel;hood function. Since the logarithm 
function is monotonic, the log-likelihood takes its maximum at the same 
point as the likelihood function, so that the maximum likelihood estimator 
also maximizes the corresponding log-likelihood function. 

For some examples it is possible to obtain the maximum likelihood esti
mator explicitly, usually by differentiating the log-likelihood and equating 
to zero. For example, if X1 •.• Xn are independent Poi( A) variables, it is 
easy to check that 5. = x, the sample mean. In the corresponding normal 
example, {[1,, 8-) = ( x, s), where s is the sample standard deviation. In more 
complicated examples it is usually necessary to apply numerical techniques 
to maximize the log-likelihood. 

2. 6.4 Approximate Normality of the Maximum Likelihood 
Estimator 

A substantial benefit of adopting maximum likelihood as a principle for pa
rameter estimation is that standard and widely applicable approximations 
are available for a number of useful sampling distributions. These lead to 
approximations for standard errors and confidence intervals. There are sev
eral useful results. The framework is as above: x1, ... , Xn are independent 
realizations of a random variable X having distribution F E F. The family 
F is indexed by a d-dimensional parameter 9 and the true distribution F 
has 9 = 9o. The maximum likelihood estimate of 9o is denoted Bo. 

Strictly, each of the results is an asymptotic limit law obtained as the 
sample size n increases to infinity. They are also valid only under regularity 
conditions. We will assume these conditions to be valid and give the results 
as approximations whose accuracy improves as n increases. 

Theorem 2.2 Let x1 , ... , Xn be independent realizations from a distribu
tion within a parametric family F, and let £( ·) and 00 denote respectively 
the log-likelihood function and the maximum likelihood estimator of the 
d-dimensional model parameter 90 • Then, under suitable regularity condi
tions, for large n 

{2.9) 
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where I e1,1:(8) 

Ie(8) = · 

ed,l (8) 

e· ·(8) t,J 

e · ·(8) J,t 

with 

0 

The matrix Ie(8), which measures the expected curvature of the log
likelihood surface, is usually referred to as the expected information 
matrix. 

Theorem 2.2 can be used to obtain approximate confidence intervals for 
individual components of 80 = (81, ... ,8d)· Denoting an arbitrary term in 
the inverse of le(8o) by tPi,i• it follows from the properties of the multi
variate normal distribution that, for large n, 

Bi ,:.., N(8i, tPi,i)· 

Hence, if tPi,i were known, an approximate (1 -a) confidence interval for 
8i would be 

ei ± z~ J1i);;, (2.10) 

where z~ is the (1 - a/2) quantile of the standard normal distribution. 
Since the true value of 8o is generally unknown, it is usual to approximate 
the terms of Ie with those of the observed information matrix, defined 
by 

Io(8) = 

and evaluated at 8 = 9. Denoting the terms of the inverse of this matrix 
by ;fi,i• it follows that an approximate (1- a) confidence interval for 8i is 

ei ± z~ ..;;:;. 
Despite the additional approximation, such intervals are often more accu
rate than those obtained in (2.10). 

Although a parametric family :F may be indexed by a parameter 8, of 
which Oo represents the true value, it may not be 8o that is of particular 
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interest. Instead, it may be some function 4>o = g(Bo) that we wish to esti
mate, where 4>o may have a different dimension to Bo. We restrict attention 
to the situation where ¢0 is a scalar function of 00 • This is often useful in 
extreme value modeling, where fJo is the parameter vector of a distribution 
representing extreme value behavior, but it is the probability of some ex
treme event - which is a function of 00 - that is needed. The following two 
results enable maximum likelihood inferences on 00 to be transformed to 
give corresponding inferences on 4>o. 

Theorem 2.3 If 80 is the maximum likelihood estimate of 00 , and 4> = g(B) 
is a scalar function, then the maximum likelihood estimate of ¢0 is given 
by J>o = g(Bo). 0 

This result means that, once the maximum likelihood estimate of 00 has 
been calculated, the maximum likelihood estimate of any function of Bo is 
obtained by simple substitution. 

Theorem 2.4 Let 80 be the large-sample maximum likelihood estimator 
of the d-dimensional parameter 00 with approximate variance-covariance 
matrix Ve. Then if 4> = g( B) is a scalar function, the maximum likelihood 
estimator of ¢0 = g(Bo) satisfies 

where 

with 

[ 84> 8¢] T 
\7¢ = 801 ' ... ' 8(}d 

evaluated at Bo. 0 

Theorem 2.4 is usually referred to as the delta method. In the same 
way that the approximate normality of Bo can be used to obtain confidence 
intervals for the individual components of 00 , the delta method enables the 
approximate normality of ¢0 to be used to obtain confidence intervals for 
4>o· 

2.6.5 Approximate Inference Using the Deviance Function 

An alternative method for quantifying the uncertainty in the maximum 
likelihood estimator is based on the deviance function, defined by 

D(B) = 2{£(00)- £(0)}. (2.11) 
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Values of 9 with a small deviance correspond to models with a high likeli
hood, so a natural criterion for deriving confidence regions is to specify as 
a confidence region 

C = { 9 : D( 9) ~ c} 

for some choice of c. Ideally, we would like to choose c in such a way that 
the corresponding region C has a pre-specified probability, (1 -a) say, of 
containing the true parameter 90 • In general this is not possible, as it would 
require knowledge of the population distribution. Even if this distribution 
were known, the exact calculations needed to determine the distribution of 
D(9) are unlikely to be tractable. These difficulties are usually resolved by 
using an approximation to the sampling distribution that is valid for large 
sample sizes. 

Theorem 2.5 Let x1 , ... , Xn be independent realizations from a distribu
tion within a parametric family F, and let 00 denote the maximum likeli
hood estimator of the d-dimensional model parameter 90 • Then for large n, 
under suitable regularity conditions, the deviance function (2.11) satisfies 

D(9o) ,;., X~· 

0 

It follows from Theorem 2.5 that an approximate (1 -a) confidence 
region for 9o is given by 

Ca = {9: D(9) ~ C0 }, 

where c0 is the (1- a) quantile of the X~ distribution. This approximation 
is usually more accurate than that based on the asymptotic normality of 
the maximum likelihood estimator, though the computational burden is 
greater. 

2.6.6 Inference Using the Profile Likelihood Function 

We described in Section 2.6.4 one method for making inferences on a par
ticular component 9i of a parameter vector 9. An alternative, and usually 
more accurate, method is based on profile likelihood. The log-likelihood for 
9 can be formally written as l(9i, 9-i), where 9_i denotes all components 
of 9 excluding 9i. The profile log-likelihood for 9i is defined as 

That is, for each value of 9i, the profile log-likelihood is the maximized 
log-likelihood with respect to all other components of 9. In other words, 
lp(9i) is the profile of the log-likelihood surface viewed from the 9i axis. 
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This definition generalizes to the situation where () can be partitioned 
into two components, (8<1>, ()<2>), of which (J(l) is the k-dimensional vector 
of interest and ()( 2) corresponds to the remaining ( d - k) components. The 
profile log-likelihood for (J(l) is now defined as 

If k = 1 this reduces to the previous definition. 
The following result, which generalizes Theorem 2.5, leads to a procedure 

for approximate inferences on the maximum likelihood estimator of ()( 1) . 

Theorem 2.6 Let x1, ... , Xn be independent realizations from a distribu
tion within a parametric family :F, and let 00 denote the maximum like
lihood estimator of the d-dimensional model parameter ()0 = ( ()(1), ()(2)), 

where (J(l) is a k-dimensional subset of 80 . Then, under suitable regularity 
conditions, for large n 

0 

Theorem 2.6 is frequently used in two different situations. First, for a 
single component ()i, C01 = {8i : Dp(()i) $ cOl} is a (1- a) confidence in
terval, where c01 is the (1 -a) quantile of the x~ distribution. This yields 
an alternative, and usually more accurate, method to that based on The
orem 2.2. The second application is to model selection. Suppose that M 1 

is a model with parameter vector (), and model Mo is the subset of model 
M 1 obtained by constraining k of the components of() to be, say, zero. 
Hence, () can be partitioned as () = ((J(l), ()<2>), where the first component, 
of dimension k, is zero in model M 0 • Now, let i 1 (Mt) be the maximized 
log-likelihood for model M 1 , let i 0 (M0 ) be the maximized log-likelihood 
for model M 0 , and define 

D = 2{it(Mt) -io(Mo)} 

to be the deviance statistic. By Theorem 2.6, C01 = {(J(l) : Dp((J(l)) $ c01 } 

comprises a (1 -a) confidence region for the true value of (J(l), where Dp 
is the profile deviance and C01 is the (1- a) quantile of the x~ distribution. 
Hence, to check whether Mo is a plausible reduction of model M 1, it is 
sufficient to check whether 0 lies in C01 , which is equivalent to checking if 
D < c01 • This is termed a likelihood ratio test, summarized as follows. 

Theorem 2. 7 Suppose Mo with parameter ()( 2) is the sub-model of M 1 

with parameter 80 = (8<1>, ()( 2)) under the constraint that the k-dimensional 
sub-vector (J(l) = 0. Let io(Mo) and i1 (Mt) be the maximized values of 
the log-likelihood for models Mo and M 1 respectively. A test of the validity 
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of model M 0 relative to M1 at the a level of significance is to reject Mo 
in favor of M1 if D = 2{£I(MI)- fo(Mo)} > c0 , where Ca is the (1- a) 
quantile of the x~ distribution. 0 

Finally, we remark that, under additional regularity, each of the large 
sample approximations described in this section is valid when x1 , ••. , Xn 

are independent but non-identically distributed realizations from a family 
indexed by a parameter (). For example, in a classical regression model, 
Xi "' V(a + f3wi) fori = 1, ... , n, where V(8) denotes a distribution with 
parameter () and WI, .•• , Wn are known constants. Although each of the 
Xi has a different distribution, the maximum likelihood estimator of (a, /3) 
still satisfies the large sample properties stated in Theorems 2.2-2.7. 

2. 6. 7 Model Diagnostics 

The reason for fitting a statistical model to data is to make conclusions 
about some aspect of the population from which the data were drawn. 
Such conclusions can be sensitive to the accuracy of the fitted model, so 
it is necessary to check that the model fits well. The main issue concerns 
the ability of the model to describe variations in the wider population, 
but this is usually unachievable unless there are additional sources of data 
against which the model can be judged. Consequently, the only option that 
is normally available is to judge the accuracy of a model in terms of its 
agreement with the data that were actually used to estimate it. 

Suppose data x1 , ••• , Xn are independent realizations from a common 
population with unknown distribution function F. An estimate ofF, say 
F, has been obtained, perhaps by maximum likelihood, and we want to 
assess the plausibility that the Xi are a random sample from F. First, a 
model-free estimate of F can be obtained empirically from the data. Let 
X(I), ... , X(n) denote the ordered sample, so that X(I) ~ X(2) ~ .. • ~ X(n). 

For any one of the X( i), exactly i of the n observations have a value less than 
or equal to X( i), so an empirical estimate of the probability of an observation 
being less than or equal to X(i) is F(x(i)) = i/n. A slight adjustment to 
F(x(i)) = i/(n+ 1) is usually made to avoid having F(x(n)) = 1. This leads 
to the following definition. 

Definition 2.4 Given an ordered sample of independent observations 

X(l) ~ X(2) ~ • · · ~ X(n) 

from a population with distribution function F, the empirical distribu
tion function is defined by 

- i 
F(x) = n + 1 for X(i) ~ x < X(i+I)· 
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Since F is an estimate of the true probability distribution F, it should 
be in reasonable agreement with the candidate model, F, provided F is 
an adequate estimate of F. Various goodness-of-fit procedures are based 
on comparisons ofF and F. Two graphical techniques, in particular, are 
commonly used. 

Definition 2.5 Given an ordered sample of independent observations 

X(l) $ X(2} $ · · · $ X(n) 

from a population with estimated distribution function F, a probability 
plot consists of the points 

If F is a reasonable· model for the population distribution, the points 
of the probability plot should lie close to the unit diagonal. Substantial 
departures from linearity provide evidence of a failure in F as a model for 
the data. 

Definition 2.6 Given an ordered sample of independent observations 

from a population with estimated distribution function F, a quantile plot 
consists of the points 

The name "quantile plot" derives from the fact that the quantities X(i) 

and P-1 ( i I ( n + 1)) each provide estimates of the i I ( n + 1) quantile of the 
distribution F. If F is a reasonable estimate of F, then the quantile plot 
should also consist of points close to the unit diagonal. 

The probability plot and the quantile plot contain the same information 
expressed on a different scale. However, the perception gained on different 
scales can be important, so what looks like a reasonable fit on one scale, 
may look poor on the other. 
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2.7 Example 

We conclude this chapter with an example that illustrates most of the 
techniques discussed in earlier sections. The model falls outside of the class 
of extreme value models that form the core of this book, though there are 
connections with the threshold excess models discussed in Chapter 4 . 
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FIGURE 2.1. Engine component failure times against corrosion level. 

The data shown in Fig. 2.1 represent simulated time to failure of a sample 
of 32 engine components with different levels of corrosion. Each component 
has been assigned a measure of corrosion, and the aim of the analysis is to 
ascertain how failure time is affected by the corrosion level. 

We denote the data by the pairs {(w1, tt), ... , (wn, tn)}, where ti is the 
failure time and Wi is the corrosion level for engine i. In the present anal
ysis we regard the Wi as fixed and the ti as the realizations of random 
variables whose dependence on the Wi is to be explored. Since the failure 
times are non-negative, it is unlikely that the normal distribution would 
provide a good model. As an alternative, we consider models based on the 
exponential distribution. A random variable T is said to follow an exponen
tial distribution with parameter .X, denoted T"" Exp(.X), if its probability 
density function has the form 

f(t) = .xe-.xt, t > 0, (2.12) 

where .X > 0. It is easily verified that E(T) = 1/ .X, so that .X is the reciprocal 
mean. 
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Allowing for the possible effect of the covariate w requires a model for 
its influence on t. Because of the relationship between .X and the distri
bution mean, this is equivalent to specifying a relationship between the 
mean lifetime and w. The basic idea of parametric modeling is to specify 
a flexible family of models for this relationship, ensuring that the family 
includes models having the broad pattern that the data demonstrate. The 
parameters of the model can then be estimated by maximum likelihood. 
In this particular example, judging from Fig. 2.1, the mean lifetime should 
be permitted to decrease monotonically with increasing values of w, whilst 
respecting a constraint to maintain positivity. One possible model is 

T"' Exp(.X), 

where 
(2.13) 

for parameters a and b. Equivalent to (2.13), E(T) = a-lw-b, so that mean 
lifetime is modeled as varying exponentially with w at a rate determined 
by the parameter b; unless b = 0, in which case E(T) = a- 1 for each engine. 

The likelihood for the model is easily evaluated from (2.12) as 

n 

L(a, b) = IJ { awte-awtt;}, 
i=l 

leading to the log-likelihood 

n n 

l(a,b) = nloga + b L:logwi- a L wtti. (2.14) 
i=l i=l 

The maximum likelihood estimate is found by maximizing this expression 
with respect to a and b. In principle, this can be done by solving the 
equations 

at 
oa 
at 
ab 

n 

n ""' b - - L...J wi ti = 0, 
a i=l 

= 

n n 

= L:logwi- a L wttilogwi = 0, 
i=l i=l 

but since the equations have no analytical solution, numerical techniques 
are required. In that case, direct numerical maximization of l (or minimiza
tion of -l) in (2.14) is more common, using algorithms routinely available 
in standard software packages. 

Substituting the engine lifetime data, maximization of (2.14) leads to the 
estimates 

a = 1.133 and b = 0.479, 
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with a maximized log-likelihood of -21.71. The corresponding mean failure 
time curve, 

E(T) = 1.133-1 x w-0·479 , 

is shown relative to the data in Fig. 2.2. The estimated curve shows a strong 
variation of mean failure time with the covariate w and seems also to give 
a reasonable match to the pattern in the observed data. 
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FIGURE 2.2. Engine component failure times against corrosion level. Solid curve 
shows estimated mean component lifetime as a function of corrosion level. 

The observed information matrix in this example is easily calculated as 

As discussed above, it is more convenient and often more accurate to work 
instead with the observed information matrix. For reference, the expected 
information can also be evaluated for this model: since E(Ti) = a-1w;b, 
we obtain 

1 (a b)= [ na-2 a-1 Elogwi ] . 
E ' a- 1 E log Wi E(log wi) 2 

Substitution of the maximum likelihood estimates into the observed in
formation matrix, followed by matrix inversion, leads to the estimated 
variance-covariance matrix 

v = [ 0.04682 -0.01442 ] 
-0.01442 0.03104 . 
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Taking square roots of the diagonal terms, we obtain the standard errors 
0.216 and 0.176 for a and b, respectively. Approximate confidence intervals 
follow. For example, an approximate 95% confidence interval forb is 0.479± 
1.96 x 0.176 = [0.134, 0.824]. The fact that this interval excludes 0 provides 
evidence that b :f 0. Formally, the possibility that b = 0 is rejected at the 
5% level of significance, so the data provide reasonably strong support for 
a non-degenerate relationship between failure time and corrosion level. 

Confidence intervals can also be obtained for other quantities by the delta 
method. For example, it may be necessary to estimate the mean failure time 
for an engine component whose corrosion level is w = w0 for some fixed 
value of w0 • In this case the parameter of interest is¢>= E(T) = a-1w0b. 

By the invariance property of maximum likelihood, 

;. • -1 -b 
"~'=a w0 , 

while by the delta method, 

where 

M ,~..T [8¢> 8¢>] [ -2 -b -1 -b 1 ] 
v 'I' = 8a ' 8b = -a Wo ' -a Wo og Wo ' 

(2.15) 

(2.16) 

evaluated at (&,b). For example, an engine with a corrosion level of w0 = 3 
has ~ = 1.133 x 3-0 ·479 = 0.669, and substitution into (2.15) and (2.16) 
gives Var( ~) = 0.0125. Hence, a 95% confidence interval for the mean failure 
time of such an engine is 0.669 ± 1.96 x ¥'0.0125 = [0.450, 0.889]. 

Greater accuracy in the calculation of confidence intervals is obtained by 
working with the profile likelihood. In this particular example the profile 
likelihood for b can be obtained explicitly. Treating b as fixed, the log
likelihood (2.14), regarded as a function of a, is maximized by solving 

leading to 

8l = ~ - ~ w~ti = 0 
8a a ~ t ' 

i=1 

• n 
ab=~· 

LJ wi ti 

Hence, the profile likelihood for b is obtained by substitution of this ex
pression into (2.14), giving 

n n 

fp(b) = nlogab + b L:logwi- ab L w~ti. 
i=1 i=1 

For the data of this example, a plot of the log-likelihood is shown in Fig. 
2.3. Based on Theorem 2.6, a 95% confidence interval for b is obtained 
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by drawing a line at a height of 0.5 x c1,o.o5 below the maximum of this 
graph, where c1,0 .05 is the 95% quantile of a x~ distribution, and reading 
off the points of intersection. This leads to a 95% confidence interval forb 
of [0.183, 0.879]. Compared with the previous interval of [0.134, 0.824], the 
profile likelihood interval is similar in width, but is shifted to the right, 
corresponding to the skewness observed in Fig. 2.3. 
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FIGURE 2.3. Profile log-likelihood for b in the engine component failure time 
example. 

As discussed in Section 2.6.6, if a comparison of nested models is required, 
Theorem 2.6 can be applied without the necessity of producing the entire 
profile likelihood curve. In this particular example we may be interested 
in comparing the model (2.13), which we now call M 1, with a s~mplified 
model, Mo, in which it is assumed that Ti,...., Exp(a) for all engines. Thus, 
model Mo is a sub-model of M1 with the constraint that b = 0. Model 
Mo is of particular interest since it corresponds to an assumption that the 
lifetime distribution is unaffected by the corrosion level. We have already 
established that the maximum value of the log-likelihood for model M 1 is 
-21.71. Model Mo corresponds to a homogeneous exponential model, for 
which the log-likelihood is 

n 

l(a) = nloga- a :~::::>i· (2.17) 
i=l 

Naturally, this is the same as (2.14) with b = 0. Maximizing (2.17) leads to 
a= nf L ti = 1.159 for the given data. Substitution into (2.17) then gives 
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a maximized log-likelihood for model Mo of -27.29. Hence, the deviance 
statistic for comparing these two models is 

D = 2{-21.71 - (-27.29)} = 11.16. 

Using the likelihood ratio test (Theorem 2.7), this value is highly significant 
compared with a x~ distribution, and therefore provides strong evidence 
in favor of model M 1, supporting the effect of corrosion level on engine 
lifetimes. This procedure is operationally equivalent to checking whether 
or not 0 lies in the profile likelihood interval for b, but is achieved without 
having to calculate the interval. 

Finally, the conclusions reached are dependent on the validity of the 
assumed model. This is not so straightforward to check because the Ti 
have non-identical distributions. However, if we assume the fitted model 

Ti "'Exp(awh 

to be accurate, then the standardized variables 
- A b 

Ti = awiTi 

are such that 'ii "' Exp(1), using standard properties of the exponential 
distribution. Hence, we can calculate the values of the standardized vari
ables on the basis of the fitted model, and use probability and quantile 
plots to compare these against an exponential distribution with parameter 
1. With the Ti assumed to be increasing order, a probability plot consists 
of the pairs 

{ (if(n+ 1),1-e-t;); i = 1, ... ,n}, 

while a quantile plot comprises the pairs 

{ ( -log(1- i/(n + 1)), ii); i = 1, ... , n}. 
The plots for the engine component failure time data are shown respectively 
in Figs. 2.4 and 2.5. In both cases the points are sufficiently close to linearity 
to lend support to the fitted model. 

2.8 Further Reading 

There are many textbooks that describe the basics of statistical inference 
and modeling. For theoretical aspects the books by Casella & Berger (2001), 
Silvey (1970) and Azzalini (1996) are all reasonably elementary. A more 
advanced text is the classic Cox & Hinkley {1974). On the modeling side, 
Venables & Ripley (1997) has the added advantage that it also includes an 
introduction to the statistical languageS-PLUS, which is used for the ex
treme value modeling in subsequent chapters. Grimmett & Stirzaker (1992) 
provide an elementary account of the probabilistic theory of random pro
cesses, including a detailed study of Markov chains. 
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FIGURE 2.4. Probability plot for fitted model in the engine component failure 
time example. 
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FIGURE 2.5. Quantile plot for fitted model in the engine component failure time 
example. 



3 
Classical Extreme Value Theory and 
Models 

3.1 Asymptotic Models 

3.1.1 Model Formulation 

In this chapter we develop the model which represents the cornerstone of 
extreme value theory. The model focuses on the statistical behavior of 

where X1, ... , Xn, is a sequence of independent random variables having 
a common distribution function F. In applications, the Xi usually repre
sent values of a process measured on a regular time-scale- perhaps hourly 
measurements of sea-level, or daily mean temperatures -so that Mn repre
sents the maximum of the process over n time units of observation. If n is 
the number of observations in a year, then Mn corresponds to the annual 
maximum. 

In theory the distribution of Mn can be derived exactly for all values of 
n: 

Pr{Mn ~ z} = Pr{X1 ~ z, ... ,Xn ~ z} 
= Pr{XI~z}X···XPr{Xn~z} 

= {F(z)}n. (3.1) 

However, this is not immediately helpful in practice, since the distribu
tion function F is unknown. One possibility is to use standard statistical 

45 
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techniques to estimate F from observed data, and then to substitute this 
estimate into (3.1). Unfortunately, very small discrepancies in the estimate 
of F can lead to substantial discrepancies for pn. 

An alternative approach is to accept that F is unknown, and to look 
for approximate families of models for pn, which can be estimated on 
the basis of the extreme data only. This is similar to the usual practice of 
approximating the distribution of sample means by the normal distribution, 
as justified by the central limit theorem. The arguments in this chapter are 
essentially an extreme value analog of the central limit theory. 

We proceed by looking at the behavior of pn as n --+ oo. But this alone 
is not enough: for any z < z+, where z+ is the upper end-point of F, 1 

Fn(z) --+ 0 as n--+ oo, so that the distribution of Mn degenerates to a point 
mass on z+. This difficulty is avoided by allowing a linear renormalization 
of the variable Mn: 

M • _ Mn -bn 
n- ' an 

for sequences of constants {an > 0} and {bn}· Appropriate choices of the 
{an} and { bn} stabilize the location and scale of M~ as n increases, avoiding 
the difficulties that arise with the variable Mn. We therefore seek limit 
distributions for M~, with appropriate choices of {an} and { bn}, rather 
than Mn. 

3.1. 2 Extremal Types Theorem 

The entire range of possible limit distributions for M~ is given by Theorem 
3.1, the extremal types theorem. 

Theorem 3.1 If there exist sequences of constants {an > 0} and {bn} 
such that 

Pr{(Mn- bn)fan ~ z}--+ G(z) as n--+ oo, 

where G is a non-degenerate distribution function, then G belongs to one 
of the following families: 

I: G(z) = exp{-exp[-(z:b)]}• - oo < z < oo; 

II: G(z) = 

III: G(z) = 

{ 
0, 
exp { _ { z-;;b) -a} , 

{ exp{-[-{z-;;b)a]}, 

1, 

z ~ b, 

z > b; 

z < b, 

z 2:: b, 

for parameters a > 0, b and, in the case of families II and III, a > 0. 0 

1 Z+ is the smallest value of z such that F(z) = 1. 
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In words, Theorem 3.1 states that the rescaled sample maxima (Mn -
bn)/an converge in distribution to a variable having a distribution within 
one of the families labeled I, II and III. Collectively, these three classes 
of distribution are termed the extreme value distributions, with types 
I, II and III widely known as the Gumbel, Frechet and Weibull fami
lies respectively. Each family has a location and scale parameter, band a 
respectively; additionally, the Frechet and Weibull families have a shape 
parameter a. 

Theorem 3.1 implies that, when Mn can be stabilized with suitable se
quences {an} and {bn}, the corresponding normalized variable M~ has a 
limiting distribution that must be one of the three types of extreme value 
distribution. The remarkable feature of this result is that the three types 
of extreme value distributions are the only possible limits for the distribu
tions of the M~, regardless of the distribution F for the population. It is in 
this sense that the theorem provides an extreme value analog of the central 
limit theorem. 

3.1.3 The Generalized Extreme Value Distribution 

The three types of limits that arise in Theorem 3.1 have distinct forms 
of behavior, corresponding to the different forms of tail behavior for the 
distribution function F of the Xi. This can be made precise by considering 
the behavior of the limit distribution Gat z+, its upper end-point. For the 
Weibull distribution z+ is finite, while for both the Frechet and Gumbel 
distributions z+ = oo. However, the density of G decays exponentially for 
the Gumbel distribution and polynomially for the Frechet distribution, cor
responding to relatively different rates of decay in the tail of F. It follows 
that in applications the three different families give quite different repre
sentations of extreme value behavior. In early applications of extreme value 
theory, it was usual to adopt one of the three families, and then to estimate 
the relevant parameters of that distribution. But there are two weaknesses: 
first, a technique is required to choose which of the three families is most 
appropriate for the data at hand; second, once such a decision is made, 
subsequent inferences presume this choice to be correct, and do not allow 
for the uncertainty such a selection involves, even though this uncertainty 
may be substantial. 

A better analysis is offered by a reformulation of the models in Theorem 
3.1. It is straightforward to check that the Gumbel, Frechet and Weibull 
families can be combined into a single family of models having distribution 
functions of the form 

{3.2) 
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defined on the set {z : 1 + e(z- J.L)/u > 0}, where the parameters satisfy 
-oo < J.L < oo, u > 0 and -oo < e < oo. This is the generalized extreme 
value (GEV) family of distributions. The model has three parameters: a 
location parameter, J.Lj a scale parameter, Uj and a shape parameter, e. 
The type II and type III classes of extreme value distribution correspond 
respectively to the cases e > 0 and e < 0 in this parameterization. The 
subset of the GEV family with e = 0 is interpreted as the limit of (3.2) as 
e -+ 0, leading to the Gumbel family with distribution function 

G(z) = exp [- exp {- ( z: J.L)}] , - oo < z < oo. 

The unification of the original three families of extreme value distribution 
into a single family greatly simplifies statistical implementation. Through 
inference one, the data themselves determine the most appropriate type of 
tail behavior, and there is no necessity to make subjective a priori judge
ments about which individual extreme value family to adopt. Moreover, 
uncertainty in the inferred value of e measures the lack of certainty as to 
which of the original three types is most appropriate for a given dataset. 

For convenience we re-state Theorem 3.1 in modified form. 

Theorem 3.1.1 If there exist sequences of constants {an > 0} and {bn} 
such that 

Pr{(Mn- bn)fan ~ z}-+ G(z) as n-+ oo (3.3) 

for a non-degenerate distribution function G, then G is a member of the 
GEV family 

defined on {z : 1 + e(z- J.L)/u > 0}, where -oo < J.L < oo, (j > 0 and 
-oo < e < 00. 0 

Interpreting the limit in Theorem 3.1.1 as an approximation for large 
values of n suggests the use of the G EV family for modeling the distribution 
of maxima of long sequences. The apparent difficulty that the normalizing 
constants will be unknown in practice is easily resolved. Assuming (3.3), 

Pr{(Mn- bn)fan ~ z}::::::: G(z) 

for large enough n. Equivalently, 

Pr{Mn ~ z} ::::::: G{(z- bn)fan} 
= G*(z), 

where G* is another member of the GEV family. In other words, if Theorem 
3.1.1 enables approximation of the distribution of M~ by a member of the 
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GEV family for large n, the distribution of Mn itself can also be approxi
mated by a different member of the same family. Since the parameters of 
the distribution have to be estimated anyway, it is irrelevant in practice 
that the parameters of the distribution G are different from those of G*. 

This argument leads to the following approach for modeling extremes 
of a series of independent observations X1, X2, .. .. Data are blocked into 
sequences of observations of length n, for some large value of n, generating a 
series of block maxima, Mn,1 , ... , Mn,m, say, to which the GEV distribution 
can be fitted. Often the blocks are chosen to correspond to a time period 
of length one year, in which case n is the number of observations in a year 
and the block maxima are annual maxima. Estimates of extreme quantiles 
of the annual maximum distribution are then obtained by inverting Eq. 
{3.2): 

z ={ p-f[1-{-log{1-p)}-(], 
P J.t- a log{ -log{1- p)}, 

fore¥ 0, 
fore= 0, 

(3.4) 

where G(zp) = 1 - p. In common terminology, Zp is the return level 
associated with the return period 1/p, since to a reasonable degree of 
accuracy, the level zp is expected to be exceeded on average once every 
1 j p years. More precisely, zp is exceeded by the annual maximum in any 
particular year with probability p. 

Since quantiles enable probability models to be expressed on the scale of 
data, the relationship of the GEV model to its parameters is most easily 
interpreted in terms of the quantile expressions ( 3.4). In particular, defining 
Yv = -log(1 - p), so that 

{ J.t- !l. [1- y-(]' fore¥ 0, 
Zp = ( p 

J.t - a log Yv, for e = 0, 

it follows that, if Zp is plotted against Yv on a logarithmic scale - or equiva
lently, if Zp is plotted against log Yv - the plot is linear in the case e = 0. If 
e < 0 the plot is convex with asymptotic limit asp -t 0 at J.t- a Je; if e > 0 
the plot is concave and has no finite bound. This graph is a return level 
plot. Because of the simplicity of interpretation, and because the choice of 
scale compresses the tail of the distribution so that the effect of extrapola
tion is highlighted, return level plots are particularly convenient for both 
model presentation and validation. Fig. 3.1 shows return level plots for a 
range of shape parameters. 

3.1.4 Outline Proof of the Extremal Types Theorem 

Formal justification of the extremal types theorem is technical, though 
not especially complicated - see Leadbetter et al. {1983), for example. In 
this section we give an informal proof. First, it is convenient to make the 
following definition. 
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FIGURE 3.1. Return level plots of the GEV distribution with shape parameters 
~ = -0.2, ~ = 0 and ~ = 0.2 respectively. 

Definition 3.1 A distribution G is said to be max-stable if, for every 
n = 2, 3, ... , there are constants an > 0 and f3n such that 

Since an is the distribution function of Mn = max{X1 , •.. , Xn}, where 
the Xi are independent variables each having distribution function G, max
stability is a property satisfied by distributions for which the operation 
of taking sample maxima leads to an identical distribution, apart from a 
change of scale and location. The connection with the extreme value limit 
laws is made by the following result. 

Theorem 3.2 A distribution is max-stable if, and only if, it is a general
ized extreme value distribution. 0 

It requires only simple algebra to check that all members of the GEV 
family are indeed max-stable. The converse requires ideas from functional 
analysis that are beyond the scope of this book. 

Theorem 3.2 is used directly in the proof of the extremal types theorem. 
The idea is to consider Mnk, the maximum random variable in a sequence 
of n x k variables for some large value of n. This can be regarded as the 
maximum of a single sequence of length n x k, or as the maximum of k 
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maxima, each of which is the maximum of n observations. More precisely, 
suppose the limit distribution of (Mn - bn)/an is G. So, for large enough 
n, 

Pr{(Mn- bn)/an ~ z} ~ G(z) 

by Theorem 3.1.1. Hence, for any integer k, since nk is large, 

Pr{(Mnk- bnk)/ank ~ z} ~ G(z). (3.5) 

But, since Mnk is the maximum of k variables having the same distribution 
as Mn, 

Hence, by (3.5) and (3.6) respectively, 

Pr{Mnk ~ z} ~ G ( z- bnk) 
ank 

and 

{ } k (z- bn) Pr Mnk~z ~a ~ . 

Therefore, G and Gk are identical apart from location and scale coefficients. 
It follows that G is max-stable and therefore a member of the GEV family 
by Theorem 3.2. 

