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Globally, many rivers are experiencing declining water quality, for example, with
altered levels of sediments, salts, and nutrients. Effective water quality manage-
ment requires a sound understanding of how and why water quality differs
across space, both within and between river catchments. Land cover, land use,
land management, atmospheric deposition, geology and soil type, climate, topog-
raphy, and catchment hydrology are the key features of a catchment that affect:
(1) the amount of suspended sediment, nutrient, and salt concentrations in catch-
ments (i.e., the source), (2) the mobilization ,and (3) the delivery of these constit-
uents to receiving waters. There are, however, complexities in the relationship
between landscape characteristics and stream water quality. The strength of this
relationship can be influenced by the distance and spatial arrangement of con-
stituent sources within the catchment, cross correlations between landscape
characteristics, and seasonality. A knowledge gap that should be addressed in
future studies is that of interactions and cross correlations between landscape
characteristics. There is currently limited understanding of how the relationships
between landscape characteristics and water quality responses can shift based on
the other characteristics of the catchment. Understanding the many forces driv-
ing stream water quality and the complexities and interactions in these forces is
necessary for the development of successful water quality management strate-
gies. This knowledge could be used to develop predictive models, which would
aid in forecasting of riverine water quality. © 2017 The Authors. WIREs Water published by

Wiley Periodicals, Inc.
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INTRODUCTION

Many rivers across the globe are experiencing
declining water quality.1–3 Over 45% of rivers

in China4 and over one third of rivers in the United
States5 have been classified as polluted. Additionally,
most rivers, lakes, and estuaries in Australia are
experiencing higher sediment and nutrient loads
compared to European settlement approximately
250 years ago.6 High pollution levels not only
threaten the use of rivers as a source of potable water
for humans,7 but can also contribute to the degrada-
tion of rivers.4,8 As such, there is an urgent need for
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water quality management strategies that can help
reverse this trend of degrading water quality.

Riverine water quality can vary significantly
both within and between river catchments.9–12 For
example, total suspended solids (TSS) concentrations
range from 10 to 1700 mg/L globally.13 At finer
scales, total phosphorus (TP) and total nitrogen
(TN) concentrations ranged from 0.016 to
0.18 mg/L and 0.34 to 3.55 mg/L, respectively,
across 32 stream catchments in Finland.14 The spa-
tial variability in water quality has also been
observed within individual river catchments.
Amongst 12 monitoring sites in the 730 km2 Jinshui
River catchment (China), median TN, and total dis-
solved phosphorus (TDP) concentrations measured
between 2006 and 2008 ranged from 0.01 to
4.38 mg/L and 0.022 to 4.16 mg/L, respectively.15

In a larger catchment of 26,219 km2 in Korea (Han
River basin) the time-averaged concentrations
(2000–2002) varied from below detection up to
36 mg/L (TSS), 1.6 mg/L (TP), and 35 mg/L (TN).9

Observed variability both between and within river
catchments has been largely attributed to the influ-
ence of landscape characteristics such as land cover,
land management, climate, atmospheric deposition,
and topography.

This review aims to summarize the current
understanding of the key landscape characteristics
that influence spatial variability in riverine water
quality and to highlight the remaining major knowl-
edge gaps. The link between the anthropogenic
impacts of changes in land use/land cover on water
quality has been previously studied extensively,16–19

but the effect of other naturally-occurring landscape
characteristics such as geology, soil type, and topog-
raphy have been relatively less studied.20,21 This
review focuses on suspended sediments, nutrients
(particulate and dissolved phosphorus and nitrogen
species), and salts. These constituents have been

selected because they have been widely studied, and
because they can have deleterious impacts on receiv-
ing rivers. High-suspended sediment concentrations
can result in turbid waters, the smothering and
scouring of habitats and biota and decreased light
penetration. In addition, heavy metals, persistent
organic pollutants (POPs), nutrients, and microor-
ganisms (e.g., pathogens) can be bound to these sed-
iments, thus providing a pollutant source.22–25

Nitrogen and phosphorus exist in both the particu-
late and the dissolved forms, and high concentra-
tions of dissolved nutrients can lead to
eutrophication in river systems.26 High salt concen-
trations in water are of concern because salts can be
toxic to flora and fauna. 24 We intend this review
to be of use to researchers and practitioners aiming
to develop catchment water quality management
solutions and infrastructure, and water quality
models. First, we provide a summary of the impor-
tant factors underlying the spatial differences in par-
ticulate and dissolved constituent concentrations in
rivers and streams. We then discuss the limitations
in the existing literature: namely the lack of under-
standing of the effect of interactions between land-
scape characteristics on water quality.

LANDSCAPE CHARACTERISTICS THAT
INFLUENCE STREAM WATER
QUALITY RESPONSES

Based on the conceptual framework by Granger
et al.27, riverine water quality is driven by three key
processes: (1) the application or presence of constitu-
ent sources within the catchment (source), (2) the
mobilization of these constituents from their sources
(mobilization), and (3) their delivery to receiving
streams and rivers (delivery) (Figure 1). First, constit-
uents such as nutrients and salts may be applied to

Source Presence of constituent in catchment

Detachment of constituent from source

Movement of constituent from source to
receiving waters

Mobilisation

Delivery

Process influencing

constituent concentrations
in receiving streams and

rivers

FIGURE 1 | Conceptual framework proposed by Granger et al.27 that explains constituent concentrations in receiving rivers and streams.
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catchments from external sources (e.g., fertilizers) or
they may be present in the catchment or in the stream
itself as a result of natural processes (e.g., in the soils
or by atmospheric deposition).

Constituents can be mobilized from the catch-
ment by low-energy processes (e.g., desorption, min-
eralization) or high-energy processes (e.g., erosion,
landslide or failure, freeze–thaw). The instream
mobilization of constituents can also occur by
streambank erosion, organic matter decay, or nutri-
ent cycling. As demonstrated in Figure 2, suspended
solids (both organic and inorganic particulates) are
mobilized by processes of weathering or displacement
by wind, water, or anthropogenic activities.28,29

Phosphorus and nitrogen can exist in both the partic-
ulate and dissolved forms, and the form of the nutri-
ent affects the mobilization processes.30 The
particulate species of these nutrients undergo similar
mobilization processes to sediments31 (Figure 2). Dis-
solved nutrients can also be mobilized by displace-
ment by runoff or anthropogenic activities.30

However, in addition, the dissolved nutrient species
can be mobilized by the mineralization of organic
matter or desorption from particulates.32 Salts are
generally in the dissolved form, and as such are
mobilized by weathering and dissolution from soils
and parent rock as well as dryland and irrigation
salinity processes.

