
Benoit Beckers

Architecture et Physique Urbaine - ISA BTP

Université de Pau et des Pays de l'Adour

Allée du Parc Montaury, 64600 Anglet (France)

benoit.beckers@univ-pau.fr, www.heliodon.net

Finite element Simulation

of convective heat transfers

1

Urban Physics - references

Environmental Physics developed in the 1970s (crop yield), 1980 (forest and acid

rain), 1990 (hole in the ozone layer), 2000 (climate change). Among its methods: the

local balance of energy flows (conductive, radiative, sensible and latent).

The application of the same methods to urban structures was proposed in the

1970s by T. R. Oke, around the issue of urban heat island. We can therefore speak

of Urban Physics.

Urban Physics - references

In recent years, considerable progress has been made in several ancillary areas:

geographic information systems, standardization of the level of detail of 3D

models, terrestrial and satellite measurements, computing power of computers…

... Allowing for a first apprehension of urban physics by numerical simulation.

Framework: "smart", "safe" and "sustainable" city.

Emergence of urban thermal (urban climate, building-city-territory heat flux,

energy efficiency, local production of renewable energy).

SOLAR ENERGY AT URBAN SCALE

• SOLAR ENERGY AT URBAN SCALE

• 24 /25 may 2010, Compiègne

• www.utc.fr/seus

John
Mardaljevic
De Beaufort
University

Daylight and Solar Energy Simulation at Urban Scale

5

Hydropower

260 km2 to produce 3,65 GW

(water retention)

Daylight and Solar Energy Simulation at Urban Scale

6

Wind energy

450 km2 to produce 3,65 GW

(wind farm)

Daylight and Solar Energy Simulation at Urban Scale

7

Biomass

3000 km2 to produce 3,65 GW

(surface to cultivate)

Daylight and Solar Energy Simulation at Urban Scale

8

Solar energy

90 km2 to produce 3,65 GW

(solar panels)

General issues

• PhD (2012) : Elie Ghanassia (EDF, dir.: M. Maïzia & B. Beckers)

9

Technical need: ~30 % efficiency

Commercial PV: 10-20 %

In laboratory: 40-60%

« The sun will provide 100%

of our energy needs in

twenty years »

Ray Kurzweil – Le Monde

Magazine 26/03/2011

10

• PhD (2014) : Thibaut Vermeulen (dir.: B. Beckers & P. Villon)

11

12

Convective heat transfers

1. Partial differential equations

2. Variational methods

3. Finite element method (local level)

4. Finite element method (global level)

5. Examples

6. Prescribed heat flows

7. Matlab© procedures

In these equations,  is the unknown temperature

field expressed in K, k, the thermal conductivity

(Wm-1K-1) and h, the convection coefficient

(Wm-2K-1) .

The boundary of the domain is divided into 3

parts: S1 where the temperature is imposed, S2

where the normal heat flow is imposed and S3,

where the convective flow is imposed. A bar

indicates that the concerned quantity is imposed.

  0 div k grad in  

 

1

2

3

n

f

on

n q q on S

n q oh n

S

S 

 

 

 

We want to compute the temperature distribution in a domain , subjected to

boundary conditions on the temperature and/or the heat flow and convection

conditions, namely thermal exchanges with a fluid in which the domain. is fully or

partially incorporated The following system of partial differential equations must be

solved as well as the boundary conditions associated with it:



13

14

Convective heat transfers

1. Partial differential equations

2. Variational methods

3. Finite element method (local level)

4. Finite element method (global level)

5. Examples

6. Prescribed heat flows

7. Matlab© procedures

In the presence of convective boundary conditions, the solution of the system of

partial differential equations is equivalent to the search for the minimum of the past

functional in which the convection term, which depends on the coefficient h, has been

added:

 
3 2

21 1
() () .

2 2

T

f n

S S

I k grad grad d h dS q dS     


        minimum

Explicitly: () () 0I I    

the difference between the functional calculated with a small arbitrary variation δτ of

the temperature τ and the present functional is equal to zero.

