
Getting Started Guide

1. IntroductionThis  document  describes  information  for  GPU  programming  for  the  course.Please, read it carefully.
2. MinoTauro GPU cluster

2.1. Change your passwordUse an SSH client program to login to  dt01.bsc.es using the training accountlogin information provided to you.  This machine is only used for password setup,the machines you will have to connect during the hands on labs of the course aredetailed below. Once logged in,  follow the steps that appear in the terminal tochange your default password for a new one of your choice (If no steps appear afteryou  login,  execute  the  command  passwd). Note  that  there  could  be  somerestrictions to ensure that passwords have a minimum strength level (a minimumnumber of characters, use of numbers and/or punctuation symbols, etc.). Once youfinish changing you password, you can logout from this machine and connect to thecluster login node.Note: the password change may take ‘a couple’ of minutes to be effective.
2.2. Cluster usageWith your SSH client login to mt1.bsc.es using the provided username and yournew password. If you just changed your password, it may take some time (up to 10minutes) for the change to be effective, thus it is possible that you cannot loginduring this time.In this section, we present a brief description of the main commands needed towork in the cluster. For further information about the MinoTauro cluster, take alook  to  the MinoTauro  User's  Guide.  This  guide  contains  detailed  informationabout the MinoTauro Cluster, its job management system, etc.The MinoTauro cluster uses a job management system to control access to thecomputing nodes. To run the labs, you will need to use the commands provided bythe  system to  submit  jobs  for  execution,  check  their  state,  or  cancel  them  ifnecessary:

http://www.bsc.es/support/MinoTauro-ug.pdf


Submitting a jobTo submit a job, use the command  sbatch <job_script>, like in the followingexample:
$ sbatch ./job.sh
Submitted batch job 170798After you execute the command, you shall see a message with the ID of thenewly  created  job  (170798  in  the  example  above).  The  argument  of  sbatch(<job_script>)  is  the  path  of  a  shell  script  which  contains  a  set  of  directivesrequired by the job queue system, and the command to execute the program (seethe example below). Some labs already provide a job.sh file, just note that to runthe different programs in a lab, you will have to edit the last line of the script toexecute the corresponding program. If a lab doesn’t provide a job script, make acopy of a previous one and edit it accordingly for the current lab. 
#!/bin/bash
#SBATCH --job-name=MyJob
#SBATCH --workdir=.
#SBATCH --output=%j.out
#SBATCH --error=%j.err
#SBATCH --time=00:05:00
#SBATCH --ntasks=1
#SBATCH --tasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --gres=gpu:1
 
<some command(s)>Query job statusTo query job status use the squeue command. You shall see all your submittedjobs that are waiting or running in the cluster.A job has the PENDING state when is waiting in the queue:
$ squeue --long
JOBID  NAME  USER     STATE   TIME TIMELIMIT CPUS NODES NODELIST(REASON)
170798 MyJob nct00002 PENDING 0:00 10:00     6    1     (Priority)A job has  the  RUNNING state  when it  is  executing.  When a  job is  in  theRUNNING state, the TIME column shows the elapsed time since the job startedexecuting,  and the NODELIST (REASON) column indicates  on which cluster'snode/s the job is running.
$ squeue --long
JOBID  NAME  USER     STATE   TIME TIMELIMIT CPUS NODES NODELIST(REASON)
170798 MyJob nct00002 RUNNING 0:04 10:00     6    1     nvb118



When the job has finished and the job queue system has finished cleaning the jobresources, the job won't appear anymore in the list:
$ squeue --long
JOBID NAME USER STATE TIME TIMELIMIT CPUS NODES NODELIST(REASON)Canceling a jobTo delete a job you can use the command scancel <job ID>
$ scancel 170798When  your  job  is  finished,  you  can  check  the  program  output  in  the  files“XXX.out” and “XXX.err”, where “XXX” is the job ID number. Files with “.out”extension store the execution output log (stdout). Files with “.err” extension storethe error or warning messages printed during the execution (stderr).Note: Be aware that interruptions to your SSH connection may cause you to loseunsaved work. If you have reason to believe your connection to the cluster may beunstable, you may wish to use an FTP program with the SFTP protocol and yourprovided login information to retrieve the source files to your local machine forediting and upload them back to the cluster to compile and execute the programs.
Execution of GUI applicationsIn some of the labs we will use the NVIDIA Visual Profiler to profile the codeand obtain a timeline of its execution. The best way to view the windows of a GUIapp running in the cluster is to use the X forwarding feature of ssh. Setting up Xforwarding to be able to use remote GUI apps depends on the OS installed in yourlaptop;
LinuxIn this case you just have to add the -X flag when connecting to the clusterthrough ssh:
$ ssh -X <username>@mt1.bsc.esIf any error appears while trying to run a GUI app, you may try using the -Yflag instead of -X.
WindowsWindows doesn’t handle X GUIs by default. There are several apps for Windowsthat enable this functionality, but many of them are not free. If you already havean X server emulation app installed in your laptop, you can use it for these labs. If



