
The theory of thermodynamics is one of the corner-
stones and crowning glories of classical physics. It has
applications not only in physics, chemistry, and the
Earth sciences, but in subjects as diverse as biology
and economics. Thermodynamics plays an important
role in our quantitative understanding of atmos-
pheric phenomena ranging from the smallest cloud
microphysical processes to the general circulation of
the atmosphere. The purpose of this chapter is to
introduce some fundamental ideas and relationships
in thermodynamics and to apply them to a number
of simple, but important, atmospheric situations.
Further applications of the concepts developed in
this chapter occur throughout this book.

The first section considers the ideal gas equation
and its application to dry air, water vapor, and moist
air. In Section 3.2 an important meteorological rela-
tionship, known as the hydrostatic equation, is derived
and interpreted. The next section is concerned with
the relationship between the mechanical work done
by a system and the heat the system receives, as
expressed in the first law of thermodynamics. There
follow several sections concerned with applications of
the foregoing to the atmosphere. Finally, in Section
3.7, the second law of thermodynamics and the con-
cept of entropy are introduced and used to derive
some important relationships for atmospheric science.

3.1 Gas Laws
Laboratory experiments show that the pressure, vol-
ume, and temperature of any material can be related
by an equation of state over a wide range of conditions.

All gases are found to follow approximately the same
equation of state, which is referred to as the ideal gas
equation. For most purposes we may assume that
atmospheric gases, whether considered individually
or as a mixture, obey the ideal gas equation exactly.
This section considers various forms of the ideal gas
equation and its application to dry and moist air.

The ideal gas equation may be written as

pV � mRT (3.1)

where p, V, m, and T are the pressure (Pa), volume
(m3), mass (kg), and absolute temperature (in kelvin,
K, where K � °C � 273.15) of the gas, respectively,
and R is a constant (called the gas constant) for 1 kg
of a gas. The value of R depends on the particular gas
under consideration. Because m�V � �, where � is
the density of the gas, the ideal gas equation may also
be written in the form

p � �RT (3.2)

For a unit mass (1 kg) of gas m � 1 and we may write
(3.1) as

p� � RT (3.3)

where � � 1�� is the specific volume of the gas, i.e.,
the volume occupied by 1 kg of the gas at pressure p
and temperature T.

If the temperature is constant (3.1) reduces to
Boyle’s law,1 which states if the temperature of a
fixed mass of gas is held constant, the volume of the

63

Atmospheric
Thermodynamics

3

1 The Hon. Sir Robert Boyle (1627–1691) Fourteenth child of the first Earl of Cork. Physicist and chemist, often called the “father of
modern chemistry.” Discovered the law named after him in 1662. Responsible for the first sealed thermometer made in England. One of
the founders of the Royal Society of London, Boyle declared: “The Royal Society values no knowledge but as it has a tendency to use it!”
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64 Atmospheric Thermodynamics

gas is inversely proportional to its pressure. Changes
in the physical state of a body that occur at con-
stant temperature are termed isothermal. Also
implicit in (3.1) are Charles’ two laws.2 The first of
these laws states for a fixed mass of gas at constant

pressure, the volume of the gas is directly propor-
tional to its absolute temperature. The second of
Charles’ laws states for a fixed mass of gas held
within a fixed volume, the pressure of the gas is
proportional to its absolute temperature.

The kinetic theory of gases pictures a gas as an
assemblage of numerous identical particles (atoms
or molecules)3 that move in random directions
with a variety of speeds. The particles are assumed
to be very small compared to their average sepa-
ration and are perfectly elastic (i.e., if one of the
particles hits another, or a fixed wall, it rebounds,
on average, with the same speed that it possessed
just prior to the collision). It is shown in the
kinetic theory of gases that the mean kinetic
energy of the particles is proportional to the tem-
perature in degrees kelvin of the gas.