   
3 3

2 2

2 2

1 1
 (()) () ()

2 2

1 1

2 2

() 0

T T

f f

S S

n n

S S

k grad grad d k grad grad d

h dS h dS

q dS q dS

     

    

  

 

     

    

   

 

 

 

1, 0 on S   

To express the stationnarity condition, it is sufficient to write that under the boundary

conditions:

15

The terms in blue are counterbalanced, the second term of the first line (in red)

can be ignored because it is second order. So:

        

2 2

3 3 3

22 2

1
 ()

2

1
 ()

2

1 1 1

(+)

2 2

1
 (()) ()

2

1
2 (()) ()

2

2

()

2

0

T

T

f f

S S S

T

f

S S

n

T

n

k grad grad

k gra

d

k grad grad d dd grad

h dS h dS dS

q

h

q

k grad gra

d

h

S d

d

S

 

 

 







   











 







 



  

 

  





    





  



 

 

By developing this expression, we obtain:

To exploit this result, it is necessary to put the term of variation δτ in evidence. We

thus carry out an integration by parts of the first term of the previous expression

 
2 3

 () () 0T

n f

S S

k grad grad d q dS h dS     


       

 
1 2 3 2 3

 div (()) 0n n f

S S S S S

k grad d q dS q dS h dS      
  

        

16

In conclusion, we can replace the computation of the partial differential equations of

the heat transfer problem by the expression of the stationnarity conditions of the

functional:

    
2 3

 div (()) - - 0n n f n

S S

k grad d q q dS h q dS   


 
     
 
 
  

Since the variation δ is zero on the boundary S1. the expression is reduced to:

 
2

3

div (()) 0

 ()

()

n

f

k grad in

n k grad q on S

n k grad h on S





  

 

 

  

Because the variation is arbitrary, the factor must be zero, which makes it possible

to write the equations that the thermal field must satisfy.

minimum

17

 
3 2

21 1
() () .

2 2

T

f n

S S

I k grad grad d h dS q dS     


       

18

Convective heat transfers

1. Partial differential equations

2. Variational methods

3. Finite element method (local level)

4. Finite element method (global level)

5. Examples

6. Prescribed heat flows

7. Matlab© procedures

 
3

21

2
el f

S

I h dS  
Functional at

element level:

19
Replacing in the functional, we obtain:

In this expression, h represents the convection coefficient. The fluid temperature

f is assumed to be uniform. We consider an element side which is a line

segment of length L and thickness e so that dS = e dx with x varying between 0

and L. We discretize the temperature as follows:

   0 1 1T x x
T T T T

L L


 
   

 

The Rayleigh Ritz procedure is the same as in the conduction problem, so we

can directly examine how to compute the conductivity matrices of the

convective elements

0 1(1)
x x

T T
L L

   

In matrix formalism, with T0 et T1 the nodal temperatures and [T], the vector of

nodal temperatures, we have:

With a new definition of the nodal temperatures vector including the fluid

temperature, we obtain with the notation τf = Tf where we assimilate the fluid

temperature to this of a virtual node:

20

 

     

2

0

2

0

1
1

2

1
1

1 2 1
2

L

el f

L
T

f f

x x
I he T dx

L L

x

x x x xL
he T T T dx

x L L L L

L



 

  
    

  

  
      

         
     

    





0 1

T

e fT T T T   

0

1

1
(1 1)

2

1

L

T

e e

x

L

x x x
heT dx T

L L L

 
 

 
        

 


 
  



21

2

2

0

1 1 1

1
 1

2

1 1

L

T

e e

x x x x

L L L L

x x x x
heT dx T

L L L L

x x

L L

      
         

      
 
        
    
 

     
  
 



From this expression, we deduce the conductivity matrix for convection. It is so

called because it has dimensions WK-1

2 1 3
1

 1 2 3
12

3 3 6

T

el e eI h eL T T

 
 

 
 
   

As well as the pure conduction matrix, this one also is singular. It means that

with or without convection it is necessary to fix at least one node.

2 1 3

 1 2 3
6

3 3 6

h

eL
K h

 
 

 
 
   

After integrating, we transform the functional into:

22

Convective heat transfers

1. Partial differential equations

2. Variational methods

3. Finite element method (local level)

4. Finite element method (global level)

5. Examples

6. Prescribed heat flows

7. Matlab© procedures

23

Assembling the convection matrices into the global conduction matrix

3 6 16

6 9 16

9 12 16

12 15 16

1 4 17

4 7 17

7 10 17

10 13 17

This function performs the computation of the localization matrix of the convective

elements on the sides of the domain (shown in blue). The process starts with the

right side, then, the left side and finally the top side. The computation is performed

only, it the number of the virtual node is given in the array ntv (third argument of the

procedure)

24

The convective nodes may be free or fixed, but the full set of nodal

temperatures has to contain at least one fixed node.

k hK K K 

To solve a problem including conduction and convection, we have to compute

two conductivity matrices. We call the first one Kk and the second one Kh.

Later, both matrices have to be added together.

The second one involves extra degrees of freedom corresponding to the virtual

convective nodes.

