Teoría de Lenguajes

Consideraciones generales

- i) Escriba nombre y C.I. en todas las hojas.
- ii) Numere todas las hojas.
- iii) En la primera hoja indique el total de hojas.
- iv) Comience cada ejercicio en una hoja nueva.
- v) Utilice las hojas de un solo lado.
- vi) Entregue los ejercicios en orden.

Ejercicio 1 [8 puntos]

Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique adecuadamente cada respuesta.

- a) Si un lenguaje L_a tiene 4 clases según la relación R_L con la definición de R_L vista en el curso L_a no necesariamente es regular.
- b) En las propiedades de clausura de los lenguajes regulares está probado que son cerrados bajo la operación de unión. Por tanto se puede afirmar que la unión infinita de lenguajes regulares es regular.
- c) Sea L_c un lenguaje regular. Sea L_c' el lenguaje resultado de eliminar un subconjunto finito de tiras del lenguaje L_c . Entonces L_c' puede no ser regular.
- d) En las propiedades de clausura de los lenguajes regulares está probado que son cerrados bajo la operación de homomorfismo. Sea \boldsymbol{h} un homomorfismo y L_d un lenguaje cualquiera. Entonces si \boldsymbol{h} (L_d) es regular, L_d es regular.

Ejercicio 2 [8 puntos]

a) Construya una máquina de Mealy M: (Q, Σ , Δ , δ , λ , q0), con Σ = {0,1}, y Δ = {a,b} tal que dada una entrada \boldsymbol{x} formada por secuencias de 0's y 1's emita una salida \boldsymbol{y} que verifique las siguientes condiciones:

$$| \boldsymbol{y} |_{a} = \lfloor | \boldsymbol{x} |_{0} / 2 \rfloor$$

 $| \boldsymbol{y} |_{b} = \lfloor | \boldsymbol{x} |_{1} / 3 \rfloor$

Eiemplos:

Entrada	Salida
00011101111	abab
00110100010	abaa
11000	а
0101010	aba
1	ε

b) Construya un autómata determinista mínimo para el lenguaje dado por la expresión regular **b*a (a | bba)***. Justifique su razonamiento.

Ejercicio 3 [14 puntos]

Sea el siguiente lenguaje

$$L_3 = \{ \ a^p b^m \# b^t \ / \ m = q + r + s \ ; \ p > r \geq 0 \ ; \ q \geq t \geq 0 \ ; \ s > 0 \ \}$$

- a) Clasifique L₃ según la Jerarquía de Chomsky. Justifique.
- b) Construya una gramática G_3 simplificada tal que $L_3 = L(G_3)$. Justifique por qué está simplificada.
- c) Construya un autómata M_3 tal que $L_3 = L(M_3)$. ¿Es determinista? Justifique.

Ejercicio 4 [10 puntos]

Sea el lenguaje $L_4=\{\ x=0^k1^kw\ /\ |w|=2^kk,\ k\ge 0\ ;\ w\in\{0,1\}^*\ \}\$ que no es libre de contexto.

- a) Construya una gramática $G_4 / L_4 = L(G_4)$.
- b) Construya un autómata $M_4 / L_4 = L(M_4)$.