3.1. 5 Examples 

One issue we have not discussed in connection with Theorem 3.1 is, given 
a distribution function F, how to establish whether convergence of the 
distribution of the normalized Mn can actually be achieved. If it can, there 
are additional questions: what choices of normalizing sequences {an} and 
{bn} are necessary and which member of the GEV family is obtained as a 
limit? Each of the books on extreme value theory referenced in Section 1.4 
gives extensive details on these aspects. Since our primary consideration is 
the statistical inference of real data for which the underlying distribution 
F is unknown, we will give only a few examples that illustrate how careful 
choice of normalizing sequences does lead to a limit distribution within the 
GEV family, as implied by Theorem 3.1. These examples will also be useful 
for illustrating other limit results in subsequent chapters. 

Example 3.1 If X1, X2, ... is a sequence of independent standard expo
nential Exp(1) variables, F(x) = 1 -e-x for x > 0. In this case, letting 
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an = 1 and bn = n, 

Pr{(Mn- bn)fan ~ z} = Fn(z + logn) 

= [1- e-(z+logn)Jn 

= [1- n-le-zr 

-+ exp( -e-z) 

as n -+ oo, for each fixed z E llt Hence, with the chosen an and bn, the limit 
distribution of Mn as n -+ oo is the Gumbel distribution, corresponding to 
e = 0 in the GEV family. A 

Example 3.2 If X1, Xz, ... is a sequence of independent standard Fn3chet 
variables, F(x) = exp(-1/x) for x > 0. Letting an= nand bn = 0, 

Pr{(Mn- bn)fan ~ z} = Fn(nz) 

= [exp{ -1/(nz)}t 

= exp(-1/z) 

as n -+ oo, for each fixed z > 0. Hence, the limit in this case - which is 
an exact result for all n, because of the max-stability of F - is also the 
standard Frechet distribution: e = 1 in the GEV family. - I. 

.? 

Example 3.3 If X1 , X2 , ... are a sequence of independent uniform U(O, 1) 
variables, F(x) = x for 0 ~ x ~ 1. For fixed z < 0, suppose n > -z and let 
an = 1/n and bn = 1. Then, 

Pr{(Mn- bn)/an ~ z} = Fn(n- 1z + 1) 

= (1 + ;r 
-+ ez 

as n -+ oo. Hence, the limit distribution is of Weibull type, with e = -1 in 
the GEV family. A 

There is some latitude in the choice of {an} and { bn} in such examples. 
However, different choices that lead to a non-degenerate limit always yield 
a limit distribution in the GEV family with the same value of e, though 
possibly with other values of the location and scale parameters. 

3.2 Asymptotic Models for Minima 

Some applications require models for extremely small, rather than ex
tremely large, observations. This is not usually the case for problems involv
ing environmental data, but system failure models, as discussed in Example 
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1.2, can often be constructed such that the lifetime of a system is equal to 
the minimum lifetime of a number, n, of individual components. The overall 
system lifetime is then Mn = niin{Xl, ... 'Xn}, where the xi denote the 
individual component lifetimes. Assuming the Xi to be independent and 
identically distributed, analogous arguments apply to Mn as were applied 
to Mn, leading to a limiting distribution of a suitably re-scaled variable. 

The results are also immediate from the corresponding results for Mn. 
Letting Yi = -Xi for i = 1, ... , n, the change of sign means that small 
values of Xi correspond to large values of }i. So if Mn = min{X1, ... , Xn} 
and Mn = max{Y1, ... , Yn}, then Mn = -Mn. Hence, for large n, 

Pr{Mn $ z} = Pr{-Mn $ z} 

= Pr{Mn;::: -z} 
= 1 - Pr{ Mn $ - z} 

~ 1- exp {- [ 1 + e ( -z 11- Jt) rl/(} 
= 1- exp {- [ 1-e ( z: ji) rl/(} ' 

on {z: 1- {(z- M/11 > 0}, where ji = -Jt. This distribution is the GEV 
distribution for minima. We can state the result formally as a theorem 
analogous to Theorem 3.1.1 for maxima. 

Theorem 3.3 If there exist sequences of constants {an > 0} and {bn} 
such that 

Pr{(Mn- bn)fan $ z}--+ G(z) as n--+ oo 

for a non-degenerate distribution function G, then G is a member of the 
GEV family of distributions for minima: 

defined on {z : 1- {(z- ji)j11 > 0}, where -oo < Jt < oo, a > 0 and 
-oo < e < oo. 0 

In situations where it is appropriate to model block minima, the GEV 
distribution for minima can be applied directly. An alternative is to exploit 
the duality between the distributions for maxima and minima. Given data 
z1 , ... , Zm that are realizations from the GEV distribution for minima, with 
parameters (ji, 11, {), this implies fitting the GEV distribution for maxima 
to the data -z1, ••• , -zm· The maximum likelihood estimate of the pa
rameters of this distribution corresponds exactly to that of the required 
GEV distribution for minima, apart from the sign correction~= -ji. This 
approach is used in Section 3.4.2 to model the glass fiber data described in 
Example 1.2. 
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3.3 Inference for the GEV Distribution 

3.3.1 General Considerations 

Motivated by Theorem 3.1.1, the GEV provides a model for the distribution 
of block maxima. Its application consists of blocking the data into blocks 
of equal length, and fitting the GEV to the set of block maxima. But in 
implementing this model for any particular dataset, the choice of block 
size can be critical. The choice amounts to a trade-off between bias and 
variance: blocks that are too small mean that approximat~on by the limit 
model in Theorem 3.1.1 is likely to be poor, leading to bias in estimation 
and extrapolation; large blocks generate few block maxima, leading to large 
estimation variance. Pragmatic considerations often lead to the adoption of 
blocks of length one year. For example, only the annual maximum data may 
have been recorded, so that the use of shorter blocks is not an option. Even 
when this is not the case, an analysis of annual maximum data is likely to 
be more robust than an analysis based on shorter blocks if the conditions 
of Theorem 3.1.1 are violated. For example, daily temperatures are likely 
to vary according to season, violating the assumption that the Xi have a 
common distribution. If the data were blocked into block lengths of around 
3 months, the maximum of the summer block is likely to be much greater 
than that of the winter block, and an inference that failed to take this non
homogeneity into account would be likely to give inaccurate results. Taking, 
instead, blocks of length one year means the assumption that individual 
block maxima have a common distribution is plausible, though the formal 
justification for the GEV approximation remains invalid. 

We now simplify notation by denoting the block maxima Z1, ... , Zm. 
These are assumed to be independent variables from a GEV distribution 
whose parameters are to be estimated. If the xi are independent then the 
Zi are also independent. However, independence of the Zi is likely to be a 
reasonable approximation even if the Xi constitute a dependent series. In 
this case, although not covered by Theorem 3.1.1, the conclusion that the 
Zi have a GEV distribution may still be reasonable; see Chapter 5. 

Many techniques have been proposed for parameter estimation in ex
treme value models. These include graphical techniques based on versions 
of probability plots; moment-based techniques in which functions of model 
moments are equated with their empirical equivalents; procedures in which 
the parameters are estimated as specified functions of order statistics; and 
likelihood-based methods. Each technique has its pros and cons, but the 
all-round utility and adaptability to complex model-building of likelihood
based techniques make this approach particularly attractive. 

A potential difficulty with the use of likelihood methods for the GEV con
cerns the regularity conditions that are required for the usual asymptotic 
properties associated with the maximum likelihood estimator to be valid. 
Such conditions are not satisfied by the GEV model because the end-points 
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of the GEV distribution are functions of the parameter values: f.t- afe is 
an upper end-point of the distribution when e < 0, and a lower end-point 
when e > 0. This violation of tbe usual regularity conditions means that 
the standard asymptotic likelihood results are not automatically applica
ble. Smith (1985) studied this problem in detail and obtained the following 
results: 

• when e > -0.5, maximum likelihood estimators are regular, in the 
sense of having the usual asymptotic properties; 

• when -1 < e < -0.5, maximum likelihood estimators are generally 
obtainable, but do not have the standard asymptotic properties; 

• when e < -1, maximum likelihood estimators are unlikely to be 
obtainable. 

The case e ::; -0.5 corresponds to distributions with a very short bounded 
upper tail. This situation is rarely encountered in applications of extreme 
value modeling, so the theoretical limitations of the maximum likelihood 
approach are usually no obstacle in practice. 

3.3.2 Maximum Likelihood Estimation 

Under the assumption that Z1, ... , Zm are independent variables having 
the GEV distribution, the log-likelihood for the GEV parameters when 
e # 0 is 

f(p,,a,e) = -mloga- (1 + 1/e) ~log [ 1 + e ( Zi; f.t)] 
- ~ [ 1 + e ( Zi; f.t) rl/{' (3.7) 

provided that 

( z·- f.t) 1 + e 7 > 0, for i = 1, ... 'm. (3.8) 

At parameter combinations for which (3.8) is violated, corresponding to a 
configuration for which at least one of the observed data falls beyond an 
end-point of the distribution, the likelihood is zero and the log-likelihood 
equals -oo. 

The case e = 0 requires separate treatment using the Gumbel limit of 
the GEV distribution. This leads to the log-likelihood 
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Maximization of the pair of Eqs. (3. 7) and (3.9) with respect to the 
parameter vector (J.L, a, e) leads to the maximum likelihood estimate with 
respect to the entire GEV family. There is no analytical solution, but for 
any given dataset the maximization is straightforward using standard nu
merical optimization algorithms. Some care is needed to ensure that such 
algorithms do not move to parameter combinations violating (3.8), and also 
that numerical difficulties that would arise from the evaluation of (3. 7) in 
the vicinity of e = 0 are avoided. This latter problem is easily solved by 
using (3.9) in place of (3.7) for values of e falling within a small window 
around zero. 

Subject to the limitations on e discussed in Section 3.3.1, the approxi
mate distribution of (P,, fT' ~) is multivariate normal with mean (J.L, a, e) and 
variance-covariance matrix equal to the inverse of the observed information 
matrix evaluated at the maximum likelihood estimate. Though this matrix 
can be calculated analytically, it is easier to use numerical differencing tech
niques to evaluate the second derivatives, and standard numerical routines 
to carry out the inversion. Confidence intervals and other forms of inference 
follow immediately from the approximate normality of the estimator. 

3. 3. 3 Inference for Return Levels 

By substitution of the maximum likelihood estimates of the GEV param
eters into (3.4), the maximum likelihood estimate of zp for 0 < p < 1, the 
1/p return level, is obtained as 

for~ ;6 0, 

for~= 0, 

where YP = -log(1- p). Furthermore, by the delta method, 

Var(zp) ~ '\7 z'JV"il zp, 

where V is the variance-covariance matrix of (P,, fT, ~) and 

'\lzT = [azp azp azp] 
P OJ.L ' aa ' 8{ 

(3.10) 

(3.11) 

= [1, - C 1(1- y;{), aC2(1- y;()- aC1y;(logyp) 

evaluated at (P,, fT, ~). 
It is usually long return periods, corresponding to small values of p, that 

are of greatest interest. If ~ < 0 it is also possible to make inferences on 
the upper end-point of the distribution, which is effectively the 'infinite
observation return period', corresponding to Zp with p = 0. The maximum 
likelihood estimate is 
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and (3.11) is still valid with 

Vzl = [1, - C 1 , uC2], 

again evaluated at (P,,a,~). When~?: 0 the maximum likelihood estimate 
of the upper end-point is infinity. 

Caution is required in the interpretation of return level inferences, es
pecially for return levels corresponding to long return periods. First, the 
normal approximation to the distribution of the maximum likelihood esti
mator may be poor. Better approximations are generally obtained from the 
appropriate profile likelihood function; see Section 2.6.6. More fundamen
tally, estimates and their measures of precision are based on an assump
tion that the model is correct. Though the GEV model is supported by 
mathematical argument, its use in extrapolation is based on unverifiable 
assumptions, and measures of uncertainty on return levels should properly 
be regarded as lower bounds that could be much greater if uncertainty due 
to model correctness were taken into account. 

3. 3.4 Profile Likelihood 

Numerical evaluation of the profile likelihood for any of the individual 
parameters Jt, u or e is straightforward. For example, to obtain the profile 
likelihood fore, we fixe= eo, and maximize the log-likelihood (3.7) with 
respect to the remaining parameters, Jt and u. This is repeated for a range 
of values of eo. The corresponding maximized values of the log-likelihood 
constitute the profile log-likelihood fore, from which Theorem 2.6 leads to 
obtain approximate confidence intervals. 

This methodology can also be applied when inference is required on some 
combination of parameters. In particular, we can obtain confidence inter
vals for any specified return level Zp· This requires a reparameterization of 
the GEV model, so that Zp is one of the model parameters, after which 
the profile log-likelihood is obtained by maximization with respect to the 
remaining parameters in the usual way. Reparameterization is straightfor
ward: 

(3.12) 

so that replacement of Jt in (3.7) with (3.12) has the desired effect of ex
pressing the GEV model in terms of the parameters (zp, u, e). 

3. 3. 5 Model Checking 

Though it is impossible to check the validity of an extrapolation based 
on a GEV model, assessment can be made with reference to the observed 
data. This is not sufficient to justify extrapolation, but is a reasonable 
prerequisite. In Chapter 2 we discussed the use of probability plots and 
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quantile plots for model checking; we now describe these in more detail for 
checking the validity of a GEV model, and describe two further graphical 
goodness-of-fit checks. 

As described in Chapter 2, a probability plot is a comparison of the 
empirical and fitted distribution functions. With ordered block maximum 
data Z(t) ~ Z(2) ~ • · • ~ Z(m)• the empirical distribution function evaluated 
at Z(i) is given by 

G(z(i)) = i/(m + 1). 

By substitution of parameter estimates into (3.2), the corresponding model
based estimates are 

If the G EV model is working well, 

G(z(i)) ~ G(z(i)) 

for each i, so a probability plot, consisting of the points 

{ ( G(z(ij),G(z(i))), i = 1, ... , m}, 

should lie close to the unit diagonal. Any substantial departures from lin
earity are indicative of some failing in the GEV model. 

A weakness of the probability plot for extreme value models is that both 
G(z(i)) and G(z(i)) are bound to approach 1 as Z(i) increases, while it is 
usually the accuracy of the model for large values of z that is of greatest 
concern. That is, the probability plot provides the least information in the 
region of most interest. This deficiency is avoided by the quantile plot, 
consisting of the points 

{ ( G-1(i/(m + 1)),Z(i)), i = 1, ... ,m}, (3.13) 

where, from (3.10), 

Departures from linearity in the quantile plot also indicate model failure. 
As discussed in Section 3.1.3, the return level plot, comprising a graph 

of 
Zp = J.L- ~ (1 - { -log(1 - p)} -{) e 

against YP = -log(1- p) on a logarithmic scale, is particularly convenient 
for interpreting extreme value models. The tail of the distribution is com
pressed, so that return level estimates for long return periods are displayed, 
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while the linearity of the plot in the case e = 0 provides a baseline against 
which to judge the effect of the estimated shape parameter. 

As a summary of a fitted model the return level plot consists of the locus 
of points -

{(logyp,zp): 0 < p < 1}, 

where Zp is the maximum likelihood estimate of Zp· Confidence intervals can 
be added to the plot to increase its informativeness. Empirical estimates 
of the return level function, obtained from the points (3.13), can also be 
added, enabling the return level plot to be used as a model diagnostic. If the 
GEV model is suitable for the data, the model-based curve and empirical 
estimates should be in reasonable agreement. Any substantial or systematic 
disagreement, after allowance for sampling error, suggests an inadequacy 
of the GEV model. 

The probability, quantile and return level plots are each based on a com
parison of model-based and empirical estimates of the distribution function. 
For completeness, an equivalent diagnostic based on the density function 
is a comparison of the probability density function of a fitted model with a 
histogram of the data. This is generally less informative than the previous 
plots, since the form of a histogram can vary substantially with the choice 
of grouping intervals. That is, in contrast with the empirical distribution 
function, there is no unique empirical estimator of a density function, mak
ing comparisons with a model-based estimator difficult and subjective. 

3.4 Examples 

3.4.1 Annual Maximum Sea-levels at Port Pirie 

This analysis is based on the series of annual maximum sea-levels recorded 
at Port Pirie, South Australia, over the period 1923-1987, as described in 
Example 1.1. From Fig. 1.1 it seems reasonable to assume that the pattern 
of variation has stayed constant over the observation period, so we model 
the data as independent observations from the GEV distribution. 

Maximization of the GEV log-likelihood for these data leads to the esti-
mate 

(p,,a-,~) = (3.87,0.198, -0.050), 

for which the log-likelihood is 4.34. The approximate variance-covariance 
matrix of the parameter estimates is 

[ 
0.000780 0.000197 -0.00107 l 

v = 0.000197 0.000410 -0.000778 . 
-0.00107 -0.000778 0.00965 

The diagonals of the variance-covariance matrix correspond to the variances 
of the individual parameters of (t-t, a, e) . Taking square roots, the standard 
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FIGURE 3.2. Profile likelihood for { in the Port Pirie sea-level example. 

errors are 0.028, 0.020 and 0.098 for P,, a and ~ respectively. Combining es
timates and standard errors, approximate 95% confidence intervals for each 
parameter are [3.82,3.93] for J.L, [0.158,0.238] for 17, and [-0.242,0.142] for 
e. In particular, although the maximum likelihood estimate for e is nega
tive, corresponding to a bounded distribution, the 95% confidence interval 
extends well above zero, so that the strength of evidence from the data for 
a bounded distribution is not strong. Greater accuracy of confidence inter
vals can usually be achieved by the use of profile likelihood. Fig. 3.2 shows 
the profile log-likelihood fore, from which a 95% confidence interval for e 
is obtained as [-0.21,0.17], which is only slightly different to the earlier 
calculation. 

Estimates and confidence intervals for return levels are obtained by sub
stitution into (3.10) and (3.11). For example, to estimate the 10-year return 
level, we set p = 1/10 and find 20 .1 = 4.30 and Var(z0.1) = 0.00303. Hence, 
a 95% confidence interval for zo.l is evaluated as 4.30 ± 1.96 x v'0.00303 = 
[4.19,4.41]. The corresponding estimate for the 100-year return level is 
io.o1 = 4.69, with a 95% confidence interval of [4.38, 5.00]. 

Better accuracy again comes from the profile likelihood. Figs. 3.3 and 
3.4 show the profile log-likelihood for the 10- and 100-year return levels 
respectively. By Theorem 2.6 we obtain confidence intervals for zo.1 and 
z0 .01 of [4.21, 4.45] and [4.50, 5.27] respectively. The first of these is simi
lar to that obtained from the delta method, while the second is not. The 
latter discrepancy arises because of asymmetry in the profile log-likelihood 
surface, the extent of which increases with increasing return period. Such 
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Retumlevel 

FIGURE 3.3. Profile likelihood for 10-year return level in the Port Pirie sea-level 
example. 

4.5 5.0 5.5 6.0 

Retum Level 

FIGURE 3.4. Profile likelihood for 100-year return level in the Port Pirie sea-level 
example. 
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asymmetries are to be expected, since the data provide increasingly weaker 
information about high levels of the process. 
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FIGURE 3.5. Diagnostic plots for GEV fit to the Port Pirie sea-level data. 

The various diagnostic plots for assessing the accuracy of the GEV model 
fitted to the Port Pirie data are shown in Fig. 3.5. Neither the probability 
plot nor the quantile plot give cause to doubt the validity of the fitted 
model: each set of plotted points is near-linear. The return level curve 
asymptotes to a finite level as a consequence of the negative estimate of e, 
though since the estimate is close to zero, the estimated curve is close to 
linear. The curve also provides a satisfactory representation of the empir
ical estimates, especially once sampling variability is taken into account. 
Finally, the corresponding density estimate seems consistent with the his
togram of the data. Consequently, all four diagnostic plots lend support to 
the fitted GEV model. 

The original version of the extremal types theorem, as given in Theorem 
3.1, identifies three possible families of limit distributions for maxima. Be
fore the unification of the three distributions into the single GEV family, it 
was natural to make a preliminary choice of model type prior to parameter 
estimation. This approach now has little merit, given the alternative option 
of modeling within the entire GEV family. However, the suitability of any 
particular member of the GEV family can be assessed by comparison with 
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the maximum likelihood estimate within the entire family. For example, 
the appropriateness of replacing the GEV family with the Gumbel family, 
corresponding to the ~ = 0 subset of the GEV family, can be assessed. 
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FIGURE 3.6. Diagnostic plots for Gumbel fit to the Port Pirie sea-level data. 

Maximum likelihood in the Gumbel case corresponds to maximization of 
(3.9), followed by standard treatment to obtain standard errors etc. For the 
Port Pirie sea-level data this leads to (P,, a) = (3.87, 0.195), with standard 
errors 0.03 and 0.019 respectively. The maximized log-likelihood is -4.22. 
The likelihood ratio test statistic for the reduction to the Gumbel model 
is therefore D = 2{ -4.22 - ( -4.34)} = 0.24. This value is small when 
compared to the x? distribution, suggesting that the Gumbel model is ade
quate for these data. This is confirmed by the standard diagnostic graphical 
checks in Fig. 3.6, which imply that the goodness-of-fit is comparable with 
that of the GEV model. This is not surprising since the estimated param
eters in the two models are so similar, which also means that (short-term) 
model extrapolation on the basis of either model leads to similar answers. 
The greatest difference between the two models is in terms of the precision 
of estimation: the model parameters and return levels have estimates with 
considerably shorter confidence intervals in the Gumbel model, compared 
with the GEV model. 
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The issue of choice between the Gumbel and GEV models is starkly il
lustrated by the respective return level plots of Figs. 3.5 and 3.6. The esti
mated return level curves are similar, but the confidence intervals are much 
wider for the GEV model, especially for long return periods. Reduction of 
uncertainty is desirable, so that if the Gumbel model could be trusted, its 
inferences would be preferred. But can the model be trusted? The extremal 
types theorem provides support for modeling block maxima with the GEV 
family, of which the Gumbel family is a subset. The data suggest that a 
Gumbel model is plausible, but this does not imply that other models are 
not. Indeed, the maximum likelihood estimate within the GEV family is 
not in the Gumbel family (although, in the sense that f ~ 0, it is 'close'). 
There is no common agreement about this issue, but the safest option is 
to accept there is uncertainty about the value of the shape parameter -
and hence whether the Gumbel model is correct or not - and to prefer 
the inference based on the GEV model. The larger measures of uncertainty 
generated by the GEV model then provide more a realistic quantification 
of the genuine uncertainties involved in model extrapolation. 

3.4.2 Glass Fiber Strength Example 

We now consider the glass fiber breaking strength data of Example 1.2. 
For the reasons discussed in Section 3.2, the GEV model for minima is an 
appropriate starting point for data of this type. There are two equivalent 
approaches to the modeling. Either the GEV distribution for minima can be 
fitted directly to the data, or the data can be negated and the GEV distri
bution for maxima fitted to these data. The equivalence of these operations 
is justified in Section 3.2. To economize on the writing of model-fitting rou
tines, we take the approach of fitting the GEV distribution to the negated 
data. This leads to the maximum likelihood estimate 

(P,, &, ~) = ( -1.64, 0.27, -0.084), 

with a maximized value of the log-likelihood equal to -14.3. The corre
sponding estimated variance-covariance matrix is 

[ 
0.00141 0.000214 -0.000795] 

v = 0.000214 0.000652 -0.000441 . 
-0.000795 -0.0000441 0.00489 

Taking square roots of the diagonals of this matrix leads to standard er
rors of f-t, a and e as 0.038, 0.026 and 0.070 respectively. The estimates and 
standard errors combine to give approximate confidence intervals. In par
ticular, a 95% Confidence interval fore iS Obtained as -0.084± 1.96 X 0.07 = 
[ -0.22, 0.053). So, as in the previous example, the maximum likelihood es
timate of the shape parameter is negative, but both negative and positive 
values are plausible once sampling uncertainty is accounted for. 
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FIGURE 3.7. Diagnostic plots of GEV fit to negative breaking strengths of glass 
fibers. 

From Section 3.2 the estimates for the parameters ({L, CT, e) of the corre
sponding GEV distribution for minima applied directly to the original data 
are 

(/L1 a-},) = (1.641 0.21, -0.084). 

The change of sign of the location parameter induces a change to the sign 
of appropriate components of the variance-covariance matrix, which now 
becomes 

[ 
0.00141 

v = -0.000214 
0.000795 

-0.000214 
0.000652 

-0.0000441 

0.000795] 
-0.000441 . 

0.00489 

Returning to the GEV analysis, the diagnostic plots for the fitted model 
are shown in Fig. 3.7. The probability and quantile plots are less convincing 
than in the previous example, but there is less doubt about the quality of 
fit once confidence intervals are added to the return level curve. 

Interpretation of return levels in this example needs some explanation. 
The "return period" of 1000 has a "return level" of around -0.4. Such ter
minology doesn't work so well here; the values imply that, given 1000 such 
glass fibers, just one would be expected to have a breaking strength below 
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0.4 units. This point also raises an issue that is often used as an objec
tion to the use of the GEV family. Looking at the return level plot in Fig. 
3.7, it is clear that the model extrapolates to positive values, or equiva
lently, to negative values of breaking strength. This is incompatible with 
the physical process under study. In fact, the estimated upper end-point of 
the fitted distribution is z0 = jJ, - & Ji. = 1.59, corresponding to a breaking 
strength of -1.59 units. The situation would be worse had the estimate of e 
been non-negative, since the estimated upper end-point of the distribution 
would have been infinite. This situation is not uncommon. For example, 
GEV estimates of annual maxima of daily rainfall often lead to positive es
timates of e' though it is unreasonable on physical grounds· to believe that 
daily rainfall levels are truly without limit. What these arguments really 
illustrate is the danger of relying on the arguments leading to the GEV 
distribution as a basis for very long-term extrapolation. Although the ar
guments for fitting the GEV distribution to block maxima are compelling, 
the temptation to extrapolate to extremely high levels should be tempered 
by caution and physical knowledge. 

3.5 Model Generalization: the r Largest Order 
Statistic Model 

3.5.1 Model Formulation 

An implicit difficulty in any extreme value analysis is the limited amount 
of data for model estimation. Extremes are scarce, by definition, so that 
model estimates, especially of extreme return levels, have a large variance. 
This issue has motivated the search for characterizations of extreme value 
behavior that enable the modeling of data other than just block maxima. 

There are two well-known general characterizations. One is based on ex
ceedances of a high threshold, the other is based on the behavior of the 
r largest order statistics within a block, for small values of r. Both char
acterizations can be unified using a point process representation discussed 
in Chapter 7. In this section we focus on a model for the r largest order 
statistics. 

As in previous sections, we suppose that X 1 , X 2 , ••• is a sequence of in
dependent and identically distributed random variables, and aim to char
acterize the extremal behavior of the Xi. In Section 3.1.3 we obtained that 
the limiting distribution as n -t oo of Mn, suitably re-scaled, is GEV. We 
first extend this result to other extreme order statistics, by defining 

MAk) = kth largest of {X1, ... , Xn}, 

and identifying the limiting behavior ofthis variable, for fixed k, as n -t oo. 
The following result generalizes Theorem 3.1. 
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Theorem 3.4 If there exist sequences of constants {an > 0} and {bn} 
such that 

Pr{(Mn- bn)fan ~ z} -t G(z) as n -too 

for some non-degenerate distribution function G, so that G is the GEV 
distribution function given by (3.2), then, for fixed k, 

Pr{(M~k)- bn)fan ~ z} -t Gk(z) 

on {z: 1 + ~(z -IL)fu > 0}, where 

with 

k-1 ( )B 
Gk(z) = exp{ -r(z)} L ~ 

s=O s. 
(3.14) 

0 

Theorem 3.4 implies that, if the kth largest order statistic in a block is 
normalized in exactly the same way as the maximum, then its limiting dis
tribution is of the form given by (3.14), the parameters of which correspond 
to the parameters of the limiting GEV distribution of the block maximum. 
Again, by absorbing the unknown scaling constants into the model loca
tion and scale parameters, it follows that, for large n, the approximate 
distribution of M~k) is within the family (3.14). 

There is, however, a difficulty in using (3.14) as a model. The situation 
we are often faced with, as with the Venice sea-level example, is of having 
each of the largest r order statistics within each of several blocks, for some 
value of r. That is, we usually have the complete vector 

M~) = (M~l)' ... 'MAr)) 

for each of several blocks. In the case of the Venice sea-level data, r = 10 for 
most of the blocks, each of which corresponds to one year of observations. 
Whilst Theorem 3.4 gives a family for the approximate distribution of each 
of the components of M~), it does not give the joint distribution of M~). 
Moreover, the components cannot be independent: MA2) can be no greater 
than MA1), for example, so the outcome of each component influences the 
distribution of the other. Consequently, the result of Theorem 3.4 does not 
in itself lead to a model for M~). Instead, we require a characterization of 
the limiting joint distribution of the entire vector M~). With appropriate 
re-scaling this can be achieved, but the limiting joint distribution it leads 
to is intractable. However, the following theorem gives the joint density 
function of the limit distribution. 
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Theorem 3.5 If there exist sequences of constants {an > 0} and {bn} 
such that 

Pr{(Mn- bn)fan :$ z}-+ G(z) as n-+ oo 

for some non-degenerate distribution function G, then, for fixed r, the 
limiting distribution as n -+ oo of 

falls within the family having joint probability density function 

{ [ ( z(r) )]-l/(} 
f(z(l), ... ,z(r))=exp- 1+~ u-J.t 

r [ (z(k) _ )] -!-1 

X n U-1 1 + ~ U J.t ' 
k=l 

(3.15) 

where -oo < J.t < oo, u > 0 and -oo < ~ < oo; z(r) ::=; z(r-l) ::=; ... ::=; z(1); 

and z(k): 1 + ~(z(k)- J.t)/u > 0 fork= 1, ... ,r. 0 

Proofs of Theorems 3.4 and 3.5 are given in Chapter 7. In the case r = 1, 
(3.15) reduces to the GEV family of density functions. The case ~ = 0 in 
(3.15) is interpreted as the limiting form as~-+ 0, leading to the family of 
density functions 

(3.16) 

for which the case r = 1 reduces to the density of the Gumbel family. 

3.5.2 Modeling the r Largest Order Statistics 

Starting with a series of independent and identically distributed variables, 
data are grouped into m blocks. In block i the largest ri observations are 

d d 1 d. h · M(r;) ( (l) (r;)) r · 1 It recor e , ea mg to t e senes i = zi , ... , zi , tor z = , ... , m. 
is usual to set r 1 = · · · = rm = r for some specified value of r, unless fewer 
data are available in some blocks. 

As with the GEV model, the issue of block size amounts to a trade-off 
between bias and variance that is usually resolved by making a pragmatic 
choice, such as a block size of length one year. The number of order statistics 
used in each block also comprises a bias-variance trade-off: small values of 
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r generate few data leading to high variance; large values of r are likely to 
violate the asymptotic support for the model, leading to bias. In practice 
it is usual to select the ri as large as possible, subject to adequate model 
diagnostics. 

The likelihood for this model is obtained from (3.15) and (3.16), by ab
sorbing the unknown scaling coefficients into location and scale parameters 
in the usual way, and by taking products across blocks. So, when e :1 0, 

(3.17) 

provided 1 + e(z(k) - J.L) fa > 0, k = 1, ... 'ri, i = 1, ... 'm; otherwise the 
likelihood is zero. When e = 0, 

L(J.L, a, e) = fi ( exp {- exp [- ( z(r;~- J.L)] } 

x g a-1 exp [- ( z!k)a_ J.L)]). (3.18) 

The likelihood (3.17) and (3.18) or, more commonly, the corresponding log
likelihood, can be maximized numerically to obtain maximum likelihood 
estimates. Standard asymptotic likelihood theory also gives approximate 
standard errors and confidence intervals. In the special case of ri = 1 for 
each i, the likelihood function reduces to the likelihood of the GEV model 
for block maxima. More generally, the r largest order statistic model gives a 
likelihood whose parameters correspond to those of the GEV distribution 
of block maxima, but which incorporates more of the observed extreme 
data. So, relative to a standard block maxima analysis, the interpretation 
of the parameters is unaltered, but precision should be improved due to 
the inclusion of extra information. 

3.5.3 Venice Sea-level Data 

These data, discussed in Example 1.5, consist of the 10 largest sea-levels 
in Venice over the period 1931-1981, except for the year 1935, for which 
only the largest 6 observations are available. So, with due allowance for the 
exceptional year, model (3.15) can be applied for any value ofr = 1, ... , 10. 
Maximum likelihood estimates and standard errors are given in Table 3.1 
for inferences based on selected values of r. As anticipated, with increasing 
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TABLE 3.1. Maximized log-likelihoods l, parameter estimates and standard er
rors (in parentheses) of r largest order statistic model fitted to the Venice sea-level 
data with different values of r. 

r 
1 
5 

10 

-222.7 
-732.0 

-1149.3 

111.1 (2.6) 
118.6 (1.6) 
120.4 (1.3) 

17.2 (1.8) 
13.7 (0.8) 
12.7 (0.5) 

-0.077 (0.074) 
-0.088 (0.033) 
-0.115 (0.019) 

values of r, the standard errors decrease, corresponding to increased model 
precision. However, if the asymptotic approximation is valid for a particu
lar choice of r, then parameter estimates should be stable when the model 
is fitted with fewer order statistics. But from Table 3.1, there is little evi
dence of stability in the location and scale parameter estimates, even once 
sampling variability is accounted for. This brings into doubt the validity of 
the model, at least for values of r 2: 5. 

