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The essence of Document Engineering is the analysis and design methods that yield
precise models describing the information required by business processes and the
rules by which related processes are coordinated and combined. Neither the methods
nor the models have anything inherently to do with XML or any other syntax.
Nevertheless, XML has rapidly become the preferred format for representing the
physical models used to exchange information, so some familiarity with XML is
essential.

Document Engineering has nothing inherently to do with XML

If you have a web publishing or programming background you undoubtedly have
some experience with XML. But if your expertise is in systems analysis or business,
you are probably new to this material. Furthermore, even though XML is an essen-
tial technology for Document Engineering, just knowing XML doesn’t make you a
document engineer because of the interdisciplinary nature of this new field.

The web publishing perspective on XML is incomplete in some respects compared to
the perspective we take in Document Engineering. If you work in web publishing,
you might view XML as an improvement on HTML that enables greater automation
and consistency in formatting. This is true, but just thinking of XML as a smarter
HTML misses its central ideas of document types and validation.1 If you came to web
publishing from working in technical documentation with the Standard Generalized
Markup Language (SGML), of which XML is a subset, you certainly understand
these key ideas. But your experience is likely to be with text-oriented or narrative
types of documents, not with the transactional varieties used in applications that
exchange documents. 

Many programmers see XML as an Internet-friendly, easy-to-parse, and nonpropri-
etary data format to use instead of ad hoc syntaxes for application configuration and
inter-process communication. So if you have come to XML as a programmer, you
appreciate the need for structured information and strong data typing and valida-
tion. But unless you’ve worked with applications that exchange documents, you
probably build software designed for tight coupling with fine-grained APIs. You need

2.0
INTRODUCTION
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to learn to use XML as a format for describing document models that represent entire
business events, not just tiny messages. Using coarse-grained documents as interfaces
is the key idea behind web services and service oriented architectures.

The syntax isn’t what is most important about XML

So this chapter will introduce XML from the perspective of realizing document mod-
els and model-based applications. We will emphasize the big ideas of XML and not
dwell on XML syntax and schema languages, because there are plenty of excellent
books about them that cover them in more depth than this book allows.2 If you have
a business strategy interest in Document Engineering, this chapter will introduce all
the XML you need to know. If you want to learn more about XML, this chapter will
make it much easier for you to learn it. If you already know XML, this chapter will
help you apply that knowledge in new ways. 

HTML, the language for publishing web pages, will go down in history as one of the
most important inventions of our time. It is surely as significant to the creation and
dissemination of information as the printing press. HTML and the web browser
transformed the Internet, which had been around for two decades but was used pri-
marily by scientists and engineers, into a ubiquitous publishing platform used by
everyone from grade-school children to their grandmothers.

HTML took off because it was nonproprietary and because of the conceptual and
technical simplicity of publishing with it. Authors used an ordinary text editor to
“mark up” a document by surrounding bits of text with “pointy brackets” and tags
whose name suggested their structural role or formatting, and the browser did the
rest. These two ideas—using tags to enclose or surround content with labels, and
relating the labels to the desired presentation of the content—are easy to understand,
even for schoolchildren (see SIDEBAR).

A very simple example of an HTML document and how it appears in a browser is
shown in Figure 2-1a and 2-1b. 

2.1
FROM HTML TO XML

XML FOUNDATIONS
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<html>
<body>
<h1>Center for Document Engineering</h1>
<h2>Calendar of Events: January 2004</h2>
<ul>
<li><p>“Delivering on the Promise of XML”</p>
<ul>
<li>Lecture by Eve Maler, Sun Microsystems

<li>Monday, January 12 4:00-5:00 PM
<li>South Hall 202
</ul>
<p>Eve Maler will introduce the <strong>Universal Business Language

(UBL)</strong> and the <strong>Security Assertion Markup Language (SAML)</strong>
and discuss their XML design features that maximize the sharing of semantics and pro-
cessing even when the core vocabularies are customized.</p>
</li>
<li><p>“Adobe’s XML Architecture”</p>
<ul>
<li>Workshop by Charles Myers, Adobe Systems

<li>Thursday, January 22 1:00-3:00 PM
<li>South Hall 110

</ul>
<p>Adobe’s XML architecture combines the <strong>Portable Document Format

(PDF)</strong> with XML to combine user data and its visual presentation and data into 
a common framework. 
</p>
</li>
</ul>
</body>

</html>

Figure 2-1a. A Calendar Event in HTML
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Figure 2-1b A Calendar Event in HTML viewed with a Browser

XML FOUNDATIONS

A Primer On Markup Syntax  

Markup is the repertoire of characters that takes a flat or undifferentiated stream of
text and turns it into a set of elements, which consist of paired text labels and the
content they surround or contain. The paired text labels, called the open (or start)
tag and close (or end) tag, are distinguished from the text being marked up because
they are enclosed by delimiters, the most common of which are the “pointy brackets.” 

In the open tag, the “<” bracket is immediately followed by the element’s name, per-
haps one or more element properties or attributes, and the “>” bracket, which indi-
cates the end of the tag. In attribute-value pairs the value must be surrounded by
quotes. The order of attributes is not significant. 

After the open tag, the element can contain ordinary text content or other elements
in an order that is significant, so if the order in which information appears must be
preserved, that must be conveyed by using elements. 

For example, consider the element: <Event type=“Lecture”> in Figure 2-2. 

<Event> is the open tag, type is an attribute, and Lecture is the attribute value. 
The corresponding close tag </Event> follows after the element’s content, which
consists of elements for <Title>, <Description>, <Speaker>, <DateTime>, and
<Location>. These are called the element’s children.
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The earliest versions of HTML had about a dozen tags, mostly structural ones for
describing parts of a document, and most of the earliest browsers had fixed or hard-
wired display rules that determined the arrangement of the text, font, size, and
everything else. 

