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Worldwide aspects of solar radiation impact

Any thermal state can be modeled as a system subjected to cyclic flows of mass and energy. The 
earth is a sphere almost smooth, slightly flattened at the poles, which rotates around the sun in 
a slightly elliptical path. This is the largest thermal system that we have to deal with, the one 
that determines all the others: territory, city, building, machinery, plant or animal. 

Global energy budget at the Earth level

The distance between the earth and the sun is about 150 millions of kilometers (1 AU: 
Astronomical Unit) and the radius of the earth is approximately 6370 km. The earth rotates on 
itself in just less than 24 hours (1 day), and around the sun in the ecliptic plane, with a period of 
about 365.25 days. The axis of the first rotation (which defines the two poles) is tilted 23.5 
degrees relative to the normal to the ecliptic plane. This obliquity determines the peculiar 
tropical latitudes (23.5 ° with respect to the equator) and the polar circles (23.5 ° with respect to 
the poles, and thus 66.5 ° from the equator).

The surface of the sun behaves approximately like a blackbody with a temperature of 5780 K. By 
the Stefan-Boltzmann law, we deduce that a unit area located at the distance of 1 AU, set 
perpendicular to the sunray, intercepts a power of 1367 W/m2. The emitted spectrum has its 
maximum to 500 nm (wavelength of yellow perceived by the human eye) and is divided almost 
equally in visible light and near infrared (λ < μ 4), with a small amount of ultraviolet.



The solar constant (1367 W/m2) is equivalent to the average irradiance that can be captured in 
the vicinity of the earth. It varies from about 6.9% during the year due to the elliptic shape of 
the earth's orbit (1412 W/m² in early January to 1321 W/m² in July) and very little in the long 
term. Atmospheric absorption and inclination of the receiving surface relative to the direction of 
radiation generate significant weakening.

To deduce the average solar illumination of the planet, at the top of the atmosphere, it is 
sufficient to consider that the sun sees the earth as a disk, irradiated at a rate of 1367 W/m2, but 
that radiation actually reaches a sphere of same radius, and thus a four times larger area. The 
average sunshine is therefore 342 W/m2. It is understood that it is not uniform – the equator 
receives more than the poles – but this value is used to describe an average annual radiation 
balance for the entire earth-atmosphere system.



The top of the atmosphere receives, therefore, 
342 W/m2. For clarity of reasoning, all flows are 
expressed as percentages of this value. Over the 
year, the same amount of energy that comes 
from the sun must be lost to space by the earth-
atmosphere system (EA). The clouds reflect back 
into space about 23% of the incoming flow and 
absorb about 23%, the remaining half reaches 
the earth's surface, which reflects about 7% of 
the flow and absorbs the remaining 47%. 

In total, 30% of the flux is reflected and therefore 
does not take part in the energy balance of the 
EA system. The atmosphere, which absorbs only 
a quarter of the flow, can be considered as semi-
transparent to shortwave solar radiation, and is 
therefore not heated by it. In contrast, almost 
half of the flux is absorbed at the surface of the 
earth.



The earth has an average temperature of 
about 288 K. It therefore emits in long waves 
(λ > 4μ); for this region of the spectrum, it 
behaves almost like a blackbody: snow, water, 
vegetation or rock have an emissivity almost 
unitary in the far infrared.

Earth's surface emits more in the range of long 
wave (116%) than it receives in the shortwave 
range above the atmosphere, because it also 
receives long wave of the atmosphere, in fact, 
only a small part of its emission escapes into 
space, while most is absorbed by the 
atmosphere (104%). The atmosphere radiates 
into space in longer wavelengths (70%) and to 
the surface of the Earth (97.4%), with a total of 
167.4%.

In total, the EA system is in radiative equilibrium, since the solar irradiation (100%) is equal to 
the sum of shortwave reflection (30%) and long-wave emission of the earth and atmosphere 
(70%).



In contrast, the sub-systems consisting of the 
earth and the atmosphere are not in 
equilibrium. The earth's surface receives 47% 
of the shortwave radiation, but its emission in 
long wave is only 18.6% (116% to the 
atmosphere, from which it receives 97.4% 
back). All wavelengths combined, the earth has 
a positive balance of 28.4%.

The atmosphere, however, wins 23% by 
absorption of clouds and constituents, but 
loses 51.4% in the long waves (it absorbs 104% 
of the terrestrial surface, but emits 97.4 + 58 = 
155.4% to space and surface of the earth). The 
balance of atmospheric subsystem is negative: 
- 28.4%.