Finally, the delivery of constituents may occur
by surface flow, subsurface flows, or artificial drain-
age systems. Not all constituents in the catchment
are necessarily mobilized and delivered to streams.
The proportion of mobilized sediments transported
from the catchment to receiving waters is sometimes
called the ‘delivery ratio,’ and this concept is also
valid for other constituents.33–35 Suspended sedi-
ments are generally transported by overland flow
pathways into receiving rivers, with finer sediments
sometimes transported by subsurface flows.36,37

Whilst sediments can be removed from the delivery
pathway by sedimentation or filtration, these are
relatively inert compounds that do not transform.
Similarly, nutrients in the particulate phase are
largely transported by overland flow pathways, with
dissolved nutrients transported by both overland
and subsurface flows. Indeed, previous studies have
identified that particulate phases of phosphorus are
more readily transported by surface flows and dis-
solved phases by subsurface flows.38 The proportion
of dissolved nutrients in the subsurface flow path-
way depends on landscape characteristics.39,40

Nitrogen was largely transported by subsurface
flows in catchments with permeable soils in three
UK catchments.40 Similar to sediments, particulate

species of nitrogen and phosphorus can be taken
out of the delivery flow path by sedimentation. The
dissolved phosphorus and nitrogen species in these
flow paths can undergo biogeochemical transforma-
tions and be removed from both surface and subsur-
face flows by processes such as adsorption
(phosphorus) and denitrification (nitrogen). Simi-
larly, mobilized salts can be transported to receiving
waters by surface and subsurface flows, the propor-
tioning of which depend on specific landscape
features.

Constituent delivery is often conceptualized in
terms of connectivity.41–45 Constituents are only
delivered to streams if water is delivered to the
stream (either through surface or subsurface flow
paths) and if the constituent remains in the water
that is being delivered to the stream. This connectiv-
ity can vary significantly over both space and time.46

In particular, sedimentation and transformation of
constituents can occur during the delivery process,
and hence catchment conditions that increase sedi-
mentation and transformation can decrease the con-
nectivity.46 As such, the delivery of constituents to
streams is dependent on the time it takes for constitu-
ent sedimentation and transformation to occur, rela-
tive to the time it takes for the constituent to be
transported from the catchment to receiving
streams.46

The source, mobilization, and delivery of sedi-
ments, nutrients, and salts (Figure 2) vary temporally
and spatially.47 Although temporal variability in riv-
erine water quality is not a focus of this review, we
discuss this briefly in Box 1. Spatial variability in riv-
erine water quality occurs as a result of landscape
characteristics including land cover, land use, land
management, atmospheric deposition, geology and
soil properties, climate, and topography. Catchment
hydrology, which is strongly influenced by climate,
geology, and soil type, can also play a significant role
in the delivery of constituents from the catchment to
receiving waters (Figure 3). Each of these landscape
characteristics is a collection of different factors that
can lead to specific stream water quality responses
(Table 1). For example, climatic factors such as rain-
fall, temperature, and evapotranspiration rates can
affect the source, mobilization, and delivery of con-
stituents (Table 1).

The following discussion addresses the impact
of each of the landscape characteristics and factors
listed in Table 1 on (1) constituent sources in the
catchment, (2) mobilization, and (3) delivery to riv-
ers and streams. Several complexities in the relation-
ship between landscape characteristics and receiving
water quality are discussed at the end of this
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section. These complexities include the effect of dis-
tance between the constituent source and receiving
waters on receiving water quality, the cross

correlations between landscape characteristics, and
the seasonal shift in the importance of different
landscape characteristics.

FIGURE 2 | Sources, mobilization, and delivery of sediments (a), nutrients (b), and salts (c) to catchment outlet. Red text represents sources,
purple text represents mobilization, and blue text and arrows represent delivery processes.
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Land Cover, Land Use, and Land
Management
The links between land cover, land use and
land management, and riverine water quality
have been explored extensively in previous

reviews16,18,24,47,57,73,161, and therefore are discussed
only briefly here. Despite this past work, there is still
little understanding of how land cover, land use, and
land management interact with other catchment char-
acteristics to yield specific water quality responses.

BOX 1

SEASONAL CHANGES IN WATER QUALITY AT A SITE

The sediments,139,143 nutrient species,74,116,144–146 and salts70 concentrations in receiving streams shift
seasonally. This is due to the seasonal changes in source, mobilization, and transport processes. Sources
can vary temporally as a result of seasonality in land use patterns (e.g., seasonality in fertilizer applica-
tion). In addition, climatic conditions can be important. The length of the dry weather period preceding
the runoff event impacts the amount of constituents accumulated in the catchment prior to being
washed off by surface or subsurface flows.74,143,145 Temperature and soil moisture conditions (governed
by rainfall and evapotranspiration) can influence the connectivity of different flow paths147, efficiency
of biogeochemical processes, and denitrification in catchment soils.143,145,148–150 The mobilization of
constituents can also vary over time as a result of seasonal shifts in vegetation growth and climate (tem-
perature, total rainfall, and rainfall intensity). Season and temperature can affect ground cover and the
presence of snow, which in turn affects mobilization and delivery processes. For example, ‘rain-on-snow’

events, or runoff over frozen soils has been found to contribute significant amounts of nitrate to receiv-
ing waters (up to 40% of annual nitrate export in Southern Ontario, Canada).151 It has been proposed
that this is due to impact of snow cover and frozen ground on hydrological flow paths (i.e., the lack of
contact between nitrates and soils), and also due to the decrease in biological activity (and denitrifica-
tion) in winter.152,153

The delivery of constituents from the catchment to receiving streams is largely driven by surface and
subsurface flow, and the flow paths that transport the constituent depends significantly on its specia-
tion. As a result, the amount of mobilized constituents delivered to the stream can vary with seasonal
shifts in flow.139,150,154–158 Due to the importance of overland runoff in transporting sediments, particu-
late nutrients and salts (in urban catchments only) to receiving streams, it is often assumed that these
constituents have a positive relationship to river discharge.114,136,139,159 On the other hand, in rural
catchments, salts and dissolved nutrients are typically transported by subsurface flows, and as such they
are assumed to have a negative relationship to river discharge, when this discharge is entering the river
largely through overland runoff. 158,160 There can also be more complex relationships between concen-
tration and flow.146 Nitrate (which is often in the dissolved form) often first increases with flow as
nitrate rich soil water reservoirs connect to the stream but then decrease with further flow increases
due to dilution.46