Unfortunately HTML didn’t stay this simple for very long. After the Mosaic browser
introduced the Web to the masses in 1993, people wanted more control over the
appearance and behavior of web pages. This led to the browser wars of the mid-
1990s as Netscape and Microsoft added proprietary tags and scripting languages to
HTML that worked only in their browsers.3 The elegant and easily understood idea
of fixed mapping between a limited markup vocabulary and display couldn’t survive
this transformation of the Web into a competitive battlefield. 

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

2.1.1
THE BROWSER WAR

An element can also contain other paired delimiters that mark up some enclosed
text to be treated in some special way. The special delimiter sequences can:

• allow for embedded comments (<!-- this example is Figure 2-2 in the
Document Engineering book  -->), 

• suppress the interpretation of markup characters (<![CDATA <Event
type=“Lecture”>]]>) so that delimiters can be treated as text content, or 

• pass processing instructions to an application (<?xml-stylesheet
type=“text/xsl” href=“calendar.xsl” ?>). 

The close tag that follows all the element’s children consists of the “<” bracket and
a slash (/) followed by the element’s name and the “>” bracket. If an element has
no children, it is known as empty and the close tag can be omitted if a special syn-
tax is used for the open tag (e.g. <Title/>).

The top-level element in a document is called the document element or root element;
it contains or encloses all the other elements, which can be nested as deep as nec-
essary to represent a semantic or structural hierarchy.
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The idea of a standard and simple HTML vocabulary
didn't survive the browser wars

Simple browser displays with default formatting wouldn’t enable businesses to cre-
ate websites whose appearance could differentiate themselves and their products. But
until the creation of the World Wide Web Consortium (W3C) in 1995, there was no
control over the evolution of HTML and other technical standards for the Web.
Browser vendors complied with customer demand and devised tags that enabled rich
graphical sites with precise control of text display, blinking text, and spinning corpo-
rate logos.4

In 1997, the first W3C version of the Cascading Style Sheet5 (CSS) recommenda-
tion emerged, which deprecated the formatting excesses of the proprietary HTML
dialects and encouraged more systematic and reusable formatting by using rules that
assigned sets of formatting properties to HTML element types. 

A more fundamental problem with HTML emerged as the Web was transformed into
a platform for commerce. Doing business on the Web requires more than just a high-
ly branded website with attractive product catalogs. Businesses need to have both the
“Web for eyes” that draws customers to their sites and a “Web for computers” that
can encode product information, orders, invoices, payments, and other business doc-
uments in ways that can be processed by business applications. For this latter task
HTML was fundamentally inappropriate.

Some of HTML’s limitations for business applications were inevitable given a tag set
heavy on headings, lists, and links. There were no tags for marking up information
as product names, item numbers, prices, quantities, and so on to give it a business
meaning. 

HTML has no tags for marking up business meaning

2.1.2 FROM THE WEB FOR EYES TO THE WEB FOR
COMPUTERS
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Clever programmers tried to work around this limited markup vocabulary with code
that used whatever markup was available to extract the business information from
web pages. For example, a program might rely on the fact that in some web catalog
the first item in a list was a product name, the second its item number, and the third
the retail price. But programs like these are tedious to write and difficult to main-
tain; if the layout of the catalog changed, for example, what the program thought
was the price of a pair of shoes might actually be the item number.

But the problem for business posed by HTML isn’t just how to work around an inad-
equate set of element types. Using the Web as a business platform radically changes
the problem to be solved by the markup language from presentational formatting to
semantic modeling, that is, describing business entities and processes in ways that
can be understood by business applications. No single vocabulary—HTML or other-
wise—can ever be complete enough to describe information with enough semantic
precision for all such applications. 

No single vocabulary can have enough semantic 
precision for all applications

What the world needed was a new approach to using tags to mark up documents.
Instead of a fixed set of element types, we needed way to define whatever set of ele-
ment types was required for the business application that would use them. We need-
ed an extensible markup language.

T h e re are five big ideas relating to XML that we’ll introduce in the following sections:

• XML is extensible: it enables the creation of new sets of tags for domain-specific
content. 
• XML encodes content as well as presentation formatting; content and its presen-
tation are kept separate.
• XML schemas define models of document types. 
• XML schemas enable XML document instances to be validated.

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES
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• XML is often produced by converting non-XML information; and XML docu-
ments are often transformed to meet the requirements of specific implementations. 

Figure 2-2 shows a simple XML document in which the text content is nearly iden-
tical to that of the HTML document in Figure 2-1.

<?xml version=“1.0” encoding=“UTF-8”?>
<?xml-stylesheet type=“text/xsl” href=“calendar.xsl” ?> 
<Calendar>

<Organization>Center for Document Engineering</Organization>
<TimePeriod>January 2004</TimePeriod>
<Events>
<Event type=“Lecture”>

<Title>Delivering on the Promise of XML</Title>
<Description>Eve Maler will introduce the <Keyword>Universal Business

Language (UBL)</Keyword> and the <Keyword>Security Assertion Markup Language
(SAML)</Keyword> and discuss their XML design features that maximize the sharing of
semantics and processing even when the core vocabularies are
customized.</Description>

<Speaker>
<Name>Eve Maler</Name>
<Affiliation>Sun Microsystems</Affiliation>

</Speaker>
<DateTime>Monday, January 12 4:00-5:00 PM</DateTime>
<Location>South Hall 202</Location>