Convection carries the excess energy from the 
earth's surface to the atmosphere, in the 
following proportions: 5% as sensible heat and 
23.4% as latent heat. Note finally that the heat 
conduction in the soil does not get involved, 
because the net storage of heat in the earth's 
surface does not vary over the annual period.



All these data are shown in more details in Table 1 from reference [TRE 09]. 

They are reproduced in W/m
2
 and percentages. Their examination shows that the 

record is not entirely accurate: there is a slight excess of radiation absorbed by the 

earth equal to 0.9 W/m
2
. 

Table 1. Average rate of radiative exchanges 

Trenberth et al. W/m2 % 

Incoming solar radiation 341.3 100 

Reflected solar radiation (a + b) 101.9 30. 

a) Reflected by clouds and atmosphere  79 23.1 

b) Reflected by surface 23 6.75 

Absorbed by surface 161 47.2 

Absorbed by atmosphere 78 22.9 

Thermals (sensible) 17 5 

Latent heat 80 23.4 

Surface radiation 396 116 

Surface radiation to atmosphere 356 104 

Surface radiation to sky 40 11.7 

Outgoing longwave radiation 238.5 70 

Emitted by atmosphere (and clouds) 169+30 58.3 

Back radiation 333 97.6 

 



The distribution of solar radiation on Earth's surface  

Solar radiation reaches the earth with a variable incidence (angle between the solar ray and 
the normal to the earth's surface). This incidence increases as one moves away from the earth 
- sun axis by going to the edge of the sphere. Because the axis of rotation of the earth is tilted 
on its orbit around the sun, the earth - sun axis moves during the year, its position varies 
between the two tropics.

The sun crosses the zenith a few days per year for all points between the tropics. The further 
away from the equator, the sun drops over the horizon, and increases the contrast between 
summer and winter. At the poles, there is only one day and one night that share the year.



By calculating the irradiance on a horizontal plane at the top of the atmosphere 

as a function of latitude, we obtain the results summarized in Fig. 1. [PET 06].  They 

correspond to the solar constant of 1367 W/m
2
. The calculation is based on the 

actual elliptical orbit of the earth (see Chapter 10). Note that the average daily 

irradiance is much greater during the southern summer than during the northern 

summer. This is because the earth passes closer to the sun earlier in the year than at 

the beginning of July. The irradiance varies inversely as the square of the distance, 

that is to say, in the ratio of 1.07 (Fig. 1). 

 

Fig. 1. Average daily solar irradiance (W/m
2
) above the atmosphere as a function of latitude 

during the solstices and on average over the year 

It should be noted that the result in Fig. 1 is not valid at ground level, because, 

even during a sunny day, the atmosphere produces an attenuation of solar radiation 

which depends on the orientation of the solar ray and therefore on the length of its 

path through the atmosphere [CAM 98]. 



2.1. Consequence of the unequal distribution of sunshine 

The earth is surrounded by an atmosphere whose composition 
varies with altitude. There are several layers. The lowest is called 
the troposphere. Its thickness is on average equal to 12 km, but 
it reaches 15-20 km between the tropics and only 7-10 km at the 
poles [WAU 00, MON 07].

The non uniform distribution of solar radiation causes 
atmospheric advection currents that tend to balance important 
air masses [WAL 06]. Hotter zones near the equator give rise to 
significant thermals that reach the limits of the troposphere 
where the air is pushed northward or southward. Indeed, in the 
region between the tropics, annual average irradiance at the top 
of the atmosphere is nearly 30% higher than at latitude of 40 °
and 50% higher than at latitude 50 °.

The air mass gradually cools as it moves poleward. In the 
absence of other phenomena, one could imagine an upper flow 
from the equator to the poles and a return toward the equator 
in the lower layers of the atmosphere (Hadley cell). This 
situation is observed on the planet Venus, where there is a 
single Hadley cell in each hemisphere.



2.2. Effect of Earth rotation 

Because of the influence of earth rotation, which deflects the atmospheric 

motions clockwise in the northern hemisphere and anticlockwise in the southern 

hemisphere, the movement is more complex and takes place on the basis of the tri-

cellular atmospheric model [WAU 00]. 

