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always exhibit their greatest intensity near the
ground and diminish with increasing height above
the ground.

ii. Some upper level lows do not extend downward
to the ground, as indicated in Fig. 3.3b. It follows
from the hypsometric equation that these lows
must be cold core below the level at which they
achieve their greatest intensity and warm core
above that level, as shown in Fig. 3.3b.

3.2.4 Reduction of Pressure to Sea Level

In mountainous regions the difference in surface
pressure from one observing station to another is
largely due to differences in elevation. To isolate that
part of the pressure field that is due to the passage of
weather systems, it is necessary to reduce the pres-
sures to a common reference level. For this purpose,
sea level is normally used.

Let the subscripts g and 0 refer to conditions at the
ground and at sea level (Z = 0), respectively. Then, for
the layer between the Earth’s surface and sea level,
the hypsometric equation (3.29) assumes the form

_ 771..Po
Zyg=HIn—

Py (3.30)

which can be solved to obtain the sea-level pressure

Po = Pg €Xp (é> = pgexXp (gOZ )
0 g H g R,T,

(3.31)

If Z, is small, the scale height H can be evaluated
from the ground temperature. Also, if Z,/ H<1,
the exponential in (3.31) can be approximated by
1+ 27,/ H,in which case (3.31) becomes

Zy <gozg>

P~ pe=Pag ~Pa\p T (3.32)
v

Because pg = 1000 hpa and H = 8000 m, the pres-
sure correction (in hPa) is roughly equal to Z, (in

meters) divided by 8. In other words, for altitudes up
to a few hundred meters above (or below) sea level,
the pressure decreases by about 1 hPa for every 8 m
of vertical ascent.

3.3 The First Law of
Thermodynamics'®

In addition to the macroscopic kinetic and potential
energy that a system as a whole may possess, it also
contains internal energy due to the kinetic and poten-
tial energy of its molecules or atoms. Increases in
internal kinetic energy in the form of molecular
motions are manifested as increases in the tempera-
ture of the system, whereas changes in the potential
energy of the molecules are caused by changes in
their relative positions by virtue of any forces that
act between the molecules.

Let us suppose that a closed system!© of unit mass
takes in a certain quantity of thermal energy ¢
(measured in joules), which it can receive by thermal
conduction and/or radiation. As a result the system
may do a certain amount of external work w (also
measured in joules). The excess of the energy sup-
plied to the body over and above the external work
done by the body is ¢ — w. Therefore, if there is no
change in the macroscopic kinetic and potential
energy of the body, it follows from the principle of
conservation of energy that the internal energy of
the system must increase by ¢ — w. That is,

q—w=uy — u (3.33)
where u; and u, are the internal energies of the sys-
tem before and after the change. In differential form
(3.33) becomes

dq — dw = du (3.34)
where dq is the differential increment of heat
added to the system, dw is the differential element

15 The first law of thermodynamics is a statement of the conservation of energy, taking into account the conversions between the vari-
ous forms that it can assume and the exchanges of energy between a system and its environment that can take place through the transfer
of heat and the performance of mechanical work. A general formulation of the first law of thermodynamics is beyond the scope of this text
because it requires consideration of conservation laws, not only for energy, but also for momentum and mass. This section presents a sim-
plified formulation that ignores the macroscopic kinetic and potential energy (i.e., the energy that air molecules possess by virtue of their
height above sea level and their organized fluid motions). As it turns out, the expression for the first law of thermodynamics that emerges
in this simplified treatment is identical to the one recovered from a more complete treatment of the conservation laws, as is done in
J.R. Holton, Introduction to Dynamic Meteorology, 4th Edition, Academic Press, New York, 2004, pp. 146-149.