not, we did some tests with the free version of MobaXterm and seems to work well.You can download it from:http:/mobaxterm.mobatek.net/
Mac OSOn Mac OS, the X windows system is called XQuartz. Mac OS X 10.5, 10.6 and10.7 installed it by default, but as of 10.8 Apple has dropped support and directsusers  to  the  open  source  XQuartz.  You  can  install  XQuartz  from  the  OSdistribution media or download it from https://www.xquartz.org/.When connecting to the cluster through ssh add the -Y flag (not -X) to enable Xforwarding:
$ ssh -Y <username>@mt1.bsc.es

Setting up the labs

Obtain the labs source codeUse an SSH client program to login to mt1.bsc.es using the training account logininformation provided to you. Your home directory can be organized in any way youlike. To unpack the labs framework including the code for all the lab assignments,execute the unpack command in the directory you would like the labs framework tobe deployed:
$ tar -zxf ~nct00021/mv19_openacc.tgzCheck that a directory containing the labs has been created:
$ cd mv19_openacc
$ lsThe last command should list the different labs’ directories and a few files.
Setup the environmentTo be able to compile the labs, we first have to enable the PGI’s OpenACCcompiler. For this, execute the following command:
$ module load pgiYou will have to execute this command every time you login to the cluster.



OpenACC Course - Lab 1This hands-on lab walks you through a short sample of a scientific code, anddemonstrates how you can employ OpenACC directives using a four-step process.You will make modifications to a simple C program, then compile and execute thenewly enhanced code in each step. Along the way, hints and solution are provided,so you can check your work, or take a peek if you get lost.You  can  accelerate  your  applications  using  OpenACC  directives  with  4straightforward steps:1. Characterize your application2. Add compute directives3. Minimize data movement4. Optimize kernel schedulingThe content of these steps and their order will be familiar if you have ever doneparallel programming on other platforms. Parallel programmers deal with the sameissues whenever they tackle a new set of code, no matter what platform they areparallelizing an application for. These issues include:
• Optimizing and benchmarking the serial version of an application
• Profiling to identify the compute-intensive portions of the program thatcan be executed concurrently
• Expressing  concurrency  using  a  parallel  programming  notation  (e.g.,OpenACC directives)
• Compiling and benchmarking each new/parallel version of the application
• Locating problem areas and making improvements iteratively until thetarget level of performance is reachedThe  4  Steps  process  will  help  you  use  OpenACC on  your  own  codes  moreproductively, and get better speed-ups in less time.This lab is provided with C code. Some of the following labs will also provideFortran versions.



Step 1 - Characterize Your ApplicationThe most difficult part of accelerator programming begins before the first line ofcode is written. If your program is not highly parallel, an accelerator or coprocesorwon't be much use. Understanding the code structure is crucial if you are going toidentify opportunities and successfully parallelize a piece of code. The first step inOpenACC programming then is to characterize the application. This includes:
• Understanding the program structure and how data is passed through the calltree
• Profiling  the  CPU-only  version  of  the  application  and  identifyingcomputationally-intense "hot spots"

◦ Which loop nests dominate the runtime?
◦ Are the loop nests suitable for an accelerator?

• Insuring that the algorithms you are considering for acceleration are  safelyparallelWhat we've just said may sound a little scary, but please note that as parallelprogramming methods go, OpenACC is really friendly; because OpenACC directivesare incremental, you can add one or two directives at a time and see how thingswork. Also, the compiler provides a lot of feedback that can help you during theacceleration process. In this first lab, we will be accelerating a 2D-stencil called the Jacobi Iteration.Jacobi Iteration is a standard method for finding solutions to a system of linearequations. Here is the serial C code for our Jacobi Iteration:
#include <math.h>
#include <string.h>
#include <openacc.h>
#include "timer.h"
#include <stdio.h>

