%% slides 3 y 4 3 V=[ 2.8175 10.1326 2.2346 16.0404 4.4026 1.9738 1.0462 1.0091 1.1983 ... 3.9982 4.0988 1.1173 2.9033 1.8290 3.0760 1.9099 1.7212 4.4390 ... 4.1799 2.8604 1.6685 1.6588 23.6487 3.1122 1.3537 2.8040 12.1043 ... 1.1234 7.2549 2.5510 1.0208 1.8573 6.1357 1.2936 1.5113 1.3588 ... 1.0568 1.0353 7.0616 5.4359 7.7418 5.8158 1.4088 1.0493 1.3506 ... 88.2787 1.0783 1.5144 1.0504 1.9798 ]; plot(V) pause; close all pause(.1) %% slides 5 y 6 5 M=[6.6713e-001 1.8839e+000 4.7741e+000 1.0777e+001 2.1394e+001 3.6471e+001 5.0583e+001 1.3615e+000 3.8340e+000 9.6617e+000 2.1597e+001 4.2155e+001 6.9640e+001 9.0076e+001 2.5254e+000 7.1228e+000 1.7932e+001 3.9905e+001 7.7097e+001 1.2454e+002 1.5203e+002 4.2186e+000 1.2008e+001 3.0443e+001 6.8078e+001 1.3182e+002 2.1240e+002 2.5513e+002 6.2063e+000 1.8068e+001 4.6737e+001 1.0655e+002 2.1060e+002 3.4844e+002 4.3922e+002 7.5942e+000 2.3267e+001 6.2895e+001 1.4951e+002 3.0917e+002 5.4240e+002 7.5890e+002 6.3417e+000 2.2602e+001 6.8123e+001 1.7707e+002 3.9821e+002 7.6741e+002 1.2302e+003 -1.1225e+000 6.8887e+000 4.1208e+001 1.4570e+002 3.9997e+002 9.0680e+002 1.7199e+003 -1.9702e+001 -3.6995e+001 -4.9776e+001 -1.4926e+001 1.7475e+002 7.1218e+002 1.8363e+003 -5.4300e+001 -1.2273e+002 -2.3984e+002 -3.8692e+002 -4.5374e+002 -1.6297e+002 9.5564e+002 -1.0726e+002 -2.5761e+002 -5.4981e+002 -1.0249e+003 -1.6170e+003 -2.0097e+003 -1.5137e+003 -1.7555e+002 -4.3457e+002 -9.6566e+002 -1.9065e+003 -3.2925e+003 -4.8399e+003 -5.7083e+003 -2.4947e+002 -6.2846e+002 -1.4280e+003 -2.9054e+003 -5.2395e+003 -8.2460e+003 -1.1023e+004 -3.1455e+002 -8.0081e+002 -1.8439e+003 -3.8169e+003 -7.0483e+003 -1.1486e+004 -1.6241e+004 -3.5622e+002 -9.1279e+002 -2.1186e+003 -4.4305e+003 -8.2937e+003 -1.3777e+004 -2.0056e+004 -3.6521e+002 -9.3958e+002 -2.1915e+003 -4.6112e+003 -8.7022e+003 -1.4618e+004 -2.1628e+004 -3.4066e+002 -8.7864e+002 -2.0556e+003 -4.3417e+003 -8.2338e+003 -1.3923e+004 -2.0795e+004 -2.8977e+002 -7.4835e+002 -1.7535e+003 -3.7105e+003 -7.0529e+003 -1.1961e+004 -1.7935e+004 -2.2450e+002 -5.7955e+002 -1.3569e+003 -2.8679e+003 -5.4404e+003 -9.1957e+003 -1.3709e+004 -1.5754e+002 -4.0507e+002 -9.4320e+002 -1.9778e+003 -3.7084e+003 -6.1557e+003 -8.9070e+003 -9.8907e+001 -2.5140e+002 -5.7608e+002 -1.1802e+003 -2.1360e+003 -3.3464e+003 -4.3581e+003 -5.4262e+001 -1.3408e+002 -2.9484e+002 -5.6663e+002 -9.1945e+002 -1.1565e+003 -7.7683e+002 -2.4739e+001 -5.6841e+001 -1.1076e+002 -1.6815e+002 -1.3785e+002 2.2964e+002 1.4433e+003 -8.1050e+000 -1.4173e+001 -1.1749e+001 3.8443e+001 2.4657e+002 8.5999e+002 2.3362e+003 -5.1250e-001 4.1789e+000 2.7246e+001 1.0911e+002 3.4831e+002 9.4937e+002 2.2727e+003 1.8783e+000 8.7246e+000 3.2725e+001 1.0544e+002 2.9951e+002 7.6005e+002 1.7364e+003 1.9284e+000 7.3675e+000 2.4829e+001 7.4832e+001 2.0326e+002 4.9992e+002 1.1169e+003 1.2963e+000 4.6465e+000 1.5003e+001 4.3870e+001 1.1657e+002 2.8208e+002 6.2266e+002 7.0011e-001 2.4357e+000 7.6959e+000 2.2143e+001 5.8120e+001 1.3934e+002 3.0541e+002 3.2235e-001 1.1033e+000 3.4431e+000 9.8129e+000 2.5567e+001 6.0947e+001 1.3300e+002]; surf(M) axis('square') pause %% slide 21 21 close all pause(.1) x=0:0.01:pi; y=cos(x); plot(x,y); title('cos(x) entre 0 y \pi','fontsize',24); %Googlear greek latex para encontrar mas simbolos xlabel('variable X','fontsize',16); ylabel('variable Y','fontsize',16); grid pause %% slide 27 27 close all pause(.1) x = ( 0:0.04:10 ); y = sin(x) .