Land

cover

Land use Land

management

Atmospheric

deposition

Geology/soil

type

Climate Topography Catchment

hydrology

Source Mobilisation Delivery

River water Quality

FIGURE 3 | Influence of landscape characteristics on source, mobilization, and delivery of constituents.
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Sources: Influence of Land Cover, Land Use,
and Land Management

Land Cover
Land cover, defined here as the amount and type of
vegetation present in a catchment, can affect the
amount of nutrients present the catchment. Soil
nutrient levels within catchments can decrease due to
the uptake of bioavailable phosphorus and nitrogen
by terrestrial vegetation.48,49,52,162 The uptake of
bioavailable nutrients can also occur within the
stream or river itself, by aquatic plants.48 Nutrient
assimilation rates can vary according to both vegeta-
tion type163,164 and age.165 For example, forests are
more effective in removing nitrogen from catchment
soils, compared to grasslands and shrubs.51,54 The
greatest nutrient uptake rates often occur at the peak
growing period of the vegetation.48 In addition,
nitrogen can be lost from vegetated catchment soils
by microbially-mediated transformations.51,54,60 In
the Taizi River basin (China), there were negative
correlations between vegetation cover and particulate
and dissolved nitrogen (NH3 and NO2

−) and both
particulate and dissolved phosphorus (TP and PO4)
concentrations in rivers.166

Land Use
The extent and type of human activities in the catch-
ment (i.e., the land use) can influence the magnitude
of sediments, nutrients, and salts sources. First, the
presence of vegetation, which in itself affects nutrient
levels in catchments, can be greatly influenced by the
land use, with less dense vegetation in urban and
agricultural regions. Urban, industrial, and agricul-
tural land uses also produce high levels of sediment,
nutrients (both particulate and dissolved), and salts
(Table 1). A study of North-West USA rivers found a
positive correlation between TP concentrations at
14 river locations and the proportion of the catch-
ment urbanized.126 Sediments can be present in
industrial and domestic wastewater in urban
areas.64,167 Urban and agricultural areas generate
both particulate and dissolved nutrients through:
(1) the discharge of wastewater,64,65 (2) construction
debris, 66,71 (3) the application of manure and fertil-
izers on lawns and parks (in urban areas) and on
crop and grazing lands,19,168, (4) waste from
livestock,25,74,75 and (5) atmospheric deposition,
often from urban and industrial regions.169 Similar
to nutrients, salts can also be contained in industrial
and domestic wastewater68, and fertilizers.80,170 In

Topography

Climate

Climate Pollutant source

Land cover Correlation with EC

Land cover
Correlation with

TSS, TP, TKN, NO
X

concentrations

Correlation with

TSS, TP, TKN, NO
x

concentrations

(a)

(b)

(c)

Slope/elevation

Rainfall

Rainfall

Undeveloped (e.g.,
forest)

Positive

Positive

Point source

Diffuse source

Negative

Negative

Positive

Negative

Undeveloped (e.g.,
grassland)

Developed (e.g.,
urban/agricultural)

Developed (e.g.,
urban/agricultural)

FIGURE 4 | Interactions between landscape characteristics (left column) and concentrations (right column) identified in literature. The middle
column is the factor modulating the sign of the correlation. (a) Refs 10,74,126,137,178,234,235,237,278,293,294, (b) Refs 101,134,135,139,227, and (c) Ref 269.
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addition, in urban catchments with snow, salt is
applied in winter for deicing.70 These salts can
remain in soils and can be transported to surface
waters in other seasons (e.g., summer) or years after
application.171 However, deicing as a source of salts
is generally not an important factor in catchments in
warmer climates.

Land Management
The size and number of constituent sources in catch-
ments can also be influenced by land management
practices. Methods implemented for reducing constit-
uent sources in urban and agricultural (Table 2)
catchments are mostly ‘non-structural,’ at-source pol-
lution reduction techniques which include street
sweeping (to reduce constituents carried by storm-
water into receiving streams), and reduction in the
use of salts and fertilizers within the catchment using
public education, regulation, or incentives.85,86,183

For example, ceasing nutrient application to land
was found to result in a decrease in dissolved phos-
phorus concentrations in overland runoff from over
4 to 0.22 mg/L over a period of 6 years in Okla-
homa, USA.184

Mobilization: Influence of Land Cover, Land
Use, and Land Management

Land Cover
Vegetation cover (both amount and type) in the
catchment can influence the mobilization of sedi-
ments. Less soil erosion occurs in vegetated catch-
ments, because vegetation protects the soil from
wind, rain, and overland runoff.24 Consequently,
there tends to be less gully formation, hillslope ero-
sion, and streambank erosion in vegetated catch-
ments.55,76,185,186 Comparison of forested and
deforested sites in Ecuador indicated that TSS con-
centrations ranged from 3.7–14.1 mg/L (canopy
cover >50%) in forested sites and had a higher range
of 3.0–19.2 mg/L in deforested sites (canopy cover
<50%). Similarly, catchments with more than 90%
forest cover were found to have TSS concentrations
of 68–149 mg/L in streams, compared to catchments
with 70–80% forest cover, which had higher concen-
trations of 829–456 mg/L.187 Nutrients (phosphorus
and nitrogen) can be adsorbed onto these particulate
sediments,58,59 thereby resulting in a concurrent
increase in nutrient yields. This affects phosphorus
more so than nitrogen, as P is more prone to adsorp-
tion onto particulates.188,189 Nutrients in the dis-
solved form are less affected by these mobilization
processes and are generally mobilized from soils and
transported through subsurface flows andTA
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groundwater.38,190 Once deposited in streams, these
sediments can act as nutrient sources. However, it is
important to note that dense, managed forests can
still provide sediments and particulate nutrients to
receiving waters under certain climatic and topo-
graphic conditions.