 

 

Fig.1. Tri-cellular model of atmospheric circulation 



The deviation caused by the Coriolis force is easily explained. First note that the 
tangential velocity of a point on the earth is oriented from west to east. On the 
equator, it is equal to 40000 km / 24 h = 1666 km/h or 463 m/s (faster than the speed 
of sound: 340 m/s at sea level). This speed varies with latitude α, it is equal to vequator
cos α (at 60 ° latitude, it is thus equal to half its value on the equator).

In the northern hemisphere, the tangential velocity of a point on the earth therefore 
decreases as one travels northward. However, the airstream will keep the same 
speed, implying that the earth is behind the movement and that air moves eastward 
(right) in the terrestrial frame. While traveling north-south, the air stream is delayed, 
since the linear velocity of the soil increases, so the stream deflects westward (right). 
In the southern hemisphere, the phenomenon is reversed.



The terrestrial sphere is subjected to regimes of low pressure at the equator and 
parallels 60 ° north and south. High pressures are present at parallels 30 ° and in the 
northern and southern poles as well. Warm air rises in the equatorial low pressure 
zone, and then it cools as it moves at higher altitudes to the north. It goes down 
into areas of high pressure located just north of the tropic and returns toward the 
equator as trade winds. Except in the equatorial zone, where its effect is not 
perceptible, the Coriolis force deflects winds clockwise in the Northern Hemisphere 
and anticlockwise in the Southern Hemisphere. In the northern hemisphere, the 
winds come from the north-east and head to the southwest.



The atmospheric movement we could observe in a meridian plane is shown

schematically in Fig.left. It shows the three conventional cells: Hadley, Ferrel

and polar cell. In the equatorial zone, the movement is fairly stable, but it is

not the same in areas closer to the poles, where oscillations are occurring.

Movements therefore tend to follow trajectories similar to those shown in

Fig.right. In this figure, the parallels drawn in dotted lines represent the

tropics; those who are in solid lines correspond to latitudes of  30 ° and  60 °.



The local climates depend in first approximation on the latitude. The equator is hot and 
humid (with the large forests of Amazonia, Congo and Indonesia), meanwhile the 
tropics, subject to the rules of the trade winds, are divided between humid climates, as 
these found near the sea, and the driest climates in the world. The largest deserts of 
the world (Sonora, Sahara, Gobi in the northern hemisphere; Atacama, Kalahari, 
Australia in the southern one) are found around the tropics. To 30 or 40 degrees 
latitude, there are still deserts, but also the warm temperate climate of the 
Mediterranean.

This pattern of air currents can be explained by the distribution of solar irradiance at 
ground level as a function of latitude. Indeed, we see that the maximum irradiance 
occurs in the tropics. This is because cloud cover is always important at the equator 
(low pressure area) and generally low in the tropics (high pressure areas).



2.3. Influence of continental masses  

The climate is also influenced by the proximity of the oceans and the presence of 

major marine currents. The distribution of land and ocean is very different in both 

hemispheres [GOD 09]. This is clearly seen in Fig.1. To make the figure readable, 

we use the equal-area azimuthal projection, also known as Lambert projection, 

which respects the proportions of areas. This uneven distribution combined with the 

action of air currents is the cause of ocean currents. 

 

Fig.1. Comparison of lands and seas areas in both hemispheres 



The cold-temperate zone starts around 50 degrees. In the southern hemisphere, 
there is no more land, while the northern hemisphere extends to a polar region 
where there are still significant populations. At the same latitude, Europe is favored 
by the Gulf Stream circulation, especially compared to the east coast of North 
America, which suffers the opposite effects (New York, where it snows regularly in 
winter, is 40 ° North latitude as well as Rome, Barcelona and Beijing). The Humboldt 

Current cools strongly the Pacific off Chile and Peru. There are occurring cyclical and 
complex phenomena, like El Niño and La Niña, which are just beginning to be 
incorporated into global climate models. They show how local thermal imbalances 
can have consequences far away, for example on the monsoon regime in India or on 
the drought in east Africa.



18

The variable Q (Wm-3) represents the heat source that has not yet been used in

these lectures.

In the lack of heat source, the equation becomes:  
v

k

t c





 



To carry out the transient studies, new physical quantities, such as the

density of the material and its heat capacity, are introduced.

Let us consider an isotropic body with heat conduction coefficient k

(Wm-1K-1) and volume heat capacity cv (JK-1m-3). The transient heat conduction

equations are:

This equation depends on a single material characteristic : the ratio k/cv, which is

called thermal diffusivity.

