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where �	d is the density that the same mass of dry air
would have if it alone occupied all of the volume V
and �	v is the density that the same mass of water
vapor would have if it alone occupied all of the vol-
ume V. We may call these partial densities. Because
� � �	d � �	v, it might appear that the density of
moist air is greater than that of dry air. However, this
is not the case because the partial density �	v is less
than the true density of dry air.12 Applying the ideal
gas equation in the form of (3.2) to the water vapor
and dry air in turn, we have

and

where e and p	d are the partial pressures exerted by
the water vapor and the dry air, respectively. Also,
from Dalton’s law of partial pressures,

Combining the last four equations

or

where � is defined by (3.14). The last equation may
be written as

(3.15)

where
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Tv is called the virtual temperature. If this fictitious
temperature, rather than the actual temperature, is
used for moist air, the total pressure p and density �
of the moist air are related by a form of the ideal gas
equation [namely, (3.15)], but with the gas constant
the same as that for a unit mass of dry air (Rd) and
the actual temperature T replaced by the virtual tem-
perature Tv. It follows that the virtual temperature is
the temperature that dry air would need to attain in
order to have the same density as the moist air at the
same pressure. Because moist air is less dense than
dry air at the same temperature and pressure, the
virtual temperature is always greater than the
actual temperature. However, even for very warm
and moist air, the virtual temperature exceeds the
actual temperature by only a few degrees (e.g., see
Exercise 3.7 in Section 3.5).

3.2 The Hydrostatic Equation
Air pressure at any height in the atmosphere is due
to the force per unit area exerted by the weight of all
of the air lying above that height. Consequently,
atmospheric pressure decreases with increasing
height above the ground (in the same way that the
pressure at any level in a stack of foam mattresses
depends on how many mattresses lie above that
level). The net upward force acting on a thin horizon-
tal slab of air, due to the decrease in atmospheric
pressure with height, is generally very closely in bal-
ance with the downward force due to gravitational
attraction that acts on the slab. If the net upward
force on the slab is equal to the downward force on
the slab, the atmosphere is said to be in hydrostatic
balance. We will now derive an important equation
for the atmosphere in hydrostatic balance.

Consider a vertical column of air with unit hori-
zontal cross-sectional area (Fig. 3.1). The mass of air
between heights z and z � 
z in the column is �
z,
where � is the density of the air at height z. The
downward force acting on this slab of air due to the
weight of the air is ��
z, where � is the acceleration
due to gravity at height z. Now let us consider the net

12 The fact that moist air is less dense than dry air was first clearly stated by Sir Isaac Newton13 in his “Opticks” (1717). However, the
basis for this relationship was not generally understood until the latter half of the 18th century.

13 Sir Isaac Newton (1642–1727) Renowned English mathematician, physicist, and astronomer. A posthumous, premature (“I could
have been fitted into a quart mug at birth”), and only child. Discovered the laws of motion, the universal law of gravitation, calculus, the
colored spectrum of white light, and constructed the first reflecting telescope. He said of himself: “I do not know what I may appear to the
world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother
pebble or a prettier shell than ordinary, while the great ocean of truth lay all undiscovered before me.”
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68 Atmospheric Thermodynamics

vertical force that acts on the slab of air between z
and z � 
z due to the pressure of the surrounding
air. Let the change in pressure in going from height z
to height z � 
z be 
p, as indicated in Fig. 3.1.
Because we know that pressure decreases with
height, 
p must be a negative quantity, and the
upward pressure on the lower face of the shaded
block must be slightly greater than the downward
pressure on the upper face of the block. Therefore,
the net vertical force on the block due to the vertical
gradient of pressure is upward and given by the posi-
tive quantity �
p, as indicated in Fig. 3.1. For an
atmosphere in hydrostatic balance, the balance of
forces in the vertical requires that

or, in the limit as ,

(3.17)
�p
�z

� ���


z : 0

�
p � ��
z

Equation (3.17) is the hydrostatic equation.14 It
should be noted that the negative sign in (3.17)
ensures that the pressure decreases with increasing
height. Because � � 1�� (3.17) can be rearranged to
give

(3.18)

If the pressure at height z is p(z), we have, from
(3.17), above a fixed point on the Earth

or, because p(�) � 0,

(3.19)

That is, the pressure at height z is equal to the weight
of the air in the vertical column of unit cross-
sectional area lying above that level. If the mass of
the Earth’s atmosphere were distributed uniformly
over the globe, retaining the Earth’s topography
in its present form, the pressure at sea level would
be 1.013 � 105 Pa, or 1013 hPa, which is referred to
as 1 atmosphere (or 1 atm).