</Event>
<Event type=“Workshop”>

<Title>Adobe’s XML Architecture</Title>
<Description>Adobe’s XML architecture combines the <Keyword>Portable 
Document Format (PDF)</Keyword> with XML to combine user data and its 
visual presentation and data into a common framework. 
</Description>

XML FOUNDATIONS

2.3 CREATION OF NEW SETS OF TAGS 
FOR DOMAIN-SPECIFIC CONTENT  
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<Speaker>
<Name>Charles Myers</Name>
<Affiliation>Adobe Systems</Affiliation>

</Speaker>
<DateTime>Thursday, January 22 1:00-3:00 PM</DateTime>
<Location>South Hall 110</Location>

</Event>
</Events>

</Calendar>
Figure 2-2 Simple XML Document

At first glance, this XML document doesn’t look that different from the HTML one.
Both XML and HTML use the same markup syntax, except for the declaration at the
start of the XML document that announces that it should be treated as XML and the
processing instruction that specifies a stylesheet. 

The XML specification is more precise about syntax than HTML is, but most of the
differences between HTML and XML enforce the best practices in HTML anyway,
such as case-sensitive names and including close tags even when they can be inferred
by the presence of the next open tag (HTML allows them to be omitted; see the <li>
items in Figure 2-1a). So it isn’t syntax that distinguishes HTML and XML. 

What matters is that a document that starts with an <html> tag has a fixed set of
tags that it might contain. In contrast, XML is extensible: there is essentially no limit
to the element types an XML document can contain, and the elements are often
named to suggest the meaning of the content. In Figure 2-2 the first open tag is
<Calendar>, and in the container formed by this tag and its associated close tag of
</Calendar> we can see elements for <Organization>, <TimePeriod>, and <Event>.
Inside each event element we see the specific types of content that define an event.
Software that displays calendars or searches for events can easily extract the infor-
mation it needs.

But the difference between HTML and XML isn’t just that the former has a fixed set
of presentational structure and formatting tags while the latter allows an unlimited
set of content-oriented ones. The difference is that HTML is a specific language, a
fixed set of element types plus the grammar or rules that govern where in a docu-
ment each type of element can occur.

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES
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XML defines the rules by which specific markup 
languages are created

XML, on the other hand, is a metalanguage. It defines the rules by which specific
XML markup languages are created but says nothing about what element types they
use. These specific XML languages are also called XML vocabularies or XML appli-
cations.6 For example, XHTML is an XML vocabulary that recasts HTML in XML
syntax to make it more modular and to more rigorously separate content and pres-
entation. And UBL, the Universal Business Language, is an XML vocabulary for
business documents.

So while the XML document in Figure 2-2 might be an instance of an XML-defined
markup language for describing event calendars, other types of documents like a
Shakespeare play or a purchase order would be encoded using completely different
sets of elements. Some element types, of course, like <Title>, <Name>, and
<Location> are useful in many diff e rent types of documents, not just in event calendars. 

This last observation has two crucial implications. If common elements are reused,
then XML documents can contain element types from more than one XML vocabu-
lary. But a tag name like <Title> might be part of a vocabulary for books, a deed of
ownership, or honorifics for a person, so we need some syntactic mechanism for dis-
tinguishing vocabularies from each other. We’ll defer this problem until Section 2.5.4
when we discuss XML schemas. 

Every document—whether it is an event calendar, purchase order, Shakespearean
play, chemistry text, or tax form—contains a variety of types of meaningful informa-
tion. When we use XML tags to encode this meaning, we can label parts of the doc-
ument to distinguish different types of content: <Speaker>, <Name>, <Address>,
<Personae>, <Scene>, <Speech>, <Molecule>, <Income>, and so forth. These are
purely conceptual distinctions, and these bits of content don’t have any inherent for-
matting or presentation associated with them.

XML FOUNDATIONS

2.4 SEPARATION OF CONTENT 
AND PRESENTATION
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It is only when XML documents are printed, displayed, spoken, or otherwise ren-
dered to communicate with people that formatting or presentational information,
such as page numbers, type fonts and sizes, color, indentation, column organization,
underlining, pitch, and intonation, needs to be added. These presentational devices
can assist in understanding the content but generally don’t carry much content-spe-
cific meaning.

Of course there are important conventions and correlations between presentation and
meaning: large type implies more importance than small type, red may signal a
warning, line breaks in poems support meter, and so on. We celebrate graphic
designers, artists, and book designers when they exploit or violate these conventions
in clever ways. But most presentational decisions are more arbitrary. For example,
the typeface in which this book is printed has little or no effect on its meaning. We
will discuss these issues in more detail in Chapter 12, “Analyzing Document
Components.”

Sometimes content and presentation are bound together or confounded, often implic-
itly, as with HTML or with word processors that use style sheets or formatting tem-
plates to apply formatting to otherwise unlabeled information components.
Cascading style sheets have reduced the implicitness and ad hoc-ery of HTML for-
matting, but they weren’t designed to separate content and presentation. They were
just a way to regain some of the core simplicity of HTML by delegating more sophis-
ticated format control to a separate style processor in the browser.7

In XML the separation of content and presentation
is inherent and desirable

In XML the separation of content and presentation is inherent and desirable. If an
XML document can contain any type of element it needs to describe its content, there
is no way that a browser can know in advance what it means or how to display it.
Most web browsers render an XML document with indentation that corresponds to
the hierarchical structure created by its tags, but this display might not be optimal
or even appropriate for the semantics embodied in the content. It is almost always
necessary to apply to the XML document a transformation or stylesheet that creates
HTML or some other presentation-oriented vocabulary to the XML information.
Sometimes a stylesheet is then also applied to the transformed HTML to optimize its
presentation. 