16° A closed system is one in which the total amount of matter, which may be in the form of gas, liquid, solid or a mixture of these

phases, is kept constant.
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of work done by the system, and du is the differen-
tial increase in internal energy of the system.
Equations (3.33) and (3.34) are statements of the
first law of thermodynamics. In fact (3.34) provides
a definition of du. The change in internal energy du
depends only on the initial and final states of the
system and is therefore independent of the manner
by which the system is transferred between these
two states. Such parameters are referred to as func-
tions of state.

To visualize the work term dw in (3.34) in a sim-
ple case, consider a substance, often called the
working substance, contained in a cylinder of fixed
cross-sectional area that is fitted with a movable,
frictionless piston (Fig. 3.4). The volume of the sub-
stance is proportional to the distance from the base
of the cylinder to the face of the piston and can be
represented on the horizontal axis of the graph
shown in Fig. 3.4. The pressure of the substance in
the cylinder can be represented on the vertical axis
of this graph. Therefore, every state of the sub-
stance, corresponding to a given position of the
piston, is represented by a point on this
pressure—volume (p-V) diagram. When the sub-
stance is in equilibrium at a state represented by
point P on the graph, its pressure is p and its vol-
ume is V (Fig. 3.4). If the piston moves outward
through an incremental distance dx while its pres-
sure remains essentially constant at p, the work dW
done by the substance in pushing the external force
F through a distance dx is

dW = Fdx

or, because F = pA where A is the cross-sectional area
of the face of the piston,

dW = pA dx = pdV (3.35)

In other words, the work done by the substance

when its volume increases by a small increment dV/

is equal to the pressure of the substance multiplied

by its increase in volume, which is equal to the

blue-shaded area in the graph shown in Fig. 3.4;
that is, it is equal to the area under the curve PQ.

When the substance passes from state A with
volume V; to state B with volume V, (Fig. 3.4), dur-
ing which its pressure p changes, the work W done
by the material is equal to the area under the curve
AB. That is,

1%
W = f ‘pdv (3.36)
Vi
Equations (3.35) and (3.36) are quite general and
represent work done by any substance (or system)
due to a change in its volume. If V, > V;, W is posi-
tive, indicating that the substance does work on
its environment. If V, < Vi, W is negative, which
indicates that the environment does work on the
substance.

The p—V diagram shown in Fig. 3.4 is an example
of a thermodynamic diagram in which the physical
state of a substance is represented by two thermody-
namic variables. Such diagrams are very useful in
meteorology; we will discuss other examples later in
this chapter.

Cylinder
Working /—::-.:.: :.- e \ -—F
substance . Piston

P1 A
I
2P -———r\P
7 R
@P2f————t—) =B
= [
* N
\Y
dv
Volume

Fig. 3.4 Representation of the state of a working substance
in a cylinder on a p—V diagram. The work done by the work-
ing substance in passing from P to Q is p dV, which is equal to
the blue-shaded area. [Reprinted from Atmospheric Science: An
Introductory Survey, 1st Edition, J. M. Wallace and P. V. Hobbs,
p. 62, Copyright 1977, with permission from Elsevier.]

17 Neither the heat g nor the work w are functions of state, since their values depend on how a system is transformed from one state to
another. For example, a system may or may not receive heat and it may or may not do external work as it undergoes transitions between

different states.
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If we are dealing with a unit mass of a substance,
the volume V is replaced by the specific volume «.
Therefore, the work dw that is done when the spe-
cific volume increases by da is

dw = pda (3.37)
Combination of (3.34) and (3.37) yields
dg = du + pda (3.38)

which is an alternative statement of the first law of
thermodynamics.18

3.3.1 Joule’s Law

Following a series of laboratory experiments on air,
Joule! concluded in 1848 that when a gas expands
without doing external work, by expanding into a
chamber that has been evacuated, and without taking
in or giving out heat, the temperature of the gas does

not change. This statement, which is known as Joule’s
law, is strictly true only for an ideal gas, but air (and
many other gases) behaves very similarly to an ideal
gas over a wide range of conditions.