* exp(-0.4 * x); figure plot(x,y) pause %% slide 28 28 close all pause(.1) x = ( 0:0.4:5 ); y = sin(x) .* exp(-0.4 * x); figure plot(x,y,'+') pause %% slide 32 32 close all pause(.1) x = ( 0:0.4:10 ); f = sin(x) .* exp(-0.4 .* x); g = sin(x); figure plot(x,f,':xr',x,g,'--*') pause %% slide 34 34 close all pause(.1) x1=-5:0.2:5; x2=-5:0.2:5; y1=-10:0.4:10; y2=x2.^2; figure plot(x1, y1, x2, y2) figure plot(x1, y1, 'o', x2, y2, '+') figure plot(x1, y1, 'o') hold on plot(x2, y2, '+g') pause %% slide 35 35 close all pause(.1) x = ( 0:0.4:10 ); y = sin(x) .* exp(-0.4*x); y1 = sin(x); figure plot ( x, y, ':xr') grid on xlabel('eje x'); ylabel('eje y'); hold on plot ( x, y1, '-xb') title('Grafico UNO') pause %% slide 37 37 axis([0 10 -.5 .5]) pause %% slide 40 40 close all pause(.1) figure subplot( 2, 2, 1) plot ( x, y, '.', x, y1, '--') subplot( 2, 2, 2) plot ( x, y, '+:', x, y1, 'x-') subplot( 2, 2, 3) plot ( x, y, 'o-k', x, y1, '*-.r') subplot( 2, 2, 4) plot ( x, y, '*--m', x, y1, 'x:k') pause %% slide 42 42 close all pause(.1) t = 0:.1:10*pi; figure plot3 (sin(t), cos(t), t) pause %% slide 43 43 close all pause(.1) x = [-5:.5:5]; y = x; [X,Y] = meshgrid(x,y); Z = sqrt(1+0.25*Y.^2 + X.^2 + X); figure mesh(X,Y,Z) pause %% slide 47 47 close all pause(.1) ZZ = ones(21,21)*10; mesh(X,Y,ZZ) pause %% slide 48 48 figure contour(X,Y,Z,20) pause %% slide 49 49 close all pause(.1) x = [-5:.5:5]; y = x; figure [X,Y] = meshgrid(x,y); Z = sqrt(1+0.25*Y.^2+X.^2); surf(Z) figure surf(X,Y,Z,'FaceColor','interp','EdgeColor','none') pause %% slide 50 50 close all pause(.1) figure [X,Y] = meshgrid(-2:.2:2); Z = X.*exp(-X.^2 - Y.^2); [DX,DY] = gradient(Z,.2,.2); quiver(X,Y,DX,DY) hold on contour(X,Y,Z,10) quiver(X,Y,DX,DY) pause %% slide 51 51 close all pause(.1) x = [1 3 0.5 2.5 2]; explode = [0 1 0 0 0]; figure pie(x,explode) colormap jet pause %% slide 52 52 close all pause(.1) A=rand(6,1); figure bar(A) figure A=rand(6,3); bar(A) pause %% slide 53 53 close all pause(.1) figure t = 0:.01:2*pi; r=sin(2*t).*cos(2*t); polar(t,r) pause %% slide 54 54 close all pause(.1) rgb = imread('ngc6543a.jpg'); figure image(rgb); title('RGB image') axis('square') pause %% slide 55 55 close all pause(.1) rgb = imread('ngc6543a.jpg'); im = mean(rgb,3); figure image(im); title('Intensity Heat Map') colormap(hot(256)) axis('square') pause %% slide 56 56 close all pause(.1) rgb = imread('ngc6543a.jpg'); figure subplot( 2, 2, 1) image(rgb(:,:,1)); colormap(gray(256)) subplot( 2, 2, 2) image(rgb(:,:,2)); subplot( 2, 2, 3) image(rgb(:,:,3)); subplot( 2, 2, 4) image(rgb); pause %% Fin