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES
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The extra step needed to display an XML document isn’t a bug, but a feature. It
makes a requirement out of what should be a good habit to practice in any case, that
of paying explicit attention to the relationship between content and presentation. It
emphasizes the idea that XML elements should be used to encode conceptual distinc-
tions in a presentation-independent manner to enable the reuse and repurposing of
information for different contexts or implementations. 

Even if an XML document contains elements with the same name as HTML ones
that browsers readily display, like <h1> or <p> or <li>, they don’t get displayed
because no presentation is ever assigned by default. XML elements contain content,
pure and simple. So it is misleading and pointless to use element names that assume
otherwise.

XML’s separation of content and presentation also reinforces and rewards specializa-
tion in skills between information modeling and user interface or graphic design.
User interface and graphic design skills are useful in Document Engineering, but
good information modeling skills are essential.

Documents are ubiquitous. All documents share the idea that they are purposeful
representations and organizations of information, but they exhibit great variety. On
any given day we encounter dozens of different types of documents.8 We might start
the day with a morning newspaper, go on to deal with reports, emails, catalogs, ref-
erence books, calendars, or lectures, and end up with a restaurant menu, murder
mystery, TV program guide, or MP3 playlist. 

It is easy to distinguish a dictionary from an invoice, a newspaper from a novel, or a
restaurant menu from a collection of poems, because each document follows a char-
acteristic structural pattern to arrange types of content unlikely to be found in the
other. Because these types of document are so different, even a simple list of the vari-
eties of content in each document would accurately classify any given instance of the
document. 

XML FOUNDATIONS

2.5
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This intuitive notion of models of different types of documents is very useful. It
explains why we have had standard business forms for centuries, style guides for
authors, national and international standards for electronic business messages, tem-
plates in word processors and spreadsheets, and various other ways of describing
expectations about content and its arrangement in documents. 

In the domain of Document Engineering, we need to define models of different types
of documents in a rigorous and unambiguous way so that we can automate their
process or exchange within or between applications. We also want to use their formal
definitions to generate and drive some of the software needed to process the docu-
ments. Implementations or instances of these document models enable software to locate
and extract the information needed to connect related document exchanges that com-
bine to form supply chains, auctions, marketplaces, and other business patterns. 

XML was designed to give the intuitive idea of a document model a more physical,
formal foundation.9 XML gives us syntactic mechanisms that capture the semantic
distinctions between documents in terms of the sets of elements and attributes used
to encode their content and the rules that govern their occurrence and organization.
Two semantically related document models like purchase order and invoice may
share elements from a common library or subset, but they are distinguished by ele-
ments that occur only in one of them or that have different possible values in each.
So we use different vocabularies to mark up the content of purchase orders and of
invoices.

XML can realize document models suitable for 
implementation in applications

XML’s ease of use, its expressive power, and its processability have made it attractive
for Document Engineering because it can realize document models suitable for
implementation in applications.10 But what really matters is the quality of the analy-
sis and design that gets represented in conceptual models before we encode them in
XML vocabularies. XML is a convenient syntax for encoding the models, but XML
per se doesn’t help us create good models, and many people have found it a conven-
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ient syntax for creating poor ones. We’ll return to this problem of the quality of doc-
ument models in Chapter 6, and starting in Chapter 7 we’ll introduce the methods
and technologies of Document Engineering to explain how to create good ones. 

The formal description of a document model in XML goes by various names, but it
is most useful for our introduction here to call it the XML schema. Simply put, an
XML schema defines the possible types of content in a document and the rules that
govern the structure and values of that content. 

Every XML schema contains definitions of element types. But as we’ve pointed out,
because many types of elements occur in more than one type of document (<Title>,
<Name>, <Date>, and so on), a list of legal element types is often not sufficient to
distinguish different types of documents. Furthermore, even though the name of an
element type can suggest what it means, it is not self-describing.11 An XML schema
also specifies the attributes that can be associated with elements, but they’re not self-
describing either. So if the full meaning of an element isn’t conveyed by its name,
where is it conveyed? 

The meaning of elements is represented in an XML schema through the constraints
or rules that govern the structural arrangement of elements and the values that ele-
ments and attributes can have. We call these constraints business rules. 

The term, business rule, like model and pattern and other fundamental concepts of
Document Engineering, has numerous incompatible or overloaded definitions.12

Everyone agrees that a business rule expresses a constraint about some aspect of the
data or processes used by a business. Furthermore, everyone agrees that it is desir-
able to represent rules independently from the generic aspects of applications instead
of scattering them into multiple layers of application software. But there is little
agreement about how to classify business rules and how to translate them from
expressions of requirements into implemented systems. We’ll present a classification
scheme for business rules in Chapter 8, and we’ll stress the roles they play in devel-
oping an adequate conceptual model of the documents and process in some specified

XML FOUNDATIONS
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business context. For now we’ll focus on the kinds of business rules that can be rep-
resented in XML schemas. 

The kinds of rules expressed in XML element definitions include containment rela-
tionships (“a dictionary entry consists of a word, a pronunciation, and a definition”);
sequence and cardinality relationships (“the abstract must be followed by one or
more chapters and possibly one or more appendixes”), choices (“the location must
be a street address or a pair of latitude and longitude coordinates”), and recursion
(“the bill of materials is a list of parts, each of which may consist of a list of parts”).
Of course, these kinds of rules are not mutually exclusive; we can represent a con-
tainment rule that defines a legal sequence of elements, each of which consists of a
choice, one option of which is recursive. 