25

The pure conduction matrix introduced in the Matlab© procedure pp_Conduction.m

K*6/(e*co(1)) = [

4 -1 0 -1 -2 0 0 0 0 0 0 0 0 0 0

-1 8 -1 -2 -2 -2 0 0 0 0 0 0 0 0 0

0 -1 4 0 -2 -1 0 0 0 0 0 0 0 0 0

-1 -2 0 8 -2 0 -1 -2 0 0 0 0 0 0 0

-2 -2 -2 -2 16 -2 -2 -2 -2 0 0 0 0 0 0

0 -2 -1 0 -2 8 0 -2 -1 0 0 0 0 0 0

0 0 0 -1 -2 0 8 -2 0 -1 -2 0 0 0 0

0 0 0 -2 -2 -2 -2 16 -2 -2 -2 -2 0 0 0

0 0 0 0 -2 -1 0 -2 8 0 -2 -1 0 0 0

0 0 0 0 0 0 -1 -2 0 8 -2 0 -1 -2 0

0 0 0 0 0 0 -2 -2 -2 -2 16 -2 -2 -2 -2

0 0 0 0 0 0 0 -2 -1 0 -2 8 0 -2 -1

0 0 0 0 0 0 0 0 0 -1 -2 0 4 -1 0

0 0 0 0 0 0 0 0 0 -2 -2 -2 -1 8 -1

0 0 0 0 0 0 0 0 0 0 -2 -1 0 -1 4

]

Kk is a 15 x 15 matrix

26

The new conduction matrix computed in the Matlab© procedure pp_Convection.m.

This matrix includes two additional virtual nodes to take into account the convection

on the two vertical sides.

K*6/(e*co(1)) = [

6 -1 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 -3

-1 8 -1 -2 -2 -2 0 0 0 0 0 0 0 0 0 0 0

0 -1 6 0 -2 0 0 0 0 0 0 0 0 0 0 -3 0

0 -2 0 12 -2 0 0 -2 0 0 0 0 0 0 0 0 -6

-2 -2 -2 -2 16 -2 -2 -2 -2 0 0 0 0 0 0 0 0

0 -2 0 0 -2 12 0 -2 0 0 0 0 0 0 0 -6 0

0 0 0 0 -2 0 12 -2 0 0 -2 0 0 0 0 0 -6

0 0 0 -2 -2 -2 -2 16 -2 -2 -2 -2 0 0 0 0 0

0 0 0 0 -2 0 0 -2 12 0 -2 0 0 0 0 -6 0

0 0 0 0 0 0 0 -2 0 12 -2 0 0 -2 0 0 -6

0 0 0 0 0 0 -2 -2 -2 -2 16 -2 -2 -2 -2 0 0

0 0 0 0 0 0 0 -2 0 0 -2 12 0 -2 0 -6 0

0 0 0 0 0 0 0 0 0 0 -2 0 6 -1 0 0 -3

0 0 0 0 0 0 0 0 0 -2 -2 -2 -1 8 -1 0 0

0 0 0 0 0 0 0 0 0 0 -2 0 0 -1 6 -3 0

0 0 -3 0 0 -6 0 0 -6 0 0 -6 0 0 -3 24 0

-3 0 0 -6 0 0 -6 0 0 -6 0 0 -3 0 0 0 24

]

K is a 17 x 17 matrix

Band matrices methods are less efficient but they are replaced by

the frontal methods

27

The convection matrix computed in the Matlab© procedure pp_Convection.m. This

matrix includes two additional virtual nodes to take into account the convection on

the two vertical sides. The conduction terms are removed from this global matrix.

K*6/(e*co(1)) = [
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 -3 0

1 0 0 4 0 0 1 0 0 0 0 0 0 0 0 0 -6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 4 0 0 1 0 0 0 0 0 0 -6 0

0 0 0 1 0 0 4 0 0 1 0 0 0 0 0 0 -6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 4 0 0 1 0 0 0 -6 0

0 0 0 0 0 0 1 0 0 4 0 0 1 0 0 0 -6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 4 0 0 1 -6 0

0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 -3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 -3 0

0 0 -3 0 0 -6 0 0 -6 0 0 -6 0 0 -3 24 0

-3 0 0 -6 0 0 -6 0 0 -6 0 0 -3 0 0 0 24

]

Kh is a 17 x 17 matrix

28

Convective heat transfers

1. Partial differential equations

2. Variational methods

3. Finite element method (local level)

4. Finite element method (global level)

5. Examples

6. Prescribed heat flows

7. Matlab© procedures

29

This example is related to a domain with only convective boundaries. To get a non

trivial solution, we have to fix at least 2 nodes with different temperatures in order

to generate a temperature gradient. Here we chose to fix the 2 virtual ones related

to the vertical sides (300 & 270 K).