Imagine now a handball court in a zero-gravity
world in which the molecules of a gas are both
the balls and the players. A countless (but fixed)
number of elastic balls, each of mass m and with
mean velocity v, are moving randomly in all direc-
tions as they bounce back and forth between the
walls.7 The force exerted on a wall of the court by
the bouncing of balls is equal to the momentum
exchanged in a typical collision (which is propor-
tional to mv) multiplied by the frequency with

which the balls impact the wall. Consider the
following thought experiments.

i. Let the volume of the court increase while
holding v (and therefore the temperature of
the gas) constant. The frequency of collisions
will decrease in inverse proportion to the
change in volume of the court, and the force
(and therefore the pressure) on a wall will
decrease similarly. This is Boyle’s law.

ii. Let v increase while holding the volume of the
court constant. Both the frequency of
collisions with a wall and the momentum
exchanged in each collision of a ball with a
wall will increase in linear proportion to v.
Therefore, the pressure on a wall will increase
as mv2, which is proportional to the mean
kinetic energy of the molecules and therefore
to their temperature in degrees kelvin.This is
the second of Charles’ laws. It is left as an
exercise for the reader to prove Charles’ first
law, using the same analogy.

3.1 Gas Laws and the Kinetic Theory of Gases: Handball Anyone?

2 Jacques A. C. Charles (1746–1823) French physical chemist and inventor. Pioneer in the use of hydrogen in man-carrying balloons.
When Benjamin Franklin’s experiments with lightning became known, Charles repeated them with his own innovations. Franklin visited
Charles and congratulated him on his work.

3 The idea that a gas consists of atoms in random motion was first proposed by Lucretius.4 This idea was revived by Bernouilli5 in 1738
and was treated in mathematical detail by Maxwell.6

4 Titus Lucretius Carus (ca. 94–51 B.C.) Latin poet and philosopher. Building on the speculations of the Greek philosophers Leucippus
and Democritus, Lucretius, in his poem On the Nature of Things, propounds an atomic theory of matter. Lucretius’ basic theorem is
“nothing exists but atoms and voids.” He assumed that the quantity of matter and motion in the world never changes, thereby anticipating
by nearly 2000 years the statements of the conservation of mass and energy.

5 Daniel Bernouilli (1700–1782) Member of a famous family of Swiss mathematicians and physicists. Professor of botany, anatomy,
and natural philosophy (i.e., physics) at University of Basel. His most famous work, Hydrodynamics (1738), deals with the behavior of
fluids.

6 James Clark Maxwell (1831–1879) Scottish physicist. Made fundamental contributions to the theories of electricity and magnetism
(showed that light is an electromagnetic wave), color vision (produced one of the first color photographs), and the kinetic theory of gases.
First Cavendish Professor of Physics at Cambridge University; designed the Cavendish Laboratory.

7 In the kinetic theory of gases, the appropriate velocity of the molecules is their root mean square velocity, which is a little less than
the arithmetic mean of the molecular velocities.
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3.1 Gas Laws 65

We define now a gram-molecular weight or a mole
(abbreviated to mol) of any substance as the molecu-
lar weight, M, of the substance expressed in grams.8

For example, the molecular weight of water is 18.015;
therefore, 1 mol of water is 18.015 g of water. The
number of moles n in mass m (in grams) of a
substance is given by

(3.4)

Because the masses contained in 1 mol of different
substances bear the same ratios to each other as the
molecular weights of the substances, 1 mol of any
substance must contain the same number of mole-
cules as 1 mol of any other substance. Therefore, the
number of molecules in 1 mol of any substance is a
universal constant, called Avogadro’s9 number, NA.
The value of NA is 6.022 � 1023 per mole.

According to Avogadro’s hypothesis, gases contain-
ing the same number of molecules occupy the same
volumes at the same temperature and pressure. It
follows from this hypothesis that provided we take
the same number of molecules of any gas, the con-
stant R in (3.1) will be the same. However, 1 mol
of any gas contains the same number of molecules as
1 mol of any other gas. Therefore, the constant R in
(3.1) for 1 mol is the same for all gases; it is called the
universal gas constant (R*). The magnitude of R* is
8.3145 J K�1 mol�1. The ideal gas equation for 1 mol
of any gas can be written as

pV � R*T (3.5)

and for n moles of any gas as

pV � nR*T (3.6)

The gas constant for one molecule of any gas is also a
universal constant, known as Boltzmann’s10 constant, k.

n �
m
M

Because the gas constant for NA molecules is R*, we
have

(3.7)

Hence, for a gas containing n0 molecules per unit
volume, the ideal gas equation is

p � n0kT (3.8)

If the pressure and specific volume of dry air (i.e.,
the mixture of gases in air, excluding water vapor)
are pd and �d, respectively, the ideal gas equation in
the form of (3.3) becomes

pd �d � RdT (3.9)

where Rd is the gas constant for 1 kg of dry air. By
analogy with (3.4), we can define the apparent
molecular weight Md of dry air as the total mass (in
grams) of the constituent gases in dry air divided by
the total number of moles of the constituent gases;
that is,