Land cover has also affected the mobilization
of salts in catchments. The clearing of land for agri-
culture led to the replacement of vegetation that kept
the water table low with shallow rooted (and less
transpiring) vegetation, contributing to rising saline
groundwater tables (dryland salinity).62,63 Deforesta-
tion has had a particularly severe effect on saliniza-
tion in subhumid and semiarid areas.61

Land Use
Activities within the catchment that can mobilize
sediments include: (1) erosion from construction
activities66,71; (2) erosion due to livestock pres-
ence;76 (3) preparation of the land for cropping;81

or (4) the creation of gullies due to agricultural
practices.83 These human activities can also contrib-
ute to the increased mobilization of some nutrient
species in the particulate form, specifically phospho-
rus because this nutrient tends to bind to particu-
lates.188,189 Indeed, sediment, TP, and TN event
mean concentrations in Australian streams with
catchments used for dryland cropping were
32, 4, and 3 times greater than concentrations in
streams with forested catchments.191 It should be
noted that the mobilization of dissolved and colloi-
dal nitrogen and phosphorus is less impacted by
land use. This is because mobilization and delivery
largely occurs via groundwater and subsurface flows
rather than surface flows.38,190

Agricultural activities can also mobilize salts
stored within catchment soils. The rise in the water
table due to high levels of irrigation in agricultural
areas can mobilize naturally deposited salts within
the soil strata and bring them to the surface (irriga-
tion salinity).24 It is estimated that soil salinity
affects approximately 7% of irrigated land
globally.25,77

Land Management
Due to the impact of construction activities, crop-
ping, and livestock trampling on sediment mobiliza-
tion within the catchment, management strategies
such as increasing vegetation cover, reducing stock-
ing rates, and fencing off riparian zones76 (Table 2)
can reduce the mobilization of sediments and their
associated nutrients from the catchment and stream
banks. For example, in a field study in North-East
Australia, revegetation of slopes from 35 to 75%

coincides with a decrease in annual sediment yields
of up to 70%.192 In addition, strategies such as
reducing rates of irrigation and planting vegetation
with high transpiration rates have been implemented
in agricultural areas to reduce salt mobilization.93,94

Delivery: Influence of Land Cover, Land Use,
and Land Management

Land Cover and Land Use
Land cover and land use also influence the delivery of
suspended sediments, nutrients, and salts from the
catchment to rivers and streams. A decrease in vege-
tation cover increases constituent delivery due to the
resulting decrease in channel and surface rough-
ness.57 Decreased surface roughness leads to greater
overland runoff velocity and a lower likelihood that
sediments and nutrients within this surface flow will
be lost by sedimentation (for particulates) or biogeo-
chemical transformations (for dissolved species)
before reaching the receiving river or stream. A labo-
ratory study of vegetated filter strips found that the
presence of vegetation can increase the trapping effi-
ciency of sediment from approximately 26 to 86%
under Canadian rainfall conditions.193

Increasing urban and agricultural areas can
also lead to greater delivery of suspended solids,
nutrients, and salts to rivers. This is a result of the
greater connectivity between the catchment and
receiving waters via drainage networks.47 Contami-
nants in stormwater, wastewater, and agricultural
runoff are discharged quickly into rivers by pipes,
drains, and channels with minimal loss of contami-
nants by infiltration or evaporation.25,72,84 The
imperviousness of drainage channels results in
greater runoff velocity, and hence: (1) a decrease in
residence time, which limits sedimentation of partic-
ulates and/or loss of both particulate and dissolved
nutrients by transformation (e.g., loss of nitrogen by
denitrification) and (2) greater energy of the runoff
to transport contaminants over longer distances.47

In addition, the impervious surfaces in urban areas
result in a greater frequency in overland runoff
events because of reduced infiltration. This also
increases the frequency with which constituents are
delivered to receiving rivers and streams.57 The fre-
quency of overland runoff events (stormwater run-
off ) and the delivery of this surface flow to receiving
rivers impacts phosphorus and nitrogen in the par-
ticulate forms. This is particularly true for phospho-
rus, which is more commonly found in its
particulate state.
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Land Management
Land management practices influence the delivery of
constituents from the catchment to receiving waters.
In both nonurban and urban areas, vegetated buffer
strips and the preservation of riparian zones can
obstruct the delivery of suspended sediments, particu-
late nutrients, and dissolved nutrients into receiving
streams.95 In urban areas, water sensitive urban
design (WSUD) or low impact development (LID)
technologies such as stormwater biofilters, infiltration
systems, and rainwater tanks treat and reduce over-
land runoff, and therefore reduces the transport of
sediments from the catchment to receiving
streams.96,179–182 For example, a global meta-
analysis of the effectiveness of WSUD technologies
such as riparian buffer strips showed that they have
a 91% median removal rate of dissolved nitrite–
nitrate from subsurface and surface flows. This is
hypothesized to result from the uptake of dissolved
nutrients by vegetation.178

Atmospheric Deposition

Sources: Influence of Atmospheric Deposition
Wet and dry deposition can act as a source of nitro-
gen in a catchment or in the stream itself, 24,49,164,194

and atmospheric deposition of nitrogen varies signifi-
cantly on a global scale .195 The amount of atmo-
spheric deposition of nitrogen can vary between
catchments due to land use. In particular, fossil fuel
combustion contributes to spatial variability in atmo-
spheric nitrogen deposition.25,196 Emissions from
agriculture (fertilizers and livestock) can contribute
to atmospheric nitrogen,197 with approximately 70%
of atmospheric nitrogen emissions, globally, originat-
ing from food production processes.198 Previous
studies identified the important contribution of atmo-
spheric deposition to nitrogen levels in rivers and
streams (e.g., up to 40% in the Chesapeake Bay
basin, USA).199 This can be greater in pristine envi-
ronments, where the largest source of nitrogen can
be atmospheric deposition.200 Furthermore, nitrogen
deposition was found to parallel stream NOx concen-
trations (sum of nitrogen species: nitrate and nitrite)
in the Northeastern United States.201

Mobilization: Influence of Atmospheric
Deposition
The chemicals contained within both wet and dry
deposition can affect the mobilization of nutrients
from soils and rocks in the catchment. For example,
nutrients (specifically nitrogen) can be mobilized
from soils due to increased acidity by acid rain.202

Geology and Soil Type

Sources: Influence of Geology and Soil Type
The chemical characteristics of soils and rocks in the
catchment influence the magnitudes of nutri-
ent19,102,103,105 and salt sources in catch-
ments.49,67,101 Phosphorus, nitrogen, and salts are
contained within sedimentary deposits; approxi-
mately 20% of the world’s nitrogen is contained
within sedimentary deposits.105 Statistically signifi-
cantly higher phosphorus exports from catchments
containing sedimentary geological deposits were
identified in Southern Ontario, Canada.102 Similarly,
when underlain with marine bedrock or sediments,
greater salt levels in the catchment can be transported
to receiving waters.67,68,101 The chemical composi-
tion of these rocks and soils can be affected by the
age of the material, with nutrient and salt levels being
lower in ancient soils.203 The chemical composition
of these rocks and soils can also be affected by previ-
ous atmospheric deposition of contaminants (specifi-
cally, nitrogen).204 The nutrients and salts contained
within the bedrock and soils of a catchment can be
mobilized by weathering, erosion (for particulate
constituents) dissolution, and desorption (for dis-
solved constituents).