Since the parameters f.L, u and ~ correspond exactly to the GEV param
eters of the annual maxima distribution, a more detailed assessment of 
model fit is derived from return level curves of the annual maximum dis
tribution. These are constructed in exactly the same way as for the block 
maximum model, but this time using the maximum likelihood estimates 
and variance-covariance matrix from the r largest order statistic model. 
Fig. 3.8 shows these plots for each value of r from 2 to 10. Even in the 
case of r = 2, the fit is not particularly good; the reasons for this will be 
discussed in Chapter 6. Notwithstanding general concerns about the lack of 
fit, Fig. 3.8 also illustrates that the agreement between model and data di
minishes as r increases, although the confidence intervals become less wide. 
This is a graphic illustration of the bias-variance trade-off determined by 
the choice of r. 

For any particular choice of r, the accuracy of the fit can also be exam
ined in greater detail. First, the complete range of diagnostics for the block 
maximum can be examined. As an example, with r = 5, the usual suite 
of annual maximum diagnostics is shown in Fig. 3.9. Like the return level 
plots, these are obtained in exactly the same way as for the block maxi
mum model, substituting the parameter estimates and variance-covariance 
matrix with those obtained by the maximization of (3.17). For the Venice 
data, the concern for lack of fit is reinforced by these diagnostics. Checks 
can also be made on the quality of fit for each of the order statistics by 
plotting probability and quantile plots. These are obtained by comparing 
the distribution of the kth order statistic - model (3.14), with parameter 
values replaced by their estimates - with the corresponding empirical es
timates. For the probability plot this is straightforward. The quantile plot 
is more complicated, since (3.14) cannot be analytically inverted and it is 
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FIGURE 3.8. Return level estimates with 95% confidence intervals for annual 
maxima distribution based on r largest order statistic model fitted to the Venice 
sea-level data. 
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FIGURE 3.9. Annual maximum GEV diagnostics for the Venice sea-level data 
on basis of fitted r largest order statistic model with r = 5. 
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FIGURE 3.10. Model diagnostics for the Venice sea-level data on basis of fitted 
r largest order statistic model with r = 5. Plots shown are probability plots (top 
row) and quantile plots (bottom row) for kth largest order statistic, k = 1, ... , 5. 

necessary to solve numerically the equation 

to obtain the model estimate of the 1 - p quantile. Nonetheless, this is 
straightforward using standard numerical techniques. For the Venice data, 
with the fitted model corresponding to r = 5, probability and quantile plots 
for each of the four largest order statistics are given in Fig. 3.10. These plots 
again indicate a fundamental lack of fit for the model. 

3.6 Further Reading 

The origins of the asymptotic sample maximum characterization can be 
traced back to Fisher & Tippett (1928). Their arguments were completed 
and formalized by Gnedenko (1943). Serious use of the block maximum 
model for statistical applications seems only to have started in the 1950's. 
Gumbel (1958) was influential in promoting the methodology, and this 
book is still relevant today. The GEV parameterization of the extreme 
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value limit models was independently proposed by von Mises (1954) and 
Jenkinson (1955). 

Aspects of likelihood inference for the GEV model, and in particular the 
calculation of the expected information matrix, were considered by Prescott 
& Walden (1980); this was subsequently generalized to the case of censored 
data by Prescott & Walden (1983). An explicit algorithm for estimating 
maximum likelihood parameters was given by Hosking (1985). Smith (1985) 
contains important calculations for establishing the asymptotic properties 
of the maximum likelihood estimator for a class of models that includes 
the GEV. The issue of testing for the Gumbel model as a special case of 
the GEV distribution is discussed by Hosking (1984). 

Competitor methods to maximum likelihood for estimating the parame
ters of the GEV distribution include the technique of probability weighted 
moments (Hosking et al., 1985) and methods based on order statistics (de 
Haan, 1990). Modified moment and likelihood techniques have also been 
proposed in a series of articles by JP Cohen: see Cohen (1988) for an 
overview and Smith (1995) for a general discussion and comparison. 

There are numerous published applications of the GEV model in a variety 
of disciplines. A number of recent publications were listed in Section 1.1. 
Other influential examples include Buishand (1989) and Carter & Chal
lenor (1981) for climatology; de Haan (1990), Tawn (1992) and Robinson 
& Tawn (1997) for oceanography; Zwiers (1987) and Walshaw & Anderson 
(2000) for wind field modeling; Henery (1984) and Robinson & Tawn (1995) 
for sports data modeling. The connections between extreme value models 
and reliability models are discussed in detail by Crowder et al. (1991). Ap
plications in the context of corrosion engineering are described by Scarf & 
Laycock (1996). 

Examples based on the r largest order statistic model are less common. 
As a modeling tool, the technique was first developed in the Gumbel case 
of e = 0 by Smith (1986), building on theoretical developments in Weiss
man (1978). The general case, having arbitrary e, was developed by Tawn 
(1988b). 



4 
Threshold Models 

4.1 Introduction 

As discussed in Chapter 3, modeling only block maxima is a wasteful ap
proach to extreme value analysis if other data on extremes are available. 
Though the r largest order statistic model is a better alternative, it is un
usual to have data of this form. Moreover, even this method can be wasteful 
of data if one block happens to contain more extreme events than another. 
If an entire time series of, say, hourly or daily observations is available, 
then better use is made of the data by avoiding altogether the procedure 
of blocking. 

Let X 1 , X 2 , ••• be a sequence of independent and identically distributed 
random variables, having marginal distribution function F. It is natural to 
regard as extreme events those of the Xi that exceed some high threshold 
u. Denoting an arbitrary term in the Xi sequence by X, it follows that 
a description of the stochastic behavior of extreme events is given by the 
conditional probability 

1-F(u+y) 
Pr{X>u+yiX>u}= 1 -F(u), y>O. (4.1) 

If the parent distribution F were known, the distribution of threshold ex
ceedances in ( 4.1) would also be known. Since, in practical applications, 
this is not the case, approximations that are broadly applicable for high 
values of the threshold are sought. This parallels the use of the GEV as an 

74 
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approximation to the distribution of maxima of long sequences when the 
parent population is unknown. 

4.2 Asymptotic Model Characterization 

4-2.1 The Generalized Pareto Distribution 

The main result is contained in the following theorem. 

Theorem 4.1 Let X1, X2, ... be a sequence of independent random vari
ables with common distribution function F, and let 

Denote an arbitrary term in the Xi sequence by X, and suppose that F 
satisfies Theorem 3.1.1, so that for large n, 

Pr{Mn:::; z} ~ G(z), 

where 

for some p., u > 0 and e. Then, for large enough u, the distribution function 
of (X-u), conditional on X> u, is approximately 

( e ) -1/f. 
H(y) = 1- 1 + : 

defined on {y: y > 0 and (1 + ey/u) > 0}, where 

u = q + e(u- JL). 

(4.2) 

(4.3) 

0 

Theorem 4.1 can also be made more precise, justifying (4.2) as a limiting 
distribution as u increases. In Section 4.2.2 we give an outline proof of the 
theorem as stated here. 

The family of distributions defined by Eq. ( 4.2) is called the general
ized Pareto family. Theorem 4.1 implies that, if block maxima have ap
proximating distribution G, then threshold excesses have a corresponding 
approximate distribution within the generalized Pareto family. Moreover, 
the parameters of the generalized Pareto distribution of threshold excesses 
are uniquely determined by those of the associated GEV distribution of 
block maxima. In particular, the parameter e in (4.2) is equal to that of 
the corresponding GEV distribution. Choosing a different, but still large, 
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block size n would affect the values of the GEV parameters, but not those 
of the corresponding generalized Pareto distribution of threshold excesses: 
~ is invariant to block size, while the calculation of if in ( 4.3) is unperturbed 
by the changes in J..L and u which are self-compensating. 

The duality between the GEV and generalized Pareto families means 
that the shape parameter ~ is dominant in determining the qualitative 
behavior of the generalized Pareto distribution, just as it is for the GEV 
distribution. If ~ < 0 the distribution of excesses has an upper bound of 
u - iff~; if ~ > 0 the distribution has no upper limit. The distribution is 
also unbounded if~= 0, which should again be interpreted by taking the 
limit ~--+ 0 in (4.2), leading to 

H(y) = 1- exp ( -~), y > 0, (4.4) 

corresponding to an exponential distribution with parameter 1/ii. 

4.2.2 Outline Justification for the Generalized Pareto Model 

This section provides an outline proof of Theorem 4.1. A more precise 
argument is given by Leadbetter et al. (1983). 

Let X have distribution function F. By the assumption of Theorem 3.1, 
for large enough n, 

for some parameters J..L, u > 0 and~· Hence, 

nlogF(z) ~- [1 + ~ ( z: J..L) r1/~ (4.5) 

But for large values of z, a Taylor expansion implies that 

logF(z) ~ -{1- F(z)}. 

Substitution into (4.5), followed by rearrangement, gives 

1 [ (u J..L)] - 1 /~ 1- F(u) ~;:; 1 + ~ -u-

for large u. Similarly, for y > 0, 

1 [ (u + ) ] - 1 /~ 1- F(u + y) ~;:; 1 + ~ :- J..L (4.6) 
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Hence, 

Pr{ X > u + y I X > u} 

where 

as required. 

4.2.3 Examples 

n-1 [1 + ~(u + y- J.t)Jur 11F. 
~ 

n-1 [1 + ~(u- J.t)Jur 11F. 

= 

= 

[1 + ~(u + y- J.t)fu] -1/F. 

1 + ~(u- J.t)fu 

[ ~y] -1/F, 
1+-::- ' 

(1 
(4.7) 

We now reconsider the three theoretical examples of Section 3.1.5 in terms 
of threshold exceedance models. 

Example 4.1 For the exponential model, F(x) = 1 - e-z, for x > 0. By 
direct calculation, 

1- F(u + y) e-(u+y) 
---:--'=":---:-"-'- = = e -y 

1- F(u) e-u 

for all y > 0. Consequently, the limit distribution of threshold exceedances 
is the exponential distribution, corresponding to ~ = 0 and a = 1 in the 
generalized Pareto family. Furthermore, this is an exact result for all thresh
olds u > 0. A 

Example 4.2 For the standard Frechet model, F(x) = exp(-1/x), for 
x > 0. Hence, 

1-F(u+y) = 1-exp{-(u+y)-1} ""(1 +?!.)-1 
1-F(u) 1-exp(-u-1) u 

as u --+ oo, for all y > 0. This corresponds to the generalized Pareto 
distribution with ~ = 1 and a = u. A 

Example 4.3 For the uniform distribution model U(O, 1), F(x) = x, for 
0 $ x $ 1. Hence, 

1-F(u+y) = 1-(u+y) = 1 __ Y_ 
1-F(u) 1-u 1-u 

for 0 $ y $ 1 - u. This corresponds to the generalized Pareto distribution 
with ~ = -1 and a = 1 - u. A 
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Comparison of the limit families obtained here for threshold exceedances 
with the corresponding block maxima limits obtained in Section 3.1.5 con
firms the duality of the two limit model formulations implied by Theorem 
4.1. In particular, the values of e are common across the two models. Fur
thermore, the value of a is found to be threshold-dependent, except in the 
case where the limit model has e = 0, as implied by Eq. (4.3). 

Until this point we have used the notation a to denote the scale param
eter of the generalized Pareto distribution, so as to distinguish it from the 
corresponding parameter of the GEV distribution. For notational conve
nience we now drop this distinction, using u to denote the scale parameter 
within either family. 

4.3 Modeling Threshold Excesses 

4.3.1 Threshold Selection 

Theorem 4.1 suggests the following framework for extreme value modeling. 
The raw data consist of a sequence of independent and identically dis
tributed measurements x 1 , •.• , Xn· Extreme events are identified by defin
ing a high threshold u, for which the exceedances are {Xi : Xi > u}. La
bel these exceedances by X(l), ... , x(k), and define threshold excesses by 
Yi = X(j) - u, for j = 1, ... , k. By Theorem 4.1, the Yi may be regarded 
as independent realizations of a random variable whose distribution can 
be approximated by a member of the generalized Pareto family. Inference 
consists of fitting the generalized Pareto family to the observed threshold 
exceedances, followed by model verification and extrapolation. 

This approach contrasts with the block maxima approach through the 
characterization of an observation as extreme if it exceeds a high threshold. 
But the issue of threshold choice is analogous to the choice of block size 
in the block maxima approach, implying a balance between bias and vari
ance. In this case, too low a threshold is likely to violate the asymptotic 
basis of the model, leading to bias; too high a threshold will generate few 
excesses with which the model can be estimated, leading to high variance. 
The standard practice is to adopt as low a threshold as possible, subject to 
the limit model providing a reasonable approximation. Two methods are 
available for this purpose: one is an exploratory technique carried out prior 
to model estimation; the other is an assessment of the stability of param
eter estimates, based on the fitting of models across a range of different 
thresholds. 

In more detail, the first method is based on the mean of the general
ized Pareto distribution. If Y has a generalized Pareto distribution with 
parameters (1 and e' then 

(1 

E(Y) = 1 _ ( (4.8) 
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provided~< 1. When~~ 1 the mean is infinite. Now, suppose the gener
alized Pareto distribution is valid as a model for the excesses of a threshold 
u0 generated by a series X 1, ••• , Xn, of which an arbitrary term is denoted 
X. By (4.8), 

E(X- uo I X > uo) = 1U:oe' 

provided~< 1, where we adopt the convention of using Uu0 to denote the 
scale parameter corresponding to excesses of the threshold Uo· But if the 
generalized Pareto distribution is valid for excesses of the threshold Uo, it 
should equally be valid for all thresholds u > u0 , subject to the appropriate 
change of scale parameter to uu. Hence, for u > uo, 

E(X - u I X > u) = 

= 

1-~ 

Uu0 + ~u 
1-~ 

(4.9) 

by virtue of (4.3). So, for u > u0 , E(X- u I X > u) is a linear function 
of u. Furthermore, E(X- u I X > u) is simply the mean of the excesses 
of the threshold u, for which the sample mean of the threshold excesses of 
u provides an empirical estimate. According to (4.9), these estimates are 
expected to change linearly with u, at levels of u for which the generalized 
Pareto model is appropriate. This leads to the following procedure. The 
locus of points 

{ ( u, :u ~(X(i) - u)) : u < xmax}, 

where X(l)• ... , X(nu) consist of the nu observations that exceed u, and Xmax 
is the largest of the Xi, is termed the mean residual life plot. Above a 
threshold u0 at which the generalized Pareto distribution provides a valid 
approximation to the excess distribution, the mean residual life plot should 
be approximately linear in u. Confidence intervals can be added to the plot 
based on the approximate normality of sample means. 

The interpretation of a mean residual life plot is not always simple in 
practice. Fig. 4.1 shows the mean residual life plot with approximate 95% 
confidence intervals for the daily rainfall data of Example 1.6. Once the 
confidence intervals are taken into account, the graph appears to curve 
from u = 0 to u ::::: 30, beyond which it is approximately linear until u ::::: 60, 
whereupon it decays sharply. It is tempting to conclude that there is no 
stability until u = 60, after which there is approximate linearity. This 
suggests we take u0 = 60. However, there are just 6 exceedances of the 
threshold u = 60, too few to make meaningful inferences. Moreover, the 
information in the plot for large values of u is unreliable due to the limited 
amount of data on which the estimate and confidence interval are based. 
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FIGURE 4.1. Mean residual life plot for daily rainfall data. 

Accordingly, it is probably better to conclude that there is some evidence 
for linearity above u = 30, and to work initially with a threshold set at 
uo = 30. 

The second procedure for threshold selection is to estimate the model at 
a range of thresholds. Above a level u0 at which the asymptotic motivation 
for the generalized Pareto distribution is valid, estimates of the shape pa
rameter e should be approximately constant, while estimates of cru should 
be linear in u, due to (4.9). We describe this method in greater detail in 
Section 4.3.4. 

4.3.2 Parameter Estimation 

Having determined a threshold, the parameters of the generalized Pareto 
distribution can be estimated by maximum likelihood. Suppose that the 
values y1 , ••• , Yk are the k excesses of a threshold u. For e =/; 0 the log
likelihood is derived from ( 4.2) as 

k 

e(cr,e) = -klogcr- (1 + 1/e) :Elog(1 +eyi/cr), (4.10) 
i=l 

provided (1 + cr-1eyi) > 0 fori= 1, ... , k; otherwise, f(cr, e) = -oo. In the 
case e = 0 the log-likelihood is obtained from (4.4) as 

k 

f(cr) = -klogcr- cr-1 LYi· 
i=l 
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Analytical maximization of the log-likelihood is not possible, so numerical 
techniques are again required, taking care to avoid numerical instabilities 
when~~ 0 in (4.10), and ensuring that the algorithm does not fail due to 
evaluation outside of the allowable parameter space. Standard errors and 
confidence intervals for the generalized Pareto distribution are obtained in 
the usual way from standard likelihood theory. 

4.3.3 Return Levels 

As discussed in Chapter 3, it is usually more convenient to interpret extreme 
value models in terms of quantiles or return levels, rather than individual 
parameter values. So, suppose that a generalized Pareto distribution with 
parameters a and ~ is a suitable model for exceedances of a threshold u by 
a variable X. That is, for x > u, 

It follows that 

Pr{X > x} = (u [1 + ~ (X: u)] -l/f., (4.11) 

where (u = Pr{ X > u}. Hence, the level Xm that is exceeded on average 
once every m observations is the solution of 

(4.12) 

Rearranging, 

(4.13) 

provided m is sufficiently large to ensure that Xm > u. This all assumes 
that~:/; 0. If~= 0, working in the same way with (4.4) leads to 

Xm = u +a log(m(u), (4.14) 

again provided m is sufficiently large. 
By construction, Xm is them-observation return level. From (4.13) 

and (4.14), plotting Xm against mona logarithmic scale produces the same 
qualitative features as return level plots based on the GEV model: linearity 
if ~ = 0; concavity if~ > 0; convexity if~ < 0. For presentation, it is often 
more convenient to give return levels on an annual scale, so that the N
year return level is the level expected to be exceeded once every N years. If 
there are ny observations per year, this corresponds to the m-observation 
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return level, where m = N x ny. Hence, theN-year return level is defined 
by 

ZN = U +% ((Nny(u)(- 1), 

unless e = 0, in which case 

ZN = u + ulog(Nny(u). 

Estimation of return levels requires the substitution of parameter values 
by their estimates. For u and e this corresponds to substitution by the 
corresponding maximum likelihood estimates, but an estimate of (u, the 
probability of an individual observation exceeding the threshold u, is also 
needed. This has a natural estimator of 

A k 
(u = -, 

n 

the sample proportion of points exceeding u. Since the number of ex
ceedances of u follows the binomial Bin{n, (u) distribution, (u is also the 
maximum likelihood estimate of (u. 

Standard errors or confidence intervals for Xm can be derived by the delta 
method, but the uncertainty in the estimate of (u should also be included 
in the calculation. From standard properties of the binomial distribution, 
Var((u) ~ (u{1 - (u)/n, so the complete variance-covariance matrix for 
{ (u, c1, ~) is approximately 

[ 
(u{1- (u)/n 0 

V = 0 V1,1 

0 V2,1 

where Vi,j denotes the {i,j) term of the variance-covariance matrix of c1 
and t Hence, by the delta method, 

(4.15) 

where 

\1 T = [8xm 8xm 8xm] 
Xm 8(u 1 {)u 1 ae 

= [um((~- 1 ,C1 {(m(u)( -1}, 

-uC2 { {m(u)(- 1} + uC1{m(u)( log{m(u)], 

evaluated at ((u, u, ~). 
As with previous models, better estimates of precision for parameters 

and return levels are obtained from the appropriate profile likelihood. For 
u or e this is straightforward. For return levels, a reparameterization is 
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required. Life is made simpler by ignoring the uncertainty in (u, which is 
usually small relative to that of the other parameters. From (4.13) and 
(4.14) 

{ 
(xm- u)e 

u = (m(u)e - 1' 
Xm-U 

log(m(u)' 

if e ¥ o; 

if e = o. 

With fixed Xm, substitution into (4.10) leads to a one-parameter likelihood 
that can be maximized with respect to e. As a function of Xm, this is the 
profile log-likelihood for them-observation return level. 

4.3.4 Threshold Choice Revisited 

We saw in Section 4.3 that mean residual life plots can be difficult to 
interpret as a method of threshold selection. A complementary technique 
is to fit the generalized Pareto distribution at a range of thresholds, and to 
look for stability of parameter estimates. The argument is as follows. 

By Theorem 4.1, if a generalized Pareto distribution is a reasonable 
model for excesses of a threshold Uo, then excesses of a higher threshold u 
should also follow a generalized Pareto distribution. The shape parameters 
of the two distributions are identical. However, denoting by uu the value of 
the generalized Pareto scale parameter for a threshold of u > u0 , it follows 
from ( 4.3) that 

Uu = Uu0 + e(u- Uo), (4.16) 

so that the scale parameter changes with u unless e = 0. This difficulty can 
be remedied _by reparameterizing the generalized Pareto scale parameter as 

u* = Uu - eu, 
which is constant with respect to u by virtue of (4.16). Consequently, es
timates of both u* and e should be constant above Uo, if Uo is a valid 
threshold for excesses to follow the generalized Pareto distribution. Sam
pling variability means that the estimates of these quantities will not be 
exactly constant, but they should be stable after allowance for their sam
pling errors. 

This argument suggests plotting both a* and t against u, together with 
confidence intervals for each of these quantities, and selecting Uo as the 
lowest value of u for which the estimates remain near-constant. The confi
dence intervals for t are obtained immediately from the variance-covariance 
matrix V. Confidence intervals for a* require the delta method, using 

Var(u*) ~ Vu*TVVu*, 

where 

V u"T = - - = (1 -u] [ 8u* 8u*] 
8uu' ae ' . 
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4. 3. 5 Model Checking 

Probability plots, quantile plots, return level plots and density plots are 
all useful for assessing the quality of a fitted generalized Pareto model. As
suming a threshold u, threshold excesses Y(1) ~ · · · ~ Y(k) and an estimated 
model ii, the probability plot consists of the pairs 

{(i/(k+1),H(Y(il)); i=1, ... ,k}, 

where 

( 
• ) -1/~ 

ii(y) = 1- 1 + ~ , 

provided f :/; 0. Iff= 0 the plot is constructed using (4.4) in place of (4.2). 
Again assuming f :/; 0, the quantile plot consists of the pairs 

{ cii-1 Ci/Ck + 1)), Y(i)), i = 1, ... , k }, 

where 

ii- 1(y) = u + ~ [y-~ -1]. 
If the generalized Pareto model is reasonable for modeling excesses of u, 
then both the probability and quantile plots should consist of points that 
are approximately linear. 

A return level plot consists of the locus of points { ( m, Xm)} for large 
values of m, where Xm is the estimated m-observation return level: 

. - a[ . ~ ] Xm- U + ~ (m(u) - 1 , 

again modified iff = 0. As with the GEV return level plot, it is usual to 
plot the return level curve on a logarithmic scale to emphasize the effect of 
extrapolation, and also to add confidence bounds and empirical estimates 
of the return levels. 

Finally, the density function of the fitted generalized Pareto model can 
be compared to a histogram of the threshold exceedances. 

4.4 Examples 

4.4.1 Daily Rainfall Data 

This example is based on the daily rainfall series discussed in Example 1.6. 
In Section 4.3 a mean residual life plot for these data suggested a threshold 
of u = 30. Further support for this choice is provided by the model-based 
check described in Section 4.3.4. The plots of a* and f against u are shown 
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FIGURE 4.2. Parameter estimates against threshold for daily rainfall data. 

in Fig. 4.2. The change-in pattern for very high thresholds that was observed 
in the mean residual life plot is also apparent here, but the perturbations 
are now seen to be small relative to sampling errors. Hence, the selected 
threshold of u = 30 appears reasonable. Maximum likelihood estimates in 
this case are 

ca-,e) = (7.44,0.184) 

with a corresponding maximized log-likelihood of -485.1. The variance
covariance matrix is calculated as 

[ 0.9188 -0.0655 ] 
-0.0655 0.0102 ' 

leading to standard errors of 0.959 and 0.101 for a and e respectively. In 
particular, it follows that a 95% confidence interval for ~ is obtained as 
0.184 ± 1.96 x 0.101 = [-0.014, 0.383]. The maximum likelihood estimate 
corresponds, therefore, to an unbounded distribution (since e > 0), and the 
evidence for this is reasonably strong, since the 95% interval for~ is almost 
exclusively in the positive domain. 

Since there are 152 exceedances of the threshold u = 30 in the com
plete set of 17531 observations, the maximum likelihood estimate of the 
exceedance probability is (u = 152/17531 = 0.00867, with approximate 



86 4. Threshold Models 

variance Var((u) = (u(1- (u)/17531 = 4.9 x 10-7 • Hence, the complete 
variance-covariance matrix for ( (, a, e) is 

[ 
4.9 x 10-7 

V= 0 
0 

0 
0.9188 

-0.0655 
-0.~655]. 
0.0102 

Since t > 0, it is not useful to carry out a detailed inference of the upper 
limit. Instead, we focus on extreme return levels. The data.are daily, so the 
100-year return level corresponds to the m-observation return level with 
m = 365 x 100. Substitution into (4.13) and (4.15) gives Xm = 106.3 and 
Var(xm) = 431.3, leading to a 95% confidence interval for Xm of 106.3 ± 
1.96v'431.3 = [65.6, 147.0]. 

Comparison with the observed data casts some doubt on the accuracy 
of this interval: in the 48 years of observation, the lower interval limit of 
65.6 was exceeded 6 times, suggesting that the 100-year return level is 
almost certainly not as low in value as the confidence interval implies is 
plausible. Better accuracy is achieved by using profile likelihood intervals. 
Fig. 4.3 shows the profile log-likelihood for e in this example. By Theorem 
2.6 an approximate 95% confidence interval for e is obtained from this 
graph as [0.019, 0.418]. This is not so different from the previous interval 
obtained previously, but strengthens slightly the conclusion that e > 0. 
The profile log-likelihood for the 100-year return level is plotted in Fig. 
4.4. In this case the surface is highly asymmetric, reflecting the greater 
uncertainty about large values of the process. The 95% confidence interval 
for the 100-year return level is obtained from the profile log-likelihood as 
(81.6, 185.7], an interval which now excludes the implausible range that 
formed part of the interval based on the delta method. Furthermore, the 
upper limit of 185.7 is very much greater than the delta-method value, 
more realistically accounting for the genuine uncertainties of extreme model 
extrapolation. This again illustrates that intervals derived from the delta 
method are anti-conservative, and should be replaced by profile likelihood 
intervals whenever a more precise measure of uncertainty is required. 

Finally, diagnostic plots for the fitted generalized Pareto model are shown 
in Fig. 4.5. None of the plots gives any real cause for concern about the 
quality of the fitted model. 

4.4.2 Dow Jones Index Series 

The Dow Jones Index data discussed in Example 1.8 provide a second 
example for exploring the utility of the threshold exceedance modeling 
approach. Because of the strong non-stationarity observed in the original 
series X1, ... , Xn, the data are transformed as Xi = log Xi -log Xi-l· Fig. 
1.9 suggests that the transformed series is reasonably close to stationarity. 
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FIGURE 4.3. Profile likelihood for e in threshold excess model of daily rainfall 
data. 
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FIGURE 4.4. Profile likelihood for 100-year return level in threshold excess model 
of daily rainfall data. 
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FIGURE 4.5. Diagnostic plots for threshold excess model fitted to daily rainfall 
data. 

For convenience of presentation, the data are now re-scaled as X -t 

lOOX. A mean residual life for the resulting Xi series is shown in Fig. 4.6. 
The plot is initially linear, but shows substantial curvature in the range 
-1 ~ u ~ 2. For u > 2 the plot is reasonably linear when judged rel
ative to confidence intervals, suggesting we set u = 2. This choice leads 
to 37 exceedances in the series of length 1303, so (u = 37/1303 = 0.028. 
The maximum likelihood estimates of the generalized Pareto distribution 
parameters are (a,{) = (0.495,0.288), with standard errors of 0.150 and 
0.258 respectively. The maximum likelihood estimate corresponds, there
fore, to an unbounded excess distribution, though the evidence for this is 
not overwhelming: 0 lies comfortably inside a 95% confidence interval for 
~· 

Diagnostic plots for the fitted generalized Pareto distribution are shown 
in Fig. 4.7. The goodness-of-fit in the quantile plot seems unconvincing, 
but the confidence intervals on the return level plot suggest that the model 
departures are not large after allowance for sampling. The return level plot 
also illustrates the very large uncertainties that accrue once the model is 
extrapolated to higher levels. 

In the context of financial modeling, extreme quantiles of the daily re
turns are generally referred to as the value-at-risk. It follows that the 
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FIGURE 4.6. Mean residual life plot for transformed Dow Jones Index data. 
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FIGURE 4.7. Diagnostic plots for threshold excess model fitted to transformed 
Dow Jones Index data. 
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generalized Pareto threshold model provides a direct method for the esti
mation of value-at-risk. Furthermore, the return level plot is simply a graph 
of value-at-risk against risk, on a convenient scale. 

Finally, we discussed in the introduction of Example 1.8 that financial 
series often have a rich structure of temporal dependence. The transforma
tion Xi -+ Xi is successful in reducing non-stationarity - the pattern of 
variation is approximately constant through time - but the induced series is 
not independent. That is, the distribution of Xi is dependent on the history 
of the process {X 1, ... , Xi- 1}. One illustration of this is provided by Fig. 
4.8, which shows the threshold exceedances at their times of occurrence. 
If the series were independent the times of threshold exceedances would 
be uniform distributed; in actual fact the data of Fig. 4.8 demonstrate a 
tendency for the extreme events to cluster together. Such violation of the 
assumptions of Theorem 4.1 brings into doubt the validity of the simple 
threshold excess model for the Dow Jones Index series. We return to this 
issue in Chapter 5. 
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FIGURE 4.8. Threshold exceedances by transformed Dow Jones Index series. 

4.5 Further Reading 

The basic strategy of modeling threshold excesses has a long history in the 
hydrological literature, though the excesses were originally assumed to have 
a distribution belonging to the family of exponential distributions rather 
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than the complete generalized Pareto family. The arguments leading to the 
generalized Pareto model are attributable to Pickands {1975). 

Statistical properties of the threshold approach were looked at in detail 
by Davison & Smith {1990), synthesizing earlier work in Davison {1984) and 
Smith {1984). In particular, they advocated the use of the mean residual 
life plot for threshold selection, and a likelihood approach to inference. Ap
plications of the threshold approach are now widespread: see, for example, 
Grady {1992), Walshaw {1994) and Fitzgerald {1989). 

A popular alternative to maximum likelihood estimation in the threshold 
excess model is a class of procedures based on functions of order statistics. 
These techniques often have an interpretation in terms of properties of 
quantile plots on appropriate scales, and generally incorporate procedures 
for threshold selection. Many of the techniques are variants on a proposal 
by Hill {1975); Dekkers & de Haan {1993), Beirlant et al. {1996) and Drees 
et al. {2000) make modified suggestions. 



5 
Extremes of Dependent Sequences 

5.1 Introduction 

Each of the extreme value models derived so far has been obtained through 
mathematical arguments that assume an underlying process consisting of a 
sequence of independent random variables. However, for the types of data to 
which extreme value models are commonly applied, temporal independence 
is usuaily an unrealistic assumption. In particular, extreme conditions of
ten persist over several consecutive observations, bringing into question the 
appropriateness of models such as the GEV. A detailed investigation of this 
question requires a mathematical treatment at a greater level of sophistica
tion than we have adopted so far. However, the basic ideas are not difficult 
and the main result has a simple heuristic interpretation. A more precise 
development is given by Leadbetter et al. (1983). 

The most natural generalization of a sequence of independent random 
variables is to a stationary series. Stationarity, which is a more realistic 
assumption for many physical processes, corresponds to a series whose 
variables may be mutually dependent, but whose stochastic properties are 
homogeneous through time. So, for example, if X1, X2 , .•• is a stationary 
series, then xl must have the same distribution as xlOl, and the joint dis
tribution of (X1, X2) must be the same as that of (X101 , X102), though X1 
need not be independent of x2 or x102· 

Dependence in stationary series can take many different forms, and it 
is impossible to develop a general characterization of the behavior of ex
tremes unless some constraints are imposed. With practical applications in 

92 
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mind, it is usual to assume a condition that limits the extent of long-range 
dependence at extreme levels, so that the events Xi > u and Xj > u are 
approximately independent, provided u is high enough, and time points i 
and j have a large separation. In other words, extreme events are close to 
independent at times that are far enough apart. Many stationary series sat
isfy this property. More importantly, it is a property that is often plausible 
for physical processes. For example, knowledge that it rained heavily today 
might influence the probability of extreme rainfall in one or two days' time, 
but not for a specified day in, say, three months' time. 

Eliminating long-range dependence at extreme levels in this way focuses 
attention on the effect of short-range dependence. Our heuristic arguments 
below, which mirror the more precise mathematical formulations, lead to a 
simple quantification of such effects on the standard extreme value limits. 

5.2 Maxima of Stationary Sequences 

The first step is to formulate a condition that makes precise the notion of 
extreme events being near-independent if they are sufficiently distant in 
time. 

Definition 5.1 A stationary series X1, X2 , ••• is said to satisfy the D( un) 
condition if, for all i1 < ... < ip < j 1 < ... < jq with ii - ip > l, 

IPr{ X it ~ Un, ... , xip ~ Un, X it ~ Un, ... , Xjq ~ Un} 

-Pr{Xi1 ~ Un, ... ,Xip ~ Un}Pr{Xit ~ Un, ... ,Xjq ~ Un}l ~ a(n,l), 
{5.1) 

where a(n, ln)-+0 for some sequence ln such that ln/n-+ 0 as n-+ oo. ~ 

For sequences of independent variables, the difference in probabilities 
expressed in {5.1) is exactly zero for any sequence Un· More generally, we 
will require that the D( un) condition holds only for a specific sequence 
of thresholds Un that increases with n. For such a sequence, the D( un) 
condition ensures that, for sets of variables that are far enough apart, the 
difference of probabilities expressed in {5.1), while not zero, is sufficiently 
close to zero to have no effect on the limit laws for extremes. This is sum
marized by the following result. 