Joule’s law leads to an important conclusion con-
cerning the internal energy of an ideal gas. If a gas
neither does external work nor takes in or gives out
heat, dw = 0 and dq = 0 in (3.38), so that du = 0.
Also, according to Joule’s law, under these conditions
the temperature of the gas does not change, which
implies that the kinetic energy of the molecules
remains constant. Therefore, because the total inter-
nal energy of the gas is constant, that part of the
internal energy due to the potential energy must also
remain unchanged, even though the volume of the
gas changes. In other words, the internal energy of an
ideal gas is independent of its volume if the tempera-
ture is kept constant. This can be the case only if the
molecules of an ideal gas do not exert forces on each
other. In this case, the internal energy of an ideal gas
will depend only on its temperature.20

3.2 More Handball?

Box 3.1. showed that the gas laws can be illus-
trated by picturing the molecules of a gas as
elastic balls bouncing around randomly in a
handball court. Suppose now that the walls of
the court are permitted to move outward when
subjected to a force. The force on the walls is
supplied by the impact of the balls, and the work
required to move the walls outward comes from
a decrease in the kinetic energy of the balls that
rebound from the walls with lower velocities

than they struck them. This decrease in kinetic
energy is in accordance with the first law of
thermodynamics under adiabatic conditions. The
work done by the system by pushing the walls
outward is equal to the decrease in the internal
energy of the system [see (3.38)]. Of course, if
the outside of the walls of the court are bom-
barded by balls in a similar manner to the inside
walls, there will be no net force on the walls and
no work will be done.

18 We have assumed here that the only work done by or on a system is due to a change in the volume of the system. However, there are
other ways in which a system may do work, e.g., by the creation of new surface area between two phases (such as between liquid and air
when a soap film is formed). Unless stated otherwise, we will assume that the work done by or on a system is due entirely to changes in the

volume of the system.

19 James Prescott Joule (1818-1889) Son of a wealthy English brewer; one of the great experimentalists of the 19th century. He started
his scientific work (carried out in laboratories in his home and at his own expense) at age 19. He measured the mechanical equivalent of
heat, recognized the dynamical nature of heat, and developed the principle of conservation of energy.

20 Subsequent experiments carried out by Lord Kelvin?! revealed the existence of small forces between the molecules of a gas.

21 Lord Kelvin 1st Baron (William Thomson) (1824-1907) Scottish mathematician and physicist. Entered Glasgow University at age 11.
At 22 became Professor of Natural Philosophy at the same university. Carried out incomparable work in thermodynamics, electricity, and

hydrodynamics.
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3.3.2 Specific Heats

Suppose a small quantity of heat dgq is given to a unit
mass of a material and, as a consequence, the tem-
perature of the material increases from 7 to T + dT
without any changes in phase occurring within the
material. The ratio dq/dT is called the specific heat of
the material. The specific heat defined in this way
could have any number of values, depending on how
the material changes as it receives the heat. If the
volume of the material is kept constant, a specific
heat at constant volume c, is defined

(4
! ar v const

However, if the volume of the material is constant
(3.38) becomes dq = du. Therefore

-~ (7)
! dr v const

For an ideal gas, Joule’s law applies and therefore u
depends only on temperature. Therefore, regardless
of whether the volume of a gas changes, we may write

- (%)
v \ar

From (3.38) and (3.40), the first law of thermody-
namics for an ideal gas can be written in the form??

