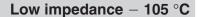
Examen de Electrónica de Potencia

10 de diciembre de 2019

Problema 1 (55 puntos)

Se dispone de un convertidor simétrico Push – Pull para alimentar una carga de 20 A en 65 Vcc a partir de una tensión que puede disminuir hasta los 42 Vcc. Está implementado con una inductancia de 150 μ H, tiene un rizado de tensión de salida menor al 1% y debe funcionar en Modo de Conducción Continua para toda corriente de salida mayor a 2 A. El control PWM de comando de las llaves es de 20 kHz con dos salidas alternadas para comandar las llaves que permite un ciclo de trabajo máximo de 0,45 (se deberá utilizar al máximo).

- a) Calcular la relación de vueltas (n1/n2) del transformador del convertidor.
- b) Determine la evolución de la corriente en el límite de conducción continua en función de la tensión de entrada del convertidor. ¿Cuál debería ser la tensión máxima de funcionamiento del convertidor?
- c) Seleccionar el condensador de salida del convertidor de la tabla de condensadores que se adjunta.
- d) Dibujar las formas de onda de corriente y tensión sobre las llaves y corriente por los diodos del convertidor cuando funciona a plena carga y tensión de entrada 48 V.


Problema 2 (45 puntos)

Sea un inversor monofásico compuesto por dos ramas inversoras que se alimenta de una fuente de continua de valor E. Se considerará que su carga es asimilable a una fuente de corriente puramente sinusoidal que está en fase con la componente fundamental de la tensión.

- a) Dibuje el circuito.
- b) Explique en qué consiste el control del inversor por desfasaje de ondas y cómo se puede aplicar para que el valor rms de la fundamental de la salida sea máximo. Calcule este valor.
- c) Calcule el desfasaje que se debe imponer para eliminar el tercer armónico en la tensión de salida. En estas condiciones calcule el valor rms de la fundamental.
- d) Dibuje la forma de onda de los comandos de las llaves, la tensión de salida y la corriente por cada elemento del inversor para el desfasaje de la parte anterior.

B41858

Technical data and ordering codes

$\overline{C_R}$	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	$d \times I$	-40 °C	20 °C	20 °C	105 °C	below)
μF	mm	Ω	Ω	Ω	mA	
V _R = 100 V DC						
22	8 × 11.5	12.219	1.222	1.114	205	B41858C9226M***
33	10 × 16	6.542	0.654	0.589	357	B41858C9336M***
47	10 × 20	3.688	0.461	0.423	460	B41858C9476M***
100	12.5×20	3.048	0.305	0.281	647	B41858C9107M***
120	12.5×25	2.038	0.204	0.188	864	B41858C9127M***
180	12.5×30	1.732	0.173	0.159	1009	B41858C9187M***
180	16 × 20	1.313	0.131	0.122	1119	B41858D9187M***
220	16 × 25	0.985	0.099	0.091	1402	B41858C9227M***
270	12.5×40	1.314	0.131	0.121	1309	B41858C9277M***
270	18 × 20	1.260	0.126	0.119	1220	B41858D9277M***
330	16 × 31.5	0.973	0.097	0.090	1546	B41858C9337M***
330	18 × 25	1.008	0.101	0.095	1477	B41858D9337M***
390	18 × 31.5	0.720	0.072	0.068	1907	B41858C9397M***
470	18 × 35	0.679	0.068	0.063	2061	B41858C9477M***
560	18 × 35	0.679	0.068	0.063	2061	B41858C9567M***
680	18 × 40	0.438	0.044	0.042	2683	B41858C9687M***

Composition of ordering code

*** = Version

000 = for standard leads, bulk

001 = for kinked leads, bulk (for $d \times I = 10 \times 20 \text{ mm} \dots 18 \times 40 \text{ mm}$, excluding $12.5 \times 30/40 \text{ mm}$)

002 = for cut leads, bulk (for \emptyset 10 ... 18 mm, excluding d \times I = 12.5 \times 30/40 mm)

 $003 = \text{ for crimped leads, blister (for } \emptyset 16 \dots 18 \text{ mm)}$

004 = for J leads, blister (for \varnothing 10 ... 18 mm, excluding d × I = 12.5 × 30/40 and 18 × 40 mm)

006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for \emptyset 8 mm)

008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 8 \times 11.5 \dots 12.5 \times 25 \text{ mm}$)

009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times I = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)

 $012 = \text{ for bent } 90^{\circ} \text{ leads, blister (for } \emptyset 16 \dots 18 \text{ mm)}$