Mobilization: Influence of Geology and
Soil Type
Soil and rock erodibility as well as soil sorption
capacity can have an influence on constituent mobi-
lization in catchments. First, the mobilization of sed-
iments is positively correlated to the susceptibility of
the geological deposit and the soil within the catch-
ment to erosion and weathering24,25 (Table 1). For
example, sediment erodibility explained 19% of the
variability in the annual sediment yield in the Ches-
apeake Bay watershed, USA.97 Similarly, laboratory
studies using plots of 81 m2 found that an increase
in soil stability of over 17% led to a decrease in soil
loss by over 25%.205 Due to the association of
phosphorus and nitrogen with sediments,25,74,206

greater amounts of phosphorus and nitrogen (specif-
ically, particulate phosphorus and Total Kjeldahl
Nitrogen; TKN) have been detected in streams that
have erodible rock and soils in the
catchment.58,75,207–209 It has also been identified
that there are greater salt levels in catchments with
easily weathered bedrock such as limestone or mar-
ble.101,210 The link between rock and soil erodibility
and weathering rates and climatic factors is
addressed below.
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Soil sorption capacity can also have an impact
on nutrient mobilization in the catchment. For nutri-
ents delivered to receiving waters primarily via over-
land runoff (i.e., nutrients in the particulate form),
sorption capacity has a positive correlation to con-
stituent concentrations in receiving waters. There
was a positive correlation between ammonium con-
centrations in Southern Ontario rivers and the
amount of silt and clay in catchment soils.21 There
were also positive correlations between TN and TP
concentrations in rivers in Finland and the silt and
clay content of catchment soils.14 Both of these
instances were hypothesized to be a result of the
greater adsorption capacity of clays and silts for
nutrients.

Delivery: Influence of Geology and Soil Type
The delivery of dissolved phosphorus and nitrogen
and salts from the catchment to receiving waters via
subsurface flow pathways is strongly affected by soil
hydrological properties. When aquifers and catch-
ment soils have lower hydraulic conductivities, there
is an increase in the residence time of dissolved con-
stituents entrained in the subsurface flow in the
catchment. This allows more opportunity for the
constituent to be lost from the flow path by vegeta-
tive uptake or biogeochemical processing
(e.g., denitrification). There have been several case
studies where higher nutrient concentrations have
been detected in rivers with well-drained soils in
their catchments. For example, greater reactive
phosphorus concentrations (by 1.5 times) were
found in rivers in the United States where well-
draining soils made up more than 3% of the catch-
ment area, compared with catchments where less
than 3% of the area had well-draining soils.211 Sim-
ilarly, there was a positive correlation between inor-
ganic nitrogen concentrations in rivers in southern
Sweden and the drainage capacity of the soils.74

Finally, a negative correlation has also been
observed between the proportion of the catchment
comprised of poorly-draining soils and salt concen-
trations in receiving waters in Iranian rivers.108 It is
likely that the longer residence time resulted in the
sorption of salts to particulate matter within the soil
strata or aquifer.

Climate

Sources: Influence of Climate
Higher temperatures can correlate with lower nitro-
gen and phosphorus stores in the catchment. This is
largely due to the greater terrestrial and aquatic

vegetation growth, and hence nutrient uptake, that
occurs at higher temperatures.114,115 For nitrogen,
higher temperatures can also enhance the activity of
denitrifying bacteria. As a result, there can be more
NOx converted to N2 in warmer climates.115–117 A
negative correlation between mean catchment tem-
perature and stream TN concentration was identified
in North America.117 This may have been a result of
increased denitrification rates in warmer locations.
Denitrification is also enhanced in wet climates, due
to the fact that the denitrifying bacteria prefer anaer-
obic conditions.120

Sources of terrestrial salts (cyclic salts, connate
salts in marine sediments, weathering of rock min-
erals) are inherently linked to both the current cli-
mate and the historic climatic trends of the region.
Salt spray from oceans and salts concentrated in rain-
fall can supply salts to catchments and river systems,
and as such, in some catchments, higher historic rain-
fall rates correlate with higher atmospheric deposits
of salts.121 However, many studies have found that
there is a negative correlation between recent average
rainfall levels in the watershed and salt concentra-
tions in rivers.49,101,212 This is largely because higher
rainfall and runoff rates can influence the release of
salts that are contained within rock minerals and
marine sediments. In areas with recent high rainfall
and runoff, the salt that is naturally contained within
the soil strata has mostly been flushed out by subsur-
face flows. For example, one study found that in
areas with high rainfall in Western Australia, stream
salinity does not increase significantly even after
deforestation, whereas there are substantial increases
in drier areas.213

In addition, climatic characteristics can indi-
rectly affect the amount of pollutants stored in the
catchment due to cross correlation between climate
and other landscape characteristics such as land use,
land cover (vegetation type and extent), topography,
and geology. These interactions are discussed in more
detail below.