There is often a gap between the conceptual model 
and what can be described in XML

The document model of a purchase order might include business rules like “the
quantity ordered must be an integer less than 1,000,” “the unit price must be
expressed as a number with two decimal digits,” or the “the country code must be
one of those contained in ISO 3166.” It would be highly desirable to encode these
rules in the XML schema that implements the model of a purchase order as con-
straints on the values of elements or attributes. But as we’ll see in the next section,
there is often a gap between the conceptual document model and what can be
described in XML. 

There are currently several XML schema languages that differ substantially in how
completely they can express the business rules that underlie a document’s model.
Which schema language to use is influenced by where the document lies on the
Document Type Spectrum (see Figure 1-3), because that determines what aspects of
the model are most important to express (see SIDEBAR).
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The first XML schema language was Document Type Definition (DTD), a legacy of
XML’s SGML heritage. Because of SGML’s origins in technical publishing, DTDs
were designed to represent the structural properties of documents, but they treat
most data as just text and can’t represent meaningful information models. 

DTDs have a very simple and compact syntax, but this syntax is not itself XML.
DTDs are sufficient for describing models of narrative document types like newspa-

XML FOUNDATIONS

Understanding XML Schemas by Analogy  

To explain XML schemas it may help to make the analogy to relational database
schemas, which describe the database content in terms of possible field values,
relationships between fields in tables, and constraints between tables. An XML
schema could describe the semantics of a class of documents so that different types
of content can be identified and extracted as if they were in a document database.
An XML schema can ensure that information exported from a database or other
application is assembled as a valid document. 

Likewise, we can make an analogy between XML schemas and class definitions in
a modern programming language. A class is a template that specifies the mean-
ing of the variables used by an object in terms of their data types or possible val-
ues, and classes can be related to each other by association, specialization or
generalization. An XML schema might specify the required data types for docu-
ment content, and might also express relationships between types of document con-
tent. This equivalence enables XML schemas to be treated just like classes to guide
the creation of objects, a process usually called data binding. This view of XML
schemas is appropriate for transactional documents and also very useful when
describing web forms and other information-intensive user interfaces. 

Finally, we can say that an XML schema defines a vocabulary for a document
model expressed with a formal grammar. A grammar for any language is a sys-
tem consisting of a finite set of tokens and a finite set of rewrite rules that gener-
ate all the valid sequences or sentences of those tokens. For an XML schema the
tokens are the elements and attributes and the sentences are the document
instances. This linguistic perspective on XML schemas fits very well for narrative
documents and less well for transactional ones.
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pers, dictionaries, and reports, whose content is primarily text and intended for use
by people. DTDs can also easily express mixed content models in which character
data can contain “in-line” elements, a very common requirement in narrative docu-
ments. For example, a product description is text that can contain glossary terms,
company names, or URLs, all of which would be tagged as elements mixed in with
the text of the product description.

But as we move on the Document Type Spectrum toward the transactional or data-
centric document types that are primarily used by business applications, structural
description alone captures fewer of the most important aspects of the document’s
content. For example, constraints on data values are crucial.

For transactional document types the most useful schema language is the one recom-
mended by the W3C called XSD or XML Schema (with a capital S). XML Schema
was developed to meet a much broader and more computer-oriented set of require-
ments than DTDs were. XML Schema documents are encoded using XML syntax and
overcome most of the limitations of DTDs. The XML Schema language includes all
the basic data types common in programming languages and databases (string,
Boolean, integer, floating point, and so on), as well as mechanisms for deriving new
data types. For example, an XML Schema schema can define a Student as a special-
ization of a Person type with additional required elements, or an alphanumeric
PartNumber as a string whose values are restricted using regular expressions.

An extremely important facility in XML Schema is its support for namespaces, a
mechanism for distinguishing XML vocabularies so that a schema can reuse defini-
tions while avoiding conflicts between elements with the same name that mean dif-
ferent things (as we suggested at the end of Section 2.3, <Title> might be part of a
vocabulary for books, legal documents, or honorifics for a person). A prefix associ-
ated with each namespace can be attached to elements in document instances, so that
<book:Title>, <legal:Title>, and <honorific:Title> aren’t confused. Using a name-
space to identify the additional elements needed to customize a standard vocabulary
maintains the integrity of the base vocabulary.

Needless to say, the greater expressiveness and extensibility of XSD comes with sub-
stantially more complexity, as we can see in Figures 2-3a and 2-3b, which compare
a DTD and XSD for the same document model, that of a simple calendar like the
example in Figure 2-2. 
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<?xml version=“1.0” encoding=“UTF-8”?>
<!-- DTD for simple calendar -->
<!-- calendar metadata -->

<!ELEMENT Calendar (Organization, TimePeriod, Events)>
<!ELEMENT Organization (#PCDATA)>
<!ELEMENT TimePeriod (#PCDATA)>

<!-- a calendar is a list of events -->
<!ELEMENT Events (Event+)>

<!-- definition of each event, optional Event Type attribute -->
<!ELEMENT Event (Title, Description?, Speaker?, DateTime, Location)>
<!ATTLIST Event

type (Lecture | Workshop) #IMPLIED>

<!ELEMENT Title (#PCDATA)>

<!-- mixed content definition to allow for keywords in Description -->
<!ELEMENT Description (#PCDATA | Keyword)*>

<!ELEMENT Keyword (#PCDATA)>
<!ELEMENT Speaker (Name, Affiliation)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Affiliation (#PCDATA)>
<!ELEMENT DateTime (#PCDATA)>
<!ELEMENT Location (#PCDATA)>

Figure 2-3a. DTD for a Simple Calendar

The DTD for a simple calendar is very compact because of the use of of +, ?, and *
to represent occurrence constraints. Commas separate the members of a sequence,
and the vertical bar distinguishes choices. Every element has a declared data type of
“PCDATA” (parsed character data), which means a string of text in DTD. 
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In contrast, the XSD for the simple calendar in Figure 2-3b is much more verbose
than the DTD. Occurrence constraints, sequences, and choices are all expressed
explicitly. It is easy to get lost in embedded definitions.14 But the syntax is XML.