Multiplying the global conductive matrix by the

temperatures gives the second member of the

system of equations. Here, we obtain everywhere

0. except for the virtual nodes. Their flow are

equal to 5.4545 & -5.4545 W. As the exact

solution is a linear field, these values do not

depend on the mesh, but only on the relative

values of the convective and conductive

coefficients : Biot number  = h w / k.

pp_Convection

Thermal conductiv. : 1 Wm-1K-1

CoKr.m conv. coeff. : 20 Wm-2K-1

Domain dim. w, y, t : 1 2 0.1 m

Biot number h w / k : 20

Delta T in the solid: 27.2727 K

Heat flows balance : 5.4545 -5.4545 W

Virt. nodes temp. : 300 270 270 K

Checking heat flows : -2.73 -2.73 -2.73 Wm-2

Checking temper. : 271.4 271.4 298.6 298.6 K

Temp. virt. nodes : 300 270 K

30

Heat flow between two

enclosures with respectively

temperatures of 300 and 280 K.

Adiabatic horizontal faces nfc = 2

Temperature gradient and heat

flow are constant in the domain:

qx = -1.82 Wm-2 ,

If we introduce a thermal bridge

like in the following slide, the

visualizations of temperature

gradients & heat flows are more

effective than isotherms.

31

Same problem, with horizontal thermal bridge (0.1 height around

the horizontal median, with k ratio = 1000, h = 18 Wm-2K-1)

Heat flow, max: 347 Wm-2, mean: 49 Wm-2

-grad τ: max: 59. Km-1, mean: 17 Km-1 grk adq  

32

In the next example, we consider convection boundary conditions on 3 faces, the

fourth face being fixed (273 K). The temperature of the virtual node related to the

right vertical face is free.

Conductivity coeff.: 2 Wm-1K-1

CoKr.m cnv. coeff. : 25 Wm-2K-1

Virtual conv. nodes: 5152 5153 5154

Heat convect. nodes: 2.73 2.73 6.74 W

Heat through base : -12.1936 W

Size of convect. K : 5154 5154

Domain dim. w, h, t: 1 2 0.1 m

Mesh dimension : 50 x 100

Virt. nodes temp. : 0 290 303 K

Nfc : 3

The computed temperature of the free virtual
node of the left vertical side is: 286.6 K.

33

Same problem, but: 5 x 10 & 10 x 20 meshes

For both tests, the maximum heat flow = 120 Wm-2,

and the mean flow = 33 Wm-2

Properties of a conductivity matrix

including convective elements

The conductivity matrix is symmetric and semi-definite positive .

The sum of the terms of each column or of each line is zero.

For any thermal problem, at least 1 nodal temperature has to be

specified in order to make the conductivity matrix definite positive.

34

35

Convective heat transfers

1. Partial differential equations

2. Variational methods

3. Finite element method (local level)

4. Finite element method (global level)

5. Examples

6. Prescribed heat flows

7. Matlab© procedures

36

Back to the heat conduction problem involving prescribed heat fluxes according to

the functional presented in the first lecture.

We can write the discretized functional:

2

1
() () .

2

T

n

S

I k grad grad d q dS   


     minimum

2

1 1 2 2

edge

n el

S

q dS FT F T  

Limiting the demonstration to 1 element edge, we can write that the second term

of the above functional corresponds to the sum of products of heat flows (W) by

temperatures (K) and we can write it as follows:

1 21edge

x x

l l
T T
 
  

 


If we express the edge temperature in term of blending functions:

2 2

1 21

edge edge

n el n el

S S

x x
q dS q T T dS

l l


  
    

  
 

37

We note that the term dSel is equal to edx, where e is the thickness and dx the

differential on the side of the element. We have above, the general method to build

the 2d members of the heat transfer equations corresponding to imposed heat flows.

If the prescribed heat flow is constant on the edge, for an edge of length l and a

thickness e, we obtain:

 
2 2

1 1

2 2

with : we have : 1

edge edge

n el n el

S S

T Tx x
T q dS q dS

T Tl l


     
       

     
 

In matrix form,

2 2

1

2

1

edge edge

n el n el

S S

Tx x
q dS q dS

Tl l


   
     

    
 

We can now get the nodal temperatures out of the integral:

2 2

1 21 ;

edge edge

n el n el

S S

x x
F q dS F q dS

l l

 
   

 
 

And, finally, we can write the prescribed second member in matrix form:

2

1

2

1

edge

T

n el

S

F x x
q dS

F l l

    
     

   


1 2 ;
2 2

n n

el el
F q F q 

We treat a very simple case with imposed temperatures on the lower face (base) and

a constant flow on the left vertical wall. The mesh has 20 x 40 elements. As the

upper and right faces are adiabatic, the isotherms are orthogonal to them. The base

temperature is fixed to 273 K. The total flow on the left side is equal to 25 Watt.