(3.10)

where mi and Mi represent the mass (in grams) and
molecular weight, respectively, of the ith constituent
in the mixture. The apparent molecular weight of dry
air is 28.97. Because R* is the gas constant for 1 mol
of any substance, or for Md (� 28.97) grams of dry
air, the gas constant for 1 g of dry air is R*�Md, and
for 1 kg of dry air it is

(3.11)

Rd � 1000 
R*
Md

� 1000 
8.3145
28.97

� 287.0 J K�1 kg�1

Md �
�

i
mi

�
i

mi

Mi

k �
R*
NA

8 In the first edition of this book we defined a kilogram-molecular weight (or kmole), which is 1000 moles. Although the kmole is
more consistent with the SI system of units than the mole, it has not become widely used. For example, the mole is used almost universally
in chemistry. One consequence of the use of the mole, rather than kmole, is that a factor of 1000, which serves to convert kmoles to moles,
appears in some relationships [e.g. (3.11) and (3.13) shown later].

9 Amedeo Avogadro, Count of Quaregna (1776–1856) Practiced law before turning to science at age 23. Later in life became a profes-
sor of physics at the University of Turin. His famous hypothesis was published in 1811, but it was not generally accepted until a half cen-
tury later. Introduced the term “molecule.”

10 Ludwig Boltzmann (1844–1906) Austrian physicist. Made fundamental contributions to the kinetic theory of gases. Adhered to the
view that atoms and molecules are real at a time when these concepts were in dispute. Committed suicide.
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66 Atmospheric Thermodynamics

The ideal gas equation may be applied to the indi-
vidual gaseous components of air. For example, for
water vapor (3.3) becomes

e�v � RvT (3.12)

where e and �v are, respectively, the pressure and
specific volume of water vapor and Rv is the gas con-
stant for 1 kg of water vapor. Because the molecular
weight of water is Mw (� 18.016) and the gas con-
stant for Mw grams of water vapor is R*, we have

(3.13)

From (3.11) and (3.13),

(3.14)

Because air is a mixture of gases, it obeys Dalton’s11

law of partial pressures, which states the total pressure
exerted by a mixture of gases that do not interact
chemically is equal to the sum of the partial pressures
of the gases. The partial pressure of a gas is the pres-
sure it would exert at the same temperature as the
mixture if it alone occupied all of the volume that the
mixture occupies.

Exercise 3.1 If at 0 °C the density of dry air alone is
1.275 kg m�3 and the density of water vapor alone is
4.770 � 10�3 kg m�3, what is the total pressure
exerted by a mixture of the dry air and water vapor
at 0 °C?

Solution: From Dalton’s law of partial pressures,
the total pressure exerted by the mixture of dry air
and water vapor is equal to the sum of their partial
pressures. The partial pressure exerted by the dry air
is, from (3.9),

pd �
1

�d
 RdT � �dRdT

Rd

Rv
�

Mw

Md
 � � � 0.622

Rv � 1000 
R*
Mw

� 1000 
8.3145
18.016

� 461.51 J K�1 kg�1

where �d is the density of the dry air (1.275 kg m�3 at
273 K), Rd is the gas constant for 1 kg of dry air
(287.0 J K�1 kg�1), and T is 273.2 K. Therefore,

Similarly, the partial pressure exerted by the water
vapor is, from (3.12),

where �v is the density of the water vapor (4.770 �

10�3 kg m�3 at 273 K), Rv is the gas constant for 1 kg
of water vapor (461.5 J K�1 kg�1), and T is 273.2 K.
Therefore,

Hence, the total pressure exerted by the mixture of
dry air and water vapor is (999.7 � 6.014) hPa or
1006 hPa. �

3.1.1 Virtual Temperature

Moist air has a smaller apparent molecular weight
than dry air. Therefore, it follows from (3.11) that
the gas constant for 1 kg of moist air is larger than
that for 1 kg of dry air. However, rather than use a
gas constant for moist air, the exact value of which
would depend on the amount of water vapor in
the air (which varies considerably), it is convenient
to retain the gas constant for dry air and use a
fictitious temperature (called the virtual tempera-
ture) in the ideal gas equation. We can derive an
expression for the virtual temperature in the fol-
lowing way.