<?xml version=“1.0” encoding=“UTF-8”?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”
elementFormDefault=“qualified”>
<!-- XSD Schema for Calendar -->
<xs:element name=“Calendar”>
<xs:complexType>

<xs:sequence>
<xs:element name=“Organization” type=“xs:string”/>
<xs:element name=“TimePeriod” type=“xs:string”/>

<!-- Definition of Event as Sequence of Other Elements -->
<xs:element name=“Events”>
<xs:complexType>

<xs:sequence>
<xs:element name=“Event” maxOccurs=“unbounded”>
<xs:complexType>

<xs:sequence>
<xs:element name=“Title” type=“xs:string”/>
<xs:element name=“Description” minOccurs=“0”>

<xs:complexType mixed=“true”>
<xs:choice minOccurs=“0” <MaxOccurs=“unbounded”>

<xs:element name=“Keyword” type=“xs:string”/>
</xs:choice>

</xs:complexType>
</xs:element>

<xs:element name=“Speaker” minOccurs=“0”>
<xs:complexType>
<xs:sequence>

<xs:element name=“Name” type=“xs:string”/>
<xs:element name=“Affiliation” type=“xs:string”/>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name=“DateTime” type=“xs:string”/>

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES



61

<xs:element name=“Location” type=“xs:string”/>
</xs:sequence>

<xs:attribute name=“type”>
<xs:simpleType>

<xs:restriction base=“xs:NMTOKEN”>
<xs:enumeration value=“Lecture”/>
<xs:enumeration value=“Workshop”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 2-3b. XML Schema for a Simple Calendar

Every XML schema language makes tradeoffs that determine the range of document
models it can realize, the ease with it defines them, and how readily it can reuse a
model or parts of models in more than one schema. For example, even though XML
Schema is a powerful schema language, it isn’t capable of expressing dependency con-
straints on element content (“the start time for a calendar event must be earlier than
the end time” or “if the total is greater than $1,000 the purchase order re q u i res an
authorization code”), even though these may be important rules for the context of use.

. 
Every XML schema language makes tradeoffs
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Rules that concern multiple values in a document are easy to express using XML con-
straint based languages such as Schematron.15 This uses the XPath language for
describing parts of XML documents to make Boolean assertions based on their con-
tent. But the tradeoff here is that this approach makes Schematron incapable of rep-
resenting structural rules except in very tedious ways. 

Another grammar based schema language called RELAX NG16 is widely regarded by
experts as more elegant and simpler than XML Schema, but with about the same
expressive power. However, because it wasn’t developed by the W3C, RELAX NG
isn’t as widely supported by vendors of XML software. 

Obviously no schema language is perfect at encoding all models in XML. But that’s
probably a good thing, because it reinforces our message that analysis and modeling
skills are more fundamental to Document Engineering than XML is. 

An XML schema communicates the model of a document type to people or applica-
tions that need to create or receive document instances. In this sense the XML
schema is a contract that defines the rules that any documents must follow.
Validation is the process of testing whether an XML document follows the rules
defined in an associated schema. A document that follows or satisfies the schema is
said to be valid. 

For XML documents described by simple DTDs the schema can be carried along
with the document content in its prolog, but it is far more common for an XML doc-
ument to refer to an external schema. This indirect binding is more efficient and flex-
ible than including the schema in the document, because it allows a single schema
definition to be reused by all documents of the same type. And of course, if two par-
ties in an ongoing business relationship are exchanging documents with each other,
they’ve already come to terms about the schemas that define what they send and
receive. Once the business process is established, there is no need to send schemas
with the documents. 
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A person who understands XML schemas and syntax can examine an XML instance
document and validate by eye. But validation is most often carried out by a validat-
ing parser embedded in an XML-aware text editor, application server, integration
tool, or other software that processes XML. In an XML-aware text editor, an XML
schema can speed the creation of documents by inserting required tags and by
dynamically controlling the structure of menus or selectors to ensure that only valid
documents are created. 

A much weaker criterion of quality checking for XML documents is called well-
formedness and requires that the XML document meets some minimal syntactic con-
straints, such as having exactly one root element and having matching start and end
tags that don’t overlap. An XML document that isn’t even well-formed will be reject-
ed by an XML parser and not passed on for further processing. 

Even an XML document that is well-formed but that fails some constraint defined in
its associated schema might still be acceptable. For example, it would be a good busi-
ness practice to try to process a purchase order from a potential customer even if it
omitted the required postal code in the shipping address. 

A document without a schema is just a bag of tags

On the other hand, a well-formed but schema-less document is little more than a bag
of tags whose meanings are undefined. It makes little business sense to invent a set
of tags and not bother to formally define them with a schema, and it would be risky
to attempt to process such documents. Suppose a document from a potential cus-
tomer begins with a <PurchaseOrder> tag, but other tags inside it contain instruc-
tions to empty out a firm’s bank account or crash its systems. If that document
claimed to conform to the firm’s schema for purchase orders we’d be able to tell that
it didn’t. 