The thermal diffusivity α of a material, expressed in m2s-1, represents its tendency

to facilitate the diffusion of heat (a "good" thermal diffusivity in construction

corresponds to a low value and a "bad" thermal diffusivity corresponds to a high

one).

  vk Q c
t





  



 =   
p v

k k

c c




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To switch from the local form of the differential equations

and its initial and boundary conditions to the discretized formulation, two

methods are available.

The first one follows the same path as the variational methods seen before for the

stationary heat transfer. This formulation was presented by M Biot in 1957 in a

famous paper in the Journal of Aeronautical Sciences : New Methods in Heat

Flow Analysis With Application to Flight Structures.

The second one which is more classical in the presentations of dynamic problems,

is based on the Galerkin method. This is the formulation presented in the book of

Lewis et al: Fundamentals of the Finite Element Method for Heat and Fluid Flow

(2004). See § 6,3,2 pp 153.

         (1)vk Q c
t





  


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We note above the concept of weighed residual with the shape

functions used as weight functions. Employing integration by parts

(Lewis et al) on the first term of the previous equation, we get:

 
 

               (2)
T

C K T g
t

 
  

 

Galerkin method

The temperature is discretized as follows:

  
1

( , , , ) ( , , ) ( )
n

i i

i

x y z t f x y z T t F T


 

where fi are the shape functions, n the number of nodes in an element

and Ti(t) the time dependent nodal temperatures. The Galerkin

representation of equation (1) is:

0i vf k Q c d
t






 
      


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     
T

v

V

C c F F dV 

The second member [g] of equation (2) represents all the heat loads

coming from the internal sources and the boundary conditions

       
T

V

K k grad F grad F dV 

where [F] is defining the blending functions of the temperature field.

We also see that the time dependent term of the differential equation

will be taken into account through the use of a capacity matrix

defined as follows

In lecture 1, we have seen that:
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We finally obtain:

Time discretization using the Finite Difference Method

1 (1 )n nT T T             

Between the n and n+1 time levels, using a Taylor series, we can write:

22
1

22

n n

n n
T Tt

T T t
t t




                  

If the second and higher-order terms are neglected:

1

2( )

n n nT T T
O t

t t




            


We have just introduced a parameter  to get the value of [T] inside

the interval:

 
 

        
1

    

n nT T
C K T g

t

T
C K T g

t





                  
  

 
  

 



Dimensional analysis.

In the first line : the equation and

in the second one : the dimensions of the terms that compose it.

           1 1    (1 )   (1 )n n n nT TC t K C K t gt g                          

      1 1  n n nT T gC t K C t              

The development completed by Lewis et al. leads to the discretized equation

(Lewis, equation 6.37):

The value of the tuning parameter  = 1, corresponds to the implicit scheme

considered as unconditionally stable. We write:

     

               

1

1

1

1

1

1

   n n n nC T t K T C

JK K J s WK K J J

T t

K J s W

f

K J



 





               

             

     1 1 1                                n n n nC t K CT T T gt                   

   
1n nT T

C K
t

T g 



                  
  



If there are no loads nor fixations, only initial conditions, we can remove the

indices and we obtain the very simple equation:

  1

11 1 11 1 11 1

1

1 1
   n

f f f

n n

f f

T T

T
C C t K K C C t g

T
  

   
                  

      

If we have fixed temperatures (not necessary) the vector [T] can be divided into two

parts:

1. the unknown temperatures T1 and

2. the fixed and therefore constant temperatures Tf. So we rewrite:

   
1

11

1 1

1

11 11 1 11   

n

n n

f

n

fC t K K C
T

T gT t
T

 


 
 

               
  

      1  n nC t K T C T        
24

The superscripts n or n+1 indicate the iteration. Developing for the lines

corresponding to the unknowns:

       1

11 11 1

1

1 1 11     n

f

n n

fC t K C t K t gT T T                      



     
T

p

V

C c F F dV 
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  

 

   1 2 3 4

1 1 1 1

T

F T

x y x y x y x y
F

a b a b a b a b

T T T T T

 

       
           

       



1 2 3 41 1 1 1
x y x y x y x y

a b a b a b
T

a
T T

b
T

      
             

      

Coming back to the capacity matrix [C] , we know that it is a function of the

density  of the material, its heat capacity cp and its volume V.
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It can be verified in this expression that the sum of its terms is equal to 36, and

therefore, that concentrated in 1 point, the capacity would be equal to  V cp. The

matrix [C] is expressed in J K-1.