38

In computing the second member of the system of equations, there is

ambiguity for the node of the lower left corner that receives a flux of 0.3125

W, but is fixed. This flow is therefore removed from the balance sheet in the

above graph.

pp_conduction

conde.m uniform k : 1 W/(mK)

- gradT element max : 43.3, mean: 14.6 K/m

Max elem. heat flow : 43.3, mean: 14.6 W/m2

Base temperature : 273 K

Max temperature : 302 K

Mesh size : 20 x 40

Fix. nod. 2 hor. fa.: 21

Diss tcaT*(K*tca)/2 : 254 WK

Cpu : 0.378 sec.

39

40

Convective heat transfers

1. Partial differential equations

2. Variational methods

3. Finite element method (local level)

4. Finite element method (global level)

5. Examples

6. Prescribed heat flows

7. Matlab© procedures

41

Matlab© procedure pp_convection.m to solve a convection problem

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

hh = 25;k = 2;nfc = 3;ta = [290; 290; 303];pge = [1;2;.1;50];tb = 273;

th = pge(3); %tt=tb+50;pf=[0;0;0];

nx = pge(4);ny = nx*2;nel = nx*ny;no = (nx+1)*(ny+1);%nf = nx+1; % Mesh

co = f1_convection(nx,ny,k); % k measured in W/(m K)

Kel = th/6*[4 -1 -2 -1;-1 4 -1 -2;-2 -1 4 -1;-1 -2 -1 4]; % elem. K

[K] = f2_convection(nx,ny,pge(2),pge(3),hh,nfc); % With convection K

lK = f2_conduction(nx,ny);

for n=1:nel;for i=1:4;for j=1:4 % Assembling nel conduct. matrices Kel

 K(lK(n,i),lK(n,j))=K(lK(n,i),lK(n,j))+co(n)*Kel(i,j);end;end;end

if nfc == 2 % 1. Adiabatic base

 gco = K(1:no,no+1:no+size(K,1)-no)*ta(1:size(K,1)-no,1);

 tca = -K(1:no,1:no)\gco;

 f3_conduction(nx,ny,tca(1:no));axis off % Drawing isotherms

 sm = (K*[tca;ta(1:size(K,1)-no)])';% Compute second member of system

 qxg = th*hh*(ta(2)-min(tca));

 qxc = th*co(1)*(min(tca)-max(tca))/pge(1);

 qxd = th*hh*(max(tca)-ta(1));

 t1 = (co(1)*ta(1)+(co(1)+hh*pge(1))*ta(2))/(2*co(1)+hh*pge(1));

 t2 = ta(2)+ta(1)-t1;

end

if nfc == 3 % sequence 1: fixed base and 3 fixed virtual nodes

% gco = K(1:no-nx-1,no-nx:size(K,1))*[ones(nx+1,1)*tb;...

% ta(1:size(K,1)-no,1)];

% tca = -K(1:no-nx-1,1:no-nx-1)\gco;

% grisb(nx,ny,[tca;ones(nx+1,1)*tb]);axis off % Drawing the isot.

% sm = (K*[tca;ones(nx+1,1)*tb; ta(1:size(K,1)-no,1)])';% 2d member sys.

% ni = size(sm,2)-nfc+1;

% disp(['Heat convect. nodes : ',num2str(sm(ni:size(sm,2))),' W'])

% disp(['Heat through base : ',num2str(sum(sm(no-nx:no))),' W'])

 ta(1) = 0.;nfc = 3; % sequence 2: fixed base and 2 fixed virtual nodes

 K11 = K(1:no-nx-1,1:no-nx-1); K12 = K(1:no-nx-1,no-nx:no);

 K13 = K(1:no-nx-1,no+1); K14 = K(1:no-nx-1,no+2:no+3);

 K31 = K(no+1,1:no-nx-1); K32 = K(no+1,no-nx:no);

 K33 = K(no+1,no+1); K34 = K(no+1,no+2:no+3);

 T2 = ones(nx+1,1)*tb; T4 = [ta(2); ta(3)];

 tcb = [K11 K13;K31 K33]\(-[K12 K14;K32 K34]*[T2;T4]);

 tca = [tcb(1:no-nx-1); ones(nx+1,1)*tb; tcb(size(tcb,1)); T4];

 f3_conduction(nx,ny,tca(1:no));axis off % Drawing the isotherms

end

disp(['Size of convect. K : ',num2str(size(K))])

disp(['Domain dim. w, h, t : ',num2str(pge(1:3,1)'),' m'])

disp(['Mesh dimension : ',num2str(nx),' x ',num2str(nx*2)])

disp(['Virt. nodes temp. : ',num2str(ta(1:size(ta,1))'),' K'])

if nfc == 2

 disp(['Checking heat flows : ',num2str([qxg qxc qxd]),' Wm-2'])

 disp(['Checking temper. : ',num2str([t1 min(tca) t2 max(tca)]),' K'])

end

Lines 1 – 3: Data input

Line 4 : Definition of element

conductivities (function f1_convection.m)

