Señales aleatorias y modulación Examen - Parte II

Instituto de Ingeniería Eléctrica

28 de julio de 2021

Indicaciones:

- La prueba tiene una duración total de 3 horas.
- Cada hoja entregada debe indicar nombre, número de C.I., y número de hoja. La hoja 1 debe indicar además el total de hojas entregadas.
- Se deberá utilizar únicamente un lado de las hojas.
- Cada problema o pregunta se deberá comenzar en una hoja nueva. Se evaluará explícitamente la claridad, prolijidad y presentación de las soluciones, desarrollos y justificaciones.
- Pueden utilizarse resultados teóricos del curso sin hacer su deducción siempre que la letra no lo exija explícitamente. Se evaluará la correcta formulación y validez de hipótesis.

Problema 2

Una señal de voz x(t) de rango dinámico [-1,1], potencia $S_x=3\ Watts$ y ancho de banda $W=3,4\ kHz$ es muestreada a una frecuencia $f_s=8\ kHz$. La señal se transmite por un canal ideal (que no introduce ruido ni distorsiona la señal) utilizando un sistema PCM (Pulse-code modulation) binario, con cuantificación uniforme de ancho q y codificación de n bits. Las siguientes figuras representan el diagrama de bloques del sistema.

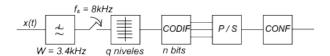


Fig 1. Transmisor.

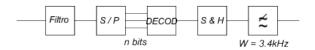


Fig 2. Receptor.

Se desea diseñar el sistema mas simple que permita recibir la señal con una SNR_D de 60 dB.

- (a) Determinar los parámetros de funcionamiento del sistema $(q \ y \ n)$. Dar criterios de elección de los mismos. (Asumir que se cumple el modelo simplificado del ruido de cuantificación)
- (b) ¿Bajo qué hipótesis el modelo anterior es válido?

Suponer ahora que el codificador es de 8 bits.

(c) ¿Qué modificación de diseño puede hacerse para cumplir con el requerimiento de SNR_D ? ¿Se tiene alguna desventaja?.

La señal binaria transmitida por el canal es una PAM con pulso conformador $\Pi(t)$ rectangular de ancho $T=1/(nf_s)$, para el bit '1' se envía $A\Pi(t)$ y para el bit '0' $-A\Pi(t)$. La probabilidad de transmitir un '1' es p. Considerar ahora que el canal introduce ruido que se puede modelar como blanco, aditivo, gaussiano, con una densidad espectral de potencia $\eta/2$ y que el ruido de cuantificación es despreciable. En el instante de muestreo la amplitud de la señal recibida es A_R .

- (d) Esbozar el espectro de la señal conformada para una probabilidad p genérica. ¿Cómo afecta p la forma del espectro?
- (e) Deducir una expresión para la probabilidad de error P_e , suponiendo un filtro de recepción LPF de ancho de banda B_T , para p cualquiera. Suponer que el filtro de recepción no distorsiona los pulsos recibidos.
- (f) Diseñar el filtro de recepción óptimo que maximiza la SNR en detección. ¿Cómo cambiaría el diseño del receptor si el ruido no es blanco y tiene una $S_N(f)$ dada? Interpretar el resultado.

Pregunta 2

Procesos Estocásticos.

- 1. Definir un proceso estocástico en sentido estricto (SSS) y en sentido amplio (WSS).
- 2. Enunciar y detallar la hipótesis del teorema de ergodicidad en media cuadrática. Dar al menos dos condiciones necesarias y suficientes para que se cumpla.

Solución

Problema 2

(a) Para poder garantizar un valor dado de SNR_D (que tomaremos igual a SNR_D^*), se deberá cumplir que:

$$SNR_D^* \le \frac{6S_x f_s}{q^2 W} \Rightarrow q \le \sqrt{\frac{6S_x f_s}{SNR_D^* W}}$$

Como se debe cumplir que $2/q \le 2^n$, luego se tiene que:

$$n \ge \log_2(2/q) = \log_2\left(\sqrt{\frac{\mathrm{SNR}_D^*}{3S_x} \cdot \frac{2W}{f_s}}\right)$$