(3.39)

(3.40)

dq = ¢, dT + pda (3.41)

Because u is a function of state, no matter how the

material changes from state 1 to state 2, the change
in its internal energy is, from (3.40),

T,
U — uy = J CvdT

T

We can also define a specific heat at constant

pressure ¢,
(i)
Cp =\ 5
P dar 'p const

(3.42)

where the material is allowed to expand as heat is
added to it and its temperature rises, but its pressure
remains constant. In this case, a certain amount of
the heat added to the material will have to be
expended to do work as the system expands against
the constant pressure of its environment. Therefore, a
larger quantity of heat must be added to the material
to raise its temperature by a given amount than if the
volume of the material were kept constant. For the
case of an ideal gas, this inequality can be seen math-
ematically as follows. Equation (3.41) can be rewrit-
ten in the form
dq = ¢, dT + d(pa) — adp (3.43)
From the ideal gas equation (3.3), d(pa) = RdT.
Therefore (3.43) becomes
dg = (¢, + R)dT — adp (3.44)
At constant pressure, the last term in (3.44) vanishes;
therefore, from (3.42) and (3.44),
=c¢, t R

c (3.45)

P

The specific heats at constant volume and at con-
stant pressure for dry air are 717 and 1004 J K~!
kg~!, respectively, and the difference between
them is 287 J K~1 kg~1, which is the gas constant
for dry air. It can be shown that for ideal
monatomic gases ¢,:¢,:R = 5:3:2, and for ideal
diatomic gases c¢,:c,:R = 7:5:2.

By combining (3.44) and (3.45) we obtain an alter-
nate form of the first law of thermodynamics:

dq = ¢,dT — adp (3.46)

3.3.3 Enthalpy

If heat is added to a material at constant pressure
so that the specific volume of the material
increases from «; to ap, the work done by a unit
mass of the material is p(a; — @;). Therefore,
from (3.38), the finite quantity of heat Ag added to

22 The term dq is sometimes called the diabatic (or nonadiabatic) heating or cooling, where “diabatic” means involving the transfer of

heat. The term “diabatic” would be redundant if “heating” and “cooling” were always taken to mean “the addition or removal of heat.”
However, “heating” and “cooling” are often used in the sense of “to raise or lower the temperature of,” in which case it is meaningful to
distinguish between that part of the temperature change dT due to diabatic effects (dg) and that part due to adiabatic effects (pda).
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a unit mass of the material at constant pressure is
given by

Ag = (up — uy) + play — )

= (uy + pay) — (uy + pay)

where u; and u, are, respectively, the initial and final
internal energies for a unit mass of the material.
Therefore, at constant pressure,

quhz_hl

where £ is the enthalpy of a unit mass of the material,
which is defined by
h=u+ pa (3.47)

Because u, p, and « are functions of state, / is a func-
tion of state. Differentiating (3.47), we obtain

dh = du + d(p)

Substituting for du from (3.40) and combining with
(3.43), we obtain
dq = dh — adp (3.48)
which is yet another form of the first law of thermo-
dynamics.
By comparing (3.46) and (3.48) we see that

dh = ¢,dT (3.49)

or, in integrated form,
c,T (3.50)

where h is taken as zero when 7 = 0. In view of
(3.50), h corresponds to the heat required to raise the
temperature of a material from 0 to 7 K at constant
pressure.

When a layer of air that is at rest and in hydrostatic
balance is heated, for example, by radiative transfer,
the weight of the overlying air pressing down on it

remains constant. Hence, the heating is at constant
pressure. The energy added to the air is realized in the
form of an increase in enthalpy (or sensible heat, as
atmospheric scientists commonly refer to it) and

dq = dh = c,dT

The air within the layer expands as it warms, doing
work on the overlying air by lifting it against the
Earth’s gravitational attraction. Of the energy per
unit mass imparted to the air by the heating, we see
from (3.40) and (3.41) that du = ¢,dT is reflected in
an increase in internal energy and pda = RdT is
expended doing work on the overlying air. Because
the Earth’s atmosphere is made up mainly of the
diatomic gases N, and O,, the energy added by the
heating dq is partitioned between the increase in
internal energy du and the expansion work pda in
the ratio 5:2.