#define NN 1024
#define NM 1024

float A[NN][NM];
float Anew[NN][NM];

int main(int argc, char** argv)
{
    int i,j;
    const int n = NN;
    const int m = NM;
    const int iter_max = 1000;
    const double tol = 1.0e-6;
    double error     = 1.0;



    memset(A, 0, n * m * sizeof(float));
    memset(Anew, 0, n * m * sizeof(float));

    for (j = 0; j < n; j++)
    {
        A[j][0]    = 1.0;
        Anew[j][0] = 1.0;
    }

    printf("Jacobi relaxation Calculation: %d x %d mesh\n", n, m);

    StartTimer();
    int iter = 0;

    while ( error > tol && iter < iter_max )
    {
        error = 0.0;

        for( j = 1; j < n-1; j++)
        {
            for( i = 1; i < m-1; i++ )
            {
                Anew[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1]
                                + A[j-1][i] + A[j+1][i]);
                error = fmax( error, fabs(Anew[j][i] - A[j][i]));
            }
        }

        for( j = 1; j < n-1; j++)
        {
            for( i = 1; i < m-1; i++ )
            {
                 A[j][i] = Anew[j][i];    
            }
        }

            if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);

        iter++;
    }

    double runtime = GetTimer();

    printf(" total: %f s\n", runtime / 1000);
} In this code, the outer 'while' loop iterates until the solution has converged, bycomparing the computed error to a specified error tolerance,  tol. The first of twosets of inner nested loops applies a 2D Laplace operator at each element of a 2Dgrid, while the second set copies the output back to the input for the next iteration.
BenchmarkingBefore you start modifying code and adding OpenACC directives, you shouldbenchmark the serial version of the program. To facilitate benchmarking after thisand every other step in our parallel porting effort, we have built a timing routinearound the main structure of our program -- a process we recommend you follow in



your own efforts. Let's run the task1.c file without making any changes -- usingthe  -fast  set  of  compiler  options  on  the  serial  version  of  the  Jacobi  Iterationprogram --  and see  how fast  the serial  program executes.  This  will  establish  abaseline for future comparisons.  Execute the following command to compile thecode:
$ pgcc -fast -o jacobi_task1 task1/task1.cNow submit the example job script provided with the labs (job.sh) using thecommand introduced in the Getting Started:
$ mnsubmit ../../job.shNOTE:  In  this  first  task  the  job  script  already  contains  the  command thatexecutes the program we just compiled. From now on, you will have to edit thescript and modify the command it contains according to the program you want torun.Once the job finishes, check the *.out file. It should contain the output of theprogram and look something like:
Jacobi relaxation Calculation: 1024 x 1024 mesh
    0, 0.250000
  100, 0.002397
  200, 0.001204
  300, 0.000804
  400, 0.000603
  500, 0.000483
  600, 0.000403
  700, 0.000345
  800, 0.000302
  900, 0.000269
 total: 4.434503 s

Results CorrectnessThis is a good time to briefly talk about having a quality check in your codebefore starting to offload computation to an accelerator (or do any optimizations,for that matter). It doesn't do you any good to make an application run faster if itdoes not return the correct results. It is thus very important to have a quality checkbuilt into your application before you start accelerating or optimizing. This can bea simple value print out (one you can compare to a non-accelerated version of thealgorithm) or something else.In our case, on every 100th iteration of the outer  while  loop, we print thecurrent max error. As we add directives to accelerate our code later in this lab, youcan look back at these values to verify that we're getting the correct answer. These