 

4 2 1 2

2 4 2 1

1 2 4 236

2 1 2 4

pVc
C



 
 
 
 
 
 

2 2

33 2 2

0 0

3 2 2

2 2 2

0 0
3 3 9 9

a b

p

a a
p

p p p

x y
C e c dy dx

a b

Vcb x b x ab
ec dx ec dx ec

a b a




  

 
  

 

   

 

 

To show the process of integration, we compute the term C33 of the capacity matrix

[C]. The volume V is the product of the area ab by the thickness e.
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Examples:

1. Homogenization of the temperature in an adiabatic domain

2. Heating of a cold domain

3. Cooling of a hot domain

4. Convection on three sides of the domain



Homogeneity of the temperature after 33. hours, 

the gap is decreasing by half.

Control parameter  pa6 : 1

conde.m conductivity : 2 W/(mK)

Specific heat       : 1000 J.m-3.K-1

Specific mass       : 2500 kg.m-3

Initial temperature : 303 K

Wall base temperature : 293 K

Domain dimensions : 1 m x 0.1 m x 2 m

Mesh Dimension : 21 x 42

Analyzed period : 33. hours

Number of iterations : 30
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A uniform temperature test is carried out on a

domain of dimensions:(1m x 0.1m x 2m)

whose walls are adiabatic. Half of the area is

at 303 K, the other half at 293 K.



A uniform temperature test is carried out on a domain of dimensions:(1m x 0.1m x

2 m) whose walls are adiabatic. Half of the area is at 303 K, the other half at 293 K.

The time evolution and the moment at which the temperature becomes uniform are

examined. The homogenization process depends on the diffusivity.

29



Homogeneity of the temperature after 33. hours, 

the gap is decreasing by half.

Control parameter  pa6 : 1

conde.m conductivity : 2 W/(mK)

Specific heat       : 1000 J.m-3.K-1

Specific mass       : 2500 kg.m-3

Initial temperature : 303 K

Wall base temperature : 293 K

Domain dimensions : 1 m x 0.1 m x 2 m

Mesh Dimension : 21 x 42

Analyzed period : 33. hours

Number of iterations : 30

30

The parameter

pa6 allows controlling the procedure:

pa6 = 0. Standard situation. nf = nx + 1

pa6 = 1. No load, no fixation. t3 = 0, nf = 0

pa6 = 2. Four convective nodes. t3 = 4, nf = 0
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Examples:

1. Homogenization of the temperature in an adiabatic domain

2. Heating of a cold domain

3. Cooling of a hot domain

4. Convection on three sides of the domain
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We follow with a solid immersed in a fluid at 300 K with convective heat

exchanges on the four sides of the solid. At the begin, the temperature of the solid

is 280 K. After 100 h, its mean value is 296 K.

Control param.  pa6 : 2

Convection coeff. h : 25 W/(m2K)

Specific heat       : 1000 J.m-3.K-1

Specific mass       : 2500 kg.m-3

Air temperatures    : 300  300  300 K

Initial temperature : 280 K

conde.m conductivity: 1 W/(mK)

Domain dimensions   : 1 x 0.1 x 2 m

Mesh size           : 20 x 40

N. virtual nodes t3 : 4

Number of fixations : 0

Domain heat capacity: 500000 J/K

Diffusivity         : 4e-07 m2/s

Total duration      : 100 h

Number of iterations: 50

N. of convective el.: 120

Virtual conv. nodes : 862  863  864  865

Stat. Ntca no nf t3 : 865  861    0  4

Cpu                 : 5.13 sec.
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The quantity of exchanged heat is equal to the product of the temperature increase

by the specific heat and by the mass of the solid
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Examples:

1. Homogenization of the temperature in an adiabatic domain

2. Heating of a cold domain

3. Cooling of a hot domain

4. Convection on three sides of the domain
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Control param. pa6 : 2

Convection coeff. h : 25 W/(m2K)

Specific heat : 1000 J.m-3.K-1

Specific mass : 2500 kg.m-3

Air temperatures : 280 280 280 K

Base temperature : 280 K

Initial temperature : 300 K

conde.m conductivity: 1 W/(mK)

Domain dimensions : 1 x 0.1 x 2 m

Mesh size : 20 x 40

N. virtual nodes t3 : 4

Number of fixations : 0

Domain heat capacity: 500000 J/K

Diffusivity : 4e-07 m2/s

Total duration : 100 h

Number of iterations: 50

N. of convective el.: 120

Virtual conv. nodes : 862 863 864 865

Stat. Ntca no nf t3 : 865 861 0 4

Cpu : 5.05 sec.