3.2.1 Geopotential

The geopotential  at any point in the Earth’s
atmosphere is defined as the work that must be
done against the Earth’s gravitational field to raise
a mass of 1 kg from sea level to that point. In other
words,  is the gravitational potential per unit
mass. The units of geopotential are J kg�1 or m2 s�2.
The force (in newtons) acting on 1 kg at height z
above sea level is numerically equal to �. The work
(in joules) in raising 1 kg from z to z � dz is �dz;
therefore

or, using (3.18),

(3.20)d � �dz � ��dp

d � �dz

p(z) � ��

z
��dz

��p (�)

p (z)

dp � ��

z
��dz

�dz � ��dp

Column with unit
  cross-sectional
    area

Pressure = p + δp

Pressure = p

Ground

z

–δp

gρδz

δz

Fig. 3.1 Balance of vertical forces in an atmosphere in
which there are no vertical accelerations (i.e., an atmosphere
in hydrostatic balance). Small blue arrows indicate the down-
ward force exerted on the air in the shaded slab due to the
pressure of the air above the slab; longer blue arrows indicate
the upward force exerted on the shaded slab due to the pres-
sure of the air below the slab. Because the slab has a unit
cross-sectional area, these two pressures have the same
numerical values as forces. The net upward force due to these
pressures (�
p) is indicated by the upward-pointing thick
black arrow. Because the incremental pressure change 
p is a
negative quantity, �
p is positive. The downward-pointing
thick black arrow is the force acting on the shaded slab due
to the mass of the air in this slab.

14 In accordance with Eq. (1.3), the left-hand side of (3.17) is written in partial differential notation, i.e., �p��z, because the variation of
pressure with height is taken with other independent variables held constant.
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3.2 The Hydrostatic Equation 69

The geopotential (z) at height z is thus given by

(3.21)

where the geopotential (0) at sea level (z � 0) has, by
convention, been taken as zero. The geopotential at a
particular point in the atmosphere depends only on the
height of that point and not on the path through which
the unit mass is taken in reaching that point. The work
done in taking a mass of 1 kg from point A with geopo-
tential A to point B with geopotential B is B � A.

We can also define a quantity called the geopoten-
tial height Z as

(3.22)

where �0 is the globally averaged acceleration due to
gravity at the Earth’s surface (taken as 9.81 m s�2).
Geopotential height is used as the vertical coordinate
in most atmospheric applications in which energy
plays an important role (e.g., in large-scale atmos-
pheric motions). It can be seen from Table 3.1 that
the values of z and Z are almost the same in the
lower atmosphere where �0 � �.

In meteorological practice it is not convenient to
deal with the density of a gas, �, the value of which is
generally not measured. By making use of (3.2) or
(3.15) to eliminate � in (3.17), we obtain

Rearranging the last expression and using (3.20)
yields

(3.23)d � � dz � �RT
dp
p

� �RdTv
dp
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�  

1
�0
�z

0
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(z) � �z

0

�dz

If we now integrate between pressure levels p1 and
p2, with geopotentials 1 and 2, respectively,

or

Dividing both sides of the last equation by �0 and
reversing the limits of integration yields

(3.24)

This difference Z2 � Z1 is referred to as the (geopo-
tential) thickness of the layer between pressure levels
p1 and p2.