Theorem 5.1 Let X1, X2 ... be a stationary process and define Mn = 
max{X1, ... ,Xn}· Then if {an> 0} and {bn} are sequences of constants 
such that 

Pr{(Mn- bn)/an ~ z}-+ G(z), 

where G is a non-degenerate distribution function, and the D( un) condition 
is satisfied with Un = anz + bn for every real z, G is a member of the 
generalized extreme value family of distributions. 0 
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The proof of this result is similar to that of Theorem 3.1, but extra care 
is needed to demonstrate that the D( un) condition with Un = anx + bn is 
sufficient for the effects of dependence in the series to have no influence on 
the limit result. The result is remarkable since it implies that, provided a 
series has limited long-range dependence at extreme levels (in the sense that 
the D( Un) condition makes precise), maxima of stationary series follow the 
same distributional limit laws as those of independent series. However, the 
parameters of the limit distribution are affected by the dependence in the 
series. We can examine this by comparing the distributions of the maxima 
of a stationary series and of a series of independent variables having the 
same marginal distribution. We let X 1 , X 2 , ••• be a stationary series with 
marginal distribution function F, and define an associated series Xi, Xi ... 
of independent random variables, such that each of the Xi also has distri
bution function F. In particular, we compare the limiting distributions of 
Mn = max{ X1, ... , Xn} and M~ = max{ Xi, ... , X~} as n ~ oo. Since the 
marginal distributions of the Xi and Xi series are the same, any difference 
in the limiting distributions of maxima must be attributable to dependence 
in the {Xi} series. 

Before discussing the general result, it is instructive to consider an ex
ample. 

Example 5.1 Let Y0 , Y1 , Y2, ... be an independent sequence of random 
variables with distribution function 

where 0 ~a~ 1 is a parameter. Now define the process Xi by 

Xo =Yo, xi= max{aYi-I,Yi}, i = 1, ... ,n. 

For each i = 1, ... , n, 

Pr{Xi ~ x} = Pr{aYi-I ~ x, Yi ~ x} = exp(-1/x), 

provided X > 0. Hence, the marginal distribution of the xi series, for 
i = 1, 2, ... , is standard Frechet. It is also easy to check that the se
ries is stationary. Now, let Xi, Xi, ... be a series of independent vari
ables having a marginal standard Frechet distribution, and define M~ = 
max{ Xi, ... ,X~}. Then, 

Pr{M~ ~ nz} = [exp{-1/(nz)}t = exp(-1/z). 
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FIGURE 5.1. Simulated series for different values of parameter a in Example 5.1: 
top left, a = 0; top right, a = 1/3; bottom left, a = 2/3; bottom right, a = 1 

On the other hand, for Mn = max{X1, ... , Xn}, 

Pr{Mn $ nz} = Pr{X1 $ nz, ... ,Xn $ nz} 

= Pr{Y1 $ nz, aY1 $ nz, ... , aYn-1 $ nz, Yn $ nz} 

= Pr{Y1 $ nz, ... ,Yn $ nz} 

= [exp {-(a +\)nz} r 
1 

= {exp(-1/z)}"+1 , 

where we have used the fact that a $ 1. It follows, in particular, that 

....L 
Pr{M~ $ nz} = [Pr{Mn $ nz}]"+ 1 (5.2) 

Further insight is gained by looking at simulated sequences of the sta
tionary series in Example 5.1 for different values of the parameter a. Figure 
5.1 shows plots of such series on a logarithmic scale for a = 0, 1/3,2/3 and 1 
respectively. The marginal distribution of each series is the same but, with 
increasing a, there is a tendency for extreme values to occur in groups. In 
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particular, when a = 1, the largest observations invariably occur in pairs. 
Though obscured by sampling variability, it also follows that the maximum 
over the 50 observations has a tendency to decrease as a increases. This is 
inevitable because of the relationship between Mn and M~ derived in (5.2). 

A similar linkage between the distributions of Mn and M~ to that in 
Example 5.1 can be shown to hold, under suitable regularity conditions, 
for a wide class of stationary processes. A summary of the result is given 
in Theorem 5.2. 

Theorem 5.2 Let X1, X2, ... be a stationary process and Xi, Xi, ... be a 
sequence of independent variables with the same marginal distribution. De
fine Mn = max{X1, ... , Xn} and M~ =max{ Xi, ... , X~}. Under suitable 
regularity conditions, 

Pr {(M~- bn)fan $ z} -t G1 (z) 

as n -t oo for normalizing sequences {an > 0} and {bn}, where G1 is a 
non-degenerate distribution function, if and only if 

where 
G2(z) = Gf(z) 

for a constant 0 such that 0 < 0 :::; 1. 

{5.3) 

0 

Theorem 5.2 implies that if maxima of a stationary series converge -
which, by Theorem 5.1 they will do, provided an appropriate D(un) condi
tion is satisfied - the limit distribution is related to the limit distribution 
of an independent series according to Eq. (5.3). The effect of dependence 
in the stationary series is simply a replacement of G1 as the limit distribu
tion - which would have arisen for the associated independent series with 
same marginal distribution - with Gf. This is consistent with Theorem 
5.1, because if G1 is a GEV distribution, so is Gf. More precisely, if G1 
corresponds to the GEV distribution with parameters (JL, a,~) , and ~ =f 0, 
then 

where 

Gf(z) = exp {- [1 +{ ( z: ") r'}' 
= exp { -0 [ 1 + ~ ( z : JL) rl/~} 

= exp {- [ 1 + ~ ( z ::*) rl/~} 
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Accordingly, if the approximate distribution of M~ is GEV with parame
ters (p,, a,~), the approximate distribution of Mn is GEV with parameters 
(p,*, a*,~). In particular, the shape parameters of the two distributions are 
equal. Similarly, if G1 corresponds to the Gumbel distribution with location 
and scale parameters p, and a respectively, G2 is also a Gumbel distribution, 
with parameters 

p,* = p, + a log 8 and a* = a. 

The quantity 8 defined by (5.3) is termed the extremal index. A more 
precise statement of Theorem 5.2, together with proofs, is given in Chapter 
3 of Leadbetter et al. (1983). In particular, the various regularity condi
tions required to establish the result can be found there. Furthermore, the 
definition of the extremal index can be extended to include the case 8 = 0, 
though in this case the result of Theorem 5.2 does not hold true. 

Looking back at Example 5.1, the extremal index is 8 =(a+ 1)-1 for the 
stationary process defined there. Another way of interpreting the extremal 
index of a stationary series is in terms of the propensity of the process to 
cluster at extreme levels. Loosely, 

() = (limiting mean cluster size)- 1 , (5.4) 

where limiting is in the sense of clusters of exceedances of increasingly 
high thresholds. For example, in the a = 1 case of Example 5.1, 8 = 0.5, 
consistent by (5.4) with a mean cluster size of 2, which seems apparent 
from Figure 5.1. 

Finally, we remark that for independent series, the extremal index 8 = 1. 
This is obvious from Theorem 5.2 as {Xi} and {Xi} comprise the same 
series. The converse, however, is not true: there are many stationary series 
with 8 = 1 that are not a series of independent observations. Indeed, it is 
easy to construct processes for which the dependence between successive 
observations, as measured by the correlation coefficient p, is arbitrarily 
close to 1, but for which () is also equal to 1. This means that special 
consideration has to be given to the issue of dependence at extreme levels 
of a series. It also means that care is needed when using the asymptotic 
theory of extremes: a series for which 8 = 1 means that dependence is 
negligible at asymptotically high levels, but not necessarily so at extreme 
levels that are relevant for any particular application. 

5.3 Modeling Stationary Series 

Theorems 5.1 and 5.2 are equivalents of the asymptotic laws for maxima 
obtained in earlier chapters. But what effect should such results have on 
extreme value modeling of stationary series in practice? 
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5.3.1 Models for Block Maxima 

For block maxima data the answer is particularly simple. Provided long
range dependence at extreme levels is weak, so that the data can be rea
sonably considered as a realization of a process satisfying an appropriate 
D( un) condition, the distribution of the block maximum falls within the 
same family of distributions as would be appropriate if the series were inde
pendent. So, for example, it is still appropriate to model the distribution of 
the annual maximum using the GEV family using the methods discussed in 
Chapter 3. The parameters themselves are different from those that would 
have been obtained had the series been independent, but since the param
eters are to be estimated anyway, this is unimportant. The conclusion is 
that dependence in data can be ignored, so far as the modeling of block 
maxima is concerned. 

This argument substantially strengthens the case for using the GEV 
family as a model for annual maxima. Many of the original objections to 
the use of asymptotic models for extreme value analysis were based on 
the argument that the assumptions on which such models were derived 
are implausible for genuine physical processes. But, the relaxation from 
independent series to stationary series goes a long way to removing such 
concerns. An unresolved aspect of the arguments, however, concerns the 
validity of the limiting results as approximations. The basic premise is that 
the limiting distribution of Mn can be used as an approximation for large, 
finite n. With stationary series, as we have seen, Mn has similar statistical 
properties to M~9 , corresponding to the maximum over n8 observations of 
an independent series. But in reducing from n to n8 the effective number of 
observations, the quality of the approximation is diminished. So, although 
the limiting result is the same for stationary and independent series, the 
accuracy of the GEV family as an approximation to the distribution of 
block maxima is likely to diminish with increased levels of dependence in 
the series. 

5.3.2 Threshold Models 

Just as the GEV remains an appropriate model for block maxima of sta
tionary series, similar arguments suggest that the generalized Pareto distri
bution remains appropriate for threshold excesses. However, the fact that 
extremes may have a tendency to cluster in a stationary series means that 
some change of practice is needed. The assumption made in Chapter 4 was 
that individual excesses were independent, leading to the log-likelihood 
(4.10). For stationary series, the usual asymptotic arguments imply that 
the marginal distribution of excesses of a high threshold is generalized 
Pareto, but they do not lead to a specification of the joint distribution of 
neighboring excesses. 
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FIGURE 5.2. Portion of Wooster daily minimum temperature series. 

To consider this issue in the context of an application, Figure 5.2 shows 
a section of the Wooster daily minimum temperature series that is approx
imately stationary. The data have been negated, so large values correspond 
to extremely cold temperatures. A threshold of zero degrees Fahrenheit 
has also been added. Threshold exceedances are seen to occur in groups, 
implying that one extremely cold day is likely to be followed by another. 
The asymptotics suggest that the distribution of any one of the thresh
old excesses might be modeled using the generalized Pareto distribution, 
but the clustering induces dependence in the observations, invalidating the 
log-likelihood (4.10). Moreover, there is no general theory to provide anal
ternative likelihood that incorporates the dependence in the observations. 

Various suggestions, with different degrees of sophistication, have been 
made for dealing with the problem of dependent exceedances in the thresh
old exceedance model. The most widely-adopted method is declustering, 
which corresponds to a filtering of the dependent observations to obtain a 
set of threshold excesses that are approximately independent. This works 
by: 

1. using an empirical rule to define clusters of exceedances; 

2. identifying the maximum excess within each cluster; 

3. assuming cluster maxima to be independent, with conditional excess 
distribution given by the generalized Pareto distribution; 

4. fitting the generalized Pareto distribution to the cluster maxima. 
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FIGURE 5.3. Wooster daily minimum temperatures (winters only). 

The method is simple, but has its limitations. In particular, results can be 
sensitive to the arbitrary choices made in cluster determination and there is 
arguably a wastage of information in discarding all data except the cluster 
maxima. 

5.3.3 Wooster Temperature Series 

To illustrate the declustering method, we look in some detail at the Wooster 
minimum daily temperature series, restricting attention to the November
February winter months. For the five-year observation period this series is 
shown in Fig. 5.3. Though there is still some evidence of non-stationarity, 
it is considerably weaker than in the entire series. 

A simple way of determining clusters of extremes is to specify a threshold 
u, and define consecutive exceedances of u to belong to the same cluster. 
Once we obtain an observation that falls below u, the cluster is deemed to 
have terminated. The next exceedance of u then initiates the next cluster. 
However, this allows separate clusters to be separated by a single observa
tion, in which case the argument for independence across cluster maxima is 
flimsy. Furthermore, the separation of extreme events into clusters is likely 
to be sensitive to the particular choice of threshold. To overcome these 
deficiencies it is more common to consider a cluster to be active until r 
consecutive values fall below the threshold for some pre-specified value of 
r. The choice of r requires care: too small a value will lead to the problem 
of independence being unrealistic for nearby clusters; too large a value will 
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FIGURE 5.4. Portion of Wooster daily minimum temperature series with two 
possible cluster groupings. 

lead to a concatenation of clusters that could reasonably have been consid
ered as independent, and therefore to a loss of valuable data. As we have 
encountered several times, the issue is a trade-off between bias and vari
ance, for which there are no general guidelines. In the absence of anything 
more formal, it is usual to rely on common-sense judgement, but also to 
check the sensitivity of results to the choice of r. 

For the section of data shown in Fig. 5.2, the effect of different choices 
for ron cluster identification is shown in Fig. 5.4. With r = 1 orr = 2 four 
clusters are obtained; with r = 3 just two clusters are obtained. Working 
with the entire winter series, maximum likelihood estimates for various 
combinations of threshold, u, and minimum gap between clusters, r, are 
shown in Table 5.1. 

Assessment is not straightforward because the generalized Pareto dis
tribution involves two parameters, and the value of the scale parameter 
is expected to change with threshold. However, the shape parameter esti
mates appear stable with respect to both threshold choice and the choice 
of r. Standard errors also decrease with both u and r, since either change 
leads to an increase in the amount of data being modeled. 

A clearer impression of model stability is obtained from return levels. 
Since the rate at which clusters occur, rather than the rate of individual 
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TABLE 5.1. Estimated features of threshold model fitted to negated Wooster 
temperature series (winters only) with threshold u and minimum gap r between 
clusters. The terms iT and ~ correspond to generalized Pareto distribution esti
mates; x100 corresponds to the 100-year return level; 8 corresponds to the ex
tremal index. Figures in parentheses are standard errors. 

u=-10 u = -20 
r=2 r=4 r=2 r=4 

nc 31 20 43 29 
fj 11.8 (3.0) 14.2 (5.2) 17.4 (3.6) 19.0 (4.9) 

e -0.29 (0.19) -0.38 (0.30) -0.36 (0.15) -0.41 (0.19) 
XIOO 27.7 (12.0) 26.6 (14.4) 26.2 (9.3) 25.7 (9.9) 
8 0.42 0.27 0.24 0.16 
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FIGURE 5.5. Return level plots for Wooster daily minimum temperature series 
based on different threshold and cluster definitions: top left, u = -10, r = 2; top 
right, u = -10, r = 4; bottom left, u = -20, r = 2; bottom right, u = -20, r = 4. 
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exceedances, must be taken into account, the m-observation return level is 

Xm = u+ ~ [(m(u9)~ -1), (5.5) 

where a and ~ are the parameters of the threshold excess generalized Pareto 
distribution, (u is the probability of an exceedance of u, and 9 is the ex
tremal index. Denoting the number of exceedances of the threshold u by 
nu, and the number of clusters obtained above u by nc, (u and 9u are 
estimated as 

• nu • nc 
(u = - and 9 = -. 

n nu 

It follows that the component (u9 in Eq. (5.5) can be estimated by ncfn. 
Estimates of 9 for the Wooster winter temperature series are included in 
Table 5.1. Being empirical, they are seen to be sensitive to the choice of u 
and r. Estimates of the 100-year return level, together with standard errors, 
are also included in Table 5.1. These values are similar across all choices 
of u and r, suggesting that inference on return levels is robust despite 
the subjective choices that need to be made. In particular, the apparent 
instability in the extremal index estimate appears not to impact unduly 
on the return level estimation. These observations are confirmed by the 
stability in the estimated return level curves shown in Fig. 5.5. 

5.3.4 Dow Jones Index Series 

We conclude this chapter by returning briefly to the Dow Jones Index 
data introduced in Example 1.8. Using a declustering scheme with r = 4 
and a threshold of u = 2 (after the data have been re-scaled by a fac
tor of 100) leads to generalized Pareto distribution parameter estimates 
a = 0.538 (0.177) and e = 0.270 (0.281), with standard errors given in 
parentheses. The extremal index for the series is estimated as B = 0.865, 
suggesting only weak dependence at extreme levels. 

A return level plot for the fitted model is shown in Fig. 5.6. This takes 
into account both the marginal features of extremes of the series through 
the generalized Pareto distribution parameter estimates, and dependence 
at extreme levels of the series through the extremal index estimate. As 
discussed in Chapter 4, for financial series a return level plot can also be 
regarded as a plot of value-at-risk against risk. The agreement in Fig. 5.6 of 
empirical and model-based estimates suggests the fitted model is working 
well. The large confidence intervals that are obtained for extreme return 
levels reflect the fact that there is little information with which to make 
future predictions with any degree of certainty. 
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FIGURE 5.6. Return level plot for log-daily returns of Dow Jones Index series. 

5.4 Further Reading 

The general characterization of extremes of stationary processes dates back 
to the 1970's. The work of Leadbetter (1983) was instrumental in unifying 
these results, and developing a characterization that was broadly applica
ble with only weak regularity conditions. Leadbetter et al. (1983) give a 
detailed account of the whole development. Extremal properties of special 
classes of stationary sequences have also been studied: see, for example, 
O'Brien (1987), Smith (1992) and Perfekt (1994) for the extremal prop
erties of Markov chains; Rootzen (1986) for moving average processes; de 
Haan et al. (1989) for ARCH processes; and Leadbetter & Rootzen (1988) 
for a general discussion. 

The idea of declustering data as a means of handling dependence is dis
cussed in some detail by Davison & Smith (1990), though the general idea 
is considerably older. Estimation of the extremal index is considered by 
Leadbetter et al. (1989) and also by Smith & Weissman (1994). A scheme 
for choosing simultaneously the threshold and cluster separation size in an 
analysis of stationary extremes is proposed by Walshaw (1994). Explicit 
use of the extremal index for modeling sea-levels is developed by Tawn & 
Vassie (1989, 1990). A more recent study of the problem of estimating the 
extremal index of processes that can be observed at different frequencies -
say, hourly or daily- is given by Robinson & Tawn (2000). 



6 
Extremes of Non-stationary Sequences 

6.1 Model Structures 

Non-stationary processes have characteristics that change systematically 
thorough time. In the context of environmental processes, non-stationarity 
is often apparent because of seasonal effects, perhaps due to different cli
mate patterns in different months, or in the form of trends, possibly due to 
long-term climate changes. Like the presence of temporal dependence, such 
departures from the simple assumptions that were made in the derivation of 
the extreme value characterizations in Chapters 3 and 4 challenge the utility 
of the standard models. In Chapter 5 we were able to demonstrate that, in 
a certain sense and subject to specified limitations, the usual extreme value 
limit models are still applicable in the presence of temporal dependence. 
No such general theory can be established for non-stationary processes. Re
sults are available for some very specialized forms of non-stationarity, but 
these are generally too restrictive to be of use for describing the patterns 
of non-stationarity found in real processes. Instead, it is usual to adopt a 
pragmatic approach of using the standard extreme value models as basic 
templates that can be enhanced by statistical modeling. 

As an example, referring back to the Fremantle annual maximum sea
level data discussed in Example 1.3, asymptotic arguments support the 
use of the GEV distribution for modeling the maximum sea-level in any 
year, but the apparent trend in the data raises doubts about the suitability 
of a model which assumes a constant distribution through time. In this 
particular example, it seems plausible that the basic level of the annual 

105 
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maximum sea-levels has changed linearly over the observation period, but 
that in other respects, the distribution is unchanged. Using the notation 
GEV(JJ., a, e) to denote the GEV distribution with parameters JJ., a and e, 
it follows that a suitable model for Zt, the annual maximum sea-level in 
year t, might be 

where 
JJ.(t) = f3o + (31t 

for parameters (30 and (31. In this way, variations through time in the ob
served process are modeled as a linear trend in the location parameter 
of the appropriate extreme value model, which in this case is the GEV 
distribution. The parameter (31 corresponds to the annual rate of change 
in annual maximum sea-level. The time-homogeneous model, which seems 
more plausible for the annual maximum sea-levels at Port Pirie (see Ex
ample 1.1), forms a special case of the time-dependent model, with (31 = 0, 
in which case JJ. = f3o. 

More complex changes in JJ. may also be appropriate. For example, a 
quadratic model, 

or a change-point model, 

(t) = { JJ.1 fort ~ to, 
JJ. Jl-2 for t > to. 

Non-stationarity may also be expressed in terms of the other extreme value 
parameters. For example, 

a(t) = exp(f3o + (31t), 

where the exponential function is used to ensure that the positivity of a 
is respected for all values of t. Extreme value model shape parameters 
are difficult to estimate with precision, so it is usually unrealistic to try 
modeling e as a smooth function of time. An alternative, that is especially 
useful for modeling seasonal changes in threshold exceedance models, is 
to specify a model with different parameters in each season. With a time 
series of, say, daily observations x1' x2, ... , we denote by s(t) the season 
into which day t falls. Different thresholds Us(t) might also be appropriate in 
each of the seasons. Using the notation GP(a,e) to denote the generalized 
Pareto distribution with parameters a and e, the seasonal model can be 
expressed as 

(6.1) 

where (as(t).es(t)) are the generalized Pareto distribution parameters in 
season s(t). This type of model may be appropriate for the Wooster tem
perature data of Example 1. 7, though the determination of an appropriate 
segregation into seasons is itself an issue. 
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A different situation which may arise is that the extremal behavior of 
one series is related to that of another variable, referred to as a covari
ate. For example, in an extreme value analysis of pollution concentrations, 
the extent of a high pollutant level may be dependent on the concurrent 
wind speed (strong winds having a dispersive effect). Figure 1.4 suggested 
a similar phenomenon for annual maximum sea-levels at Fremantle, which 
appear greater in years for which the mean value of the Southern Oscilla
tion Index is higher. This suggests the following model for Zt, the annual 
maximum sea-level in year t: 

Zt "'GEV(tt(t), u, e), 

where 
tt(t) = f3o + f31SOI(t), 

and SOI(t) denotes the Southern Oscillation Index in year t. 
There is a unity of structure in all of these examples. In each case the 

extreme value parameters can be written in the form 

fJ(t) = h(XT {3), (6.2) 

where(} denotes either Jt, (1 ore, his a specified function, {3 is a vector of 
parameters, and X is a model vector. In this context, his usually referred 
to as the inverse-link function. Returning to the earlier examples, for the 
linear trend in Jt, h is the identity function and 

tt(t) = [l,t] [ ~~]. (6.3) 

This expands to 

p(t) ~ [1, t, t2] [ ~ l 
for the quadratic trend model. The log-linear model for u has a similar 
structure to (6.3), with u(t) replacing tt(t) and with the inverse-link h taken 
as the exponential function. The seasonal model with k seasons s1, ... , Sk 

takes the form 

p(t) ~ [It (t), I, (t), ... , lo (t)] [ 1 ] , 
where Ij(t) is the indicator function 

if s(t) = Sj, 

otherwise, 
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and with similar expressions for u(t) and e(t). Finally, the SOl covariate 
model may be expressed as 

JJ-(t) = [1, SOI(t)] [ ~~ ] . (6.4) 

There is a similarity between the class of models implied by (6.2) and 
generalized linear models (GLMs), whose theory is well developed and for 
which estimating algorithms are routinely provided in statistical software. 
The analogy is not close enough, however, for any of the standard results 
or computational tools to be directly transferable to the extreme value 
context. The main difference is that the GLM family is restricted to distri
butions that are within the exponential family of distributions; the stan
dard extreme value models generally fall outside of this family. Nonetheless, 
(6.2) applied to any or each of the parameters in an extreme value model 
provides a broad and attractive family for representing non-stationarity in 
extreme value datasets. 

6. 2 Inference 

6.2.1 Parameter Estimation 

An advantage of maximum likelihood over other techniques of parameter 
estimation is its adaptability to changes in model structure. Take, for ex
ample, a non-stationary GEV model to describe the distribution of Zt for 
t = 1, ... ,m: 

Zt,..., GEV(JJ-(t),u(t),e(t)), 

where each of JJ-(t), u(t) and e(t) have an expression in terms of a parameter 
vector and covariates of the type (6.2). Denoting by {3 the complete vector 
of parameters, the likelihood is simply 

m 

L(/3) =II g(zt; JJ-(t), u(t), e(t)), 
t=l 

where g(zt;JJ-(t),u(t),e(t)) denotes the GEV density function with param
eters JJ-(t),u(t),e(t) evaluated at Zt. Hence, by analogy with (3.7), if none 
of the e(t) is zero, the log-likelihood is 

i(JJ-, 0", e) = - ~ {log <T(t) + (1 + 1/e(t)) log [ 1 + e(t) ( Zt ~(~(t))] 

+ [ 1 + e(t) ( Zt ~(~(t))] -1/~(t>}, (6.s) 
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provided that 

l+e(t)(zt;(~(t)) >0, fort=l, ... ,m, 

where J.L(t),a(t) and e(t) are replaced by their expressions in terms of /3 
according to the chosen model structure determined by (6.2). If any of the 
e(t) = 0, it is necessary to use the appropriate limiting form as e(t) -t 0 in 
(6.5), as in the replacement of the GEV likelihood (3.7) by the Gumbel like
lihood (3.9). Numerical techniques can be used to maximize (6.5), yielding 
the maximum likelihood estimate of {3. Approximate standard errors and 
confidence intervals follow in the usual way from the observed information 
matrix, which can also be evaluated numerically. 

6.2.2 Model Choice 

With the possibility of modeling any combination of the extreme value 
model parameters as functions of time or other covariates, there is a large 
catalogue of models to choose from, and selecting an appropriate model be
comes an important issue. The basic principle is parsimony, obtaining the 
simplest model possible, that explains as much of the variation in the data 
as possible. For example, when modeling the annual maximum sea-level 
data of Example 1.3, it looks certain that a linear trend component will 
be needed, probably in the location parameter J.l.· But perhaps a quadratic 
trend is also evident? Since the class of quadratic models includes the linear 
models as a special case, such a model is bound to improve on the linear 
model in terms of the accuracy in describing variations in the observed 
data. However, the model is required as a description of the process that 
generated the data, not for the data themselves, so it is necessary to as
sess the strength of evidence for the more complex model structure. If the 
evidence is not particularly strong, the simpler model should be chosen in 
preference. 

As discussed in Section 2.6.6, maximum likelihood estimation of nested 
models leads to a simple test procedure of one model against the other. 
With models Mo c M 1, the deviance statistic is defined as 

where f 0 (M0 ) and f 1 (M1) are the maximized log-likelihoods under mod
els Mo and M 1 respectively. Large values of D indicate that model M 1 

explains substantially more of the variation in the data than M 0 ; small 
values of D suggest that the increase in model size does not bring worth
while improvements in the model's capacity to explain the data. Help in 
determining how large D should be before model M 1 is preferred to model 
Mo is provided by the asymptotic distribution of the deviance function. 
This is summarized in Theorem 2. 7, which states that model Mo is rejected 
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by a test at the a-level of significance if D > ca:, where Ca: is the (1 -a) 
quantile of the x~ distribution, and k is the difference in the dimensionality 
of M1 and M 0 • In other words, a formal criterion can be given to specify 
how large D should be before model M 1 is to be preferred. There is still 
subjectivity in the choice of a, whose value determines the compromise be
tween the two types of error that can be made- wrongly adopting M 1, or 
wrongly sticking with Mo - but this balancing act is unavoidable. For non
nested models, a variety of modifications to the deviance-based criterion 
have been proposed (Cox & Hinkley, 1974, for example). 

6.2.3 Model Diagnostics 

Having estimated a range of possible models and selected between them, 
we need to ensure that the final model adopted is actually a good repre
sentation of the data. We discussed in Chapters 3 and 4 procedures for 
model-checking when data are assumed to be identically distributed, but 
in the non-stationary case the lack of homogeneity in the distributional 
assumptions for each observation means some modification is needed. It 
is generally only possible to apply such diagnostic checks to a standard
ized version of the data, conditional on the fitted parameter values.1 For 
example, on the basis of an estimated model 

Zt "'GEV(jt(t),&(t),{(t)), 

the standardized variables Zt, defined by 

- 1 { A ( Zt - [1,( t) ) } 
Zt = {(t) log 1 + e(t) u(t) , (6.6) 

each have the standard Gumbel distribution, with probability distribution 
function 

(6.7) 

This means that probability and quantile plots of the observed Zt can be 
made with reference to distribution (6.7). Denoting the ordered values of 
the Zt by Z(l), .•. , Z(m), the probability plot consists of the pairs 

{ i/(m + 1), exp(- exp( -Z(i))); i = 1, ... , m}, 

while the quantile plot is comprised of the pairs 

{ ( Z( i), - log (- log( i / ( m + 1)))) ; i = 1, ... , m} . 

The probability plot is invariant to the choice of Gumbel as a reference 
distribution, but the quantile plot is not: choices other than Gumbel would 

1 A similar procedure was adopted for the example in Section 2.7. 
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lead to a different plot. Notwithstanding this arbitrariness, the choice of 
Gumbel is arguably the most natural given its status within the GEV 
family. 

Similar techniques can be adopted for the generalized Pareto distribu
tion. In this case, we have a set of thresholds u(t) that are possibly time
varying, leading to threshold excesses Yt 1 , ••• Ytk. 2 The estimated model, in 
its general form, is 

yt "'GP(u(t), {(t)). 

This time, since the exponential distribution is a special case of the general
ized Pareto family with e -t 0, it is more natural to apply a transformation 
to a standard exponential distribution: 

Ytk = {tt) log { 1 + {(t) (Yt~~)Ut)}. 
Denoting the ordered values of the observed Yti by Y(l)• ... , Y(k)• it follows 
that a probability plot can be formed by the pairs 

{(i/(k+1),1-exp(-Y(iJ)); i=1, ... ,k}, 

and a quantile plot by the pairs 

{(Y(i),-log(1- i/(k+ 1))); i = 1, ... ,k}. 

As with the GEV distribution, the probability plot is invariant to the choice 
of reference distribution, but the quantile plot is specific to the choice of 
exponential scale. 

6.3 Examples 

6.3.1 Annual Maximum Sea-levels 

Returning to the discussion of Examples 1.1 and 1.3, there appeared to be 
visual evidence of a trend in the Fremantle series, but not in the Port Pirie 
series. The strength of evidence for these conclusions can now be assessed 
through modeling, which also leads to estimates of the magnitude of any 
apparent trends. 

We obtained in Section 3.4.1 that the maximized log-likelihood for the 
stationary GEV(JL, a, e) model fitted to the Port Pirie data is 4.34. Allowing 
a linear trend in JL has a maximized log-likelihood of 4.37. Consequently, the 
deviance statistic for comparing these two models is D = 2( 4.37 - 4.34) = 
0.06. This value is small on the scale of a x? distribution, implying there 
is no evidence of a linear trend, and confirming the view reached by visual 
inspection of the data. 

2The notation Yti is used here to emphasize the fact that the jth threshold excess is 
unlikely to correspond to the jth observation in the original process. 
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FIGURE 6.1. Fitted estimates for f.t in linear trend GEV model of Fremantle 
annual maximum sea-level series. 
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FIGURE 6.2. Residual diagnostic plots in linear trend GEV model of Fremantle 
annual maximum sea-level series. 
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It is a different story for the Fremantle data. The stationary GEV model 
for these data leads to a maximized log-likelihood of 43.6. Allowing a linear 
trend in f.L has a maximized log-likelihood of 49.9. The deviance statistic for 
comparing these two models is therefore D = 2(49.4- 43.6) = 11.6. This 
value is overwhelmingly large when compared to a x~ distribution, implying 
that the linear trend component explains a substantial amount of the vari
ation in the data, and is likely to be a genuine effect in the sea-level process 
rather than a chance feature in the observed data. Writing J.L(t) = /30 + /31t, 
where tis an index for year, with t = 1 corresponding to 1897,3 the max
imum likelihood estimate is So = 1.38 (0.03), S1 = 0.00203 (0.00052), 
a= 0.124 (0.010) and~= -0.125 (0.070), with standard errors in parenthe
ses. Therefore, the estimated rise in annual maximum sea-levels is around 2 
mm per year, and although this value is not particularly large, the evidence 
supporting such an effect is strong. There is no evidence supporting either 
a quadratic trend in J.L or a linear trend in a: the maximized log-likelihoods 
for the corresponding models are 50.6 and 50.7 respectively, so that tests 
based on the associated deviance statistics imply no significant improve
ment over the linear model in f.L· The linear trend in f.L is plotted relative to 
the original series in Fig. 6.1. The quality of the fitted model is supported 
by diagnostic plots applied to residuals, as described in Section 6.2.3. For 
the Fremantle data, these plots are shown in Fig. 6.2. 