Nevertheless, because of the unavoidable limitations in every XML schema language,
it is impossible to capture every rule and requirement of a conceptual document
model. So even a strong claim that a document is valid should always be understood
to mean “with respect to the class of constraints that the schema language being used
is capable of encoding.” Knowing that a piece of data is in its expected location and
of the required data type doesn’t mean that it is correct.
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Ultimately how much validation is necessary in any situation is a separate question
from how much validation power is inherent in the schema language. What matters
the most is having a common intention between the producer and consumer of an
XML document. Imagine an XML document used by a single software program for
the sole purpose of saving its private data. If the file is saved correctly, the informa-
tion will be valid when that software next uses it. Validation is hardly necessary. At
the other extreme, suppose an XML document arrives from a company halfway
around the world with which a firm has no prior business relationship. Validation
against its assigned schema is irrelevant. The firm would be wise to validate the doc-
ument against expected data requirements before letting it enter their business appli-
cation. This is especially important in situations where accepting the document cre-
ates a legally-binding commitment between the sender and recipient of the document.

XML is often produced by converting non-XML information, and XML documents
are often transformed to meet the requirements of other contexts or implementations.
Conversion to XML and transformation from XML might seem like two views of the
same activity, but while related they differ in many respects so we’ll discuss them
separately. The issues and problems that arise in conversion and transformation are
also shaped by where the source and target documents lie on the Document Type
Spectrum (see Figure 1-3); the greater semantic precision in transactional docum e n t s
makes them easier to convert to or transform, re g a rdless of the source or target syntax.

A common reason for converting information to XML is to facilitate a single-source
publishing strategy in which content is created once and then reused many times.
Reuse can involve the same content included in all the instances of a document, as
might be the case for a copyright notice, standard terms and conditions, or similar
boilerplate text. A variant of single-source publishing is syndication, in which a sin-
gle source of content is simultaneously published or distributed for reuse in other
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contexts. Many websites and web publishers convert syndicated news, blogs, or other
time-sensitive content to an XML vocabulary called the RDF Site Summary (RSS). 

A different perspective on reuse involves extracting or formatting the same piece of
content in many different ways to create different documents. This form of reuse is
often called repurposing. An example would be using some of the same information
in a system’s product documentation, a troubleshooting guide, and training materials.

Another important reason for converting information to XML is to extract informa-
tion from a database, ERP system, or legacy application primarily used inside an
enterprise to enable Internet-based transactions with customers or business partners.
A similar type of conversion takes place in many EDI implementations, where busi-
ness-to-business document exchanges in supply chains move to XML to make the
content easier to process.17

The conversion of information to XML can be completely automated if the informa-
tion source is well structured with explicit semantics and the structure and semantics
are rigorously described with a schema. This description fits databases and some of
the file formats used by ERP systems and other enterprise applications. This doesn’t
mean that mapping between the non-XML format and the target XML document
type is automatic. Only that once it is in place, we can create software that converts
one into the other.

The benefits of converting to XML are more compelling when information is encod-
ed in less structured or semantically expressive formats such as ASCII, RTF,
UN/EDIFACT, ANSI ASC X12, or HTML that don’t embody XML’s big ideas. But
it’s a lot of work to design an appropriate XML vocabulary and then apply markup
correctly to the content. 

If authors follow structure and style standards when they create office documents or
web pages, some of the conversion effort can be automated by exploiting the implic-
it relationships between formatting styles or HTML tags and the target XML vocab-
ulary. But few authors have this much discipline, so conversion usually requires
expensive and tedious work by people who understand the content to supply the
missing meaning. 
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The process of adding value to information by converting it to XML is often called
up translation to express the work it takes to give XML the informational equivalent
of potential energy. Once information is in XML syntax its greater potential energy
makes it easy and straightforward to create any other format, so naturally the trans-
formation from XML to a non-XML format is often called down translation. These
relationships between XML and other formats are illustrated in Figure 2-4. 

Figure 2-4. Up- and Down-Translation with XML 

A corollary here is that if we anticipate that information we are about to create will
someday need to be represented in XML, it is more cost-effective to create and man-
age it as XML and then down-translate to whatever other formats we need in the
short term. 
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XML schemas and documents are often transformed to meet the requirements of
other contexts or implementations. Transforming an XML document involves select-
ing, reordering, or restructuring its content. Transforming an XML document so that
it conforms to a different XML schema is often followed by down-translation to a
non-XML format, for example by EDI gateway applications.

Transformation reuses or amortizes the investment made to encode information in
XML in the first place. Put another way, when we create XML schemas and docu-
ments, we should design them expecting to transform them to preserve and extend
their value.

As we said earlier, with XML the separation of content and presentation is both
inherent and desirable. Thus it is often necessary to transform or down-translate
XML to HTML so that it can be viewed in a web browser. The process of applying a
presentation to an XML document is sometimes called styling but it is more useful to
conceive of applying a style as two separate processes of transformation and format-
ting. This way of thinking lines up conceptually with two complementary W3C
Recommendations: XSLT, the Extensible Stylesheet Language for Transformation,
and XSL FO, the Extensible Stylesheet Language Formatting Objects.  

XSLT is an XML-aware functional programming language that operates on logical
“node sets” derived from the element and attribute structure of XML documents.
XSLT has the usual constructs for logical flow of control like conditional, loops, and
switches. What makes it most useful for transforming XML are its XPath facilities
for expressing and matching patterns in the logical XML structures so that arbitrary
trees or subtrees can be selected and rearranged. This is the approach used by the
Schematron schema language. 

XSL FO, often a target vocabulary of an XSLT transform, is designed for typeset-
ting-quality control of printed XML output. An XSLT transform from XML to
HTML can be as simple as a set of rules that assign an HTML tag to each XML ele-
ment type, defaulting all presentation control to the browser. An XSLT transforma-
tion like this can be used to enforce presentation standards for all instances of a doc-

XML FOUNDATIONS

2.7.2
TRANSFORMATION FROM XML



68

ument. Figure 2-5 shows a simple XSLT program that transforms the XML calendar
instance in Figure 2-2 to HTML to reproduce the appearance of the HTML calendar
shown in Figure 2-1b. The processing instruction in the second line of the Figure 2-
2 instance associates the XSLT program (calling it “calendar.xsl”) with the instance.