3.2.2 Scale Height and the Hypsometric
Equation

For an isothermal atmosphere (i.e., temperature
constant with height), if the virtual temperature
correction is neglected, (3.24) becomes

(3.25)

or

(3.26)

where

(3.27)

H is the scale height as discussed in Section 1.3.4.
Because the atmosphere is well mixed below the

turbopause (about 105 km), the pressures and den-
sities of the individual gases decrease with altitude
at the same rate and with a scale height propor-
tional to the gas constant R (and therefore
inversely proportional to the apparent molecular
weight of the mixture). If we take a value for Tv of
255 K (the approximate mean value for the tropo-
sphere and stratosphere), the scale height H for
air in the atmosphere is found from (3.27) to be
about 7.5 km.

H � RT
�0

� 29.3T

p2 � p1 exp��
(Z2 � Z1)

H �

Z2 � Z1 � H ln(p1�p2)

Z2 � Z1 �
Rd

�0
 �p1

p2

Tv
dp

p


2

� 
1

� �Rd �p2

p1

Tv
dp

p

�2

1

d � ��p2

p1

RdTv 
dp

p

Table 3.1 Values of geopotential height (Z) and acceleration
due to gravity (�) at 40° latitude for geometric height (z)

z (km) Z (km) � (m s�2)

0 0 9.81

1 1.00 9.80

10 9.99 9.77

100 98.47 9.50

500 463.6 8.43
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70 Atmospheric Thermodynamics

Above the turbopause the vertical distribution of
gases is largely controlled by molecular diffusion and
a scale height may then be defined for each of the
individual gases in air. Because for each gas the scale
height is proportional to the gas constant for a unit
mass of the gas, which varies inversely as the molecu-
lar weight of the gas [see, for example (3.13)], the
pressures (and densities) of heavier gases fall off
more rapidly with height above the turbopause than
those of lighter gases.

Exercise 3.2 If the ratio of the number density of
oxygen atoms to the number density of hydrogen
atoms at a geopotential height of 200 km above the
Earth’s surface is 105, calculate the ratio of the num-
ber densities of these two constituents at a geopoten-
tial height of 1400 km. Assume an isothermal
atmosphere between 200 and 1400 km with a tem-
perature of 2000 K.

Solution: At these altitudes, the distribution of
the individual gases is determined by diffusion and
therefore by (3.26). Also, at constant temperature,
the ratio of the number densities of two gases is
equal to the ratio of their pressures. From (3.26)

From the definition of scale height (3.27) and analo-
gous expressions to (3.11) for oxygen and hydrogen
atoms and the fact that the atomic weights of oxygen
and hydrogen are 16 and 1, respectively, we have at
2000 K

and

 � 1.695 � 106 m

Hhyd �
1000R*

1
  
2000
9.81

 m � 8.3145  
2 � 106

9.81
 m

 � 0.106 � 106 m

Hoxy �
1000R*

16
  
2000
9.81

 m �
8.3145

16
  
2 � 106

9.81
 m

 � 105 exp ��1200 km 	 1
Hoxy

�
1

Hhyd

�

�
(p200 km)oxy exp[�1200 km�Hoxy (km)]
(p200 km)hyd exp[�1200 km�Hhyd (km)]

(p1400 km)oxy

(p1400 km)hyd

Therefore,

and

Hence, the ratio of the number densities of oxygen to
hydrogen atoms at a geopotential height of 1400 km
is 2.5. �

The temperature of the atmosphere generally
varies with height and the virtual temeprature
correction cannot always be neglected. In this more
general case (3.24) may be integrated if we define
a mean virtual temperature with respect to p as
shown in Fig. 3.2. That is,

(3.28)

Then, from (3.24) and (3.28),

(3.29)

Equation (3.29) is called the hypsometric equation.

Exercise 3.3 Calculate the geopotential height of
the 1000-hPa pressure surface when the pressure at
sea level is 1014 hPa. The scale height of the atmos-
phere may be taken as 8 km.