We can write a more general expression that is
applicable to a moving air parcel, the pressure of
which changes as it rises or sinks relative to the sur-
rounding air. By combining (3.20), (3.48), and (3.50)
we obtain

dg = d(h + @) = d(c, T + D) (3.51)
Hence, if the material is a parcel of air with a fixed
mass that is moving about in an hydrostatic atmos-
phere, the quantity (k& + ®), which is called the dry
static energy, is constant provided the parcel neither
gains nor loses heat (i.e., dg = 0).23

3.4 Adiabatic Processes

If a material undergoes a change in its physical state
(e.g., its pressure, volume, or temperature) without
any heat being added to it or withdrawn from it, the
change is said to be adiabatic.

Suppose that the initial state of a material is repre-
sented by the point A on the p—V diagram in Fig. 3.5
and that when the material undergoes an isothermal
transformation it moves along the line AB. If the same
material underwent a similar change in volume but
under adiabatic conditions, the transformation would

23 Strictly speaking, Eq. (3.51) holds only for an atmosphere in which there are no fluid motions. However, it is correct to within a few
percent for the Earth’s atmosphere where the kinetic energy of fluid motions represents only a very small fraction of the total energy.
An exact relationship can be obtained by using Newton’s second law of motion and the continuity equation in place of Eq. (3.20) in the
derivation. See J. R. Holton, An Introduction to Dynamic Meteorology, 4th ed., Academic Press, pp. 46-49 (2004).
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Fig. 3.5 An isotherm and an adiabat on a p—V diagram.

be represented by a curve such as AC, which is called
an adiabat. The reason why the adiabat AC is steeper
than the isotherm AB on a p—V diagram can be seen
as follows. During adiabatic compression, the internal
energy increases [because dg = 0 and pda is negative
in (3.38)] and therefore the temperature of the system
rises. However, for isothermal compression, the tem-
perature remains constant. Hence, ¢ > Tz and there-

fore pc > pp.

3.4.1 Concept of an Air Parcel

In many fluid mechanics problems, mixing is viewed
as a result of the random motions of individual mole-
cules. In the atmosphere, molecular mixing is impor-
tant only within a centimeter of the Earth’s surface
and at levels above the turbopause (~105km). At
intermediate levels, virtually all mixing in the vertical
is accomplished by the exchange of macroscale “air
parcels” with horizontal dimensions ranging from
millimeters to the scale of the Earth itself.

To gain some insights into the nature of vertical
mixing in the atmosphere, it is useful to consider the
behavior of an air parcel of infinitesimal dimensions
that is assumed to be

i. thermally insulated from its environment so
that its temperature changes adiabatically as it
rises or sinks, always remaining at exactly the
same pressure as the environmental air at the
same level,?* which is assumed to be in
hydrostatic equilibrium; and

ii. moving slowly enough that the macroscopic
kinetic energy of the air parcel is a negligible
fraction of its total energy.

Although in the case of real air parcels one or
more of these assumptions is nearly always violated

to some extent, this simple, idealized model is helpful
in understanding some of the physical processes that
influence the distribution of vertical motions and
vertical mixing in the atmosphere.

3.4.2 The Dry Adiabatic Lapse Rate

We will now derive an expression for the rate of
change of temperature with height of a parcel of dry
air that moves about in the Earth’s atmosphere while
always satisfying the conditions listed at the end of
Section 3.4.1. Because the air parcel undergoes only
adiabatic transformations (dg = 0) and the atmos-
phere is in hydrostatic equilibrium, for a unit mass of
air in the parcel we have, from (3.51),

d(c, T+ ®) =0 (3.52)

Dividing through by dz and making use of (3.20) we
obtain

ar
—(—) - 91, (3.53)
dz dry parcel  Cp

where Iy is called the dry adiabatic lapse rate. Because
an air parcel expands as it rises in the atmosphere, its
temperature will decrease with height so that I';
defined by (3.53) is a positive quantity. Substituting
g =981ms2and ¢, =1004J K~! kg~! into (3.53)
gives 'y = 0.0098 K m~! or 9.8 K km~!, which is the
numerical value of the dry adiabatic lapse rate.