Line 5 : Conductivity matrix of

a square element

Line 6 : global convection

matrix (function f2_convection.m)

Line 7 : localization matrix

(function f2_conduction.m)

Lines 8 – 9: assembling the global

conductivity matrix

Line 11 : computation of the

second member of the system

Line 12 : solution of the system

Line 13 : drawing the isotherms

in the function f3_conduction.m

42

Lines 1 – 3 : Data input

tb = 270;tt = tb+50; pge = [1;2;1;50];

nx = pge(4);ny = nx*2;nel = nx*ny;no = (nx+1)*(ny+1);nf = nx+1; % Mesh

The variables tb & tt give the temperatures on the top and the bottom of the

domain. The vector pge contains the dimensions of the domain: width, height,

thickness and the number nx of elements in the horizontal direction. ny is the

number of elements in the vertical direction: twice nx. The following items

concern the computation of nel: number of elements, no: number of nodes, nf:

number of nodes on a horizontal line of the mesh.

Matlab© function kf1_conduction.m to handle non-uniform k

 1

 2

 3

 4

 5

 6

 7

 8

 9

function [co] = kf1_conduction(nx,ny,k)% Treatment of non uniform conduct.

nel = nx*ny; % Number of element computed from mesh definition

fa = 1 ; % Ratio between the 2 conductivities, if 1, k is a cst

co = ones(nel,1)*k;

 co(nx*nx+1:nx*nx+nx) = k*fa; % Second k on horizontal band 1

if nx>2;co(nx*(nx-1)+1:nx*nx) = k*fa;end % Second k on horizontal band 2

disp(['Thermal conductiv. : ',num2str(k,'%0.3g'),' W/(m K)'])

disp(['Main & bridge k. : ',num2str([co(1) co(nx*nx+1)]),' W/(m K)'])

end

43

For a mesh of nx x ny elements (arguments of the function), one defines the vector co (output

of the function) which contains the values of the coefficients of conductivity of all the

elements..

In a non-homogeneous medium, the conductivities may vary from one element to another, it

is necessary to add to the previous procedure the two lines defining the elements operating

with the second conductivity and modify the assembly of the elements. The conductivity

coefficient acts as coefficients in the assembly of the global matrix (line 9). The

conductivities of the elements are stored in the vector co of dimension nel.

Line 4 : conductivity coefficients in the elements (function kf1_conduction.m)

Line 5 : conductivity matrix of a square element
The variable pge(3) corresponds to the thickness of the element. The matrix coefficients

are written in compact form.

 4 1 2 1

1 4 1 2

2 1 4 16

1 2 1 4

ke
K

   
 
  
 
   
 
   

T2T1

T3
T4

44

Line 6: Compute the conductivity matrix for convection (function hf1.m)

2 1 3

 1 2 3
6

3 3 6

convection

eL
K h

 
 

 
 
   

The element is a vertical or a horizontal one.

Its length is L, its thickness is e and the
convection coefficient is h (Wm-2K-1). The

sequence of nodes start with the two real ones

and finish with the virtual one.

This function computes the convection matrices of a mesh nx x ny (arguments 1

and 2 of the function) for a domain of dimensions given by arguments 3 and 4 and

a convection coefficient given by argument 5.

Matlab© function hf1_convection.m to assemble the convection matrix

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

function[K] = hf1_convection(nx,ny,ep,he,hh,nfc)

disp(['CoKr.m conv. coeff. : ',num2str(hh),' Wm-2K-1'])

Kelc = [2 1 -3;1 2 -3;-3 -3 6]*hh*ep*he/ny/6; % Elem. conv. matrix

if nfc ==2

Ntca = (nx+1)*(ny+1)+nfc; % Mesh nx x ny elements

ntv2 = [Ntca-1 Ntca]; % Numbering of the convective virtual nodes

lc = f4_convection(nx,ny,ntv2); % Local. convection matrices 2 sides

disp(['Virtual conv. nodes : ',num2str(ntv2)])

end

if nfc ==3

Ntca = (nx+1)*(ny+1)+nfc; % Mesh nx x ny elements

ntv3 = [Ntca-2 Ntca-1 Ntca]; % Numbering of the convective virtual nodes

lc = f3_convection(nx,ny,ntv3); % Local. of the convection mat. 3 sides

disp(['Virtual conv. nodes : ',num2str(ntv3)])