We follow with a solid immersed in a fluid at 280 K with convective heat

exchanges on the four sides of the solid. At the begin, the temperature of the solid

is 300 K. After 100 h, its mean value is 254 K.
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The quantity of exchanged heat is equal to the product of temperature increase by

the specific heat and by the mass of the solid.
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Examples:

1. Homogenization of the temperature in an adiabatic domain

2. Heating of a cold domain

3. Cooling of a hot domain

4. Convection on three sides of the domain
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Control param.  pa6 : 0

Convection coeff. h : 25 W/(m2K)

Specific heat       : 1000 J.m-3.K-1

Specific mass       : 2500 kg.m-3

Air temperatures    : 300  300  290 K

Base temperature    : 283 K

Initial temperature : 283 K

conde.m conductivity: 1 W/(mK)

Domain dimensions   : 1 x 0.1 x 2 m

Mesh size           : 20 x 40

N. virtual nodes t3 : 3

Number of fixations : 21

Domain heat capacity: 500000 J/K

Diffusivity         : 4e-07 m2/s

Total duration      : 300 h

Number of iterations: 100

Cpu                 : 13.2 sec.

In this example the temperature of the bottom edge

of the domain is fixed at the same value as the

initial temperatures while the three other sides are

subjected to convection. The air temperature

corresponding to the top side is 10 K lower than the

temperatures related to the vertical sides.
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We observe the evolution of the maximum temperature of the domain from the

initial one to a stabilized value of about 300 K. The three temperatures are

computed for the internal nodes (not on the base).
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In the following graphics, the temperature is shown along the perimeter of the

domain, starting at the left bottom corner and moving forward with the area at the

left side of the path. This curve is outlined at each time step.
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Procedure corresponding to the 

second example

1. Homogenization of the 

temperature in an adiabatic 

domain

2. Heating of a cold domain

3. Cooling of a hot domain

4. Convection on three sides of 

the domain

The parameter

pa6 allows controlling the

procedure:

pa6 = 0. Standard situation.

nf = nx + 1

pa6 = 1. No load, no fixation.

t3 = 0, nf = 0

pa6 = 2. Four convective

nodes. t3 = 4, nf = 0

Procedure Matlab© pp_transient.m for transient heat transfer 
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nx  = 21; ni =30 ; pe =33 ; dt=pe*3600;gap=.5;                % Input data 

pte = [290;290;303; % Sky temperature                      East, West, Top 

        303;        % Initial temperature in transient analysis 

        293;        % Wall base temperature                    

      300;300;300]; % temperatures of atmosphere :         East, West, Top 

pa6= 1      ;  disp(['Control param.  pa6 : ',num2str(pa6)]) 

hh = 25     ;  disp(['Convection coeff. h : ',num2str(hh),' W/(m2K)']) 

Cp = 1000   ;  disp(['Specific heat       : ',num2str(Cp),' J.m-3.K-1']); 

ro = 2500   ;  disp(['Specific mass       : ',num2str(ro),' kg.m-3'])  

tb = pte(5) ;  disp(['Base temperature    : ',num2str(tb),' K']) 

ti = pte(4) ;  disp(['Initial temperature : ',num2str(ti),' K']) 

wi = 1;he=2;ep=0.1;                % Width, height & thickness of the wall 

ny = nx*2;my = ny+1;nel = nx*ny;no = (nx+1)*(ny+1);      % Mesh definition 

co = conde(nx,ny); 

disp(['Domain dimensions   : ',num2str(wi),' x ',num2str(ep),' x ',... 

    num2str(he),' m']) 

scr= 0;scs=1;scl=2;t3=3;     % N. of add. nodes for convection & radiation 

if pa6 == 2;t3=4;tad(1:4)=[pte(6:8)' pte(6)]; 

    disp(['Air temperatures    : ',num2str(tad),' K']) 

else 

    tf = pte(6:8)';disp(['Air temperatures    : ',num2str(tf),' K'])  

end   % pa6 = 2: 4 virtual convection temp. 