We also discussed in Chapter 1 the apparent tendency for annual max
imum sea-levels at Fremantle to be greater in years for which the mean 
value of the Southern Oscillation Index (SOl) is high. This is of particular 
interest, since the SOl is often used as a proxy for abnormal meteorolog
ical activity on a global scale, such as the El Nifio effect. Establishing a 
relationship between extreme sea-levels and SOl is therefore useful in un
derstanding the dynamics that determine abnormal sea-states. Fitting the 
model in which the GEV location parameter is linearly related to SOl -
model (6.4) - leads to a maximized log-likelihood of 47.2. Compared with 
the stationary model log-likelihood of 43.6, we obtain a deviance statistic 
that is large on the scale of a x~ distribution, suggesting the presence of a 
relationship. But the full picture is more complicated. We have already es
tablished a linear trend in f.L, so it is possible that SOl is also time-varying, 
and that the apparent association between extreme sea-levels and SOl is 
simply a consequence of their mutual change over time. To consider this 
possibility, it is necessary to expand model (6.4) to 

~(t) = [1, t, SOI(t)] [ ~ l , 
3There are a number of years with missing data, so t runs from 1 to 93, though there 

are just 86 observations. 
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TABLE 6.1. Maximized log-likelihoods and parameter estimates, with standard 
errors in parentheses, of various models for ji. in GEV model for minima applied 
to race time data of Example 1.4 

Model Log -likelihood (3 fT e 
Constant -54.5 239.3 3.63 -0.469 

(0.9) (0.64) (0.141) 
Linear -51.8 (242.9, -0.311) 2.72 -0.201 

(1.4, 0.101) (0.49) (0.172) 
Quadratic -48.4 (247.0, -1.395, 0.049) 2.28. -0.182 

(2.3, 0.420, 0.018) (0.45) (0.232) 

so that J.L is modeled as a linear combination of both time and SOL The 
maximized log-likelihood of this model is 53.9, so the deviance statistic 
for comparison with the linear-trend only model is D = 2(53.9- 49.9) = 
8.0. Once again, this is large when judged relative to a x~ distribution, 
providing evidence that the effect of SOl is influential on annual maximum 
sea-levels at Fremantle, even after the allowance for time-variation. The 
estimated value of /32 in this model is 0.055, with a standard error of 0.020, 
so that every unit increase in SOl results in an estimated increase of around 
5.5 em in annual maximum sea-level. The estimated time trend in this 
model remains unchanged at around 2 mm per year. 

6.3.2 Race Time Data 

Even a casual look at Fig. 1.5 suggests that the race times in Example 1.4 
have improved considerably over the observation period. This conclusion 
can be confirmed and quantified by a likelihood analysis. Using the notation 
GEVm(J.L,a,e) to denote the GEV distribution for minima, we model the 
race time Zt in year indexed by t as 

Zt "'GEVm(il(t),a(t),e(t)). 

Equivalently, by the argument in Chapter 3, 

-Zt "'GEV(J.L(t),a(t),e(t)), 

with jl(t) = -J.L(t). The motivation for this model is that fastest race times 
in each year are the minima of many such race times. But because of overall 
improvements in athletic performance, the distribution is non-homogeneous 
across years. Fig. 1.5 suggests that the change in distribution through time 
affects the level of the distribution, rather than other aspects, leading again 
to a model in which a(t) and e(t) are assumed constant, but jl(t) is modeled. 

A summary of results for the models with constant, linear and quadratic 
trends in jl(t) is given in Table 6.1. From the log-likelihoods, deviance 
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FIGURE 6.3. Fitted estimates for [1, in GEV model for minima applied to fastest 
annual race times for women's 1500 meters event. 

statistics to compare the linear and constant models, and the quadratic and 
linear models, are 5.4 and 6.8 respectively. Since both values are large when 
compared to a x~ distribution, it follows that the linear model improves on 
the constant model, but that the quadratic model does better still. Looking 
at the sign of the parameter estimates in the quadratic model, the linear 
component is negative, while the quadratic term is positive. This implies 
a decelerated annual improvement in race times. Using a cubic model re
sults in a negligible change in maximized log-likelihood with respect to the 
quadratic model; the higher-order model can therefore be discarded. 

Table 6.1 illustrates another reason why it is important to model non
stationarity as carefully as possible. The estimated shape parameter in 
the homogeneous-[1, model is -0.469. The corresponding estimate in the 
better-fitting quadratic model is -0.182. Though the difference is not so 
great once sampling error is accounted for, the point is that model mis
specification of one parameter can lead to distorted estimates of another. 
That is, if any part of the variation in data is due to systematic effects, 
such as time variation, that are not modeled or are mis-modeled, substantial 
bias can arise in the estimation of the random part of the model. In the 
case of extreme value analyses, since the models are likely to be used for 
extrapolation, serious and expensive errors may result. 

Fig. 6.3 shows the estimated trend for jJ, using the constant, linear and 
quadratic models. As suggested by the likelihood analysis, the quadratic 
model gives the most faithful representation of the apparent time variation 
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in the data, but the quadratic coefficient leads to an increase in jL(t), and 
hence in the level of fastest race times, from around 1984 onwards. This 
reflects the apparent slowing-down in the reduction of race times. However, 
from general knowledge about the context of the data, it is difficult to 
believe that the level of fastest race times has actually worsened in recent 
years. It is much more likely that this conclusion is an artifact of working 
with a quadratic model that is bound to imply an increase in P,(t) at some 
point, even if not within the range of the observed data. This difficulty can 
be avoided by imposing a model structure on [J,(t) that is monotonic in t; 
for example, 

(6.8) 

Though it is not difficult to write a purpose-built routine to fit such a model 
by maximum likelihood, it falls outside of the class of models implied by 
(6.2), and is therefore not immediately fitted using the software described 
in the Appendix. However, if f3o is fixed, 

Zt- f3o "'GEVm(P,(t),a,~), (6.9) 

where 

which can be rewritten as 

where h(x) = exp(x), ~1 = log((31) and ~2 = -(32. So, with f3o known, 
model (6.8) does fall within the class defined by (6.2). This -enables an 
iterative method of estimation: for a range of values of (30, the likelihood of 
model (6.9) is maximized using standard routines. Choosing the maximum 
of these maximized likelihoods yields the maximum likelihood estimator of 
(3 in model (6.8). 

Applying this procedure to the race time data leads to the maximum 
likelihood estimate of (3 = (237.5,-10.7,0.223), and a maximized log
likelihood of -49.5. The corresponding estimated curve [J,(t) is shown in 
Fig. 6.4. It is arguable whether the exponential model provides a better 
description of the data than the quadratic model plotted in Fig. 6.3, but it 
now respects the constraint that the basic level of fastest race times should 
be monotonic. Formal comparison between the models is not possible using 
the deviance statistic, as the models are non-nested. Informally, since the 
number of parameters in each of the models is equal, the marginally greater 
log-likelihood of the quadratic model gives it a slight preference. However, 
the difference in log-likelihoods is slight, and definitely not large enough to 
lead to rejection of the exponential model if the monotonicity is thought 
to be a desirable feature. 
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FIGURE 6.4. Fitted estimates for exponential jJ. in GEV model for minima ap
plied to fastest annual race times for women's 1500 meters event. 

TABLE 6.2. Maximized log-likelihoods, parameter estimates and standard errors 
(in parentheses) of r largest order statistic model fitted to Venice sea-level data 
with different values of r. The model is parameterized as p,(t) = f3o + f31t, where 
tis a year index running from 1 to 51. 

r Log-lik. f3o !31 (j ~ 
1 -216.1 97.0 {4.2) 0.56 {0.14) 14.6 {1.6) -0.027 (0.083) 
5 -704.8 104.2 {2.0) 0.46 {0.06) 12.3 {0.8) -0.037 {0.042) 
10 -1093.9 104.3 {1.6) 0.48 {0.04) 11.6 (0.6) -0.070 (0.026) 

6.3.3 Venice Sea-level Data 

The analysis of the Venice sea-level data using the r largest order statistic 
model of Section 3.5.3led to unsatisfactory fits for all choices of r. The plot 
of the data in Fig. 1.6 suggests why: there is strong visual evidence for a 
trend. Consequently, the basic r largest order statistic model is distorted, as 
a substantial part of the variability in the data should properly be explained 
by the systematic time variation. This again suggests a model in which the 
location parameter, now in the r largest order statistic model, is linear in 
time. 

Table 6.2 gives values of the maximized log-likelihood, parameter esti
mates and standard errors for this model using r = 1, 5 and 10. These fits 
are analogous to those summarized in Table 3.1, but with the inclusion of 
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FIGURE 6.5. Estimated linear trend for p, in r largest order statistic model 
applied to Venice sea-levels with r = 10. 

the trend parameter. There are several points to be made. First, compar
ing the log-likelihoods in the two tables, it is clear that for any choice of r, 
the evidence for a trend of around 0.5 em per year is overwhelming. Next, 
there is much greater stability in the parameter estimates across different 
choices of r in Table 6.2, compared with Table 3.1. Consequently, once 
the non-stationarity is allowed for in the form of a trend in location, the 
asymptotic arguments in support of the r largest order statistic model have 
a much stronger empirical basis. In fact, on the evidence from Table 6.2, 
the estimates obtained using r = 10 are consistent with those of r = 1, but 
with substantially smaller standard errors. It therefore seems reasonable to 
adopt the r = 10 model. The corresponding estimated trend function for p, 
is superimposed on the data in Fig. 6.5. 

As with the non-stationary GEV model, model validity can be checked 
by producing probability and quantile plots of standardized fitted values. In 
this case, applying transformation (6.6) leads to a sample of vectors which, 
under the validity of the fitted model, is such that each vector of order 
statistics constitutes an independent realization from the r largest order 
statistic model, with p, = 0, a = 1 and e = 0. Applying this procedure to 
the Venice sea-level data, on the basis of the r = 5 model, leads to the 
plots shown in Fig. 6.6. Compared with the corresponding plots in Fig. 
3.10, the quality of fit is much improved. Remaining lack-of-fit is likely to 
be explained, at least in part, by the fact that the apparent cyclicity in the 
Venice series has not been modeled. 
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FIGURE 6.6. Model diagnostics for the Venice sea-level data based on the fitted 
r largest order statistic model with r = 5 and trend in location parameter. 
Plots shown are probability and quantile plots for kth largest order statistic, 
k = 1, ... ,5. 

6. 3.4 Daily Rainfall Data 

For the daily rainfall data of Example 1.6, fitting the generalized Pareto 
distribution with a linear trend in the log-scale parameter, 

a(t) = exp(,Bo + .81t), 

leads to a maximized log-likelihood of -484.6. This compares with the value 
of -485.1 obtained previously under the time-homogeneous model. The 
similarity of these values implies there is no evidence of a time trend. For 
reference, the probability and quantile plots of the transformed residuals 
of the time-trend model are shown in Fig. 6.7. 

6. 3. 5 Wooster Temperature Data 

For the Wooster temperature series discussed in Example 1. 7, we observed 
a strong non-stationarity in the series within each year. Fig. 6.8 shows 
the data stratified by season. Evidence of non-stationarity remains within 
each season's data, but to a lesser extent than in the original series. A more 



120 6. Extremes of Non-stationary Sequences 

Residual Probability Plot Residual Quantile Plot (Exptl. Scale) 

~ 

.. 
0 

~ 

I ) .. 
0 

"' 0 

" " 0 

0.0 0.2 0.4 0.6 0.8 1.0 

E~iriell Model 

FIGURE 6.7. Probability and quantile plots for residuals in linear trend threshold 
excess model fitted to daily rainfall data. 

thorough analysis might consider the appropriateness of breaking the series 
into shorter seasons, perhaps monthly. Since the example is illustrative, we 
retain the four-season model and also disregard the problem of clustering, 
though in principle we could apply the techniques of Chapter 5 to decluster 
each season's data before analysis. 

One possible model for these data is the simple seasonal model (6.1). Be
cause the likelihood factorizes across the seasons, it is simpler to treat each 
season separately, and to sum the four individual log-likelihoods. Work
ing with thresholds of -10,-25,-50 and -30, for the winter, spring, au
tumn and summer seasons respectively, yields a maximized log-likelihood 
of -645.83. 

Standard likelihood techniques also enable an assessment of whether any 
aspects of the process are homogeneous across seasons. For example, it is 
plausible that, although the location and scale of the data change across 
seasons, the tail characteristics are similar. This can be modeled by allowing 
different scale parameters, but a common shape parameter, for each season, 
generating a five-parameter model, in place of the original eight parameters. 
The likelihood no longer factorizes across seasons because of the common 
value of~. but the five-parameter log-likelihood is still easily maximized, 
yielding a value of -646.08. Consequently, the deviance test statistic for 
comparing the two models is 2(646.08- 645.83) = 0.5, which is small when 
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FIGURE 6.8. Negated Wooster temperature series in each of four seasons. 
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compared to ax~ distribution. It follows that the constant-e model provides 
an adequate description of the process. The corresponding estimate of e 
is -0.251, with a standard error of 0.059, implying strong evidence for an 
unbounded tail in each season. It makes little sense to extend this modeling 
approach to the scale parameter, because of the dependence of the scale 
parameter on threshold choice (cf. Chapter 4). 

Fig. 6.9 gives the transformed probability and quantile plots for the 
constant-e model. The linearity of the plots is reasonable, but not per
fect, especially at the lower end of the distribution. This is possibly due to 
the residual non-stationarity after the seasonal blocking. In Chapter 7 we 
will discuss a more flexible modeling approach. 

6.4 Further Reading 

Some simple studies of the theoretical properties of particular classes of 
non-stationary processes are described by Leadbetter et al. (1983). Anum
ber of general results can be found in Hi.isler (1986), which also contains 
further references. A particular application is given by Hiisler (1984). A 
study of the regularity properties of maximum likelihood in regression
type problems was made by Smith (1989b), generalizing the earlier work 
in Smith (1985). 

For applications, an early reference to the flexibility of maximum like
lihood for covariate modeling is Moore (1987). Covariate modeling in the 
context of the threshold excess model was discussed by Davison & Smith 
(1990). An alternative technique for modeling extreme value parameters, 
that accounts for seasonality, was proposed by Zwiers & Ross (1991). 

Specific applications have become abundant in recent years. Spatial mod
els for variations in the UK extreme oceanographic climate were developed 
by Coles & Tawn (1990). These models were taken considerably further in 
a sequence of studies, culminating in Dixon & Tawn (1999). Similar tech
niques are also used by Laycock et al. (1990) for estimating the propensity 
of pits of different sizes in metals due to corrosion, and by Mole et al. (1995) 
for assessing the dispersive effect of wind sources on pollutant concentra
tions. A number of other case studies can also be found in Galambos et al. 
(1994). 

Although trends, or other features of a process, may vary smoothly, there 
are many applications for which such variations do not have the form of low
order polynomials. It is commonplace in general problems of this type to 
use non parametric or semi parametric techniques to smooth data. A number 
of recent references have explored these techniques in an extreme value con
text. Davison & Ramesh (2000) and Hall & Tajvidi (2000b) each propose 
the use of local-likelihood techniques. Rosen & Cohen (1994) suggested 
penalized likelihood for the location parameter of a Gumbel model, and 
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this idea has since been extended to more general extreme value models by 
Chavez-Demoulin (1999) and Pauli & Coles (2001). 



7 
A Point Process Characterization of 
Extremes 

7.1 Introduction 

There are different ways of characterizing the extreme value behavior of a 
process, and a particularly elegant formulation is derived from the theory 
of point processes. The mathematics required for a formal treatment of 
this theory is outside the scope of this book, but we can again give a more 
informal development. This requires just basic ideas from point process 
theory. In a sense, the point process characterization leads to nothing new 
in terms of statistical models; all inferences made using the point process 
methodology could equally be obtained using an appropriate model from 
earlier chapters. However, there are two good reasons for considering this 
approach. First, it provides an interpretation of extreme value behavior that 
unifies all the models introduced so far; second, the model leads directly 
to a likelihood that enables a more natural formulation of non-stationarity 
in threshold excesses than was obtained from the generalized Pareto model 
discussed in Chapters 4 and 6. 

7.2 Basic Theory of Point Processes 

A point process on a set A is a stochastic rule for the occurrence and po
sition of point events. In a modeling context, with A representing a period 
of time, a point process model might be used to describe the occurrence 
of thunderstorms or earthquakes, for example. From the model, the proba-

124 
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bility of a certain number of events (thunderstorms/earthquakes) within a 
specified period could be calculated; or given the occurrence of one event, 
the expected waiting time until the next. The set A can also be multi
dimensional. For example, a two-dimensional point process might be used 
to describe the position of fractures on a glass plate. 

One way of characterizing the statistical properties of a point process 
is to define a set of non-negative integer-valued random variables, N(A), 
for each A C A, such that N(A) is the number of points in the set A. 
Specifying in a consistent way the probability distribution of each of the 
N(A) determines the characteristics of the point process, which we label as 
N. Summary features of a point process can also be defined. In particular, 

A(A) = E{N{A)}, 

which gives the expected number points in any subset A C A, is defined to 
be the intensity measure of the process. Assuming A = [a1, x1] x · · · x 
[ak, Xk] c JRk, and provided it exists, the derivative function 

A(x) = 8A(A) 
8x1 · · ·8xk 

is the intensity (density) function of the process. 
The canonical point process is the one-dimensional homogeneous Pois

son process. With a parameter A > 0, this is a process on A c IR satisfy
ing: 

1. for all A = [t1. t2] C A, 

N(A) "'Poi(A(t2 - tl)); 

2. for all non-overlapping subsets A and B of A, N(A) and N(B) are 
independent random variables. 

In other words, the number of points in a given interval follows a Poisson 
distribution, with mean proportional to the interval length, and the number 
of points occurring in separate intervals are mutually independent. The 
Poisson process, with parameter A, can be shown to be the appropriate 
stochastic model for points that occur randomly in time at a uniform of A 
per unit time interval. The corresponding intensity measure is A([t1,t2]) = 
A(t2 -h), and the intensity density function is A(t) =A. 

The homogeneous Poisson process can be generalized to a model for 
points that occur randomly in time, but at a variable rate A(t). This leads 
to the one-dimensional non-homogeneous Poisson process, which has 
the same property of independent counts on non-overlapping subsets as 
the homogeneous Poisson process, but the modified property that, for all 
A= [t1,t2] c A, 

N(A) "'Poi(A(A)), 
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where 1t2 

A(A) = >.(t)dt. 
h 

Implicitly, the intensity measure and density functions are A(·) and >.(·) 
respectively. 

The non-homogeneous Poisson process generalizes further to provide 
a description of randomly occurring points in a subset of k-dimensional 
space. A point process on A c JRk is said to be a k-dimensional non
homogeneous Poisson process, with intensity density function>.(·), if 
it satisfies the property of independent counts on non-overlapping subsets 
and, for all A c A, 

N(A) f'J Poi(A(A)), 

where 

A(A) = i >.(x)dx. 

The intrinsic property of a Poisson process is that the points occur in
dependently of one another. The occurrence of a point at a location x E A 
neither encourages, nor inhibits, the occurrence of other points in a neigh
borhood of x, or in any other location. Poisson processes are therefore ideal 
candidate models for random scatter. Variations in the number of points 
in different sub-regions of a space A are admitted through a non-constant 
intensity measure function, but this is a consequence of a greater mean 
number of points in some regions compared with others, not because the 
presence or absence of points in one set of locations influences the occur
rence or location of other points. This also implies that there are physical 
phenomena for which the Poisson process is a poor model: processes where 
there is a natural spacing, such as the location of trees in a forest; or 
processes that have a natural clustering, such as the occurrence times of 
rainstorms. 

Statistical applications of point process models usually require estima
tion of the process from a set of observed points x1, ... , Xn in a region 
or interval A. This involves the choice of a class of point process models, 
followed by estimation within the specified class. We restrict attention to 
estimation within the family of non-homogeneous Poisson processes. Fur
thermore, we assume that the intensity function >.(·) is within a family of 
parametric models >.( ·; 8), so the only issue, subject to model validity, is 
the estimation of the unknown parameter vector 8. This parallels our adop
tion of parametric models for probability distributions in earlier chapters. 
Of the various estimation procedures available, maximum likelihood again 
provides a general methodology with attractive qualities. 

As usual, the likelihood is derived by regarding the probability of the 
observed data configuration as a function of the unknown parameter 8. 
We give the development in the simplest case, where A is one-dimensional, 
but the argument is similar for Poisson processes in higher dimensions. 



7.2 Basic Theory of Point Processes 127 

So, suppose points x1 , ... , Xn have been observed in a region A C IR, and 
that these are the realization of a Poisson process on A, with intensity 
function >.( ·; 8), for some value of 8. The information contained in the data 
is that points have occurred at a number of known locations, but nowhere 
else in the region. The likelihood is derived using both these pieces of 
information. We let Ii = [xi, Xi + 8i], for i = 1, ... , n, be a set of small 
intervals based around the observations, and write I= A\ U~=l h By the 
Poisson property, 

(7.1) 

where 
rc;+6; 

A(Ii;8) = lx, >.(u)du :::z >.(xi)8i. (7.2) 

Substituting (7.2) in (7.1) gives 

where we have used the fact that exp{ ->.(xi)8i} :::z 1 for small 8i. Also, 

Pr{N(I) = 0} = exp{ -A(I)} :::z exp{ -A(A)}, 

since the 8i are all small. Hence, the likelihood is 

L(8;x1, ... ,xn) = Pr{N(I) = O,N(h) = 1,N(I2) = 1, ... ,N(In) = 1} 
n 

= Pr{ N(I) = 0} II Pr{ N(Ii) = 1} 
i=l 

n 

:::z exp{ -A( A; 8)} II >.(xi; 8)8i. 
i=l 

Dividing through by the 8i to obtain a density leads to 

n 

L(8; Xt, ... , Xn) = exp{ -A(A; 8)} II >.(xi; 8), (7.3) 
i=l 

where 

A(A; 8) = i >.(x; 8)dx. 

Likelihood (7.3) is also valid in the more general case of a Poisson process 
on a k-dimensional set A. 

The simplest application of (7 .3) is to the situation where x1, •.• , Xn 
are the points of a one-dimensional homogeneous Poisson process, with 
unknown intensity parameter >., observed over an interval A = [0, t]. In 
that case, 

A( A;>.) = >.t, 
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and so 

As usual, it is easier to maximize the log-likelihood 

leading to the maximum likelihood estimator 

~ = nft, 

which is the empirical rate of point occurrence. Maximization of (7.3) 
for non-homogeneous Poisson process models generally requires numerical 
techniques. 

To exploit point processes as a representation for extreme values, we 
need a notion of convergence that is the analog of convergence of random 
variables. 

Definition 7.1 Let N1, N2 , ••• be a sequence of point processes on A. The 
sequence is said to converge in distribution to N, denoted 

d Nn -t N, 

if, for all choices of m and for all bounded sets A1 , ••• , Am such that 
Pr{N(8Ai) = 0} = l,j = l. .. ,m, where 8A is the boundary of A, 
the joint distribution of (Nn(At), ... , Nn(Am)) converges in distribution 
to (N(At), ... , Nn(Am)). t:. 

Less formally, Nn 4 N if the probabilistic properties of Nn and N are 
arbitrarily similar for large enough n. 

7.3 A Poisson Process Limit for Extremes 

7. 3.1 Convergence Law 

The point process framework provides an elegant way to formulate extreme 
value limit results. As in the threshold excess model formulation of Chap
ter 4, we assume X 1 , X 2, ... to be a series of independent and identically 
distributed random variables, with common distribution function F. We 
suppose that the Xi are well behaved in an extreme value sense. That 
is, with Mn = max{Xt, ... , Xn}, that there are sequences of constants 
{an> 0} and {bn} such that 

Pr{(Mn- bn)fan ~ z} -t G(z), 
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with 

G(z) = exp {- [ 1 + ~ ( z: Jj)] - 1/~} 
for some parameters Jj, CT > 0 and ~· We then define a sequence of point 
processes N n on IR2 by 

Nn = {(i/(n + 1), (Xi- bn)fan): i = 1, ... ,n}. 

The scaling in the first ordinate ensures that the time axis is always mapped 
to (0, 1); the scaling in the second ordinate stabilizes the behavior of ex
tremes as n -+ oo. The fundamental result, stated more precisely below 
in Theorem 7.1, is that on regions of the form (0, 1] x [u, oo), Nn ~ N as 
n -+ oo, where N is a non-homogeneous Poisson process. An outline of the 
argument follows. 

Consider a region of the form A = [0, 1] x ( u, oo) for some large value of 
u. Then, each of then points of Nn has probability p of falling in A, where 

p = Pr{(Xi- bn)fan > u}::::: ; [ 1 + ~ ( u: Jj) rl/~ 
by (4.7). Since the Xi are mutually independent, Nn(A) has the binomial 
distribution 

Nn(A) - Bin(n,p). (7.4) 

By the standard convergence of a binomial distribution to a Poisson limit, 
combining (7.4) and (7.2), the limiting distribution of Nn(A) as n-+ oo is 
Poi(A(A)), with 

A( A) = [ 1 + ~ ( u: Jj)] -1
/{ 

Because of the homogeneity of the process in the time direction, it follows 
that, for any region of the form A = [t1, t2] x ( u, oo), with [tt. t2] C (0, 1], 
the limiting distribution of Nn(A) is also Poi(A(A)), where 

A(A) = (t2 - t1) [ 1 + ~ ( u: Jj)] - 1 /~ (7.5) 

This Poisson limit for all such sets A, together with the fact that the 
distributions of the N(A) on non-overlapping sets are bound to be inde
pendent by construction, is sufficient to establish the Poisson process limit, 
with intensity measure of the limiting process given by (7.5). The result is 
summarized in the following theorem. 

Theorem 7.1 Let X1 , X2 , •.. be a series of independent and identically 
distributed random variables for which there are sequences of constants 
{an > 0} and {bn} such that 

Pr{(Mn- bn)fan $ z}-+ G(z), 
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where 

and let z_ and z+ be the lower and upper endpoints of G respectively. 
Then, the sequence of point processes 

Nn = {(i/(n + 1), (Xi- bn)/an): i = 1, ... ,n} 

converges on regions of the form (0, 1) x [ u, oo), for any u > z_, to a Poisson 
process, with intensity measure on A = [t1, t2] x [z, z+) giv.en by 

A(A) = (t2 - tl) [ 1 + e ( z : Jt) rl/( (7.6) 

0 

7. 3. 2 Examples 

We now consider briefly the behavior of the Poisson process limit for the 
three population models considered previously in Sections 3.1.5 and 4.2.3. 

Example 7.1 If X1, X2, ... is a sequence of independent standard expo
nential variables, the limit G is the standard Gumbel distribution, with 
(z-,z+) = (-oo,oo). Hence, 

Nn = {(i/(n+ 1),(Xi- n): i = 1, ... ,n} 

converges to a Poisson process with intensity measure on A = [t1, t2] x 
[z, oo), for z > -oo, given by 

A(A) = (t2- t1)exp(-z). 

This is the limit of (7.6) in the case Jt = 0, u = 1 as e -t 0. 

Example 7.2 If X1, X2, ... is a sequence of independent standard Frechet 
variables, the limit G is the standard Frechet distribution, with ( z_, z+) = 
(O,oo). In this case, 

Nn = {(i/(n + 1),Xi/n): i = 1, ... , n}, 

and convergence is to a Poisson process with intensity measure on A = 
[t1,t2] x [z,oo), for z > 0, given by 

This is (7.6), with Jt = 1, u = 1 , e = 1. 
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Example 7.3 If X1, X2, ... is a sequence of independent uniform U(O, 1) 
variables, the limit G(z) = ez, for z < 0. Hence, (z-,z+) = (-oo,O), 

Nn = {(if(n + 1), n(Xi- 1)): i = 1, ... , n}, 

and convergence is to a Poisson process with intensity measure on A = 
[t1, t2] x [z, 0], for z < 0, given by 

A( A) = (t2 - tl)( -z), 

which is (7.6), with f.L = -1, (j = 1 'e = -1. 

These examples illustrate that the domain of the limiting Poisson process 
is not related to the endpoints of the distribution of the Xi, but to those 
of the limit distribution G. In particular, the normalization applied to the 
points in Nn may be regarded as mapping the non-extreme values close to 
the lower boundary of (0, 1) x (z_, z+)· For this reason, the convergence in 
Theorem 7.1 is valid only on regions that are bounded from z_. 

7.4 Connections with Other Extreme Value Models 

It is easy to demonstrate that the block maxima model, the r largest order 
statistic model and the threshold excess model are all special cases of the 
point process representation given in Theorem 7.1. There is a circularity in 
the argument, however, because (4.7) was used in establishing the Poisson 
limit. Nonetheless, since Theorem 7.1 can also be derived from first princi
ples, the following arguments demonstrate that each of the models of the 
earlier chapters is consequent on the point process representation. 

First, the block maxima result. Denoting Mn = max{ X1, ... , Xn} in the 
usual way, and letting 

Nn = {(if(n + 1), (Xi- bn)fan): i = 1, ... , n}, 

the event {(Mn -bn)fan ~ z} is equivalent to the event Nn(Az) = 0, where 
Az = (0, 1) x (z, oo). Hence, 

Pr{(Mn- bn)/an ~ z} = Pr{Nn(Az) = 0} 

-+ Pr{N(Az) = 0} 

= exp{ -A(Az)} 

= exp {- [1 + e ( z: f.L) rl/(}' 
so the limiting distribution of normalized block maxima is the GEV distri
bution. 
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Similar arguments apply for the threshold excess model. First, it is help
ful to factorize A(Az) as 

where 

Then, 

= 

= 

= 

A2[z, oo) 
A2[u, oo) 

n-1 [1 + ~(z -p,)/a]-1/f. 

n-1 [1 + ~(u- p,)/arl/f. 

[ ~(z- p,)fa ] -l/f. 
1 + 1+~(u-p,)/a 

[ 1 + ~ ( z ~ u) rl/f. 

with a= a+ ~(u-p,). Absorbing the scaling coefficients an and bn in the 
usual way leads to (4.7). 

Derivation of the r largest order statistic characterization is deferred 
until Section 7.9. 

7.5 Statistical Modeling 

Because of the connections between the two approaches, any inference made 
using the point process characterization of extremes could equally be made 
using the threshold excess model. There are advantages, however, in work
ing directly with the point process model. As with all of the extreme value 
models, it is usual to interpret the limiting model - in this case the Pois
son process - as a reasonable approximation for large but finite sample 
behavior. That is, in the point process convergence of Nn-+ N, to assume 
that the probability laws associated with the limit N provide a reasonable 
approximation to those of Nn for large enough n. Since the convergence 
is restricted to sets that exclude the lower boundary, the approximation is 
likely to be good only on sets of the form (0, 1) x (u, oo), for large enough 
u. In other words, Theorem 7.1 provides a representation only for extreme 
value behavior of the Xi, and for practical application, it is necessary to 
make judgements as to what level of u is extreme enough for the limit to 
provide a reasonable approximation. 
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Another issue concerns the normalizing sequences {an} and {bn}· As with 
the earlier extreme value models, these are dependent on the underlying 
distribution F of the Xi, and so are unknown in practice. This difficulty 
is resolved, as in previous models, by absorbing the coefficients into the 
location and scale parameters of the model. 

In summary, Theorem 7.1 can be re-stated in the following form. 

Theorem 7.1.1 Let X1, ... , Xn be a series of independent and identically 
distributed random variables, and let 

Nn = {(i/(n+ 1),Xi): i = 1, ... ,n}. 

Then, for sufficiently large u, on regions of the form (0, 1) x [u, oo), Nn is 
approximately a Poisson process, with intensity measure on A = [t1 , t2] x 
(z, oo) given by 

(7.7) 

0 

Theorem 7.1.1 enables the following procedure for modeling extremes 
within the point process framework. First, select a high threshold u, for 
which the Poisson approximation is thought to be reasonable, and set 
A = (0, 1) x [u, oo).1 The N(A) points that are observed in the region 
A are re-labeled {(t1, xi), ... , (tN(A)• XN(A))}. Assuming the limiting Pois
son process is an acceptable approximation to the process of Nn on A, an 
approximate likelihood can be derived. Maximizing this likelihood leads 
tO estimates of the parameters (f.t, CT, e) of the limiting intensity function. 
A small adjustment is useful at this point: it is conventional to express 
extreme value limits in terms of approximate distributions of annual max
ima, rather than, say, 10- or 50-year maxima. Using Theorem 7.1.1 directly 
means that, if data have been observed for m years, the parameters of the 
point process likelihood will correspond to the GEV distribution of them
year maximum. Though an adjustment can always be made post-analysis, 
it is more straightforward to replace (7.7) with 

A( A) = ny(t2 - tl) [ 1 + e ( z: f.t)] -l/f., (7.8) 

where ny is the number of years of observation. In this case, the estimated 
parameters (f.t, CT, e) correspond immediately to the GEV parameters of the 
annual maximum distribution of the observed process. 

1 Choosing a threshold for this model involves the same considerations as for the 
threshold excess model; see Chapter 4. 
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Substituting (7.8), with [t1 , t 2] = [0, 1], into the general form of the Pois
son process likelihood (7.3) leads to the likelihood function 

N(A) 

LA(J.t,u,e;x1, ... ,xn) =exp{-A(A)} II ..\(ti,Xi) 
i=1 

{ [ ( )] -1/f.}N(A) [ ( )]_1_1 
CX: exp -ny 1 + e U ~ J.t n U-1 1 + e Xi; J.t e 

(7.9) 

This function can be treated in the usual way to obtain maximum like
lihood estimates, standard errors and approximate confidence intervals of 
the model parameters. 

Like the threshold excess model, the estimates derived from the point 
process likelihood are based on all those data that are extreme, in the 
sense of being greater than a specified threshold. Inferences are therefore 
likely to be more accurate than estimates based on a direct fit of the GEV 
distribution to ihe annual maximum data themselves. As an example, ap
plying this model to the daily rainfall data with a threshold of u = 30 
yields maximum likelihood estimates j1, = 39.55 (1.20), a = 9.20 (0.93) and 
f = 0.184 (0.101), with standard errors given in parentheses. Because of the 
parameterization of the model, these parameters are the estimates of GEV 
parameters for the corresponding annual maximum distribution. Referring 
back to the threshold excess model analysis of these data in Section 4.4.1 
confirms the equivalence of the approaches: the shape parameter estimates 
are equal, while the scale parameter estimates are related through (4.3). 

7.6 Connections with Threshold Excess Model 
Likelihood 

An alternative derivation of the Poisson process model likelihood (7.9) 
is obtained directly from the threshold excess model of Chapter 4. Let 
X1, ... , Xn be independent and identically distributed variables. The dis
tribution of the excesses of a high threshold u are assumed to follow a 
generalized Pareto distribution, with distribution function given by (4.2). 
Without loss of generality, suppose also that the series X1, ... , Xn corre
sponds to one year of observations. 