Z2 � Z1 � H ln 	p1

p2

 �

RdTv

�0
 ln 	p1

p2



Tv #

�p1

p2

Tv d(ln p)

�p1

p2

d(ln p)
�

�p1

p2

Tv 
dp
p

ln 	p1

p2



Tv

(p1400 km)oxy

(p1400 km)hyd
� 105 exp (�10.6) � 2.5

 � 8.84 � 10�3 km�1

1
Hoxy

�
1

Hhyd
 � 8.84 � 10�6 m�1

Virtual temperature, Tv (K) 

From radiosonde
data

A B

C

E
D

Tv

ln p1

ln p2

ln
 p

Fig. 3.2 Vertical profile, or sounding, of virtual temperature.
If area ABC � area CDE, is the mean virtual temperature
with respect to ln p between the pressure levels p1 and p2.

Tv
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3.2 The Hydrostatic Equation 71

Solution: From the hypsometric equation (3.29)

where p0 is the sea-level pressure and the rela-
tionship has been used.
Substituting into this expression, and
recalling that Zsea level � 0 (Table 3.1), gives

Therefore, with p0 � 1014 hPa, the geopotential height
Z1000 hPa of the 1000-hPa pressure surface is found to
be 112 m above sea level. �

3.2.3 Thickness and Heights of Constant
Pressure Surfaces

Because pressure decreases monotonically with
height, pressure surfaces (i.e., imaginary surfaces on
which pressure is constant) never intersect. It can be
seen from (3.29) that the thickness of the layer
between any two pressure surfaces p2 and p1 is pro-
portional to the mean virtual temperature of the
layer, . We can visualize that as increases, the air
between the two pressure levels expands and the
layer becomes thicker.

Exercise 3.4 Calculate the thickness of the layer
between the 1000- and 500-hPa pressure surfaces
(a) at a point in the tropics where the mean virtual
temperature of the layer is 15 °C and (b) at a point
in the polar regions where the corresponding mean
virtual temperature is �40 °C.

Solution: From (3.29)

Therefore, for the tropics with , �Z �

5846 m. For polar regions with 
. In operational practice, thickness is rounded to

the nearest 10 m and is expressed in decameters (dam).
Hence, answers for this exercise would normally be
expressed as 585 and 473 dam, respectively. �

4730 m
�Z �Tv � 233 K,

Tv � 288 K

�Z � Z500 hPa � Z1000 hPa �
RdTv

�0
 ln 	1000

500 
 � 20.3Tv m

TvTv

Z1000 hPa � 8 (p0 � 1000)

H � 8000
ln (1 � x) � x  for x �� 1

� H ln 	1 �
p0 � 1000

1000 
 � H 	p0 � 1000
1000 


Z1000 hPa � Zsea level � H ln 	 p0

1000


Before the advent of remote sensing of the atmos-
phere by satellite-borne radiometers, thickness was
evaluated almost exclusively from radiosonde data,
which provide measurements of the pressure, tempera-
ture, and humidity at various levels in the atmosphere.
The virtual temperature Tv at each level was calculated
and mean values for various layers were estimated
using the graphical method illustrated in Fig. 3.2. Using
soundings from a network of stations, it was possible to
construct topographical maps of the distribution of
geopotential height on selected pressure surfaces.
These calculations, which were first performed by
observers working on site, are now incorporated into
sophisticated data assimilation protocols, as described
in the Appendix of Chapter 8 on the book Web site.

In moving from a given pressure surface to
another pressure surface located above or below it,
the change in the geopotential height is related geo-
metrically to the thickness of the intervening layer,
which, in turn, is directly proportional to the mean
virtual temperature of the layer. Therefore, if the
three-dimensional distribution of virtual temperature
is known, together with the distribution of geopoten-
tial height on one pressure surface, it is possible to
infer the distribution of geopotential height of any
other pressure surface. The same hypsometric rela-
tionship between the three-dimensional temperature
field and the shape of pressure surface can be used in
a qualitative way to gain some useful insights into the
three-dimensional structure of atmospheric distur-
bances, as illustrated by the following examples.

i. The air near the center of a hurricane is warmer
than its surroundings. Consequently, the intensity
of the storm (as measured by the depression of
the isobaric surfaces) must decrease with height
(Fig. 3.3a). The winds in such warm core lows

Fig. 3.3 Cross sections in the longitude–height plane. The
solid lines indicate various constant pressure surfaces. The
sections are drawn such that the thickness between adjacent
pressure surfaces is smaller in the cold (blue) regions and
larger in the warm (red) regions.
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72 Atmospheric Thermodynamics

always exhibit their greatest intensity near the
ground and diminish with increasing height above
the ground.

ii. Some upper level lows do not extend downward
to the ground, as indicated in Fig. 3.3b. It follows
from the hypsometric equation that these lows
must be cold core below the level at which they
achieve their greatest intensity and warm core
above that level, as shown in Fig. 3.3b.