print-outs also help us verify that we are converging on a solution -- which meansthat we should see, as we proceed, that the values are approaching zero.NOTE: NVIDIA GPUs implement IEEE-754 compliant floating point arithmeticjust like most modern CPUs. However,  because floating point arithmetic is  notassociative,  the  order  of  operations  can affect  the  rounding error  inherent  withfloating-point operations; you may not get exactly the same answer when you moveto a different processor. Therefore, you'll want to make sure to verify your answerwithin an acceptable error bound. Please read  this article at a later time, if youwould like more details.
ProfilingYour objective in Step 2 will be to modify task2.c in a way that moves themost computationally intensive, independent loops to the accelerator. With a simplecode, you can identify which loops are candidates for acceleration with a little bit ofcode inspection. On more complex codes, a great way to find these computationallyintense areas is to use a profiler (such as NVIDIA’s nvprof, PGI's pgprof or open-source  gprof) to determine which functions are consuming the largest amounts ofcompute time. In the next labs will see how to use nvprof to do the initial profiling.For this one, the compute-intensive part of our code is the two for-loops nestedinside the while loop in the function main.
Step 2 - Add Compute DirectivesIn  C,  an  OpenACC  directive  is  indicated  in  the  code  by  '#pragma  acc<directive>'. This is very similar to OpenMP programming and gives hints to thecompiler  on how to  handle  the compilation of  your source.  If  you are  using  acompiler which does not support OpenACC directives,  it will  simply ignore the'#pragma acc' directives and move on with the compilation.In this step, you will add compute regions around your expensive parallel loop(s).The first OpenACC directive you're going to learn about is the  kernels  directive.The kernels directive gives the compiler a lot of freedom in how it tries to accelerateyour code - it basically says, "Compiler, I believe the code in the following region isparallelizable, so I want you to try and accelerate it as best you can."Like most OpenACC directives in C/C++, the kernels directive applies to thestructured code block immediately following the #pragma acc <directive>. Forexample, each of the following code samples instructs the compiler to generate akernel -- from suitable loops -- for execution on an accelerator:

https://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus


#pragma acc kernels
{
    // accelerate suitable loops here
    // (note the plural, the block can contain more than one loop)
}
// but not these loopsor
#pragma acc kernels
for ( int i = 0; i < n; ++i ) 
  {  // body of for-loop
    ... // The for-loop is a structured block, so this code will be accelerated
  }
... // Any code here will not be accelerated since it is outside of the for-loopOne,  two  or  several  loops  may  be  inside  the  structured  block,  the  kernelsdirective will try to parallelize it, telling you what it found and generating as manykernels as it thinks it safely can. At some point, you will encounter the OpenACCparallel  directive, which provides another method for defining compute regions inOpenACC. For now, let's drop in a simple OpenACC kernels directive in front ofand embracing  both  the two for-loop codeblocks that follow the while loop. Thekernels directive is designed to find the parallel acceleration opportunities implicitin the for-loops in the Jacobi Iteration code.Add the directives in the file task2/task2.c and, once you finish, compile the codewith the following command:
$ pgcc -acc -Minfo -o jacobi_task2 task2/task2.cIf  you  successfully  added  #pragma acc kernels  in  the  proper  spots,  thecompiler output messages should look similar to this:
main:
     36, Generating present_or_copyin(Anew[1:1022][1:1022])
         Generating copyin(A[:][:])
         Generating copyout(A[1:1022][1:1022])
         Generating NVIDIA code
     41, Loop is parallelizable
     43, Loop is parallelizable
         Accelerator kernel generated
         41, #pragma acc loop gang /* blockIdx.y */
         43, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
         47, Max reduction generated for error
     52, Loop is parallelizable
     54, Loop is parallelizable
         Accelerator kernel generated
         52, #pragma acc loop gang /* blockIdx.y */
         54, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
         Memory copy idiom, loop replaced by call to __c_mcopy4If you do not get a similar output, please check your work and try re-compiling.If  you're  stuck,  you  can  compare  what  you  have  with  the  code  intask2/task2_solution.c.



The output provided by the compiler is very useful, and should not be ignoredwhen accelerating your own code with OpenACC. Let's break it down a bit and seewhat it's telling us.1. First, since we used the  -Minfo command-line option, we will get all theoutput messages the compiler can provide. If we were to use -Minfo=accelwe would only see the output corresponding to the accelerator, in this case anNVIDIA GPU.2. The  first  line  of  the  output,  main,  tells  us  which  function  the  followinginformation is in reference to.3. The line starting with 41, Loop is parallelizable of the output tellsus that on line 41 in our source, an accelerated kernel was generated. This isthe the loop just after where we put our #pragma acc kernels.4. The following lines provide more details on the accelerator kernel on line 42.It shows we created a parallel OpenACC  loop.  This loop is made up ofgangs (a grid of blocks in CUDA language) and vector parallelism (threads inCUDA language) with the vector size being 128 per gang.5. At line 54, the compiler tells us it found another loop to accelerate.6. The rest of the information concerns data movement which we'll  get intolater in this lab.So as you can see, lots of useful information is provided by the compiler, and it'simportant that you carefully inspect this information to make sure the compiler isdoing what you've asked for.Once you feel your code is correct, edit the job script to execute jacobi_task2, andsubmit it using  mnsubmit. You'll want to review our quality check to make sureyou didn't break the functionality of your application.
Step 3 - Manage Data MovementNow, if your solution is similar to the one in task2_solution.c, you have probablynoticed that we're executing slower than the non-accelerated, CPU-only version westarted with. What gives?!The  compiler  feedback  we  collected  earlier  tells  you  quite  a  bit  about  datamovement,  and  you can  collect  even  more  by  setting  an  environment  variable(export PGI_ACC_TIME=1) and then running the compiled code (We'll use this later in