Originally, we developed the likelihood for this model by ignoring the Xi 
ihat fail to exceed u. We now supplement the likelihood to include partial 
information on these observations. We first let ( = Pr{ Xi > u}, so that, 
by (4.6), 

1 [ ( )]-1/f. (=Pr{Xi>u}~~ 1+e u~J.t , (7.10) 
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where {J..L, u, e) are the parameters of the corresponding annual maximum 
GEV distribution. Furthermore, repeating Eq. (4.3), 

(7.11) 

As we only have a model for the distribution of observations that exceed 
u, the likelihood contribution of xi, if it falls below u, is 

Pr{Xi < u} = 1- (. 

On the other hand, for a variable Xi that exceeds u, the likelihood contri
bution is 

Pr{Xi = x} = Pr{Xi > u} Pr{Xi =X I xi> u} = (f(x- u;a,e), 

where !(·;a, e) denotes the density function of the generalized Pareto dis
tribution with parameters 0' and e. Taking products across the independent 
observations gives the likelihood 

nu [ ( )]-l-1 L((,a,e;x1, ... ,Xn) = {1- ()n-nu!! (o--1 1 + e Xi; u ( ' 

{7.12) 
where nu is the number of exceedances of u. For a high threshold, nu will 
be small relative to n, so 

{1 - ()n-nu ::::: {1- ()n ::::: exp{ -n(}. {7.13) 

Also, 

(a-1 [ 1 + e (Xi; U) rt-l = 

(na-)-1 [1+e(Xi;J..L)rt-1 x [1+e(U~J..L)]-1/e 

= (nu)-1 [ 1 + e (Xi; J..L)] -t-1, (7.14) 

by (7.10) and repeated use of (7.11). Substituting (7.13) and (7.14) into 
{7.12) gives, up to proportionality, the likelihood (7.9) with n11 = 1. So, 
apart from the slight approximation at (7.13), the point process likelihood 
is obtained as the product of the generalized Pareto likelihood for threshold 
excesses with a likelihood for the binary event of threshold exceedance, 
reparameterized in terms of the usual GEV parameters. 

The equivalence of the limit point process and threshold exceedance 
model likelihoods confirms that any inference obtained from the point pro
cess model could equally have been made within the threshold exceedance 
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FIGURE 7.1. Negated Wooster temperature data with time-varying threshold. 

framework. The immediate advantages of the point process model are that 
the natural model parameterization is in terms of the GEV parameters
so that, for example, a is invariant to threshold - and that the threshold 
exceedance rate forms part of the inference. These benefits are especially 
advantageous when the model is adapted to allow for non-stationary ef
fects, by modifying likelihood (7.9) to include temporal or covariate effects 
in the parameters J.t, a or ~. In particular, because of the in variance of all 
parameters to threshold, there is no difficulty in working with models that 
have time-varying thresholds. 

7. 7 Wooster Temperature Series 

Fig. 7.1 shows the Wooster temperature data again, but now with the 
addition of a time-varying threshold. Since the parameterization of the 
point process model is invariant to threshold choice, the only impact of 
varying a threshold is to affect the bias-variance trade-off in the inference. 
With such strong seasonal effects as in the Wooster temperature series, it 
seems sensible to use a threshold that gives an approximately uniform rate 
of exceedances throughout the year. The threshold shown in Fig. 7.1 was 
selected by trial-and-error with this objective in mind. 

Details of a number of models fitted are given in Table 7.1. The models 
comprise a time-homogeneous model; periodic models for J.t, a and ~. so 
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TABLE 7.1. Number of parameters (p) and maximized log-likelihood (l) for var
ious models fitted to negated Wooster temperature series. 

~odel p 
1. Time-homogeneous 3 
2. As 1. but periodic in f.L 5 
3. As 2. but periodic in log a 7 
4. As 3. but periodic in e 9 
5. As 3. plus linear trend in f.L and log a 9 
6. As 3. with separate e for each season 10 

that, for example, 

JL(t) = f3o + !31 cos(27rt/365- {32), 

l 
-143.6 
126.7 
143.6 
145.9 
145.1 
143.9 

corresponding to a cycle-period of one year; period plus linear trend models; 
and a model that allows for separate shape parameters in each of the four 
seasons. As in Chapter 6, the models for a are specified in terms of log a, 
so as to preserve positivity on a. 

Judging the log-likelihood values in Table 7.1 relative to the number of 
parameters in each model, the evidence for periodic effects in f.L and a is 
overwhelming. That is, likelihood ratio tests comparing models 1, 2 and 
3 give strong support for model 3. Comparing models 3 and 4, there is 
some improvement in allowing a periodic effect in the shape parameter, 
but the evidence is not conclusive at the 5% level of significance. There 
is no evidence to support models 4 or 5 - indicating an absence of trend 
in the extremes - and no reason to adopt a different shape parameter 
in each of the seasons. Consequently, model 3 is the most appropriate, 
comprising periodic effects in the location and scale of extremal behavior, 
but homo~eneity in all other aspects. The estimated shape parameter in this 
model is e = -0.346, with a standard error of 0.061, implying a reasonably 
short upper tail to the distribution of extremes across seasons. 

The accuracy of the fitted model is supported by residual diagnostic 
plots shown in Fig. 7.2. These are constructed by transformation of the 
point process parameter values to the corresponding generalized Pareto 
parameters, after which the techniques discussed in Chapter 6 are applied 
directly. Comparing these diagnostics with those of the separate-seasons 
model in Fig. 6.9, the quality-of-fit of the periodic model is considerably 
improved. 

7.8 Return Level Estimation 

For the stationary version of the point process model, return level esti
mates are easily calculated. For the non-stationary version, calculations 
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Residual Quantile Plot (Exptl. Scale) 

-
FIGURE 7.2. Diagnostic plots of non-stationary point process model fitted to 
negated Wooster temperature series. 

can still be made, though the precise form depends on the model for non
stationarity. As an example, consider the Wooster temperature model for 
which there is seasonality over a one-year cycle. Denoting by Zm the m
year return level, and letting n be the number of observations in a year, 
Zm satisfies the equation 

where 

1 n 
1-- = Pr{max(Xl, ... ,Xn):::; Zm} ~ IJpi, 

m i=l 

1- n-l [1 + ei(Zm- J.l.i)/uirl/~;, 
1, 

if (1 + ei(Zm- J.l.i)/ui) > 0, 
otherwise, 

and (JLi, O"i, ei) are the parameters of the point process model for observation 
i. Taking logarithms, 

n 

L:)ogpi = log(1- 1/m), (7.15) 
i=l 

which can easily be solved for Zm using standard numerical methods for 
non-linear equations. 

A difficulty arises in the estimation of standard errors or confidence inter
vals, since both the delta method and calculation of the profile likelihood 
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FIGURE 7.3. Approximate sampling distribution of 100-year return level esti
mate of negated Wooster temperatures. Vertical lines show maximum likelihood 
estimate and bounds of an approximate 95% confidence interval. 

are impracticaL A crude approximation can be obtained by simulation. 
If the sampling distribution of the maximum likelihood estimator of the 
model parameters were known, we could simulate from this distribution 
and solve (7.15) for each simulated value, to obtain a realization from the 
sampling distribution of the return level estimates. Since the sampling dis
tribution is unknown, an alternative is to approximate this procedure by 
using the multivariate normal approximation (2.9). More precisely, denot
ing the model parameters by 8, and their maximum likelihood estimate by 
8, the approximate sampling distribution of the maximum likelihood esti
mator is N(B, V), where V is the estimated variance-covariance matrix.2 

We simulate from this distribution to obtain Bi, ... , Bic, which constitute a 
sample from the approximate sampling distribution of the maximum like
lihood estimator. For each Bj, substitution into (7.15) yields an equation 
whose solution z:"n,; is a realization from the approximate sampling dis
tribution of Zm· Finally, the set z:"n,1, ••• , z:"n,k can be used to construct a 
density estimate of the distribution, or to obtain approximate confidence 
intervals. 

For the Wooster temperature data, solution of (7.15) based on model 3 
leads to an estimate of -19.1 °F for the 100-year return leveL Simulation of 

2 As usual, it is easier to use the inverse of the observed rather than the expected 
information matrix. 
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FIGURE 7.4. Standardized fitted values against time for point process model of 
negated Wooster temperature series. 

the sampling distribution of this estimator led to the smoothed density es
timate in Fig. 7.3. This was made on the basis of 100 simulations; improved 
accuracy would be obtained by increasing the number of simulations, but 
the procedure is slow because of the requirement to solve (7.15) within each 
simulation. Added to Fig. 7.3 are lines corresponding to the maximum like
lihood estimate and upper and lower bounds of a 95% confidence interval, 
which turn out to be [-21.7, -16.1]. 

The estimate and confidence interval indicate some lack-of-fit in this par
ticular example. Within the 5-year observation period the lowest recorded 
temperature is -19 °F, suggesting it is unlikely that the 100-year return 
level for negative temperatures is as high as -19.1 °F. Similar problems 
arise at less extreme levels: the estimated 5-year return level is -13.7 °F, 
with a 95% confidence interval of [-16.0, -11.6], while there are three 
recorded temperatures below the value of -14 °F in the five-year span 
of data. 

This issue can be explored further by plotting the standardized fitted 
values against occurrence time, as in Fig. 7.4. By the model assumptions, 
the magnitude of the standardized fitted values should be independent of 
the occurrence time. Fig. 7.4 shows no very obvious departure from this 
behavior except for a slight tendency for the values to be lower in the 
winter months. A second complication is dependence in the data. It is 
clearly seen that large transformed values tend to be closely followed by 
others, corresponding to nearby extreme values being similar in the original 
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series. This also contradicts the model assumptions. More detailed modeling 
would be required both to handle the dependence and to better capture 
the within-year variation. 

7.9 r Largest Order Statistic Model 

As explained in Section 7.4, Theorems 3.4 and 3.5 can be proved directly 
from the point process limit representation. Recall that M~k) is the kth 
largest of independent and identically distributed variables X1, ••• , Xn. 
Letting 

Nn = {(if(n + 1), (Xi - bn)fan) : i = 1, ... , n} 

and Az = (0, 1) x [z, oo), 

Pr{(M~k)- bn)fan ~ z} = Pr{Nn(Az) ~ k -1} 
k-1 

= L:Pr{Nn(Az) = s}. 
s=O 

(7.16) 

By the Poisson process limit, Nn(Az) converges, as n -t oo, to a Poisson 
variable with mean 

A(Az) [ 1 + e ( z : p.)] -1
/f. 

Taking limits in (7.16), 

k-1 ( )s 
Pr{(M~k)- bn)/an ~ z} -t L:e-r(z)~, 

s=O s. 

where r(z) = A(Az). This is Theorem 3.4. 
Theorem 3.5 is obtained immediately from the limiting Poisson process 

likelihood. Let (z<1>, ... , z(r)) denote the observed value of M n· Substitu
tion of u = z(r), and replacement of the Xi with the z(i) in (7.9), gives the 
likelihood for the r largest order statistics: Eq. (3.15) in Theorem 3.5. 

7.10 Further Reading 

General theory on point processes can be found in Cox & Isham (1980). 
The point process characterization of extremes is originally due to Pickands 
(1971). The theoretical arguments behind the model are set out in detail 
by Leadbetter et al. (1983). The potential of the model for direct use in 
statistical applications was first illustrated by Smith (1989a), whom we 
have followed closely throughout this chapter. Other applications include 
Coles & Tawn (1996b), Morton et al. (1997) and Coles & Casson (1999). 



8 
Multivariate Extremes 

8.1 Introduction 

In Chapters 3 to 7 we focused on representations and modeling techniques 
for extremes of a single process. We now turn attention to multivariate 
extremes. When studying the extremes of two or more processes, each in
dividual process can be modeled using univariate techniques, but there are 
strong arguments for also studying the extreme value inter-relationships. 
First, it may be that some combination of the processes is of greater in
terest than the individual processes themselves; second, in a multivariate 
model, there is the potential for data on each variable to inform inferences 
on each of the others. Examples 1.9-1.11 illustrate situations where such 
techniques may be applicable. 

Probability theory for multivariate extremes is well-developed, and there 
are analogs of the block maximum, threshold and point process results dis
cussed in earlier chapters for univariate extremes. These lead to statistical 
models, which can again be implemented using likelihood-based techniques. 
Using such models raises many issues that we have discussed previously 
in the context of modeling univariate extremes: the models have only an 
asymptotic justification and their suitability for any particular dataset re
quires careful checking, for example. But modeling multivariate extremes 
also raises new issues: the models are less fully prescribed by the general 
theory and, as with all multivariate models, dimensionality creates diffi
culties for both model validation and computation. There is an additional 
problem that some multivariate processes have a strength of dependence 

142 
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that weakens at high levels, to the extent that the most extreme events are 
near-independent. Traditional methods for multivariate extremes can lead 
to misleading results for such processes. 

In this chapter we give an overview of the various characterizations and 
models for multivariate extremes. These include versions of the block max
ima and threshold excess models for univariate extremes, each of which is 
a special case of a point process representation. We restrict attention to 
the two-dimensional, or bivariate, case. This enables us to highlight the 
main concepts and issues without becoming embroiled in the complexity of 
notation which a full multivariate treatment would require. 

8.2 Componentwise Maxima 

8.2.1 Asymptotic Characterization 

Suppose that (Xt. Yt), (X2 , Y2 ) ... is a sequence of vectors that are inde
pendent versions of a random vector having distribution function F(x,y). 
In an oceanographic setting, (X, Y) might represent pairs of hourly sea
levels at two locations, or values of two sub-components, such as tide and 
surge levels. As in the univariate case, the classical theory for characteriz
ing the extremal behavior of multivariate extremes is based on the limiting 
behavior of block maxima. This requires a new definition: with 

Mx,n = . max {Xi} and My,n = . max {Yi}, 
t=l, ... ,n t=l, ... ,n 

{8.1) 

is the vector of componentwise maxima, where the index i, for which 
the maximum of the Xi sequence occurs, need not be the same as that of 
the Yi sequence, so M n does not necessarily correspond to an observed 
vector in the original series. 

The asymptotic theory of multivariate extremes begins with an analysis 
of Mn in (8.1), as n -+ oo. The issue is partly resolved by recognizing 
that {Xi} and {Yi} considered separately are sequences of independent, 
univariate random variables. Consequently, standard univariate extreme 
value results apply to both components. This also means that we can gain 
some simplicity in presentation by assuming the Xi and Yi variables to 
have a known marginal distribution. Other marginal distributions, whose 
extremal properties are determined by the univariate characterizations, can 
always be transformed into this standard form. Representations are espe
cially simple if we assume that both Xi and Yi have the standard Fnkhet 
distribution, with distribution function 

F(z) = exp{-1/z), z > 0. 
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This is a special case of the GEV distribution with parameters p, = 0, CJ = 1 
and e = 1. By Example 3.2, 

Pr{Mn/n $ z} = exp(-1/z), z > 0, (8.2) 

which is an exact result for all n because of the max-stability of all mem
bers of the GEV family. So, to obtain standard univariate results for each 
margin, we should consider the re-scaled vector 

M~ = c,fl~~n{Xi}/n,i~~n{li}/n). (8.3) 

The following theorem gives a characterization of the limiting joint distri
bution of M~, as n -t oo, providing a bivariate analog of Theorem 3.1. 

Theorem 8.1 Let M~ = (M;,n, M;,n) be defined by (8.3), where the 
(Xi, Yi) are independent vectors with standard Frechet marginal distribu
tions. Then if 

Pr{M;,n $ x,M;,n $ y} ~ G(x,y), (8.4) 

where G is a non-degenerate distribution function, G has the form 

G(x,y)=exp{-V(x,y)}, x>O, y>O (8.5) 

where 
[

1 (w 1 w) V(x,y) = 2 Jo max ;• ~ dH(w), (8.6) 

and H is a distribution function on [0, 1] satisfying the mean constraint 

11 
wdH(w) = 1/2. (8.7) 

0 

The family of distributions that arise as limits in (8.4) is termed the 
class of bivariate extreme value distributions. Theorem 8.1 implies 
that this class is in one-one correspondence with the set of distribution 
functions H on [0, 1] satisfying (8.7). If His differentiable with density h, 
integral (8.6) is simply 

[
1 (w 1 w) V(x,y) = 2 lo max ;• ~ h(w)dw. 

However, bivariate extreme value distributions are also generated by mea
sures H that are not differentiable. For example, when H is a measure that 
places mass 0.5 on w = 0 and w = 1, (8.7) is trivially satisfied, 

V(x,y) = x-1 + y-1 
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by (8.6), and the corresponding bivariate extreme value distribution is 

G(x,y) =exp{-(x-1 +y- 1)}, x > 0, y > 0. 

This function factorizes across x and y, and therefore corresponds to in
dependent variables. Similarly, if H is a measure that places unit mass on 
w = 0.5, (8.7) is again satisfied trivially, and the corresponding bivariate 
extreme value distribution is 

G(x,y) = exp{-max(x-1,y-1)}, x > 0, y > 0. 

which is the distribution function of variables that are marginally standard 
Frechet, but which are perfectly dependent: X = Y with probability 1. 

Since the GEV family provides the complete class of marginal limit dis
tributions, it follows that the complete class of bivariate limits is obtained 
simply by generalizing the marginal distributions. Specifically, letting 

the complete family of bivariate extreme value distributions, with arbitrary 
GEV margins, has distribution function of the form 

G(x,y) = exp{-V(x,y)}, (8.8) 

provided [I+ ex(x- Jtx)/ax] > 0 and [I+ ev(Y- Jtv)/ay] > 0, and where 
the function V satisfies (8.6) for some choice of H. The marginal distribu
tions are GEV with parameters (Jtx, ax, ex) and (Jty, ay, ev) respectively. 

It is easy to check from (8.6) that, for any constant a> 0, 

Vis said to be homogeneous of order -1. Using this property in (8.5), 
we obtain 

(8.9) 

for n = 2, 3, ... , so if (X, Y) has distribution function G, then M n also 
has distribution function G, apart from a re-scaling by n-1. Therefore, G 
possesses a multivariate version of the property of max-stability introduced 
in Chapter 3. An argument similar to that of Chapter 3 implies that limit 
distributions in (8.4) must have this property of max-stability, and, like in 
the univariate case, this argument forms the basis of a proof of Theorem 8.1 
(Resnick, 1987, for example). That is, from (8.9), distributions of the type 
(8.5) have the property of max-stability, and can be shown to be the only 
distributions having this property, subject to the marginal specification. 

Although Theorem 8.1 provides a complete characterization of bivariate 
limit distributions, the class of possible limits is wide, being constrained 
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only by (8.6). In particular, any distribution function H on [0, 1] in (8.6), 
satisfying the mean constraint (8.7), gives rise to a valid limit in (8.4). 
This leads to difficulties, as the limit family has no finite parameterization. 
One possibility is to use nonparametric methods of estimation, but this 
is also complicated by the fact that it is not straightforward to constrain 
nonparametric estimators to satisfy functional constraints of the type ( 8. 7). 
An alternative is to use parametric sub-families of distributions for H, 
leading to sub-families of distributions for G. In this way, only a small 
subset of the complete class of limit distributions for G is obtained, but 
by careful choice it is possible to ensure that a wide sub-class of the entire 
limit family is approximated. Put another way, we can obtain parametric 
families for H, and hence G, such that every member of the full limit 
class for G can be closely approximated by a member of the sub-family 
generated by the family of H. In principle it is simple to build models: 
we just require a parametric family for H on [0, 1] whose mean is equal to 
0.5 for every value of the parameter. Substitution into (8.6) and (8.5) then 
generates the corresponding family for G. In practice it is not so easy to 
generate parametric families whose mean is parameter-free, and for which 
the integral in (8.6) is tractable. 

One standard class is the logistic family: 

G(x,y) = exp{- (x- 1/a +y-1/ar}' X> 0, y > 0, (8.10) 

for a parameter a E (0, 1). The derivation from (8.6) is not obvious, but it 
can be shown that (8.10) is obtained by letting H have the density function 

on 0 < w < 1. The mean constraint (8.7) is automatically satisfied for this 
model because of symmetry about w = 0.5. 

The main reason for the popularity of the logistic family is its flexibility. 
As a -+ 1 in (8.10), 

corresponding to independent variables; as a -+ 0, 

G(x, y) -+ exp {- max(x- 1, y- 1)}, 

corresponding to perfectly dependent variables. Hence, the sub-family of 
bivariate extreme value distributions generated by the logistic family cov
ers all levels of dependence from independence to perfect dependence. A 
limitation of the logistic model is that the variables x and y in (8.10) are 
exchangeable. This arises because of the symmetry of the density h. Al
though this is the easiest way to guarantee that the mean constraint is 
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satisfied, models generated in this way are bound to be exchangeable in 
the component variables. 

A generalization of the logistic model that allows for asymmetry in the 
dependence structure is the bilogistic model, derived by Joe et al. (1992). 
This is obtained by letting H have the density function 

1 
h(w) = 2(1- a)(1- w)-1w-2(1- u)u1-Q{a(1- u) + .Bu}-1 

on 0 < w < 1, where a and .B are parameters such that 0 < a < 1 and 
0 < .B < 1, and u = u( w, a, .8) is the solution of 

(1- a)(1 - w)(1 - u).B- (1- .B)wuQ = 0. 

In the special case that a = .8, the bilogistic model reduces to the lo
gistic model. More generally, the value of a - .B determines the extent of 
asymmetry in the dependence structure. 

An alternative asymmetric model, proposed by Coles & Tawn (1991), is 
the Dirichlet model, 1 for which 

a,Br(a + .B + 1)(aw)Q-1{.8(1- w)}.B-1 

h(w) = 2r(a)r(,B){aw + .8(1- w)}0<+.8+1 

on 0 < w < 1, where the parameters satisfy a > 0 and .8 > 0. Like the 
bilogistic model, the Dirichlet model is symmetric only in the case a= ,8. 

8. 2. 2 Modeling 

Theorem 8.1 can be put into practice in the following way. From an origi
nal series (x1 , yt), ... , (xn, Yn) of independent vectors we form a sequence of 
componentwise block maxima (z1,1, z2,1), ... , (z1,m, z2,m)· Choice of block 
size involves the same considerations of bias and variance as in the univari
ate case. Again, a pragmatic choice is often made; typically, a block length 
corresponding to one year of observations. 

Considered separately, the series z1,1 ... , z1,m and z2,1, ... , z2,m are se
quences of independent block maxima that can be individually modeled 
using the GEV distribution; i.e. for each j, Zi,j is treated as an indepen
dent realization of a random variable Zi, fori= 1, 2, where 

Zi ,...., GEV(JLi, l1i, ei)· 

Applying maximum likelihood to the separate series generates estimates, 
denoted (/li, ui, ei), fori = 1, 2. The transformed variable 

(8.12) 

1 The name Dirichlet is used since the model is developed by transformation of the 
standard Dirichlet family of distributions; the nomenclature is not intended to imply 
that the two families are identical. 
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TABLE 8.1. Maximum likelihood estimates (MLE) and standard errors (SE) for 
logistic model fitted to bivariate series of annual maximum sea-levels at Fremantle 
and Port Pirie. 

MLE 
SE 

1.51 
0.02 

Fremantle 

0.117 
0.012 

-0.149 
0.093 

3.87 
0.03 

Port Pirie 

0.197 
0.021 

-0.043 
0.100 

0.922 
0.087 

is therefore approximately distributed according to the standard Fnkhet 
distribution. The pairs (z1,j, z2,j), obtained by substituting the observations 
(z1,j, z2,j) into (8.12), comprise a sequence of independent realizations of a 
vector having bivariate extreme value distribution within the family (8.5). 
The probability density function of this model is 

g(x,y) = {Vx(x,y)Vy(x,y)- Vxy(x,y)}exp{-V(x,y)}, x > 0, y > 0, 

where Vx, Vy and Vx,y denote partial and mixed derivatives of V respec
tively. Assuming a model for V with parameter 8, such as that provided 
by the logistic model with 8 = a, leads to the likelihood 

m 

L(8) = IT g(zl,i, z2,i), (8.13) 
i=l 

and the corresponding log-likelihood 

m 

£(8) = 'L:logg(zi,i,Z2,i)· 
i=l 

Standard techniques yield maximum likelihood estimates and standard er
rors of 8. 

Equation (8.13) can also be regarded as a full likelihood for marginal 
and dependence parameters, taking g to be the density of (8.8) rather than 
(8.5). This procedure combines the transformation and maximization into 
a single step, enabling a potential gain in efficiency due to the transfer of 
information across variables. The price for the gain in statistical efficiency 
is an increase in the computational cost. 

8.2.3 Example: Annual Maximum Sea-levels 

Fig. 8.1 shows the annual maximum sea-level at Port Pirie, against the 
corresponding value at Fremantle, for years in which both values were 
recorded. There seems to be a slight tendency for large values of one variable 
to correspond to large values of the other, though the effect is not strong. 
Assuming the logistic model and using the two-stage estimation procedure 
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FIGURE 8.1. Annual maximum sea-levels at Fremantle and Port Pirie. 

- first estimating the marginal distributions, and then the joint distribu
tion after marginal transformation - yields the results in Table 8.1. The 
marginal parameter estimates are similar to those obtained for these vari
ables in earlier chapters, the slight differences arising because the bivariate 
analysis is restricted to years in which both sites have data. The logistic 
dependence parameter estimate is & = 0.922, corresponding to weak de
pendence. Stronger dependence in extreme sea-levels is likely for sites that 
are geographically closer than the two studied here. 

A number of modifications could be made to the analysis. First, since 
additional data from the individual sites are available for years in which 
the value from the other site is missing, it may be preferable to apply 
the marginal estimation to the extended series, and use these estimates to 
transform the bivariate data prior to joint distribution estimation. Better 
still, if a joint likelihood is used to simultaneously estimate marginal and 
dependence parameters, the log-likelihood can be written 

l(O) = 2)ogg(zl,i,Z2,i) + :~:)oggl(zl,i) + :Z:logg2(z2,i), {8.14) 
~~ ~ ~ 

where h,2, / 1 and /2 denote the indexes of years in which, respectively, 
both, only the first, and only the second, sites have data, and g1 and 92 are 
the marginal densities of g. Maximizing {8.14) corresponds to an analysis in 
which all the available information is utilized and the potential for sharing 
information across sites is exploited. A second modification is to allow 
for possible non-stationarity in either or both variables. As in Chapter 6, 
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this is handled by enabling time variation in any of the individual model 
parameters. For this particular example, as we saw in Chapter 6, there is 
an apparent linear trend in the Fremantle data, so that the substitution of 

J.L(t) =a+ f3t 

in the appropriate likelihood should lead to an improved analysis. Again, 
this can either be done as part of a preliminary marginal analysis, in which 
case the marginal transformation (8.12) will also be time-dependent, or it 
can be incorporated into a full likelihood of the type (8.14). Finally, it is 
possible to exploit commonality of distributional aspects across variables. 
For example, it may be that while the GEV parameters J.L and a are differ
ent at the two locations, due to different local features such as topography 
and bathymetry, the parameter ~ is globally determined by large-scale fea
tures of the sea-level process. It may therefore be desirable to impose the 
constraint ~1 = 6, or at least, to examine the evidence in support of such 
a model reduction. This cannot be achieved with the two-stage procedure, 
requiring instead a single model likelihood of the form ( 8.14). The strength 
of evidence for the model reduction is obtained from a standard likelihood 
ratio test, comparing the maximized log-likelihoods of models with, and 
without, the constraint el = 6. 

8.2.4 Structure Variables 

To simplify notation, we now denote the componentwise maxima vector 
by M = (Mx, My), ignoring the implicit dependence on the block size n. 
Although inference may be carried out on replicate observations of M, 
corresponding, perhaps, to a series of componentwise annual maxima, it 
may be the extremal behavior of some combination of the variables, 

that is of more interest. In this context, Z is termed a structure variable. 
Possibilities for Z include max{Mx,My}, min{Mx,My} or Mx +My. De
noting the probability density function of (Mx, My) by g, the distribution 
function of Z is 

Pr{Z~z}= { g(x,y)dxdy, 
}A, 

(8.15) 

where Az = {(x,y) : cjJ(x,y) ~ z}. For some choices of¢, the integration 
can be avoided. For example, if Z = max{Mx, My}, 

Pr{Z ~ z} = Pr{Mx ~ z,My ~ z} = G(z,z), (8.16) 

where G is the joint distribution function of M. 
The N -year return level of a structure variable Z is the solution of 

Gz(z) = 1- 1/N, (8.17) 
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where Gz is the distribution function of Z. This can be complicated to 
obtain if the distribution function is given only in integral form (8.15). In 
simpler cases, such as (8.16), the solution of (8.17) is likely to be straight
forward using standard numerical techniques. The calculation of standard 
errors or confidence intervals is less straightforward, but we can use the 
technique of simulating the approximate sampling distribution using the 
approximate normality of the maximum likelihood estimator, as described 
in Section 7.8. 

An alternative, and much simpler, procedure for estimating return levels 
of a structure variable Z = c/>(Mx, My) is based on univariate techniques. 
Given the series of componentwise maxima (mx,l, my,l), ... , (mx,k, my,k), 
where each observation ( mx,i, my,i) is a realization of the random vector M, 
we can form the series z1 , ... , Zk, where Zi = c/>(mx,i, my,i)· Assuming the Zi 
to be realizations from a GEV distribution, standard univariate modeling 
techniques can be used to estimate the distribution and to calculate return 
levels. This approach is sometimes referred to as the structure variable 
method. Offsetting its simplicity, there are a number of disadvantages. 
First, the justification for the GEV model is not strong: if the entire dataset 
were available, and not just the annual maxima, it is possible that applying 
¢ to an individual pair may generate a larger value than applying ¢ to 
the annual maxima of X and Y. Second, the method does not enable the 
inclusion of data for periods when one of the variables is missing. Finally, 
the method requires a separate analysis for each choice of structure variable. 

We can compare the structure variable and bivariate procedures using 
the Fremantle and Port Pirie annual maximum sea-level data. We denote 
by (Mx, My) the componentwise annual maximum sea-levels at Fremantle 
and Port Pirie respectively, and use the logistic analysis reported in Table 
8.1. The variable Z = max{Mx, My} is of little interest here, since the 
difference in mean levels at the two locations means that the Port Pirie 
value is always greater than the Fremantle value. As an illustration, we 
therefore consider 

Z = max{Mx, (My- 2.5)}, 

which is the larger of the two annual maxima after a 2.5 m approximate 
correction for differences in mean sea-level. The bivariate analysis leads to 
the return level plot in Fig. 8.2, with 95% confidence intervals obtained by 
the simulation technique. 

A comparison with the structure variable analysis is given in Fig. 8.3. In 
this particular example, there is little difference between the two estimated 
return level curves, and both seem to give a faithful representation of the 
empirical estimates provided by the empirical distribution function of the 
Zi. The widths of the confidence intervals are also similar, although those 
based on the bivariate analysis reflect better the greater uncertainty at the 
upper end of the interval. 
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FIGURE 8.2. Return level plot with 95% confidence intervals for 
Z = max{M.,, (My - 2.5)} in Fremantle and Port Pirie annual maximum 
sea-level analysis. 
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FIGURE 8.3. Comparison of return level plots and 95% confidence intervals for 
Z = max{M.,, (My -2.5)} in Fremantle and Port Pirie annual maximum sea-level 
analysis. Solid line corresponds to bivariate analysis, with 95% confidence inter
vals given as the dot-dashed line. Dashed line corresponds to structure variable 
analysis with 95% confidence intervals given as dotted lines. Points correspond 
to empirical estimates based on the observed z;. 
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FIGURE 8.4. Comparison of return level plot for Z = max{M.,, (My- 2.5)} in 
logistic model analysis of Fremantle and Port Pirie annual maximum sea-level 
series with a = 0, 0.25, 0.5, 0. 75, 1 respectively. Lowest curve corresponds to 
a = 0; highest to a = 1. 

The impact of dependence can be explored by plotting the return level 
curve obtained from models with the estimated marginal parameter values, 
but paired with a range of values of the dependence parameter a:. For the 
bivariate sea-level analysis with Z = max{Mx, (My- 2.5)} in the sea-level 
example in Fig. 8.4 it emerges that different dependence parameter values 
have little effect on the value of return levels, so there is little to be gained 
in precise modeling of dependence if Z is the structure variable of interest. 
However, other quantities are likely to be affected to a greater extent. For 
example, Fig. 8.5 shows the corresponding plot for the structure variable 
Z = min{Mx, (My - 2.5)}. In this case, particularly at extreme levels, 
substantially different return levels are obtained for different parameter 
values, and especially so when a:~ 1. So, while inferences on some variables 
are robust to dependence assumptions, others are more sensitive. 

8.3 Alternative Representations 

There are alternative representations of multivariate extreme value behav
ior that avoid the wastefulness of data implied by an analysis of compo
nentwise block maxima. In particular, analogs of the univariate threshold 
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FIGURE 8.5. Comparison of return level plot for Z = min{M.,, (My- 2.5)} in 
logistic model analysis of Fremantle and Port Pirie annual maximum sea-level 
series with a= 0, 0.25, 0.5, 0.75 and 1, respectively. Lowest curve corresponds 
to a= 1; highest to a= 0. 

excess model and point process model can be obtained. In this section we 
give a brief description of both techniques. 

8.3.1 Bivariate Threshold Excess Model 

In Chapter 4 we derived as a class of approximations to the tail of an 
arbitrary distribution function F the family 

G(x) = 1 - ( { 1 + e(x; u)} -1/e, X > u. (8.18) 

This means there are parameters (,a and e such that, for a large enough 
threshold u, F(x) ~ G(x) on x > u. Our aim now is to obtain a bivariate 
version of (8.18), i.e. a family with which to approximate an arbitrary joint 
distribution F(x, y) on regions of the form x > ux, y > uy, for large enough 
Ux and Uy. 