Dado que n debe ser un número natural, se desprende que el valor de n es $\left[\log_2\left(\sqrt{\frac{\mathrm{SNR}_D^*}{3S_x}}.\frac{2W}{f_s}\right)\right]=9.$

- (b) Ver teórico.
- (c) Se puede sobremuestrear la señal. Si $f_s = 16$ kHz, n = 8. Como contrapartida la tasa de transmisión de la señal transmitida por el canal aumenta al doble.
- (d) La señal conformada, $x_c(t)$, es una señal PAM, por lo que su espectro es de la forma:

$$S_{x_c}(f) = \frac{\sigma_x^2 |P(f)|^2}{T} + \frac{m_x^2}{T^2} \sum_{k=-\infty}^{+\infty} \left| P\left(\frac{k}{T}\right) \right|^2 \delta\left(f - \frac{k}{T}\right)$$

donde:

$$m_x = A \cdot p + (-A) \cdot (1-p) = A \cdot (2p-1)$$

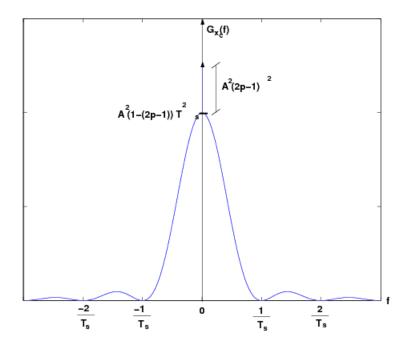
$$\sigma_x^2 = R_x[0] - m_x^2 = A^2 \cdot p + (-A)^2 \cdot (1-p) - A^2 (2p-1)^2 = A^2 (1 - (2p-1)^2)$$

$$|P(f)|^2 = T^2 sinc^2 (fT)$$

De la forma de $|P(f)|^2$ se desprende que $|P(k/T)|^2=T^2$ si k=0, y $|S(k/T)|^2=0$ en otro caso (considerando k entero). Por lo tanto, la densidad espectral de potencia de la señal conformada queda:

$$\begin{array}{lcl} S_{x_c}(f) & = & \frac{A^2(1-(2p-1)^2)}{T}T^2sinc^2(fT) + \frac{A^2(2p-1)^2}{T^2}T^2\delta(f) \\ & = & A^2(1-(2p-1)^2)Tsinc^2(fT) + A^2(2p-1)^2\delta(f) \end{array}$$

Esta función tiene la forma:



El valor de p afecta a los valores de m_x y σ_x . Específicamente, si p=1/2, entonces $m_x=0$ y no se tiene una delta en f=0 en el espectro, la cual no aportaba información. Esto es deseable ya que permite ahorrar potencia de transmisión, que antes era emitida pero no aprovechada. Con este valor de p, $S_{x_c}(f) = A^2 T sinc^2(fT)$.

(e) En recepción lo que se tiene son dos campanas gaussianas centradas en A_R y $-A_R$, de ancho σ y ponderadas por p y (1-p).

Si V es el umbral de decisión, entonces:

$$P_e = p.Q\left(\frac{A_R - V}{\sigma}\right) + (1 - p).Q\left(\frac{-A_R + V}{\sigma}\right)$$

Como $\sigma^2 = \eta B_T$, entonces $\sigma = \sqrt{\eta B_T}$, y por lo tanto:

$$P_e = p.Q\left(\frac{A_R - V}{\sqrt{\eta B_T}}\right) + (1 - p).Q\left(\frac{-A_R + V}{\sqrt{\eta B_T}}\right)$$

(f) El filtro óptimo es el filtro apareado:

$$H(f) = k.P^*(f).e^{-j2\pi f t_d}$$

donde k es una constante arbitraria y t_d es elegido de forma tal que el filtro sea causal (en este caso, debe cumplirse $t_d \ge T$).

Si ahora el ruido es gaussiano pero no blanco, el filtro queda de la forma $H(f) = \frac{k' \cdot P^*(f) \cdot e^{-j2\pi f t_d}}{G_n(f)}$. Se puede apreciar que este filtro realiza un de-énfasis en aquellas frecuencias en las que está presente el ruido, mientras que enfatiza las frecuencias en las que está presente el pulso.

Pregunta