3.2.4 Reduction of Pressure to Sea Level

In mountainous regions the difference in surface
pressure from one observing station to another is
largely due to differences in elevation. To isolate that
part of the pressure field that is due to the passage of
weather systems, it is necessary to reduce the pres-
sures to a common reference level. For this purpose,
sea level is normally used.

Let the subscripts g and 0 refer to conditions at the
ground and at sea level (Z � 0), respectively. Then, for
the layer between the Earth’s surface and sea level,
the hypsometric equation (3.29) assumes the form

(3.30)

which can be solved to obtain the sea-level pressure

(3.31)

If Z� is small, the scale height can be evaluated
from the ground temperature. Also, if 
the exponential in (3.31) can be approximated by

, in which case (3.31) becomes

(3.32)

Because and , the pres-
sure correction (in hPa) is roughly equal to Z� (in

H �  8000 mp� � 1000 hpa

p0 � p� �  p� 
Z�

H
� p� 	�0Z�

RdTv



1 � Z� � H

Z� � H �� 1,
H

p0 � p� exp 	Z�

H
 � p� exp 	�0Z�

RdT�



Z� � H ln 
p0

p�

meters) divided by 8. In other words, for altitudes up
to a few hundred meters above (or below) sea level,
the pressure decreases by about 1 hPa for every 8 m
of vertical ascent.

3.3 The First Law of
Thermodynamics15

In addition to the macroscopic kinetic and potential
energy that a system as a whole may possess, it also
contains internal energy due to the kinetic and poten-
tial energy of its molecules or atoms. Increases in
internal kinetic energy in the form of molecular
motions are manifested as increases in the tempera-
ture of the system, whereas changes in the potential
energy of the molecules are caused by changes in
their relative positions by virtue of any forces that
act between the molecules.

Let us suppose that a closed system16 of unit mass
takes in a certain quantity of thermal energy q
(measured in joules), which it can receive by thermal
conduction and�or radiation. As a result the system
may do a certain amount of external work w (also
measured in joules). The excess of the energy sup-
plied to the body over and above the external work
done by the body is q � w. Therefore, if there is no
change in the macroscopic kinetic and potential
energy of the body, it follows from the principle of
conservation of energy that the internal energy of
the system must increase by q � w. That is,

(3.33)

where u1 and u2 are the internal energies of the sys-
tem before and after the change. In differential form
(3.33) becomes

(3.34)

where dq is the differential increment of heat
added to the system, dw is the differential element

dq � dw � du

q � w � u2 � u1

15 The first law of thermodynamics is a statement of the conservation of energy, taking into account the conversions between the vari-
ous forms that it can assume and the exchanges of energy between a system and its environment that can take place through the transfer
of heat and the performance of mechanical work. A general formulation of the first law of thermodynamics is beyond the scope of this text
because it requires consideration of conservation laws, not only for energy, but also for momentum and mass. This section presents a sim-
plified formulation that ignores the macroscopic kinetic and potential energy (i.e., the energy that air molecules possess by virtue of their
height above sea level and their organized fluid motions). As it turns out, the expression for the first law of thermodynamics that emerges
in this simplified treatment is identical to the one recovered from a more complete treatment of the conservation laws, as is done in
J. R. Holton, Introduction to Dynamic Meteorology, 4th Edition, Academic Press, New York, 2004, pp. 146–149.

16 A closed system is one in which the total amount of matter, which may be in the form of gas, liquid, solid or a mixture of these
phases, is kept constant.
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