if pa6 == 1;t3=0;              end 

ii = 0; 

if scr >0;tad(ii+1:ii+3)=ts;ii=ii+3;end                 % Sky temperatures 

if scs >0;ii=ii+1;tad(ii)=pte(6); end       % Fluid temperature of the top 

if scl >0;tad(ii+1:ii+2)=pte(7:8);end    % Fluid temp. of vertical borders 

disp (['Mesh size           : ',num2str(nx),' x ',num2str(ny)]) 

disp (['N. virtual nodes t3 : ',num2str(t3)]) 

if pa6 == 0;nf=nx+1;else;nf = 0;end    % Computing the number of fixations 

disp (['Number of fixations : ',num2str(nf)]) 

Ntca = no + t3;                                   % Total number of nodes 

tst  = tic;         % Beginning the analysis, initialisation of the timer  

disp(['Diffusivity         : ',num2str(co(1)/(ro*Cp)),' m2/s']) 

disp(['Total duration      : ',num2str(dt/3600),' h']) 

disp(['Number of iterations: ',num2str(ni)]) 

C    = zeros(Ntca,Ntca);    % Initialization of the global capacity matrix 

[K ] = CoKr34 (nx,ny,ep,he,hh,pa6);             % Global K with convection 

lK   = loca (nx,ny);% Elem. local. matrix with fixation without convection 

Vel  = ep*wi/nx*he/ny; 

Cel  = Cp*ro*Vel/36*[4 2 1 2;2 4 2 1;1 2 4 2;2 1 2 4];      % El. capacity 

Kel  = ep/6*[4 -1 -2 -1;-1 4 -1 -2;-2 -1 4 -1;-1 -2 -1 4];       % elem. K 

for n=1:nel 

    for i=1:4 

        for j=1:4        % Assembling nel conductivity & capacity matrices 

          K(lK(n,i),lK(n,j)) = K(lK(n,i),lK(n,j)) + co(n)*Kel(i,j); 

          C(lK(n,i),lK(n,j)) = C(lK(n,i),lK(n,j)) + Cel(i,j)      ; 

        end;  

    end; 

end 

disp(['Tot. cap.sum(sum(C)): ',num2str(sum(sum(C))),' J/K']) 

if pa6 == 1  

    tcan = ones(Ntca,1)*tb;         % T. field initialization 2 subdomains 

    for i            = 1:ny+1 

        for j = 1:(nx-1)/2+1; ii = (i-1)*(nx+1)+j; tcan(ii) = ti; end 

    end 

else 

    tcan = ones(Ntca,1)*ti;             % T. field initialization - genera  

end 

if pa6 == 0                              % Standard situation : fixed base 

    tcan(no-nx:no) = tb;    

    if t3>0; tcan(Ntca-t3+1:Ntca,1)=tad(1:t3);end 

else 

    if t3 > 0; tcan(Ntca-t3+1:Ntca,1)=tad(1:t3);end 

end 

tca         = tcan;                   % if size(tca,1) < 30;disp(tca');end 

fnp1        = zeros(Ntca,1);  

tsmax       = zeros(ni,1);tmoy = zeros(ni,1);tsmin = zeros(ni,1); 

disp(['Stat. Ntca no nf t3 : ',num2str([Ntca no nf t3])]) 

for it      = 1:ni % Solution of the iterative system ********************  

    if pa6 == 2 

        Kif = K(1:no-nf,no-nf+1:Ntca); 

        tca(1:no-nf)=(C(1:no-nf,1:no-nf)+dt/ni*K(1:no-nf,1:no-nf))... 

            \(dt/ni*(-Kif*tcan(no-nf+1:Ntca))+C(1:no-nf,1:no-nf)*... 
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Procedure Matlab© pp_transient.m for transient heat transfer 
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nx  = 21; ni =30 ; pe =33 ; dt=pe*3600;gap=.5;                % Input data 

pte = [290;290;303; % Sky temperature                      East, West, Top 

        303;        % Initial temperature in transient analysis 

        293;        % Wall base temperature                    

      300;300;300]; % temperatures of atmosphere :         East, West, Top 

pa6= 1      ;  disp(['Control param.  pa6 : ',num2str(pa6)]) 

hh = 25     ;  disp(['Convection coeff. h : ',num2str(hh),' W/(m2K)']) 

Cp = 1000   ;  disp(['Specific heat       : ',num2str(Cp),' J.m-3.K-1']); 

ro = 2500   ;  disp(['Specific mass       : ',num2str(ro),' kg.m-3'])  

tb = pte(5) ;  disp(['Base temperature    : ',num2str(tb),' K']) 

ti = pte(4) ;  disp(['Initial temperature : ',num2str(ti),' K']) 

wi = 1;he=2;ep=0.1;                % Width, height & thickness of the wall 

ny = nx*2;my = ny+1;nel = nx*ny;no = (nx+1)*(ny+1);      % Mesh definition 

co = conde(nx,ny); 

disp(['Domain dimensions   : ',num2str(wi),' x ',num2str(ep),' x ',... 