Suppose (x1, Yl), ... , (xn, Yn) are independent realizations of a random 
variable (X, Y) with joint distribution function F. For suitable thresholds 
Ux and uy, the marginal distributions ofF each have an approximation of 
the form (8.18), with respective parameter sets ((x,ax,ex) and ((y,ay,ey)· 
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The transformations 

(8.19) 

and 

(8.20) 

induce a variable (X, Y) whose distribution function F has margins that 
are approximately standard Frechet for X> Uz andY> uy. By (8.5), for 
large n, 

_ {- }1/n F(x, y) = Fn(x, y) 

~ [exp { -V(xfn,yfn)}]11n 

= exp{-V(x,y)}, 

because of the homogeneity property of V. Finally, since F(x, y) = F(x, y), 
it follows that 

F(x,y) ~ G(x,y) = exp{-V(x,y)}, x > ux,Y > uy, (8.21) 

with x andy defined in terms of x andy by (8.19) and (8.20). This assumes 
that the thresholds Ux and uy are large enough to justify the limit (8.5) as 
an approximation. We discuss this point further in Section 8.4. 

Inference for this model is complicated by the fact that a bivariate pair 
may exceed a specified threshold in just one of its components. Let 

Ro,o = (-oo,ux) x (-oo,uy),Rt,o = [ux,oo) x (-oo,uy), 

Ro,t = (-oo,ux) x [uy,oo),Rt,l = [ux,oo) x [uy,oo), 

so that, for example, a point (x, y) E R1,o if the x-component exceeds 
the threshold ux, but the y-component is below uy. For points in R1,1, 

model (8.21) applies, and the density ofF gives the appropriate likelihood 
component. On the other regions, since F is not applicable, it is necessary to 
censor the likelihood component. For example, suppose that (x, y) E R1,o. 
Then since x > Uz, but y < uy, there is information in the data concerning 
the marginal x-component, but not the y-component. Hence, the likelihood 
contribution for such a point is 

aFI Pr{X = x, Y $ uy} = !'.\ 
uX (x,uy} 

as this is the only information in the datum concerning F. Applying similar 
considerations in the other regions, we obtain the likelihood function 

n 

L(8; (xt,Yt), ... , (xn,Yn)) =IT 1/J(B; (xi,yi)), (8.22) 
i=l 
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where (} denotes the parameters of F and 

'ljJ(O; (x,y)) = 

if (x,y) E R1,1, 

if (x, y) E R1,o, 

if (x,y) E Ro,1, 

if (x, y) E Ro,o, 
with each term being derived from the joint tail approximation (8.21). 
Maximizing the log-likelihood leads to estimates and sta~dard errors for 
the parameters of F in the usual way. As with the componentwise block 
maxima model, the inference can be simplified by carrying out the marginal 
estimation, followed by transformations (8.19) and (8.20), as a preliminary 
step. In this case, likelihood (8.22) is a function only of the dependence 
parameters contained in the model for V. 

An alternative method, if there is a natural structure variable Z = 
¢(X, Y), is to apply univariate threshold techniques to the series Zi = 
¢(xi,Yi)· This approach now makes more sense, since the Zi are functions 
of concurrent events. In terms of statistical efficiency, however, there are 
still good reasons to prefer the multivariate model. 

8.3.2 Point Process Model 

The point process characterization, summarized by the following theorem, 
includes an interpretation of the function H in (8.6). 

Theorem 8.2 Let (xl,Yl),(x2,Y2) ... be a sequence of independent bi
variate observations from a distribution with standard Frechet margins 
that satisfies the convergence for componentwise maxima 

Pr{M;,n $ x,M;,n $ y}-+ G(x,y). 

Let { N n} be a sequence of point processes defined by 

Then, 

Nn = {(n- 1xl,n-1y1), ... ,(n-1xn,n-1yn)}. 

d Nn --t N 

(8.23) 

on regions bounded from the origin (0, 0), where N is a non-homogeneous 
Poisson process on (O,oo) x (O,oo). Moreover, letting 

r=x+y 

the intensity function of N is 

X 
and w=--, 

x+y 

'( ) _ 2dH(w) "'r,w - 2 , r 
where H is related to G through (8.5) and (8.6). 

(8.24) 

(8.25) 

0 
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To interpret this result it is necessary to understand the effect of the trans
formations defined by (8.24): (x, y) -t (r, w) is a transformation from Carte
sian to pseudo-polar coordinates, in which r gives a measure of distance 
from the origin and w measures angle on a [0, I] scale. In particular, w = 0 
and w = 1 correspond to the x = 0 and y = 0 axes respectively. Equation 
(8.25) then implies that the intensity of the limiting process N factorizes 
across radial and angular components. In other words, the angular spread of 
points of N is determined by H, and is independent ofradial distance. The 
mysterious appearance of H in (8.6) is explained by its role in determining 
the angular spread of points in the limit Poisson process. Interpretation 
is easiest if H is differentiable, with density h. Then, since w measures 
the relative size of the (x, y) pair, h(·) determines the relative frequency of 
events of different relative size. If extremes are near-independent, we would 
expect large values of xI n to occur with small values of yIn, and vice versa. 
In this case, h(w) is large close tow= 0 and w = 1, and small elsewhere. In 
contrast, if dependence is very strong, so that xln and yin are likely to be 
similar in value, h(w) is large close tow= 112. The reason for maintaining 
the greater generality in (8.25), rather than assuming that H always has 
a density h, is to allow for two special limit cases. First, when G corre
sponds to independent variables, the measure function H comprises atoms 
of mass 0.5 on w = 0 and w = 1; second, when G corresponds to perfectly 
dependent variables, H consists of an atom of unit mass at w = 0.5. 

As in the univariate case, all multivariate representations can be derived 
as special cases of the point process representation. We illustrate this by 
deriving the limit distribution of componentwise block maxima. Using the 
notation of Theorem 8.1, 

Pr{M;,n ~ x,M;,n ~ y} = Pr{Nn(A) = 0}, 

where Nn is the point process defined by (8.23) and 

A= {(O,oo) x (O,oo)}\{(O,x) x (O,y)}. 

So, by the Poisson process limit, 

Pr{M;,n ~ x,M;,n ~ y} -t Pr{N(A) = 0} = exp{-A(A)}, (8.26) 

where 

A(A) = f 2dr dH(w) 
}A r2 

= {1 foo 2dr dH(w) 
lw=O lr=min{xfw,y/(1-w)} r 2 

= 2 { 1 max(~. I- w) dH(w). (8.27) 
lw=O X Y 

Putting together (8.26) and (8.27) gives Theorem 8.1. 
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To use the point process characterization in practice, we assume the 
Poisson limit to be a reasonable approximation to Nn on an appropriate 
region. Convergence is guaranteed on regions bounded from the origin. 
Things are especially simple if we choose a region of the type A = { (x, y) : 
xfn + yfn > ro}, for suitably large ro, since then 

1 dr ~00 dr 11 
A(A) = 2 2 dH(w) = 2 2 dH(w) = 2/ro, 

A r r=ro r w=O 

which is constant with respect to the parameters of H. Hence, assuming H 
has density h, 

NA 

L(B;(xl,yl), ... ,(xn,Yn)) = exp{-A(A)} II >..(x(i)/n,y(i)/n) 
i=l 

NA 

<X II h(wi), (8.28) 
i=l 

where Wi = X(i)/(x(i) +Y(i)) for the NA points (x(i)•Y(iJ) falling in A. This 
assumes that the data (x1, Y1 ), ... , (xn, Yn) have marginal standard Fnkhet 
distributions. We can arrange this by marginal estimation and transforma
tion prior to dependence modeling. Joint estimation of marginal and de
pendence parameters is also possible, though the likelihood is substantially 
more complicated. 

8. 3. 3 Examples 

We illustrate the bivariate threshold excess and point process models with 
the oceanographic data of Example 1.10 and the exchange rate data of 
Example 1.11. For simplicity of presentation, we show only the two-stage 
analyses, in which the data are modeled marginally and transformed to 
standard Frechet variables prior to dependence modeling. 

After transformation to standard Frechet variables, the wave and surge 
data of Example 1.10 are plotted on logarithmic scales in Fig. 8.6. Marginal 
thresholds corresponding to the 95% marginal quantiles have also been 
added. With these thresholds, and assuming the logistic model, maximiza
tion of likelihood (8.22) leads to an estimate of & = 0. 758, with a standard 
error of 0.026. This corresponds to a model with a reasonably weak level 
of dependence, but which is significantly different from independence. 

Analysis of the same data using the point process model requires the 
specification of .'1. threshold u to determine the points which contribute to 
the likelihood (8.28). For comparison with the threshold analysis, we choose 
u such that the intersection of the threshold with the axes occurs at the 
same points as in Fig. 8.6. On a Frechet scale, the threshold boundary is 
chosen so that X+ Y = r0 for some value of r0 . After log-transformation, 
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FIGURE 8.8. Histogram of w values in point process analysis of wave-surge data 
of Example 1.10. Lines show estimates of h(w): logistic model (solid line); bilo
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TABLE 8.2. Results of fitting various point process models to the wave-surge 
data. Values given are maximized log-likelihood (f) and maximum likelihood 
estimates of a and (where appropriate) {3. 

Model 
Logistic 

Bilogistic 
Dirichlet 

e 
227.2 
230.2 
238,2 

0.659 
0.704 
0.852 

{3 

0.603 
0.502 
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the linearity of the boundary is perturbed, leading to the boundary shown 
in Fig. 8.7. The region to the right of this boundary is regarded as suffi
ciently extreme for the point process limit result to provide a valid approx
imation. A histogram of the observed values of w obtained from (8.24) is 
shown in Fig. 8.8. The histogram appears fiat (though non-zero) for most 
values of w, but with peaks close to zero and one. This implies that most 
observations tend to be much greater (on a Frechet scale) in one variable 
than the other, though a number of events are large in both components. 
Maximizing the likelihood (8.28) leads to an estimate of a = 0.659 for 
the logistic model, with a standard error of 0.013. A comparison of the 
fit of this model with the two asymmetric models defined in Section 8.2.1 
is given in Table 8.2. Since the logistic model is a subset of the bilogistic 
model, a formal likelihood ratio test can be used to compare the two. This 
leads to a deviance test statistic of 6, which is large when compared to a 
Xf distribution. Hence, there is evidence of asymmetry in the dependence 
structure. The likelihood improves further by use of the Dirichlet model. 
Formal comparison is not possible because the models are no longer nested, 
but the fact that there is a substantial improvement in likelihood relative to 
the bilogistic model, which has the same number of parameters, suggests 
it is a better model. The estimated density h(w) for each of the models 
is added to the histogram of observed w values in Fig. 8.8. The apparent 
differences between the models are not great, but it is clear why both of 
the asymmetric models offer an improvement on the logistic model. 

Ignoring the issue of asymmetry, the conclusions from the threshold ex
cess and point process likelihoods based on the logistic model are consistent: 
dependence is weak but significant. However, the actual estimates of a are 
different in the two models, even after allowance for sampling error. The 
differences are due to the different regions on which the model approxi
mations are assumed to be valid. First, the boundaries in Figs. 8.6 and 
8. 7 are different. More fundamentally, the point process model assumes 
the validity of the point process limit in the entire region bounded by the 
threshold boundary and the axes. In particular, it assumes the limit to be 
reasonable when either of the standardized variables is close to zero, pro
vided the other variable is large. In contrast, the bivariate threshold model 
assumes accuracy of the limit model only in the joint upper quadrant R1,1; 

information from the other quadrants is censored in the likelihood (8.22). 
This is achieved at the cost of a large standard error, relative to the point 
process model, due to the reduction in information that contributes to the 
likelihood. Choice between the two likelihoods is therefore a familiar bias
variance trade-off. 

Closer agreement between models is obtained for the exchange rate data 
of Example 1.11. As for the Dow Jones Index series, the strong non
stationarity in each of the original exchange rate series can be largely 
overcome by making a transformation to log-daily returns. Scatterplots 
of concurrent values of the US/UK and Canadian/UK exchange rates, af-
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FIGURE 8.9. Plot of log-daily return pairs in Example 1.11 after transformation 
to Frechet scale. Thresholds shown correspond to bivariate excess model (solid 
line) and point process model (broken line). 
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FIGURE 8.10. Histogram of w values in point process analysis of exchange rate 
data of Example 1.11. Solid line shows h( w) based on fitted logistic model. 
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ter transformation to a Frechet scale, are shown in Fig. 8.9. Thresholds for 
both models are chosen to intersect the axes at the marginal 95% quan
tiles. The threshold excess model leads to & = 0.464, with a standard 
error of 0.039, while the point process model estimate is & = 0.434, with a 
standard error of 0.025. The smaller estimate of a for these data confirms 
the stronger dependence, which seemed apparent from Fig. 8.9. Analyses 
based on the point process likelihood using both the bilogistic and Dirichlet 
models leads to negligible improvements in likelihood for these data. So, in 
contrast with the wave-surge data, there is no evidence for asymmetry in 
the extremal dependence structure. The estimated logistic model h( w) is 
compared against a histogram of the Wi values in Fig. 8.10. The unimodal
ity of the histogram suggests a greater tendency for both components of 
the data to be extreme, while the agreement between model and empirical 
estimates supports the model choice. 

8.4 Asymptotic Independence 

When modeling bivariate extremes with either the threshold excess or point 
process models a particular difficulty can arise. We observed in Section 8.2.1 
that a valid limiting distribution in {8.4) is independence: 

G(x,y) = exp{-1/x) x exp{-1/y), x > 0, y > 0. 

The same applies, therefore, in (8.8). For example, if {X, Y) is a bivariate 
normal random vector, with any value of the correlation coefficient p < 1, 
the limit in (8.8) can be shown to be that of independent variables. On 
the other hand, especially if p is close to 1, observed data are likely to 
exhibit reasonably strong dependence, even at moderately extreme levels. 
Hence, models fitted to the data are likely to overestimate dependence on 
extrapolation. 

Suppose, in the first instance, that variables X and Y have a common 
distribution function F. We define 

x = lim Pr{Y > z I X > z}, 
Z-+Z+ 

where z+ is the end-point ofF, so that x is a limiting measure of the 
tendency for one variable to be large conditional on the other variable 
being large. If x = 0 the variables X and Y are said to be asymptotically 
independent. It is in this situation that the difficulties described above 
arise. More generally, suppose that Fx and Fy are the marginal distribution 
functions of X and Y respectively, and define 

X= lim Pr{Fy(Y) > u I Fx(X) > u}. 
u-+1 
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Defining also, for 0 < u < 1, 

x(u) = 2 _ logPr{Fx(X) < u,Fy(Y) < u} 
logPr{Fx(X) < u} 

= 2 _ logPr{Fx(X) < u,Fy(Y) < u} 
logu ' 

it is straightforward to show that 

X= lim x(u). 
u--+1 

It is also easily checked that, for the bivariate extreme value distribution 
having distribution function G(x,y) = exp{-V(x,y)}, 

x(u) = 2- V(l, 1) 

uniformly for u. Summarizing, we obtain the following properties for x: 

1. 0$ X$ 1; 

2. for the bivariate extreme value distribution, with distribution func
tion G(x,y) = exp{-V(x,y)}, X= 2- V(1,1); 

3. for asymptotically independent variables, x = 0; 

4. within the class of asymptotically dependent variables, the value of 
x increases with strength of dependence at extreme levels. 

From the properties listed above, it is clear that x provides a simple mea
sure of extremal dependence within the class of asymptotically dependent 
distributions. It fails, however, to provide any measure of discrimination 
for asymptotically independent distributions. An alternative measure is re
quired to overcome this deficiency. For 0 < u < 1, let 

x(u) = 

= 

and 

__ 2,-lo...;:;.g....,.P_r{'--F_x.....:..(X---'-) _>,_u..:..}-~ _ 1 
logPr{Fx(X) > u,Fy(Y) > u} 

2log(1- u) _ 1 
logPr{Fx(X) > u, Fy(Y) > u} 

x = lim x(u). 
u--+1 

The following properties are easily established: 

1. -1 $ x $ 1; 

2. for asymptotically dependent variables, x = 1; 

3. for independent variables, x = 0; 
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FIGURE 8.11. Empirical estimates of x(u) and x(u) for wave-surge data of Ex
ample 1.10. Dotted lines correspond to approximate 95% confidence intervals. 

4. for asymptotically independent variables, x increases with strength 
of dependence at extreme levels. 

It follows that, just as x provides a measure with which to summarize 
the strength of dependence within the class of asymptotically dependent 
variables, so x provides a corresponding measure within the class of asymp
totically independent variables. Taken together, the pair (x, x) provides a 
summary of extremal dependence for an arbitrary random vector. If x = 1, 
the variables are asymptotically dependent, and the value of x summarizes 
the strength of extremal dependence; if x < 1, then x = 0, the variables 
are asymptotically independent, and the value of x is more appropriate as 
a measure of the strength of extremal dependence. 

Replacing probabilities with observed proportions enables empirical es
timates of x(u) and x(u) to be calculated and used as a means of model 
assessment. In particular, estimates can be plotted as functions of u to as
certain the limiting behavior as u-+ 1. For componentwise block maxima 
models there are usually insufficient data to overcome the large sampling 
variation in the empirical estimates. For the threshold and point process 
models, however, the technique can be useful in distinguishing between 
asymptotic dependence and asymptotic independence, for determining suit
able thresholds, and for validating the choice of a particular model for V. 

As an illustration, the plots of empirical estimates of x(u) and x(u), 
together with approximate 95% confidence intervals, are shown for the 
wave-surge data of Example 1.10 in Fig. 8.11, and for the log-daily return 
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FIGURE 8.12. Empirical estimates of x(u) and x(u) for log-daily return pairs of 
Example 1.11. Dotted lines correspond to approximate 95% confidence intervals. 

exchange rate data of Example 1.11 in Fig. 8.12. Interpretation is not com
pletely straightforward because of the large variance of the estimators, but 
both sets of figures seem consistent with the possibility that x( u) --+ 1 as 
u--+ 1. In the respective examples, x(u) converges to values of around 0.3 
and 0.65. These observations lend support to the use of asymptotically de
pendent models above sufficiently high thresholds. Moreover, stability of 
x(u) in both examples seems plausible for u ~ 0.95, suggesting that the 
use of 95% marginal quantiles as thresholds is reasonable. Finally, since 

X= 2- V{1, 1) = 2- 2a (8.29) 

for the logistic model, we can obtain the maximum likelihood estimate of x 
by substitution of the maximum likelihood estimate of a into (8.29). For the 
wave-surge and exchange rate threshold excess model analyses we obtain 
x = 0.309 and x = 0.621 respectively. Each value is consistent with the 
apparent stable-levels of x(u) in Figs. 8.11 and 8.12 respectively, providing 
additional evidence of goodness-of-fit. 

In situations where diagnostic checks suggest data to be asymptotically 
independent, modeling with the classical families of bivariate extreme value 
distributions and their threshold equivalents is likely to lead to misleading 
results. In this case, under mild assumptions, limit results can be obtained 
for the rate of convergence to independence. In turn, these results can be 
used to construct appropriate families of models. The articles by Ledford 
& Tawn referred to in the next section cover this issue in some depth. 
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8.5 Further Reading 

General aspects of the difficulties in working with multivariate distribu
tions, including the problem of defining what is meant by a multivariate 
extreme event, are discussed by Barnett (1976). 

The characterization of multivariate extreme value distributions based 
on point process arguments was first developed by de Haan & Resnick 
(1977). Pickands (1981) gives an equivalent representation, while de Haan 
(1985a) includes discussion on inferential aspects of the model. A detailed, 
if technical, development of the fundamental representations is given in 
Chapter 5 of Resnick (1987). The development of sub-families of extreme 
value models is somewhat older: see Gumbel (1960) and Tiago de Oliveira 
(1984a) for example. 

Elementary approaches to obtaining summary measures of dependence 
between extremes of different variables have been proposed in a variety 
of contexts: references include Buishand (1984, 1991) and Dales & Reed 
(1988). 

Statistical modeling with multivariate extreme value distributions is com
paratively recent and remains an area of rapid development. Tawn (1988a) 
developed parametric models and inferential techniques for the component
wise block maximum model. Coles & Tawn (1991) and Joe et al. (1992) 
independently proposed modeling directly with the point process character
ization; Coles & Tawn (1994) discuss many of the practical issues involved 
with such an approach. Coles & Tawn (1991) and Joe et al. (1992) also 
include techniques for developing families of multivariate extreme value 
models; other techniques and models are discussed by Joe (1989, 1994) 
and Tawn (1990). Reviews of the statistical aspects of multivariate ex
treme value modeling are given by Smith (1994) and Tawn (1994). Bruun 
& Tawn (1998) provide a detailed comparison of multivariate and structure 
variable methods. 

The use of multivariate extreme value techniques for financial applica
tions has also received considerable attention in recent years. For example, 
Hiisler (1996) is one of several articles in a special volume under the head
ing 'Multivariate extreme value estimation with applications to economics 
and finance'. 

Nonparametric estimation of multivariate extreme value models is also 
natural because of the functional representation in (8.5). Smith et al. 
(1990), for example, compared parametric and nonparametric techniques 
based on kernel smoothing for modeling componentwise block maxima. 
There have also been many nonparametric techniques proposed on the ba
sis of threshold models: Deheuvels & Tiago de Oliveira (1989), Einmahl 
et al. (1993, 1997), Caperaa et al. (1997) and Hall & Tajvidi (2000a) for 
example. 

The original proof of asymptotic independence of the bivariate normal 
family is due to Sibuya (1960). The more recent attention given to the 
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statistical properties of asymptotically independent distributions is largely 
a result of a series of articles by Jonathan Tawn and Anthony Ledford: 
Ledford & Tawn (1996), Ledford & Tawn (1997) and Ledford & Tawn 
(1998). Coles et al. (1999) give an elementary synthesis of this theory. 

Extensions of the characterizations of multivariate extremes to stationary 
processes have also been developed: Hsing (1989), for example. 



9 
Further Topics 

9.1 Bayesian Inference 

9.1.1 General Theory 

In Chapter 3 we discussed a number of different techniques for parame
ter estimation in extreme value models and argued that likelihood-based 
methods are preferable. Subsequently, all our analyses have adopted the 
procedure of maximum likelihood. But this is not the only way to draw 
inferences from the likelihood function, and Bayesian techniques offer an 
alternative that is often preferable. 

The general set-up for a Bayesian analysis is the following. As in Chapter 
2, we assume data a: = (x1 , .•. , xn) to be realizations of a random variable 
whose density falls within a parametric family :F = {f(x; 8) : 8 E E>}. How
ever, we now assume it is possible to formulate beliefs about 8, without 
reference to the data, that can be expressed as a probability distribution. 
For example, if we are sure that 0 ~ 8 ~ 1, but that any value in that 
range is equally likely, our beliefs could be expressed by the probability 
distribution 8 ,..., U(O, 1). On the other hand, if 8 is real-valued and we 
believe that 8 is likely to be small in magnitude rather than large, a distri
bution of the form 8,..., N(O, 100) may be more appropriate. A distribution 
on the parameter e, made without reference to the data, is termed a prior 
distribution. Specification of a prior distribution represents a substan
tial departure from the inferential framework we discussed in Chapter 2, 
in which parameters were implicitly assumed to be constant. Admittedly 
unknown, but nevertheless constant. In the Bayesian setting, parameters 

169 
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are treated as random variables, and the prior distribution consists of the 
parameter distribution prior to the inclusion of additional information pro
vided by data. This specification of information in the form of a prior 
distribution is regarded alternately as the greatest strength and the main 
pitfall of Bayesian inference. Protagonists argue that the prior distribution 
enables the statistician to supplement the information provided by data, 
which is often very limited, with other sources of relevant information. In 
contrast, antagonists contend that, since different analysts would specify 
different priors, all conclusions become meaninglessly subjective. 

Postponing, for the moment, the arguments for and against the method
ology, let /(8) denote the density of the prior distribution for 8.1 With a 
slight abuse of notation in which f is used generically to denote an arbi
trary density function, we can also write the likelihood for 8 as f(x I 8). 
For example, if the Xi are independent, then 

n 

f(x I 8) = IJ /(xi; 8). 
i=l 

Bayes' Theorem states 

f(O)f(x I 8) 
f(O I x) = fef(O)f(x I 8)de· (9.1) 

In the context of probability theory, Bayes' Theorem is unchallengeable: 
it is an immediate consequence of the axioms of probability and the def
inition of conditional probability. In the context of statistical analysis, its 
use is revolutionary. It provides the machinery for converting an initial 
set of beliefs about 8, as represented by the prior distribution /(8), into 
a posterior distribution, /(8 I x), that includes the additional infor
mation provided by the data x. Furthermore, Bayes' Theorem leads to an 
inference that comprises a complete distribution. This means that the ac
curacy of an inference can be summarized, for example, by the variance of 
the posterior distribution, without the need to resort to asymptotic the
ory. Decision-theoretic considerations also lead to non-arbitrary choices of 
point estimators of 8. For example, the posterior mean is found to be the 
estimate that minimizes expected quadratic loss. This contrasts with the 
ad hoc, albeit intuitive, rationale for maximum likelihood. 

Prediction is also neatly handled within a Bayesian setting. If z denotes a 
future observation having probability density function f(z I 8), and J(() I x) 
denotes the posterior distribution of() on the basis of observed data x, then 

f(z I x) = k f(z I 8)/(8 I x)d8 (9.2) 

1The case in which 8 is defined on a discrete space follows in the same way, with 
obvious adjustments to terminology. 
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is the predictive density of z given :z:. Compared with other approaches 
to prediction, the predictive density has the advantage that it reflects un
certainty in the model -the j(fJ I :z:) term -and uncertainty due to the 
variability in future observations- the f(z I fJ) term. 

So, if you accept the price of having to specify a prior distribution, which 
many regard as an advantage in itself, there are strong pragmatic reasons to 
prefer a Bayesian analysis. The main obstacle to the widespread adoption 
of Bayesian techniques -apart from philosophical objections to the subjec
tivity induced by the use of prior distributions - is the difficulty of compu
tation: posterior inference usually requires integration in (9.1). Judicious 
choice of prior families can, for certain likelihood models, avoid the neces
sity to calculate the normalizing integral in (9.1), but this simplification is 
the exception rather than the rule. For complex models, where fJ may be 
a high-dimensional vector of parameters, computation of the denominator 
in (9.1) can be problematic, even using sophisticated numerical integration 
techniques. This difficulty has recently been tackled by the development 
of simulation-based techniques. One technique in particular, Markov chain 
Monte Carlo (MCMC), has popularized the use of Bayesian techniques to 
the extent that they are now standard in many areas of application. 

The idea is simple: to produce simulated values from the posterior distri
bution in (9.1). If this could be done exactly, the simulated sample could be 
used to obtain estimates of the posterior distribution itself. For example, 
the mean of the simulated values would give an estimate of the posterior 
mean; a histogram of the simulated values would give an estimate of the 
posterior density; and so on. The difficulty is knowing how to simulate 
from j(fJ I :z:), and usually this is not achievable. The technique of MCMC 
is to simulate a sequence 81, 92 , ••• in the following way: set an initial value 
91 , and specify an arbitrary probability rule q(fJi+l I fJi) for iterative sim
ulation of successive values. Possibilities include (fJi+l I fJi) ....._ N(fJi, 1) or 
(fJi+l I fJi) ....._ Gamma(1, 1).2 This procedure generates a first-order Markov 
chain3 since, given (Ji, the stochastic properties of (Ji+l are independent of 
the earlier history 91 , ... , (Ji-l· But, in this way, the evolution of the (Ji de
pends on the arbitrary q, rather than the target density given in (9.1). The 
trick, at each step in the sequence, is to use the probability rule q( · I fJi) to 
generate a proposal value (J* for (Ji+l, but to reject this proposal in favor 
of (Ji with a specified probability. Specifically, letting 

. { f(x I 9*)/(fJ*)q(fJi I 9*)} 
O:i = mm 1' /(:z: I fJi)f(fJi)q(fJ* I fJi) ' 

(9.3) 

2 In the second of these examples, the distribution of 8;+1 does not depend on 8;. 
This is said to be an independence sampler. 

3See Section 2.4.2. 
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we set 

with probability O:i, 

with probability 1- O:i. 
(9.4) 

By construction, the generated sequence is still a Markov chain, but now 
having a stationary distribution which, under simple regularity assump
tions, can be shown to be the target distribution (9.1). This implies that, 
for a large enough value of k, the sequence (Jk+l,(Jk+2• ••. is approximately 
stationary, with marginal distribution given by (9.1). This sequence can 
therefore be used in a similar way to a sequence of independent values 
to estimate features such as the posterior mean. It's almost like magic: 
regardless of the choice of q,4 the rejection steps implied by (9.4) ensure 
that the simulated values have, in a limiting sense, the desired marginal 
distribution. In reality, there is a lot more to the story, since choosing q so 
as to ensure a short settling-in period, and to generate low dependence in 
the sequence, can be difficult to arrange. Nonetheless, MCMC procedures 
create the opportunity to explore the use of Bayesian techniques in appli
cation areas that were previously thought of as impenetrable due to the 
computations implied by (9.1). 

9.1.2 Bayesian Inference of Extremes 

There are a number of reasons why a Bayesian analysis of extreme value 
data might be desirable. First and foremost, owing to scarcity of data, the 
facility to include other sources of information through a prior distribution 
has obvious appeal. Second, as we have discussed, the output of a Bayesian 
analysis - the posterior distribution - provides a more complete inference 
than the corresponding maximum likelihood analysis. In particular, since 
the objective of an extreme value analysis is usually an estimate of the 
probability of future events reaching extreme levels, expression through 
predictive distributions is natural. For example, a suitable model for the 
annual maximum Z of a process is Z "' GEV(J.t, u, ~). Estimation of(} = 
(J.t, u, ~) could be made on the basis of previous daily observations x = 
(x1, ... , Xn) using, for example, the point process model of Chapter 7. If 
this is done via a Bayesian analysis, the result is a posterior distribution 
/(8 I x). Then, by (9.2), 

Pr{Z $ z I x1, ... ,xn} = l Pr{Z $ z I 8}/(8 I x)dfJ. (9.5) 

Consequently, (9.5) gives the distribution of a future annual maximum of 
the process that allows both for parameter uncertainty and randomness in 

4Subject to some regularity. 



9.1 Bayesian Inference 173 

future observations. Solving 

Pr{Z $ z I Xt, ••• ,xn} = 1-1/m {9.6) 

therefore gives an analog of the m-year return level that incorporates un
certainty due to model estimation. Whilst {9.5) may seem intractable, it is 
easily approximated if the posterior distribution has itself been estimated 
by simulation, using for example MCMC. After deletion of the values gener
ated in the settling-in period, the procedure leads to a sample 81, ..• , 88 that 
may be regarded as observations from the stationary distribution f(8 I x). 
Hence, by {9.5), 

1 8 

Pr{Z $ z I Xt, ... ,xn} ~ s :EPr{Z $ z I 8i}, (9.7) 
i=l 

and solution of (9.6) is straightforward using a standard numerical solver. A 
third reason for favoring a Bayesian analysis is that it is not dependent on 
the regularity assumptions required by the asymptotic theory of maximum 
likelihood. In particular, in the unusual situation where { < -0.5 and the 
classical theory of maximum likelihood breaks down, 5 Bayesian inference 
provides a viable alternative. 

All of these issues are discussed in detail by Coles & Tawn {1996a). They 
argue that prior elicitation in an extreme value analysis is most reasonably 
achieved in terms of extreme quantiles of a process, rather than the ex
treme value model parameters themselves. Subject to self-consistency, a 
prior distribution on a set of three quantiles can always be transformed to 
a prior distribution on (J.L, u, {). Standard MCMC algorithms can then be 
applied to obtain realizations from the corresponding posterior distribution 
which, in turn, can be used to estimate the predictive distribution of, say, 
the annual maximum distribution through (9.7). 

9.1.3 Example: Port Pirie Annual Maximum Sea-levels 

To illustrate the methodology, we give a naive Bayesian analysis of the 
Port Pirie annual maximum sea-level data of Example 1.1. We use the 
word naive here with two different meanings: first, because we have no 
external information with which to formulate a prior distribution; second, 
because we choose an arbitrary configuration of the MCMC algorithm that 
ensures simplicity of programming, with little attempt to guarantee that 
the generated chain has good properties. 

Specifying a prior distribution is a necessary component of any Bayesian 
analysis, even if there is no information with which to do so. In such situa
tions it is usual to use priors that have very high variance - or equivalently, 

ssee Section 3.3.1. 
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are near-flat - reflecting the absence of genuine prior information. There 
is considerable literature on this issue, but in practical terms, analyses are 
not usually sensitive to choices of prior distribution that have a sufficiently 
large variance. In any given problem, this aspect can be explored through 
a sensitivity analysis. 

The likelihood model for the Port Pirie analysis is 

Zi "'GEV(Jt, u, e), i = 1, ... , 65, (9.8) 

where Zi denotes the annual maximum sea-level in the year indexed by i. 
Setting <P = log u, we might choose a prior density function 

(9.9) 

where /p,(·), /t;O and /d·) are normal density functions with mean zero 
and variances v'-', Vt; and V{ respectively. The reason for working with <Pis 
that it is an easier parameterization with which to respect the positivity 
on u. The prior density (9.9) then corresponds to a specification of prior 
independence in the parameters Jt, <P and e, which can be made to be near
flat by choosing the variance parameters sufficiently large. The choice of 
normal densities is arbitrary. For this analysis, we chose v'-' = Vt; = 104 and 
v{ = 100. This completes the model specification. 