Mobilization: Influence of Climate
Temperature extremes can enhance the mobilization
of sediments and particulate nutrients within catch-
ments. High temperatures can accelerate weathering
and streambank erosion, because the desiccation of
sediments makes them more prone to erosion by
wind, rain, flow, and trampling by animals.118 Freez-
ing and thawing can also increase the mobilization of
sediments through increased weathering of soils.118

There is another way that higher temperatures
can lead to mobilization of nutrients both within the
catchment and in the stream. Higher mineralization
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rates of both phosphorus and nitrogen from organic
matter within soils and instream organic matter
occur at higher temperatures.74,214 For example,
phosphorus mineralization increased by 14% when
soil temperatures increased from 15 to 38�C in the
laboratory.215 A field experiment where soil tempera-
tures were increased by 7�C found a 45% increase in
net annual nitrogen mineralization.216

In addition, both rainfall intensity and volume
can increase the mobilization of particulates within
the catchment. Soil particles and their associated
nutrients can be mobilized by the shear stresses
applied by overland sheet flow, which increases with
greater rainfall and runoff depths.27 There is also a
positive correlation between rainfall intensity and soil
erosion due to the fact that the soil particles can be
displaced by the energy applied to the ground by
raindrop impact.25,110 As such, high rainfall intensi-
ties have been found to contribute to sediment, phos-
phorus and nitrogen (in the particulate form)
mobilization in the catchment.57,74,109 For example,
precipitation intensity was positively correlated to
organic nitrogen concentrations in streams in Swe-
den74 and to TP concentrations in surface runoff in
an experimental study.112

Finally, evaporation rates in the catchment
impact the mobilization of salts in the catchment.
Salts can accumulate in surface soils in regions where
evaporation rates are higher than rainfall rates, due to
the evapoconcentration of salts in surface soils.101,212

Delivery: Influence of Climate
The delivery of particulate and dissolved constituents
to rivers correlates to the total amount of overland
runoff.33,111,126 This is due to the fact that where
there are greater overland runoff depths the generated
runoff has greater capacity to convey more constitu-
ents (in both the particulate and dissolved phase) to
rivers.113 In addition, the greater speed of runoff will
decrease the residence time in the catchment (both in
the overland and subsurface flow pathways), leading
to less sediment being lost from the flow path by sedi-
mentation, and less nutrients being lost by denitrifica-
tion. As previously discussed, the ability of overland
runoff to deliver constituents to receiving waters is
also impacted by the presence and roughness of vege-
tation. For example, organic nitrogen levels in Swed-
ish rivers 74 were found to positively correlate to
precipitation. Similarly, suspended solids loss from
the catchment positively correlated to total rainfall in
an Australian farm.123 These were both hypothesized
to be a result of the positive correlation between rain-
fall and overland runoff depths, when soil infiltration
rates are low and soil is saturated. Additionally, the

volume of subsurface runoff can also increase the
delivery of fine particulates and dissolved constituents
(nutrients and salts) to receiving waters.217,218 This is
a result of the increase in transit time of the subsur-
face flows from the catchment to rivers.

Topography

Mobilization: Influence of Topography
Catchment slope positively correlates with the level
of particulates mobilized in catchments (Table 1).
This is because overland runoff has higher velocities
on steeper slopes, and therefore has greater erosive
and transport power.21,79,109,128,219,220 Additionally,
steep slopes tend to be less stable, leading to a greater
chance of mobilization of sediments by mass failure
or landslides.221 Indeed, there were positive correla-
tions between slope and suspended sediment concen-
trations in rivers and streams in the Northwestern
United States, and this was hypothesized to be caused
by the increased erosion of suspended sediments from
steep slopes.126 Similarly, using 12 water quality
monitoring sites, Sliva and Dudley21 found a positive
correlation between suspended sediment concentra-
tions in receiving waters and the catchment slope in
Southern Ontario, Canada. Catchment slope also
correlated positively with NOx concentrations (which
is typically delivered to receiving rivers by subsurface
flow) in receiving waters and it was suggested that
this was due to the faster velocities of subsurface
flow,129 which may leave less time for the transfor-
mation and loss of NOx by
denitrification.126,128,129,222

In addition, there can be more erosion of par-
ticulates and their associated nutrients when there is
a denser stream network in the catchment area. This
is largely due to the fact that with a higher channel
density, there is a greater chance that streambank
erosion will occur.55,133

Transport: Influence of Topography
Catchment slope influences the delivery of particulate
and dissolved constituents (sediments, particulate,
and dissolved nutrients and salts). The positive corre-
lation between the standard deviation of catchment
slope and total solids concentrations in receiving riv-
ers in Southern Ontario (Canada) identified by Sliva
and Dudley21 could be due to the fact that at shal-
lower slopes (lower catchment slope standard devia-
tions)223, overland runoff tends to travel more slowly,
thereby providing a greater opportunity for particu-
lates to settle out of the overland flow and be depos-
ited in the catchment. In other words, catchment
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topography can impact stream power (with less
stream power on shallower slopes) and hence, erosion
and deposition processes. The elevation of the river is
also important when considering inputs of dissolved
compounds. In addition, when dissolved nutrients
(e.g., soluble phosphorus or nitrate–nitrite) and salts
are traveling over longer distances and/or are travel-
ing more slowly on gentler slopes, there is a higher
chance that they will be lost (by microbial degrada-
tion (e.g., denitrification), adsorption to particulates
and sedimentation, or uptake by vegetation) before
they reach the river.74,120,132

In lower elevation regions or areas with shal-
lower gradients and slopes, there is likely to be a
greater input of groundwater, and hence greater deliv-
ery of dissolved compounds (salts, dissolved nitrogen,
and phosphorus) into receiving waters.224 Indeed,
Kratz et al.224 found concentrations of cations (calcium
and magnesium) approximately ten times greater in
lower elevation lakes in Wisconsin, USA, compared to
higher elevation lakes and this was hypothesized to be
largely due to the balance between precipitation and
groundwater inputs, with greater groundwater inflows
in low elevation lakes. It is likely that similar trends
would affect riverine environments also.225