    num2str(he),' m']) 

scr= 0;scs=1;scl=2;t3=3;     % N. of add. nodes for convection & radiation 

if pa6 == 2;t3=4;tad(1:4)=[pte(6:8)' pte(6)]; 

    disp(['Air temperatures    : ',num2str(tad),' K']) 

else 

    tf = pte(6:8)';disp(['Air temperatures    : ',num2str(tf),' K'])  

end   % pa6 = 2: 4 virtual convection temp. 

if pa6 == 1;t3=0;              end 

ii = 0; 

if scr >0;tad(ii+1:ii+3)=ts;ii=ii+3;end                 % Sky temperatures 

if scs >0;ii=ii+1;tad(ii)=pte(6); end       % Fluid temperature of the top 

if scl >0;tad(ii+1:ii+2)=pte(7:8);end    % Fluid temp. of vertical borders 

disp (['Mesh size           : ',num2str(nx),' x ',num2str(ny)]) 

disp (['N. virtual nodes t3 : ',num2str(t3)]) 

if pa6 == 0;nf=nx+1;else;nf = 0;end    % Computing the number of fixations 

disp (['Number of fixations : ',num2str(nf)]) 

Ntca = no + t3;                                   % Total number of nodes 

tst  = tic;         % Beginning the analysis, initialisation of the timer  

disp(['Diffusivity         : ',num2str(co(1)/(ro*Cp)),' m2/s']) 

disp(['Total duration      : ',num2str(dt/3600),' h']) 

disp(['Number of iterations: ',num2str(ni)]) 

C    = zeros(Ntca,Ntca);    % Initialization of the global capacity matrix 

[K ] = CoKr34 (nx,ny,ep,he,hh,pa6);             % Global K with convection 

lK   = loca (nx,ny);% Elem. local. matrix with fixation without convection 

Vel  = ep*wi/nx*he/ny; 

Cel  = Cp*ro*Vel/36*[4 2 1 2;2 4 2 1;1 2 4 2;2 1 2 4];      % El. capacity 

Kel  = ep/6*[4 -1 -2 -1;-1 4 -1 -2;-2 -1 4 -1;-1 -2 -1 4];       % elem. K 

for n=1:nel 

    for i=1:4 

        for j=1:4        % Assembling nel conductivity & capacity matrices 

          K(lK(n,i),lK(n,j)) = K(lK(n,i),lK(n,j)) + co(n)*Kel(i,j); 

          C(lK(n,i),lK(n,j)) = C(lK(n,i),lK(n,j)) + Cel(i,j)      ; 

        end;  

    end; 

end 

disp(['Tot. cap.sum(sum(C)): ',num2str(sum(sum(C))),' J/K']) 

if pa6 == 1  

    tcan = ones(Ntca,1)*tb;         % T. field initialization 2 subdomains 

    for i            = 1:ny+1 

        for j = 1:(nx-1)/2+1; ii = (i-1)*(nx+1)+j; tcan(ii) = ti; end 

    end 

else 

    tcan = ones(Ntca,1)*ti;             % T. field initialization - genera  

end 

if pa6 == 0                              % Standard situation : fixed base 

    tcan(no-nx:no) = tb;    

    if t3>0; tcan(Ntca-t3+1:Ntca,1)=tad(1:t3);end 

else 

    if t3 > 0; tcan(Ntca-t3+1:Ntca,1)=tad(1:t3);end 

end 

tca         = tcan;                   % if size(tca,1) < 30;disp(tca');end 

fnp1        = zeros(Ntca,1);  

tsmax       = zeros(ni,1);tmoy = zeros(ni,1);tsmin = zeros(ni,1); 

disp(['Stat. Ntca no nf t3 : ',num2str([Ntca no nf t3])]) 

for it      = 1:ni % Solution of the iterative system ********************  

    if pa6 == 2 

        Kif = K(1:no-nf,no-nf+1:Ntca); 

        tca(1:no-nf)=(C(1:no-nf,1:no-nf)+dt/ni*K(1:no-nf,1:no-nf))... 

            \(dt/ni*(-Kif*tcan(no-nf+1:Ntca))+C(1:no-nf,1:no-nf)*... 


