Teoría de Lenguajes

Duración: 3hs.

Consideraciones generales

- Coloque su CI arriba a la izquierda de la 1er hoja.
- En el resto de las hojas, coloque: su nombre, su CI y la cantidad de hojas que entrega.
- iii) Numere todas las hojas.
- Comience cada ejercicio en una hoja nueva. iv)
- v) Utilice las hojas de un solo lado.
- Entregue los ejercicios en orden.

Ejercicio 1 [12 puntos]

- a) Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique adecuadamente cada respuesta.
 - i) $L_1 = \{w \mid w \text{ es una palabra en español}\}\$ es un lenguaje Libre de Contexto.
 - ii) Existe una Máquina de Turing $M_1 / L_1 = L(M_1)$; siendo L_1 el lenguaje de la parte i).
 - iii) Si L_2 y L_3 son finitos, distintos y $L_2 \subseteq \Sigma^*$, $L_3 \subseteq \Sigma^*$ entonces $L_2^c \cap L_3^c$ es finito.
 - iv) Si L_4 y L_5 son libres de contexto NO regulares y distintos, entonces $L_4 \cup L_5$ puede ser regular.
 - v) Si L_6 y L_7 son NO regulares, distintos y $L_6, L_7 \subseteq \Sigma^*$, entonces $L_6 \cap L_7$ puede ser regular.
 - vi) Si L_6 y L_7 son NO regulares, distintos y $L_6, L_7 \subseteq \Sigma^*$, entonces $L_6 \cap L_7$ puede no ser regular.
- b) Construya un AFD-2cintas que reconozca $L_b = \{(a^k b^t c^{2s}, ab^p c^s), con k>0, p<t, s>0\}$

Ejercicio 2 [18 puntos]

Sea el siguiente lenguaje $L_2 = \{x \mid x \text{ es de la forma } \#a^{k+j}\#b^p\#c^{2k+p}\# \text{ con } k,p>0 \ j\geq 0 \ \}$

- a) Clasifique L₂ según la Jerarquía de Chomsky. Justifique.
- b) Construya una gramática $G_2 / L(G_2) = L_2$.
- c) Construya un autómata $M_2 / L(M_2) = L_2$. ¿Es determinista? Justifique.

Ejercicio 3 [10 puntos]

Sea una función $f: \{1,0\}^* \rightarrow a^* / f(w) = x$ siendo w la representación binaria de un entero $n \ge 1$ (sin ceros no significativos), y x es una tira de a's de manera que |x| sea ese número binario.

Ejemplos:

```
1 \rightarrow a
  101 → aaaaa
1000 \rightarrow aaaaaaaa
```

Construya una MT que compute la función f.

Nota: Se recuerda que en la configuración final de la MT, en la cinta sólo debe quedar x