Catchment Hydrology

Delivery: Influence of Catchment Hydrology
The delivery of sediments, nutrients (particulate and
dissolved), and salts to receiving waters can be influ-
enced by the proportion of baseflow contribution
compared to total stream discharge.226 The main
transport pathway for particulate matter is overland
runoff. As such, when there are high subsurface or
baseflow contributions (e.g., in forests), there are gen-
erally lower rates of transport of particulates into riv-
ers.139 Experimental studies have found higher TP
losses from plots with greater overland flows com-
pared to those with lower overland flows.140 How-
ever, as subsurface flows can transport dissolved
nutrients (e.g., NOx), fine particles and dissolved
solids (salts) through the soil and into rivers, there can
be positive correlations between the baseflow contri-
bution and salt and dissolved nutrient concentrations
in receiving waters.65,227–229 For example, there was a
positive correlation between the baseflow contribu-
tion to stream discharge and stream salinity in the
Bremer River catchment in Australia.101 These dis-
solved nutrients and salts can be transported through
the baseflow to surface waters provided that the resi-
dence time and soil properties are such that the nutri-
ents and salts do not adsorb to the soil matrix or that

the nutrients are not transformed (e.g., nitrogen
through denitrification).230

In addition, the presence of impoundments,
lakes, and wetlands within a catchment can lead to
lower concentrations of sediments, nutrients, and salts
in rivers downstream of these features.134–137,231 Par-
ticulate matter can settle in these lentic systems, and
dissolved and bioavailable nutrients can be taken up
by aquatic plants and microorganisms within the sys-
tems.137 Globally, it is estimated that over 50% of
sediments in regulated river catchments are trapped in
regulation structures.232 In a study of rivers in Swe-
den, it was found that there were lower concentra-
tions of particulate phosphorus in river reaches that
had lakes within their catchment.74 Similarly, wet-
lands in the United States are estimated to retain 14 to
89% of TN from overland runoff.137 The retention of
nitrogen in wetlands and lakes has been found to be
variable; an Australian study found 60% removal of
the TP load by a farm dam but minimal removal of
TN.233 It is important to note, however, that in some
cases, the presence of these reservoirs and lakes could
lead to a reduction in flow and a subsequent increase
in concentration of constituents even if the total load
(i.e., mass) of the constituent decreases.

Complexities Affecting Links between
Landscape Characteristics and Water
Quality Responses

The Question of Distance and Spatial
Arrangement: Where Does the Source Have to
Be to Affect the Stream?
Previous studies have noted that the distance of land-
scape characteristics from the receiving river or
stream can have a large influence on riverine water
quality.79,95,186,234–238 This is largely due to the
effect of distance on hydrologic connectivity and con-
stituent transport connectivity between the catchment
and streams. Hydrologic connectivity between catch-
ments and streams enables flow from the catchment
to contribute to streamflow and generally, this hydro-
logical connectivity is established above a certain soil
moisture or rainfall threshold.147 In addition, under
such hydrologically connected conditions, it is neces-
sary to ensure that the constituent is transported to
receiving streams through the flow pathway without
degradation, sedimentation, or loss.239 This connec-
tivity is necessary for constituents to be transported
from catchments to receiving waters.226,239

Contaminants can be lost from surface or sub-
surface flow during transport. Thus, if the source of
the constituent (e.g., land use or geological deposit) is
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closer to receiving rivers, it is more likely that a
hydrological connection will be established and the
constituent will not be lost from this flow path,
thereby entering the river.79,178,219,240,241 For exam-
ple, several studies have found that land cover of the
riparian zone is better correlated to TSS9,79 and
nutrient concentrations in rivers,9,14,79,231,242 com-
pared to the land cover of the whole catchment.
These findings, in addition to understanding of pol-
lutant (e.g., TSS and nitrate243) removal by buffer
strips,244 have led to the management practice of
installing buffer strips or preserving riparian zones
for the preservation of water quality, with aim of
breaking the hydrological and/or constituent trans-
port connection between the catchment and rivers.

In addition, previous studies have found that
accounting for the proximity of certain land uses to
rivers and streams using distance weighting measures,
has improved the relationship between land use and
receiving water quality. Distance weighting measures
utilized by previous studies include: inverse-distance-
weighted metrics (which account for distance)245,246

and hydrologically active inverse-distance-weighted
metrics (which account for the distance and flow con-
tribution).245,247 Such studies run parallel to a larger
body of work that has explored different approaches
to distance weighting of catchment land uses and how
this can be used to improve statistical relationships
between land use and ecological responses.248–250

These studies have described improved relationships
between catchment characteristics and water quality
responses in rivers. Specifically, accounting for the
hydrological flow paths and flow accumulation
through the landscape and coupling these processes
with specific landscape features has tightened relation-
ships between landscape features and receiving water
quality,245,247 as well as ecological indicators.248

Studies have also identified that it is not merely
the distance of landscape characteristics from the riv-
ers, but also the arrangement of these areas within the
catchment that can affect connectivity and therefore
riverine water quality.10,235,251–254 In particular, for-
est fragmentation correlated with high sediment and
nutrient concentrations in the Han River catchment
(China)10 and the Upper Du River catchment
(China).234 It is hypothesized that this is due to the
fact that small and fragmented forests do not signifi-
cantly reduce the connectivity between catchments
and receiving rivers, and are therefore not as effective
at reducing the contaminants contained in runoff
from other sources (e.g., urban, agricultural land uses)
within the catchment.10 Similarly, the location of
source areas relative to constituent sinks
(e.g., depressions, lakes, and wetlands) can also have

a significant impact on the concentration of constitu-
ents that reach the receiving river.255,256

While several studies have identified that (1) the
distance of landscape characteristics from rivers and
(2) the spatial arrangement of landscape characteristics
within the catchment are important factors influencing
riverine water quality, other studies126,257,258 argue
that the characteristics of the whole catchment must be
considered when explaining the spatial variability in
stream water quality. There are two possible explana-
tions for this discrepancy in findings.

First, the spatial resolution of data used to
assess the importance of distance and spatial arrange-
ment of landscape characteristics can lead to diver-
gent findings. In particular, coarse resolution spatial
data that is unable to clearly differentiate landscape
characteristics of the riparian zone from characteris-
tics of the whole watershed may show that whole-of-
catchment characteristics have a greater effect on riv-
erine water quality than characteristics of the region
more proximal to the stream.21,125,259

Second, it is likely that the characteristics of the
riparian zone affect its role in buffering the effects of
the whole catchment. It has been previously hypothe-
sized that buffer zone slope and hydraulic conductiv-
ity were the most important factors determining the
amount of particulate matter removed from overland
runoff in the buffer zone.260 Similarly, it was argued
that the buffer zone width was the most important
factor determining the level of dissolved constituents
removed from overland and subsurface flow path-
ways.261 This is assuming however that there are no
drainage channels or discharge pipes bypassing the
riparian buffer and discharging stormwater or waste-
water directly into the river.