end

if nfc ==4

Ntca = (nx+1)*(ny+1)+nfc; % Mesh nx x ny elements

ntv4 = [Ntca-3 Ntca-2 Ntca-1 Ntca]; % Number. convective virtual nodes

lc = f5_convection(nx,ny,ntv4); % Local. of convection matrices 4 sides

disp(['Virtual conv. nodes : ',num2str(ntv4)])

end

K = zeros(Ntca,Ntca);% Dimension of K including fixed DOF & add. nodes

for n = 1:size(lc,1);for i=1:3;for j=1:3 % Assembling conv. matrices Kelc

 K(lc(n,i),lc(n,j))=K(lc(n,i),lc(n,j))+Kelc(i,j);end;end;end

end

For each element, the four nodes must be located in the

domain mesh. For the first element, line 1 of the

localization matrix, we have then the global nodes: 4, 5, 2

and 1, etc..

Element 1 : 4 5 2 1

Element 2 : 5 6 3 2

Element 3 : 7 8 5 4

Element 4 : 8 9 6 5

Element 5 : 10 11 8 7

Element 6 : 11 12 9 8

Element 7 : 13 14 11 10

Element 8 : 14 15 12 11

T2T1

T3
T4

The element node sequence is always the same

and must be satisfied during assembling

45

Here, to improve the efficiency

of the procedure, we use direct

localization instead of the matrix

formalism seen before in the

theoretical presentation.

Line 7 : compute the localization matrix (function kf1.m)

46

Lines 8 – 9 : global conductivity matrix assembling

for n = 1:nel;for i=1:4;for j=1:4 % Assembling nel conduct. matrices Kel

K(lK(n,i),lK(n,j))=K(lK(n,i),lK(n,j))+co(n)*Kel(i,j);end;end;end

The external loop is performed on the elements and the 2 internal ones on the

lines and columns of the element conductivity matrices.

Each term (i, j) of element n is located at (lK(n, i), lK(n, j)) in the global K

matrix according to the lK matrix computed in kf1.m (see previous slide).

Moreover, the coefficients of the element matrices Kel are multiplied by

their conductivity coefficient co (n) (see line 4).

47

Lines 10 – 11 : fixing temperatures & solving the system

gco=K(1:no-nx-1,no-nx:size(K,1))*[ones(nx+1,1)*tb;ta(1:size(K,1)-no,1)];

tca = -K(1:no-nx-1,1:no-nx-1)\gco;

In the proposed example, we fix the temperature of the base and of the virtual

nodes. The solution of a problem including only imposed temperatures is

performed as follows. Assuming that is given, we have only to compute

[T1] and the second member [?] = [F2]. The computation of the incoming or

outcoming heat flows through the fixations is simply obtained by multiplying
the global conductivity matrix by the vector of temperatures.

      22 2121 2K K TF T     

11 12

22

1

21 2

0

?

TK K

K K T

     
     
    

     
1

1 11 12 2K K TT


    

 𝑇2

This function performs the visualization of the isotherms of a mesh nx x ny

(arguments 1 and 2 of the function) based on the nodal temperatures stored in the

vector tca (argument 3).

In line 9 of the function, the value of the intervals between successive isotherms can

be adjusted. Let observe in line 10 the introduction of a particularly effective color

bar (function kf4_conduction.m) 48

Ligne 12 : drawing of the isotherms in the function kf3_conduction.m

Matlab© function kf3_conduction.m to draw isotherm lines

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

function [] = kf3_conduction(nx,ny,tca)

figure('Position',[1 1 600 512]);

my = ny+1;no=(nx+1)*(ny+1);

B = ones(my,nx+1)*tca(1);x = zeros(my,nx+1);y = zeros(my,nx+1);

for j = 1 : nx+1;for i = 1 : ny;x(i,j) = j-1; y(i,j) = my-i;end;end;

ii = 0;

for i = 1:ny;for j = 1:nx+1;ii = ii+1; B(i,j) = tca(ii);end;end

x(my,:) = x(ny,:);y(:,1) = y(:,2);B(my,:) = tca(ii+1:no);

gap = 1; % gap = max(round((tmax-tmin)/20),.5); % gap = 0.25;

colormap(kf4_conduction); % Color map definition

[CS,H] = contourf(x,y,B,(0.:gap:max(tca)),'b');hold on;axis equal

 clabel(CS,H,[275 280 285 290 295 300 305 310 315 320]);colorbar

plot ([0 nx nx 0 0],[0 0 ny ny 0],'k','LineWidth',2);hold on;axis equal

 title (['T_m_a_x : ',num2str(round(max(tca))),' K, T_m_i_n : ',...