<?xml version=“1.0”?>
<xsl:stylesheet version=“1.0” xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>
<xsl:template match=“Calendar”>

<html>
<head>

<title><xsl:value-of select=“/Calendar/Organization”/><xsl:text>
</xsl:text><xsl:value-of select=“/Calendar/TimePeriod”/><xsl:text>
</xsl:text>Calendar</title>

</head>
<body>

<h1><xsl:value-of select=“/Calendar/Organization”/></h1>
<h2>Calendar of Events: <xsl:value-of select=“/Calendar/TimePeriod”/></h2>
<xsl:apply-templates select=“Events”/>

</body>
</html>

</xsl:template>
<xsl:template match=“Events”>

<xsl:for-each select=“Event”>
<ul>

<li>“<xsl:value-of select=“Title”/>“</li>
<br/><br/>
<ul>

<li><xsl:value-of select=“@type”/> by <xsl:value-of
select=“Speaker/Name”/>, <xsl:value-of select=“Speaker/Affiliation”/></li>

<li><xsl:value-of select=“DateTime”/></li>
<li><xsl:value-of select=“Location”/></li>

</ul>
<br/><xsl:apply-templates select=“Description”/>

</ul>
</xsl:for-each>

</xsl:template>
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<xsl:template match=“Description”>
<xsl:apply-templates/>

</xsl:template>
<xsl:template match=“Keyword”>

<b><xsl:apply-templates/></b>
</xsl:template>
</xsl:stylesheet>

Figure 2-5. XSLT Transformation Program

Transforming XML to HTML can be a highly sophisticated process. For example, a
set of XML transforms can create a website of highly interlinked HTML files and by
making multiple passes through the input documents can extract titles and headings
to create tables of contents and navigation aids. These ancillary structures can be
regenerated automatically whenever the XML content changes, and cascading style
sheets can be switched in and out for precise control of site appearance. 

Transforming XML to HTML is often just a small part of a single-source publishing
strategy in which XML content is transformed for a variety of output devices or
channels such as PDAs, wireless phones, text-to-speech synthesizers, Braille devices,
and of course, printers. This form of transformation for reuse in different devices or
media is often called repackaging. In this case a given XML document instance may
have different XSLT transforms applied to it in different implementations. 

XML may also be transformed to send information back into a database, ERP sys-
tem, legacy application, or EDI exchange. Chapter 6 discusses how transforming
XML documents from one schema to another, or extracting and combining informa-
tion from one or more documents to create an instance that conforms to another
schema, are essential techniques for making information interoperable. 

XML is now used everywhere in distributed computing architectures. It can be the
native format in an XML database or created by conversion from a non-XML data-
base, ERP application, legacy system, or EDI data source. XML can be sent any-
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where inside or outside the enterprise to expose information or functionality or to
create an extended enterprise like the virtual drop shipment bookstore hypothesized
in Chapter 1. Since many web browsers contain XML parsers and support XSLT,
XML can go all the way to the end user’s client. Figure 2-6 illustrates this “XML
everywhere” phenomenon.

Figure 2-6. XML Everywhere in a Generic System Architecture

XML is now everywhere in distributed 
computing architectures

But XML is often not sent all the way through a distributed application. Instead it is
sometimes transformed to HTML or to non-XML formats before it gets to the brows-
er or the legacy application. But, given XML’s flexibility, portability, and processabil-
ity, why would anyone down-translate to a less expressive and computable format?
Sometimes decisions about where to transform are based on technical capabilities. It
might be easier, in terms of the tools and people available to do it, to transform XML
to another format on one side of a document exchange rather than another.
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Or the decision might be based on efficiency considerations. A business may imple-
ment all the transformations needed to support its supply chain or trading partners
at a single gateway or hub. This consolidates all of the know-how, required technol-
ogy, and support personnel in one place and allows all the external enterprises to con-
tinue using their legacy technology to produce and consume the documents they
exchange with the hub enterprise. Documents are also likely to be smaller when they
are optimized for a specific device or application.

The decision about where to transform is a business one

Ultimately the decision about where to transform is a business one. Exchanging an
XML document and the schema that governs it reveals a great deal of information
about how an enterprise organizes its information and conducts its business process-
es. The information model in a schema might include principles of product classifi-
cation, manufacturing tolerances, schedule flexibility, pricing algorithms, capacity
allocation, and other valuable proprietary information. 

We may want to exchange this information with a trusted business partner for mutu-
al benefit, or we may choose to send a substantially down-translated instance that
conveys a much simpler view of the business. We might even create customized
transformations of our information whose richness depends on how much someone
is willing to pay for it.
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•� Using the Web as a business platform changes the problem from 
presentational formatting to semantic modeling.

•� HTML has limited use for business applications because it has no tags 
for marking up information to give it business meaning.

•� XML has rapidly become the preferred format for representing physical 
models of documents and business processes.

•� XML is a metalanguage for markup, and markup languages can be 
created for very specific document models.

•� With XML, the separation of content and presentation is inherent and 
desirable.

•� XML schemas define the rules that govern the arrangement and values 
of a document’s content.

•� An XML document without a schema is little more than a bag of tags 
whose meanings are undefined.

•� There is often a gap between the conceptual model of a document and 
what can be described in an XML schema.

•� XML is now everywhere in distributed computing architectures.

•� The decision about where to transform documents is a business one.
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