Cross Correlations between Landscape
Characteristics
There can be strong cross correlations between land-
scape factors (Table 3). Several studies have commen-
ted on cross correlations between topography and
land cover. For example, theoretically, it is expected
that steep slopes would produce greater amounts of
sediment from erosion due to higher runoff velocities,
but previous studies argued that the supply of both
particulate and dissolved contaminants is less in
steeply sloping areas because of the cross correlations
between catchment topography and land
cover.9,74,132,159,275–277 Shallow slopes are often used
for anthropogenic (e.g., agricultural) activities, which
act as sources of sediments and nutrients.14,269,278,279

Seasonal changes in constituent delivery pro-
cesses are also possible, leading to temporal changes
in the relationship between catchment characteristics
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and receiving water quality. For example, the
strength of the link between land use, land cover,
geology, and water quality can vary seasonally due
to temporal changes in rainfall levels. This is because
seasonality in rainfall can lead to shifts in hydrologic
connectivity between constituent sources and receiv-
ing rivers and streams.280,281 There was a weaker
relationship between land uses within the catchment
and nitrate concentrations in Canadian streams in
the dry summer seasons, and it was hypothesized
that this was due to a lack of hydrological connectiv-
ity in the catchment because of lower rainfall and
higher evaporation rates.138

In addition, stream constituent concentrations
can be more strongly affected by topographic and
geologic characteristics of the catchment in drier
months and years. In dry months and years, subsur-
face flows dominate stream discharge. The delivery
of these nutrients in subsurface flow is governed by
topographic characteristics such as slope and geo-
logic and soil characteristics such as sorption capac-
ity.79,282 For example, in the driest months in the
mid-western United States, while the impact of land
use on water quality decreased, the impact of soil
type and catchment slope remained unchanged.79

Finally, the relationship between water quality
and catchment characteristics can shift seasonally
due to changes in flow pathways (i.e., subsurface vs
surface flows). Flow pathways can shift temporally
(both within individual events and seasonally) as a
result of changes in soil moisture.147,283 Whether the
constituent travels to receiving rivers via subsurface
flows or by surface flows can significantly influence
the constituent sources contributing to receiving
streams, and the extent of mobilization and loss of
the constituent (and the effect of the catchment char-
acteristics on these processes) before it reaches the
river.226 For example, the flow pathway of constitu-
ents affects the biogeochemical transformation of
nutrients because they impact the residence time of
constituents within the catchment, and the matrix
through which constituents travel.226

MAJOR KNOWLEDGE GAPS: RELATIVE
IMPORTANCE OF LANDSCAPE
CHARACTERISTICS AND
INTERACTION BETWEEN
CHARACTERISTICS

While we understand how particular landscape
characteristics individually impact riverine water
quality, there is still limited understanding of the rel-
ative importance of these landscape characteristics.TA
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Some previous studies have attempted to identify
the most important landscape characteristics affect-
ing spatial variability in water quality using multiple
regression284, geographic weighted regression,285

and variance partitioning approaches (Table 4).136

However, most of these studies have only included
a subset of possible factors (listed in Table 1) in the
analysis, and some have been limited by consider-
ation of a limited number of sites/catchments
(Table 4). Varanka and Luoto136 studied the whole
suite of possible factors in their analysis, and found
that agricultural land use area in the catchment was
the most important factor affecting TP and TN con-
centrations in Finland. However, it is important to
apply these methods to other regions, to identify
whether these are global trends, specific to these
regions, or can be related to broad characteristics
such as climate type or biome. The studies in
Table 4 generally use different mixes of multivariate
statistical approaches, but machine learning tech-
niques have also been used to identify links between
landscape features and water quality responses.288

These include: boosted regression trees,288,289 artifi-
cial neural networks,290 fuzzy rule-based models,291

and self-organizing maps.292

Additionally, we must better understand how
the importance of certain landscape characteristics
can change based on the other characteristics of the
catchment. This has been addressed to a small
extent in the literature (Figure 4). For example, in
catchments with intense agricultural and urban land
uses, geological deposits do not have a strong influ-
ence on nutrient concentrations in rivers.106 This is
likely because the delivery of anthropogenically-
derived nitrogen and phosphorus to rivers is over-
whelming any effects caused by the local geology. In
addition, previous studies have found that the
impact of the landscape characteristics listed in
Table 1 on riverine water quality decreases when
there are point source discharges from septic tanks
systems, wastewater treatment plants, or other
wastewater sources.79,97,259,278,295,296 However, we
still lack a systematic understanding of the interac-
tions between the factors listed in Table 1, and how
different landscape characteristics may interact with
the effect of other landscape characteristics on
stream water quality.282

CONCLUSIONS

Many landscape characteristics influence spatial vari-
ability in sediments, nutrients, and salts concentrations
in rivers and streams, and heterogeneity in landscapes
can significantly affect spatial differences in stream
water quality. Studies have previously addressed the
relationship between land use, land cover, and the
extent of catchment disturbance on constituent concen-
trations, showing that human activities (urbanization,
agriculture, and deforestation) can lead to higher con-
centrations of suspended solids, nutrients, and salts.
Other landscape characteristics that impact riverine
water quality include: atmospheric deposition, climate,
topography, geology, soil properties, and catchment
hydrology. When attempting to understand the factors
affecting spatial variability in constituent concentra-
tions, and how landscape heterogeneity can influence
water quality responses, it is important to consider:
(1) the cross correlations and interactions between
catchment features, (2) the potential effect of the spa-
tial arrangement of landscape characteristics within the
catchment (e.g., distance from rivers, fragmentation of
constituent source areas in the landscape), and (3) the
interannual and interseasonal variability in the rela-
tionships between landscape characteristics and water
quality responses.

In the current body of literature, there is a large
emphasis on the effect of humans on stream water
quality, in particular, the relationship between land
use, land cover and land management, and constituent
concentrations in streams.16,161 While still limited,
there is also a growing understanding of how natural
factors (e.g., geology, topography, and climate) are
likely to impact sediment, nutrient, and salt concentra-
tions in rivers and streams. Still required, however, is a
better understanding of the interactions and relation-
ships between catchment features. Characterizing these
interactions is critical in enhancing our insight of the
key catchment features that influence spatial variability
in riverine water quality. Increasing our knowledge of
the interactions between these catchment features will
(1) improve our ability to implement targeted and cost-
effective management strategies and (2) better equip us
to build models and tools that will be able to predict
the spatial variability in water quality both between
and within river catchments.
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