num2str(round(min(tca))),' K, step : ',num2str(gap),' K'],'fontsize',15);

axis off;end % End isotherms drawing

49

Matlab© function hf2_convection.m to build localizations of convective elements

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

function [lc]=hf2_convection(nx,ny,ntv)% Loc. vectors for conv. on 3 sides

no = (nx+1)*(ny+1);lc = zeros(2*ny+nx,3);ii = 0;

if ntv(1) > 0 % Right side

 for i = 1:ny

 lc(i,1) = (nx+1)*i;lc(i,2) = lc(i,1)+nx+1;lc(i,3) = no+1;

 end; ii = ii + ny;

end

if ntv(2) > 0 % Left side

 for i = 1:nx+1:(nx+1)*ny; ii = ii + 1;

 lc(ii,1) = i; lc(ii,2)=lc(ii,1)+nx+1 ;lc(ii,3) = no+2;

 end

end

if ntv(3) > 0 % Top side

 for i = 1:nx; ii = ii + 1;

 lc(ii,1) = i;lc(ii,2) = lc(ii,1)+1;lc(ii,3) = no+3;

 end

end; % disp(['Number of conv. el. : ',num2str(ii)])

end

Matlab© function hf3_convection.m to build localizations of convective elements

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

function [lc]=hf3_convection(nx,ny,ntv)% Loc. vectors for conv. on 3 sides

no = (nx+1)*(ny+1);lc = zeros(2*ny,3);ii = 0;

if ntv(1) > 0 % Right side

 for i = 1:ny

 lc(i,1) = (nx+1)*i;lc(i,2) = lc(i,1)+nx+1;lc(i,3) = no+1;

 end; ii = ii + ny;

end

if ntv(2) > 0 % Left side

 for i = 1:nx+1:(nx+1)*ny; ii = ii + 1;

 lc(ii,1) = i; lc(ii,2)=lc(ii,1)+nx+1 ;lc(ii,3) = no+2;

 end

end

disp(['Number of conv. el. : ',num2str(ii)])

end

50

Matlab© function hf4_convection.m to compute localization of convection matrices

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

function [lc]=hf4_convection(nx,ny,ntv) % Loc. vectors conv. on 4 sides

no = (nx+1)*(ny+1);lc = zeros(2*(ny+nx),3);ii = 0;

if ntv(1) > 0 % Right side

 for i = 1:ny

 lc(i,1) = (nx+1)*i;lc(i,2) = lc(i,1)+nx+1;lc(i,3) = no+1;

 end; ii = ii + ny;

end

if ntv(2) > 0 % Left side

 for i = 1:nx+1:(nx+1)*ny; ii = ii + 1;

 lc(ii,1) = i; lc(ii,2)=lc(ii,1)+nx+1 ;lc(ii,3) = no+2;

 end

end

if ntv(3) > 0 % Top side

 for i = 1:nx; ii = ii + 1;

 lc(ii,1) = i;lc(ii,2) = lc(ii,1)+1;lc(ii,3) = no+3;

 end

end;

if ntv(4) > 0 % Bottom side

 for i = 1:nx; ii = ii + 1;

 lc(ii,1) = no-nx-1+i;lc(ii,2) = lc(ii,1)+1;lc(ii,3) = no+4;

 end

end;

disp(['N. of convective el.: ',num2str(ii)])

end

Matlab© function hf5_convection.m to compact matrices xyz, lK, lc.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

function [sxyz,slK,slc]=hf5_convection(xyz,lK,lc) % see cono.m

pn = zeros(size(xyz,1),1);

for i = 1:size(lK,1);for j = 1:4;if lK(i,j) > 0;pn(lK(i,j))=1;end;end;end

for i = 1:size(lc,1);for j = 1:3;if lc(i,j) > 0;pn(lc(i,j))=1;end;end;end

ii = 0;

for i = 1 : size(pn,1);if pn(i) == 1;ii=ii+1;pn(i)=ii;end;end

sxyz = zeros(max(pn),3);

for i = 1:size(pn,1);if pn(i) > 0;sxyz(pn(i),:)=xyz(i,:);end;end

slK = zeros(size(lK));

for i = 1:size(lK,1);for j=1:4;slK(i,j)=pn(lK(i,j));end;end

ii = 0;

for i = 1:size(lc,1);if lc(i,1) > 0;ii=ii+1;end;end

slc = zeros(ii,3);ii=0;

for i = 1:size(lc,1)

 if lc(i,1) > 0;ii = ii+1;for j = 1:3;slc(ii,j) = pn(lc(i,j));end;end;

end

end