It should be emphasized again that I'; is the rate of
change of temperature following a parcel of dry air
that is being raised or lowered adiabatically in the
atmosphere. The actual lapse rate of temperature in a
column of air, which we will indicate by I" = 97T/ dz,
as measured, for example, by a radiosonde, averages
6-7 K km~! in the troposphere, but it takes on a wide
range of values at individual locations.

3.4.3 Potential Temperature

The potential temperature 6 of an air parcel is defined
as the temperature that the parcel of air would have
if it were expanded or compressed adiabatically from
its existing pressure and temperature to a standard
pressure pg (generally taken as 1000 hPa).

24 Any pressure differences between the parcel and its environment give rise to sound waves that produce an almost instantaneous
adjustment. Temperature differences, however, are eliminated by much slower processes.
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We can derive an expression for the potential tem-
perature of an air parcel in terms of its pressure p,
temperature 7, and the standard pressure pg as fol-
lows. For an adiabatic transformation (dg = 0) (3.46)
becomes

¢pdT — adp =0
Substituting « from (3.3) into this expression yields

dT _dp _

T p 0

7
R

Integrating upward from p, (where, by definition,
T = 6) to p, we obtain

or

Taking the antilog of both sides

()=
0 Do

R/c
-y
V4

or
(3.54)

Equation (3.54) is called Poisson’s?® equation. 1t is
usually assumed that R = R; = 287 J K-l kg~! and
¢p= cpq = 1004 J K1 kg~1; therefore, R/c, = 0.286.

Parameters that remain constant during certain
transformations are said to be conserved. Potential
temperature is a conserved quantity for an air parcel
that moves around in the atmosphere under adia-
batic conditions (see Exercise 3.36). Potential tem-
perature is an extremely useful parameter in
atmospheric thermodynamics, since atmospheric
processes are often close to adiabatic, and therefore
0 remains essentially constant, like density in an
incompressible fluid.

3.4.4 Thermodynamic Diagrams

Poisson’s equation may be conveniently solved in
graphical form. If pressure is plotted on the ordinate
on a distorted scale, in which the distance from the ori-
gin is proportional to pRa/¢, or p0286 is used, regardless
of whether air is dry or moist, and temperature (in K)
is plotted on the abscissa, then (3.54) becomes

0.286
p0286 = (pOT>T

(3.55)
For a constant value of 6, Eq. (3.55) is of the form y o« x
where y = p028 x = T, and the constant of proportion-
ality is p8'286 /6. Each constant value of 6 represents
a dry adiabat, which is defined by a straight line with a
particular slope that passes through the point p =0,
T =0. If the pressure scale is inverted so that p
increases downward, the relation takes the form shown
in Fig. 3.6, which is the basis for the pseudoadiabatic
chart that used to be widely used for meteorological
computations. The region of the chart of greatest inter-
est in the atmosphere is the portion shown within the
dotted lines in Fig. 3.6, and this is generally the only
portion of the chart that is printed.

In the pseudoadiabatic chart, isotherms are verti-
cal and dry adiabats (constant 6) are oriented at an
acute angle relative to isotherms (Fig. 3.6). Because
changes in temperature with height in the atmos-
phere generally lie between isothermal and dry adia-
batic, most temperature soundings lie within a
narrow range of angles when plotted on a pseudo-
adiabatic chart. This restriction is overcome in the
so-called skew T —In p chart, in which the ordinate
(v) is —In p (the minus sign ensures that lower pres-
sure levels are located above higher pressure levels
on the chart) and the abscissa (x) is

x = T + (constant)y = T — (constant) Inp (3.56)
Since, from (3.56),

x—T

Y= (constant)

and for an isotherm 7 is constant, the relation-
ship between y and x for an isotherm is of the form

25 Simeon Denis Poisson (1781-1840) French mathematician. Studied medicine but turned to applied mathematics and became the

first professor of mechanics at the Sorbonne in Paris.
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