For the inference, it is necessary to choose an MCMC algorithm. There is 
almost unbounded latitude here. For illustration, we adopt a variant on the 
scheme described in Section 9.1.1, in which steps (9.3) and (9.4) are applied 
sequentially to each of the individual components of the vector (Jt, </J, e). In 
other words, (9.3) and (9.4) are applied exactly, but where q is replaced in 
turn by transition densities q'-', Q<; and q~, each being a function of its own 
argument only. One simple choice is to specify densities corresponding to 
random walks in the three component directions: 

tt* = Jt+€p,, 

<P* = <P + €t;, 
c = e +e{, 

where e'-', €<; and e{ are normally distributed variables, with zero means 
and variances w'-', Wt; and W{ respectively. Unlike the prior specification, 
the choice of algorithm and its tuning parameters- w'-', Wt; and W{ for our 
algorithm- does not affect the model. It does, however, affect the efficiency 
of the algorithm. After a little trial-and-error, the choices w~-' = 0.0004, 
Wt; = 0.01 and W{ = 0.01 were found to work reasonably well in this 
example. 

Initializing with (Jt, </J, e) = (5, 0, 0.1), the values generated by 1000 it
erations of the chain are plotted in Fig. 9.1. The settling-in period seems 
to take around 400 iterations; thereafter, the stochastic variations in the 
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FIGURE 9.1. MCMC realizations of GEV parameters in a Bayesian analysis of 
the Port Pirie annual maximum sea-levels. Top panel: p,; middle panel: u; bottom 
panel: e. 
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left: J.l.j top right: O"j bottom left: e; bottom right: ZO.Ol· 



176 9. Further Topics 

chain seem reasonably homogeneous.6 If we accept this, after deleting the 
first 400 simulations, the remaining 600 simulated values can be treated as 
dependent realizations whose marginal distribution is the target posterior. 
For comparison with earlier analyses, it is convenient to transform back to 
the usual a scale, by setting CTi = exp l/Ji for each of the simulated l/Ji values. 
In a similar way, having obtained a sequence of simulated values (J.Li, CTi, ei) 
from the target distribution, the components may be transformed to obtain 
simulated values from specified functions of these parameters. For example, 
the 1/p-year return level was defined in Chapter 3 as 

z ={ J.L-f[1-{-log(1-p)}-(], 
P J.t- a log{ -log(1- p)}, 

fore ,e 0, 
fore= 0. 

Applying this transformation to each of the vectors (J.ti, CTi, ei) leads to a 
sample from the corresponding posterior distribution of the 1/ p year return 
level. 

For the analysis of the Port Pirie data, the sample means and standard 
deviations (in parentheses) of the sjmulated values of the model parameters 
and the 100-year return level are 

{.t = 3.87 (0.03), U = 0.20 (0.02), e = -0.020 (0.091), ZO.Ol = 4.78 (0.19). 

Since the simulated values are treated as observations from the Markov 
chain once it has reached equilibrium, these represent calculations of the 
posterior mean and standard deviation respectively of each of the marginal 
components. Looking back to Section 3.4.1, the results are similar to, and 
certainly consistent with, the corresponding estimates based on the maxi
mum likelihood analysis. Given the uninformativeness of the prior specifica
tion made, this degree of self-consistency is reassuring. The main advantage 
of the Bayesian inference in this case is the ease with which the simulated 
data can be used to give a more complete summary of the analysis. For 
example, posterior density estimates of the parameters and z0 .01 are shown 
in Fig. 9.2. 

Using the method discussed in Section 9.1.2, a plot of the predictive 
distribution of a future annual maximum is shown in Fig. 9.3 on the usual 
return period scale. The values are greater than the corresponding return 
level estimates based on a maximum likelihood analysis because of the 
implicit allowance for uncertainty in parameter estimation. 

In summary, the results of the Bayesian and maximum likelihood analy
ses are mutually consistent, while the Bayesian analysis facilitates an easy 
transformation across scales that does not depend on asymptotic proper
ties of the likelihood function. Moreover, uncertainty in prediction, due to 

6 See Gilks et al. (1996} for a discussion of formal diagnostic procedures for chain 
convergence. 
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FIGURE 9.3. Predictive return levels Zp against 1/p, where 
Pr{ Z ~ Zp I x} = 1 - 1/p, in a Bayesian analysis of Port Pirie annual 
maximum sea-level series. 

parameter uncertainty, is more naturally expressed in the Bayesian frame
work. The computations for the Bayesian analysis are straightforward and 
fast - this simple example ran at virtually the same speed as the maximum 
likelihood analysis. Modifications to handle non-stationarity and other per
turbations from the standard model assumptions can also be included. 
Similarly, although we have illustrated the method using the GEV sam
ple maxima model, the basic strategy applies equally well for any of the 
other extreme value models we have introduced. Together with the fact 
that genuine external information can additionally be incorporated into 
the inference through the prior distribution, the Bayesian framework offers 
substantial advantages for the analysis of extreme values. 

9.2 Extremes of Markov Chains 

We argued in Section 5.3.2 that a pragmatic way of modeling extremes of 
a stationary process is to decluster the data and then apply the standard 
threshold excess model to the cluster maxima only. This is justified by the 
asymptotic theory which leads to the generalized Pareto distribution as 
being the limiting distribution of threshold excesses. The declustering is 
an ad hoc device to circumvent the difficulty that the joint distribution of 
successive threshold excesses is unspecified by the general theory. But there 
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are disadvantages to this approach: cluster identification is often arbitrary; 
information on extremes is discarded; and the opportunity for modeling 

· within-cluster behavior is lost. This latter point can be especially important 
in some applications if, for example, the cumulative effect of extreme values 
is critical. 

Because the general results are not more prescriptive, the only way to 
avoid the declustering method that is supported by asymptotic theory is 
to make stronger assumptions about the process under study. The simplest 
assumption that might be made, other than independence, is that the series 
X1, X 2 , ••• forms a stationary first-order Markov chain. Smith et al. (1997) 
proposed a general framework for modeling extremes of such series. A brief 
summary follows. 

The stochastic properties of a stationary first-order Markov chain are 
completely determined by the distribution of successive pairs. This is be
cause the joint density factorizes as 

due to the Markov property. Given a model f(xi,Xi+li9), it follows that 
the likelihood for 9 is 

Adopting the asymptotic arguments of Chapters 4 and 8, approximate 
models for both f(xi; 9) and f(xi, Xi+!; 9) are available on regions of the 
form (u,oo) and (u,oo) x (u,oo) respectively, from (4.11) and (8.5). Below 
the chosen thresholds, the model is unspecified and it is necessary to censor 
the likelihood components as in Section 8.3.1. Once estimated, simulation of 
clusters from the fitted model can be used to estimate other characteristics 
of the process such as the extremal index. An analytical expression for the 
extremal index of a first-order Markov chain is given by Smith (1992), but 
the estimation of other extremal features of the series requires the more 
general modeling methodology of Smith et al. (1997). 

Though Markov chains are a simplification of the types of dependence 
often encountered in real datasets, they provide a much more plausible 
set of assumptions than independence. Consequently, the generalization of 
modeling procedures for extremes of independent series to that of first
order Markov chains greatly expands the applicability of extreme value 
techniques to the modeling of extremes of genuine data processes. The 
generalization to higher-order Markov chains is also straightforward, apart 
from the difficulties of increased dimensionality discussed in Chapter 8. 
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9.3 Spatial Extremes 

In Chapter 8 we argued that one reason for considering a multivariate 
analysis of extremes would be if the joint probability of extreme events at a 
number of different locations were of interest. This argument generalizes in 
the following way. Consider, for example, a continuous stretch of coastline, 
with locations indexed by r E R = [0, 1], and let X(r) denote the sea-level 
at location r. Assuming a sea-wall to have a constant height of u along the 
coastline, the probability of an exceedance of the sea-wall at any location 
is 

1- Pr{X(r) < u Vr E R}. (9.10) 

Other quantities may also be of interest: for example, with a+ = max{O, a}, 

L {X(r)- u}+dr (9.11) 

is the total volume of water exceeding the sea-wall. Calculation of either 
(9.10) or (9.11) requires a specification of the joint probability of extreme 
events across the whole index space R, or, in other words, the extremal 
properties of the sea-level regarded as a continuous spatial process. 

The argument generalizes further to spatial problems in which the un
derlying space is two-dimensional. For example, letting R be an index space 
for the catchment region in a hydrological analysis, and denoting by X(r) 
the daily rainfall at location r E R, calculations of the type 

1- Pr{X(r) < u(r) Vr E R}, 

for a specified function u(r), can be used to evaluate the probability of 
flood levels in at least one location in the region. 

Two proposals have been made for modeling spatial extremes, one based 
on a continuous version of the extremal types theorem, the other related to 
standard methodology for spatial statistics. Both approaches are computa
tionally intensive and implementations have so far been largely exploratory. 
It remains to be seen if the models can be developed for routine use. 

9.3.1 Max-stable Processes 

Max-stable processes are a continuous analog of max-stable random vari
ables. As in the multivariate case, it is convenient to give definitions with 
reference to a standard Frechet marginal distribution. 

Definition 9.1 Let X(r) be a random process on an index spaceR, with 
standard Frechet margins, and let X1 (r), X 2 (r), ... be independent repli
cations of the X(r) process. For n = 1, 2, ... , let Zn(r) be such that, for 
each r E R, 

Zn(r) = . max {Xi(r)}. 
t=l, ... ,n 

(9.12) 
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Then, X(r) is said to be a max-stable process if, for each n = 1, 2, ... , 
it is identical in distribution to n-1 Zn(r). 6. 

The definition of Zn(r) in (9.12) is analogous to the definition of com
ponentwise block maxima on discrete spaces. Similarly, the property of 
max-stability for random processes is a generalization of max-stable ran
dom variables: up to scaling, the distribution of a max-stable process is 
invariant to the operation of taking pointwise maxima. 

The correspondence between max-stable variables and max-stable pro
cesses extends to a continuous version of the extremal types theorem. 

Theorem 9.1 Let X(r) be a random process with standard Frechet mar
gins on an index space R, and let 

Z~(r) = . max {Xi(r)/n}. 
a.=l, ... ,n 

Then, if 

Z~(r) ~ Z(r) 

as n -t oo, where Z(r) is a well-defined process, Z(r) is a max-stable 
process. 0 

By Theorem 9.1, max-stable processes are the limits of pointwise maxima 
processes in the same way that the GEV family is the limit distribution of 
block maxima, and the bivariate extreme value family is the limit distribu
tion of componentwise block maxima. This analogy suggests the use of the 
limit family as an approximation to Z~ ( r) in a manner that is now familiar. 
But this requires a characterization of the limit family. One characteriza
tion, which is a continuous version of the point process representation for 
multivariate extremes, is given by the following spectral representation due 
to de Haan (1985b). 

Theorem 9.2 Let { (u1, 8 1 ), (u2 , 82), ••• } be the points of a Poisson process 
on a space (0, oo) x S, with intensity density function 

du 
)..(du,d8) = 2 x v(d8) 

u 

for a positive intensity function von S. Also, let f be a function on R x S 
such that 

Is f(r, 8)v(d8) = 1, V r E R. (9.13) 

Then setting 
Z(r) =.max {ud(r,8i)}, 

t=1,2, ... 

Z(r) is a max-stable process. Moreover, every max-stable process on R can 
be represented in this way for suitable choices of S, v and f. 0 
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It is easy from this representation to show that, for any subset Ro c R, 

Pr{X(r) $ u(r) V r E Ro} = exp {-Is~~ ( ~~~~;)) v(d8)}, 

which is an infinite-dimensional version of the limit distribution for bivari
ate componentwise maxima given by (8.5). 

Smith (1991b) gave the following physical interpretation to the charac
terization in Theorem 9.2. 

• The space S is to be interpreted as a space of 'storm types', for 
example 'storm locations'. 

• The function v determines the relative frequency of different storm 
types. 

• The intensity function A determines the joint intensity of storm types 
and severity, which are assumed to be mutually independent. 

• The function f ( r, 8) is interpreted as a 'storm profile function', de
termining the relative strength of a storm of type 8 observed at r, so 
that ud(r, 8i) is the severity of the ith storm measured at r. 

• Finally, Z(r) is obtained by maximizing storm severity over all storms 
at each location r. 

Smith (1991b) exploited this interpretation to build a class of max-stable 
processes having a simple physical interpretation. In his model, S = R, with 
S interpreted as a space of storm centers, and v(d8) = d8, corresponding 
to a uniform spread of storm centers. Finally, any family of probability 
density functions f ( ·, 8), where 8 is a parameter of f, provides a model for 
f(r, 8) that satisfies (9.13). In particular, setting f(r, 8) = ¢>(r- 8), where 
¢>( ·) is the standard normal density function, leads to a model for which a 
number of analytical properties can be evaluated. These properties, in turn, 
enable a method of inference based on a weighted least-squares smoothing 
of empirical and model-based estimates of pairwise dependence. 

9.3.2 Latent Spatial Process Models 

An alternative approach for specifying extreme value models over contin
uous spaces is by the use of latent spatial processes. For example, sup
pose we make observations of annual maxima, X(ri), at a set of locations 
r 1, ••• , rk E R. A possible latent process model is 

(9.14) 

independently for r1, ... , rk, where J.LI, .•. , J.Lk are the realizations of a 
smoothly varying random process J.L(r) observed at r = r 1, ••• , rk respec
tively. Because J.L(r) varies smoothly, nearby values of the J.L(ri) are more 
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likely to be similar than distant values. Hence, values of X(r) are more 
likely to be similar at nearby locations. Thus, dependence is induced, as a 
consequence of the smoothness in the hidden J.L(r) process. 

Compared with max-stable processes, model specification is easier using 
latent processes and, although the computational burden is substantial, 
analyses with quite large numbers of locations are still manageable. A lim
itation is that strong dependence cannot be induced in this way, and the 
technique is likely to have greater utility as a method for inferring smooth 
variations in GEV model parameters, rather than as a serious proposition 
for modeling spatial dependence. 

9.4 Further Reading 

A general overview of the use of Bayesian techniques can be found in Casella 
& Berger {2001) or O'Hagan (1994). Specific details on MCMC modeling 
are given by Gilks et al. {1996), though the area is rapidly developing. 
While there is a large literature on Bayesian inference for extreme value 
models, much of it is restricted to special cases and sub-models. In the 
context of modeling with the complete GEV family, the earliest reference 
seems to be Smith & Naylor {1987). Coles & Powell (1996) give a more 
general review and also discuss contemporary modeling ideas based on 
Markov chain Monte Carlo techniques. Using this methodology, Coles & 
Tawn (1996a) provide a case study that demonstrates the utility of expert 
information for extreme value modeling. Walshaw {2000) extends these 
simple ideas to hidden mixture models. An interestind discussion of the 
relative merits of Bayesian and frequentist estimates of predictive quantities 
for extremes is given by Smith (1999). 

Theoretical properties of extremes of Markov chains are given by Smith 
(1992) and Perfekt (1994), though the earlier works of O'Brien (1987) 
and Rootzen (1988) are also relevant. Statistical properties are explored 
in Smith et al: {1997) and extended to the non-stationary case in Coles 
et al. {1994). A parallel study in the case of Markov chain transitions that 
are asymptotically independent is given by Bortot & Tawn (1998). 

Max-stable processes were first formalized by de Haan (1985b); see also 
de Haan & Pickands (1984, 1986). Only limited progress has been made in 
the implementation of such models for a spatial setting. Smith (1991b) gives 
a simple model, some of whose properties can be evaluated analytically, and 
Coles (1993) gives an alternative family of models that has close connections 
with the Poisson process models for multivariate extremes discussed in 
Chapter 8. Coles & Walshaw (1994) also develop a max-stable process 
model to describe directional dependence in wind speed measurements. A 
general overview is given by Coles (1994). 
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Latent process models are standard in other areas of spatial statistics. 
Replacing the GEV distribution in (9.14) with a Normal distribution having 
mean J.L(r), and assuming the J.L(r) process to be a smooth Gaussian process, 
leads to the standard kriging models; see Cressie {1993) for example. Diggle 
et al. (1998) developed computational algorithms for solving the inference 
problems in the non-Gaussian case, which were implemented in the extreme 
value setting by Coles & Casson {1999). 





Appendix A 
Computational Aspects 

Introduction 

All of the computations and graphics in this book were performed in the 
statistical languageS-PLUS. The datasets, and many of the S-PLUS func
tions, are available for downloading via the internet from the URL address 

http://www.maths.bris.ac.uk/-masgc/ismev/summary.html 

This page will be updated on a regular basis. It currently includes: 

1. Datasets in S-PLUS format; 

2. S-PLUS functions to carry out the univariate analyses described in 
Chapters 3, 4, 6 and 7; 

3. A document detailing how to use the S-PLUS functions and datasets; 

4. Links to other sites that make extreme value software available, in
cluding some of the S-PLUS functions1 used in Chapter 8. 

The Univariate Functions 

A brief description of the functions prepared for modeling univariate data 
- of either block maximum, or threshold exceedance type - is as follows: 

1These functions were written by Jan Heffernan of Lancaster University. 
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gev. fit Function for finding maximum likelihood estimators of the GEV 
model. Covariate models for each of the GEV parameters are allowed, 
together with link functions on any of the parameters as explained in 
Chapter 6. 

gev. diag Takes as input the output of the function gev. fit and produces 
diagnostic plots to check the quality of model fit. 

gev. prof xi Plots the profile likelihood fore in the GEV model. 

gev. prof Plots the profile likelihood for specified return level in the GEV 
model. 

gum. fit Function for finding maximum likelihood estimators of the Gum
bel distribution, corresponding to the special case of the GEV distri
bution with e = 0. Covariate models and link functions for either the 
location or scale parameter are enabled. 

gum. diag Takes as input the output of the function gum. fit and produces 
diagnostic plots to check the quality of model fit. 

rlarg. fit Function for finding maximum likelihood estimators of the r 
largest order statistic model. User can specify required number of 
order statistics to model. Covariate models and link functions are 
enabled. 

rlarg.diag Takes as input the output from rlarg. fit and produces prob
ability and quantile plots for each of the r largest order statistics. 

mrl. plot Function for plotting mean residual life plots. 

gpd. fit Function for finding maximum likelihood estimators of the gen
eralized Pareto distribution at specified threshold. Covariate models 
and link functions are enabled. 

gpd. diag Takes as input the output of the function gpd. fit and produces 
diagnostic plots to check quality of model fit. 

gpd. prof xi Plots the profile likelihood for e in the generalized Pareto 
model. 

gpd. prof Plots the profile likelihood for specified return level in the gen
eralized Pareto model. 

gpd. f i trange Calculates and plots maximum likelihood estimates and 
confidence intervals for the generalized Pareto model over a range 
of thresholds. 
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pp. fit Finds maximum likelihood estimates and standard errors for the 
point process model as described in Chapter 7. Covariate models and 
link functions are enabled for each of the model parameters, together 
with variable thresholds. 

pp.diag Takes as input the output of the function pp.fit and produces 
diagnostic plots to check quality of model fit. 

pp. f i trange Calculates and plots maximum likelihood estimates and con
fidence intervals for the point process model over a range of thresh
olds. 

To illustrate the use of these functions, we describe an analysis of the 
exchange rate series between the Euro and UK sterling, similar to each of 
exchange rate series described in Example 1.11. This series is the contained 
in the dataset euroex. data. Typing2 

> length(euorex.data) 
[1] 975 

confirms the length of the series as 975. A plot of the series is produced by 

> plot(euroex.data,type='l',xlab='Day Number', 
ylab='Exchange Rate') 

The output is shown in Fig. A.l. The transformation to log-daily returns 
is made as 

euroex.ldr <- log(euroex.data[2:975])-log(euroex.data[1:974]) 

and plotted by 

> plot(euroex.ldr,type='l',xlab='Day Number', 
ylab='Log-Daily Return') 

This plot is shown in Fig. A.2, and suggests that the transformed series is 
close to stationarity. 

So far this is standard S-PLUS. Further analysis requires the additional 
routines described above. An extreme value analysis can be based on either 
the threshold excess methodology of Chapter 4 or the point process model 
of Chapter 7. We illustrate with the former. It is convenient first to re-scale 
the data 

> euroex.ldr <- 100*euroex.ldr 

A mean residual life plot is produced by 

> mrl.plot(euroex.ldr) 

2 We follow the convention of using the symbol > to denote the S-PLUS prompt. 
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FIGURE A.2. Log-daily returns of Euro/Sterling exchange rate series. 
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FIGURE A.5. Diagnostic plots for threshold excess analysis of Euro/Sterling 
exchange rate log-daily returns. 

The output is shown in Fig. A.3. Approximate linearity in the plot seems 
to occur at a value of around u = 0.9. We can check how many threshold 
exceedances this generates by 

> length(euroex.ldr[euroex.ldr>0.9]) 
[1] 39 

The validity of the threshold u = 0.9 can be assessed in greater detail by 
checking stability with respect to u of the maximum likelihood estimates 
for the reparameterized model as discussed in Chapter 4: 

> gpd.fitrange(euroex.ldr,-1,1.4,nint=100) 

This requests estimates over the range u = -1 to u = 1.4, equally spaced 
so as to give 100 estimates in total. The output is shown in Fig. A.4, 
supporting the use of the threshold u = 0.9. 

To fit the model at the specified threshold: 

> euroex.gpd <- gpd.fit(euroex.ldr,0.9,npy=250) 
$threshold: 
[1] 0. 9 

$nexc: 



[1] 39 

$conv: 
[1] T 

$nllh: 
[1] -9.420511 

$mle: 
[1] 0.3534534 -0.2015480 

$rate: 
[1] 0.04004107 

$se: 
[1] 0.07277597 0.13339979 
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The argument npy=250 is specified as there are approximately 250 trading 
days per year. This is important for subsequent return level calculation, 
which is expressed on an annual scale. In the output: threshold is the 
chosen threshold; nexc is the number of exceedances of that threshold; conv 
is a true/false indicator of whether the likelihood has been satisfactorily 
maximized or not; nllh is the negative log-likelihood at the maximum 
likelihood estimate; mle are the maximum likelihood estimates of a and ~ 
respectively; rate is the proportion of points exceeding the threshold; se 
are the approximate standard errors of a and ~ respectively. Diagnostics of 
the fitted object {which was assigned to euroex.gpd) is produced by 

> gpd.diag(euroex.gpd) 

The output, shown in Fig. A.5, gives little reason to doubt the validity of 
the generalized Pareto model, and also shows how the model extrapolates. 
Slight concern might be expressed that the model appears to underesti
mate at the top end, so that in the return level plot the largest observed 
value is on the bound of the corresponding confidence interval. To a large 
extent, this is due to the substantial uncertainty in the model which is not 
properly reflected in confidence intervals obtained via the delta method 
approximation. Better accuracy is achieved with the profile likelihood. For 
the shape parameter ~, 

> gpd.profxi(euroex.gpd,-0.5,0.3) 

generates the plot in Fig. A.6, while for return levels corresponding to a 
10-year return period, 

> gpd.prof(euroex.gpd,m=10,npy=250,1.75,3.5) 

gives the plot in Fig. A.7. Some trial-and-error is needed in both func
tions to find a suitable plotting range. Additionally, for the return level 
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profile likelihood, it is necessary to specify the number of observations per 
year as npy and the desired return period as m. Fig. A.6, in particular, 
shows considerable asymmetry in the profile log-likelihood surface, leading 
to confidence intervals that are asymmetric about the maximum likelihood 
estimate. From the graph, the estimate is obtained as 1.97, with a 95% 
confidence interval - obtained at the intercept with the drawn horizontal 
line- of [1.76, 2.86]. It is clear that, once such asymmetries are accounted 
for, the model and empirical information are mutually consistent. 

Finally, we can assess the evidence for non-stationarity in the series. The 
simplest alternative to stationarity in this model is a trend in the scale 
parameter q, As discussed in Chapter 6, it is natural to build models for 
q on a logarithmic scale, so as to ensure positivity. Hence, the simplest 
alternative model is logq(t) = /31 + f32t, where tis an index of day number. 
Estimation in S-PLUS requires the construction of a matrix that includes 
all possible covariates. In this case, the only covariate is time, so we can 
set 

> time=matrix(1:974,ncol=1) 

which assigns the vector (1, ... , 974)T to the object time. To fit the model: 

> euroex.gpd2 <- gpd.fit(euroex.ldr,u=0.9,npy=250, 
ydat=time,sigl=1,siglink=exp) 

$nllh: 
[1] -12.46977 

$mle: 
[1] -1.34699468 0.00082711 -0.38424075 

$rate: 
[1] 0.04004107 

$se: 
[1] 0.2253065224 0.0002391714 0.1462967335 

The new syntax is as follows: ydat is a matrix whose columns contain 
the covariates; sigl is a vector listing the columns of ydat that are to be 
included in a linear model for q; siglink is the inverse link to be used 
for modeling (1. In this way, more elaborate models can be built for q by 
extending the columns of ydat, and also for ~' by specifying shl and (if 
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FIGURE A.6. Profile likelihood of generalized Pareto parameter~ in threshold 
exceedance analysis of Euro/Sterling exchange rate log-daily returns. 
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analysis of Euro/Sterling exchange rate log-daily returns. 
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required) shlink in a similar format to sigl and siglink.3 The output 
lists all of the sub-parameters for each parameter in turn. So, in this case, 
the estimated model for u is 

a(t) = exp( -1.35 + 0.00083t), 

while ~ = -0.384. A comparison of the log-likelihoods from the two models, 
or comparison of the estimated trend parameter with its standard error, 
suggests that this model is an improvement on the original model, imply
ing non-stationarity in the series. Diagnostic checks can also be made by 
applying gpd.diag to the fitted object euroex.gpd2. 

Other Sources of Software 

Other sources of software for modeling extremes are also available. Some 
S-PLUS functions for bivariate analyses of extremes as used in Chapter 8 
of this book, together with supporting documentation, can be found at 

http://www.maths.lancs.ac.uk/-currie 

This software was written by Jan Heffernan of Lancaster University. The 
Xtremes package, made available in Reiss & Thomas (2001), enables es
timation of extreme value models by a variety of alternative techniques 
to maximum likelihood. Closer in spirit to the main theme of this book, 
a further suite of S-PLUS routines, with particular routines for financial 
applications, is provided by Alexander McNeill at 

http://www.math.ethz.ch/-mcneil/software.html 

Finally, under current development by Thomas Yee of Auckland Univer
sity, is a suite of S-PLUS and R functions to implement a class of models 
described as vector generalized additive models (VGAMs); see Yee & Wild 
(1996). The extreme value models form a special class of this family, and 
the developer is currently adapting routines to enable explicit specification 
of this sub-class. Once complete, the routines are likely to supersede most 
of the previous univariate S-PLUS routines, as they will enable both para
metric and nonparametric specification of model structure for the extreme 
value model parameters. On completion, the routines will be available for 
download from 

http://www.stat.auckland.ac.nz/yee/ 

3The syntax for the other fitting routines is similar, but with models for a location 
parameter JL expressed through mul and mulink. 
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x 164-166 
X 163, 164, 166 

Asymptotic independence 163-166, 
168, 182 

Bayes' theorem 170 
Bayesian inference 169-177,182 
- of extremes 172-177 
Bias 28 
Bilogistic model see Bivariate ex

treme value distribution, bilogistic 
model 

Bivariate extreme value distribution 
144-148,156,157,163,164 

- bilogistic model 147, 161 
- diagnostics 165 
- diagnostics for 165-166 
- Dirichlet model 147, 161 
- likelihood function 148-150 
- logistic model 146, 148, 161, 166 
Bivariate threshold excess model 
- asymptotic distribution 154-156 
- likelihood inference 155 

Central limit theorem 26, 29, 47 

Componentwise maxima 143,147, 
157 

Computation 185 
Conditional density function 23 
Confidence interval 29 
Convergence in distribution 26 
Correlation 24 
Covariance 24 
Covariate 107, 108, 113 

D(un) condition 93,98 
Datasets 
- annual maximum wind speeds 11 
- daily rainfall 9, 84-86, 119, 134 
- Dow Jones Index 11, 86-90, 103 
- engine failure times 38-43 
- Euro /sterling exchange rates 

187-194 
- exchange rate series 13, 161-163, 

166 
- Fremantle sea-levels 5, 105, 109, 

111-114, 148-151 
- glass fiber strength 5, 64-66 
- oceanographic variables 13, 

158-161,166 
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- Port Pirie sea-levels 4, 59-64, 106, 
111,148-151,173-177 

- race times 7, 114-116 
- Venice sea-levels 8, 67,69-72, 

117-118 
- Wooster minimum temperature 

series 10,99-101, 106, 119-122, 
136-141 

Declustering 99, 100, 103, 177, 178 
Delta method see Likelihood, delta 

method 
Deviance statistic 35 
Directional dependence 182 
Dirichlet model see Bivariate ex-

treme value distribution, Dirichlet 
model 

El Niiio 7, 113 
Empirical distribution function 36 
Examples see Datasets 
- daily rainfall threshold excess 

analysis 85 
Expectation 20 
Extremal index 97, 98, 103 
Extremal types theorem 46-49 
Extremal types theorem for minima 

53 
Extreme values in non-stationary 

sequences 105-122 
Extreme values in stationary sequences 

92-104 

Frechet distribution 47, 94, 143, 148, 
155,158,180 

Generalized linear models 108 
Generalized Pareto distribution 75, 

76, 78,83,84,86,88,90,99, 101,106, 
111,119,132,134,177 

- return level plot 84 
GEV distribution 47, 48, 50, 53, 75, 

76,93,96-98,105,107,108,110,111, 
113,131,144,145,147,172,182,183 

- diagnostics 57-59 
- inference 54 
- likelihood inference 55, 56, 108 
- probability plot see Probability 

plot, for GEV distribution 
- profile likelihood 57 

- quantile plot see Quantile plot, for 
GEV distribution, 58 

- quantiles 49, 56 
- return level plot see Return level 

plot 
- return levels 56-58, 65 
GEV distribution for minima 53 
Gumbel distribution 47, 48 
- likelihood inference 55, 109 

Independence 23 
Inverse-link function 107 

Joint density function 22 
Joint distribution function 22 

Latent process models 181, 182 
Likelihood 
- delta method 32, 33, 56, 82, 83 
- deviance function 33 
-- asymptotic properties 34 
- expected information matrix 32 
- likelihood function 30 
- likelihood ratio test 35, 109 
- log-likelihood function 30 
- maximum likelihood 30 
-- asymptotic normality 31,32 
- maximum likelihood estimator 31 
-- asymptotic normality 31, 57 
- observed information matrix 32 
- profile likelihood 34 
-- asymptotic properties 35 
Logistic model see Bivariate extreme 

value distribution, logistic model 

Marginal density function 23 
Markov chain 25,171,178,182 
- extremal index 178 
- extremal properties 177, 178 
Markov chain Monte Carlo 171-173, 

182 
Max-stability 49, 50, 145 
Max-stable processes 179, 180, 182 
- Gaussian model 181 
- spectral representation 180, 181 
Maximum likelihood see Likelihood, 

maximum likelihood 
MCMC see Markov chain Monte 

Carlo 



Mean residual life plot 79 
Mean-square error 28 
Model choice 64 
Model diagnostics 36 
Model selection 35 
Multivariate distributions 22-24 
- mutivariate normal distribution 

24 
Multivariate extreme value distribu

tion see Bivariate extreme value 
distribution 

Multivariate extremes 142-168 

Non-stationarity see Extreme values 
in non-stationary sequences 

Nonparametric techniques 167 

Order statistics 66 
- limit distribution 66-68, 141 

Parameter estimation 28 
Perfect dependence 145 
Pivot 29 
Point process 124-126 
- bivariate extreme value model see 

Poisson process, limit for bivariate 
extremes 

- convergence 128 
- extreme value model see Poisson 

process, limit for extremes 
- intensity measure 125 
Poisson process 125 
- likelihood function 126-128, 134, 

135 
- limit for bivariate extremes 156 
-- likelihood inference 158 
-- modeling 158, 161 
- limit for extremes 128, 129, 

131-133,138,141 
-- modeling 132-134 
-- return levels 137,140 
- non-homogeneous 125, 126 
Prediction 170 
- predictive distribution 171, 173 
Probability density function 20 
Probability distribution 
- binomial distribution 129 
- binomial distribution 21 
- chi-squared distribution 22 
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- exponential distribution 76 
- normal distribution 21 
- Poisson distribution 21, 129 
Probability distribution function 20 
Probability plot 37 
- for r largest order statistic model 

72 
- for Generalized Pareto distribution 

84,86,88 
- for GEV distribution 58, 62, 65 
- for non-stationary generalized 

Pareto model 111 
- for non-stationary GEV model 

110 
Profile likelihood see Likelihood, 

profile likelihood 

Quantile plot 37 
- for r largest order statistic model 

72 
- for generalized Pareto distribution 

84,86,88 
- for GEV distribution 58, 62, 65 
- for non-stationary generalized 

Pareto model 111 
- for non-stationary GEV model 

110 

r largest order statistic model 66-72, 
117-118, 131,141 

- diagnostics 70 
- inference 69 
Random process 25 
Random variables 19 
Return level 49, 173 
-plot 49,58,59,81,103 
Return level plot 62, 66, 88 
Return period 49 

S-PLUS 185-194 
Sample Maxima 45 
Sample maxima 
- asymptotic distribution 46, 48-50, 

131 
Sample minima 52 
- asymptotic distribution 53 
Seasonality 106, 107, 120 
Southern Oscillation Index 7, 107, 

108, 113 
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Spatial extremes 179 
Standard deviation 20 
Standard error 28 
Stationary sequence 25 
- extremes see Extreme values in 

stationary sequences 
Structure variable 150, 151, 156 
- return levels 150, 151, 153 

Threshold excess model 98, 177 
- asymptotic distribution 75, 131, 

132,154 
- dependent observations 99 
- diagnostics 84 
- likelihood inference 80, 81, 135 
- profile likelihood 82 

- return levels 81, 82, 84, 101, 103 
- threshold selection 78, 83, 122 
1rends 106,107,109,111,114,118, 

119,150 

Variance 20 
Variance-covariance matrix 24 
Vector generalized additive models 

194 
VGAMs see Vector generalized 

additive models 

Weibull distribution 47 

Xtremes 194 
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