Consider a volume V of moist air at temperature T
and total pressure p that contains mass md of dry air
and mass mv of water vapor. The density � of the
moist air is given by

� �
md � mv

V
 � �	d � �	v

e � 601.4 Pa � 6.014 hPa

e �
1
�v

 RvT � �vRvT

pd � 9.997 � 104Pa � 999.7 hPa

11 John Dalton (1766–1844) English chemist. Initiated modern atomic theory. In 1787 he commenced a meteorological diary
that he continued all his life, recording 200,000 observations. Showed that the rain and dew deposited in England are equivalent
to the quantity of water carried off by evaporation and by the rivers. This was an important contribution to the idea of a
hydrological cycle. First to describe color blindness. He “never found time to marry!” His funeral in Manchester was attended by
40,000 mourners.
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3.2 The Hydrostatic Equation 67

where �	d is the density that the same mass of dry air
would have if it alone occupied all of the volume V
and �	v is the density that the same mass of water
vapor would have if it alone occupied all of the vol-
ume V. We may call these partial densities. Because
� � �	d � �	v, it might appear that the density of
moist air is greater than that of dry air. However, this
is not the case because the partial density �	v is less
than the true density of dry air.12 Applying the ideal
gas equation in the form of (3.2) to the water vapor
and dry air in turn, we have

and

where e and p	d are the partial pressures exerted by
the water vapor and the dry air, respectively. Also,
from Dalton’s law of partial pressures,

Combining the last four equations

or

where � is defined by (3.14). The last equation may
be written as

(3.15)

where

(3.16)Tv � 
T

1 �
e
p

 (1 � �)
 

p � �RdTv

� �
p

RdT
  [1 �

e
p

 (1 � �)]

� �
p � e
RdT

�
e

RvT

p � p	d � e

p	d � �	dRdT

e � �	vRvT

Tv is called the virtual temperature. If this fictitious
temperature, rather than the actual temperature, is
used for moist air, the total pressure p and density �
of the moist air are related by a form of the ideal gas
equation [namely, (3.15)], but with the gas constant
the same as that for a unit mass of dry air (Rd) and
the actual temperature T replaced by the virtual tem-
perature Tv. It follows that the virtual temperature is
the temperature that dry air would need to attain in
order to have the same density as the moist air at the
same pressure. Because moist air is less dense than
dry air at the same temperature and pressure, the
virtual temperature is always greater than the
actual temperature. However, even for very warm
and moist air, the virtual temperature exceeds the
actual temperature by only a few degrees (e.g., see
Exercise 3.7 in Section 3.5).

3.2 The Hydrostatic Equation
Air pressure at any height in the atmosphere is due
to the force per unit area exerted by the weight of all
of the air lying above that height. Consequently,
atmospheric pressure decreases with increasing
height above the ground (in the same way that the
pressure at any level in a stack of foam mattresses
depends on how many mattresses lie above that
level). The net upward force acting on a thin horizon-
tal slab of air, due to the decrease in atmospheric
pressure with height, is generally very closely in bal-
ance with the downward force due to gravitational
attraction that acts on the slab. If the net upward
force on the slab is equal to the downward force on
the slab, the atmosphere is said to be in hydrostatic
balance. We will now derive an important equation
for the atmosphere in hydrostatic balance.

Consider a vertical column of air with unit hori-
zontal cross-sectional area (Fig. 3.1). The mass of air
between heights z and z � 
z in the column is �
z,
where � is the density of the air at height z. The
downward force acting on this slab of air due to the
weight of the air is ��
z, where � is the acceleration
due to gravity at height z. Now let us consider the net

12 The fact that moist air is less dense than dry air was first clearly stated by Sir Isaac Newton13 in his “Opticks” (1717). However, the
basis for this relationship was not generally understood until the latter half of the 18th century.

13 Sir Isaac Newton (1642–1727) Renowned English mathematician, physicist, and astronomer. A posthumous, premature (“I could
have been fitted into a quart mug at birth”), and only child. Discovered the laws of motion, the universal law of gravitation, calculus, the
colored spectrum of white light, and constructed the first reflecting telescope. He said of himself: “I do not know what I may appear to the
world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother
pebble or a prettier shell than ordinary, while the great ocean of truth lay all undiscovered before me.”
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