Step 4). The reason for our slowdown in this step is excessive data movement: bothregions spent the majority of their time copying data. The OpenACC compiler can only work with the information we have given it. Itknows we need the A and Anew arrays on the GPU for each of our two acceleratedsections, but we didn't tell it anything about what happens to the data outside ofthose sections. Without this knowledge, it has to copy the arrays to the GPU andback to the CPU for each accelerated section, every time it goes through the whileloop. That is a LOT of wasted data transfers.Ideally, we would just transfer A and Anew to the GPU at the beginning of theJacobi Iteration, and then only transfer A back to the CPU at the end.Because  overall  accelerator  performance  is  determined  largely  by  how  wellmemory  transfers  are  optimized,  the  OpenACC specification  defines  the  datadirective and several modifying clauses to manage all the various forms of datamovement.We need to give the compiler more information about how to reduce unnecessarydata  movement  for  the  Jacobi  Iteration.  We  are  going  to  do  this  with  theOpenACC  data directive and some modifying clauses defined in the OpenACCspecification.In C, the data directive applies to the next structured code block. The compilerwill manage data according to the provided clauses. It does this at the beginning ofthe  data directive code block, and then again at the end. Some of the clausesavailable for use with the data directive are:
• copy( list ) - Allocates memory on GPU and copies data from host to GPU when 

entering region and copies data to the host when exiting region.
• copyin( list ) - Allocates memory on GPU and copies data from host to GPU when 

entering region.
• copyout( list ) - Allocates memory on GPU and copies data to the host when exiting 

region.
• create( list ) - Allocates memory on GPU but does not copy.
• present( list ) - Data is already present on GPU from another containing data 

region.As  an  example,  the  following  directive  copies  array  A  to  the  GPU  at  thebeginning of the code block, and back to the CPU at the end. It also copies arraysB and C to the CPU at the end of the code block, but does not copy them to theGPU at the beginning:
#pragma acc data copy( A ), copyout( B, C )
{
   ....



} For detailed information on the  data directive clauses,  you can refer to theOpenACC 1.0 or 2.0 specifications.Edit  task3/task3.c and add a  data directive to minimize data transfers in theJacobi Iteration. There's a place for the create clause in this exercise, too.Hints:
• You should only have to worry about managing the transfer of data in arrays

A and Anew.
• You want to put the data directive just above the outer while loop.
• You want to copy A so it is transferred to the GPU and back again after thefinal iterations through the data region. But you only need to create Anewas it is just used for temporary storage on the GPU, so there is no need toever transfer it back and forth.You can also look at  task3_solution.c to see the answer if you get completelystuck or want to check your work.Once you finish adding the data directives, compile the code and run it with thejob system. After making these changes, our accelerator code should be much faster-- with just a few lines of OpenACC directives we have made our code more thantwice as fast by running it on an accelerator.

Step 4 - Optimize Kernel SchedulingThe final step in our tuning process is to tune the OpenACC compute regionschedule using the gang and vector clauses. These clauses let us take more explicitcontrol over how the compiler parallelizes our code  for the accelerator we will beusing.Kernel scheduling optimizations  may give you significantly higher speedup, butbe aware that these particular optimizations can significantly reduce performanceportability. The vast majority of the time, the default kernel schedules chosen bythe OpenACC compilers are quite good, but other times the compiler doesn't do aswell. Let's spend a little time examining how we could do better, if we were in asituation where we felt we needed to.First, we need to get some additional insight into how our Jacobi Iteration codewith the data optimizations is running on the accelerator. Let's run it with all your
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data  movement  optimizations  on  the  accelerator  again,  this  time  setting  theenvironment variable PGI_ACC_TIME that we mentioned before.Add the following command in the job script,  before the command that wasexecuting step 3’s code:
export PGI_ACC_TIME=1Submit the job script to run again the code from step 3, and when the job isdone, examine the output files. The *.out file should contain the normal output ofthe program, and the *.err file should contain some timing information we haven'tseen previously:
Accelerator Kernel Timing data
/home/gpudev1/notebook/task3/task3.c
  main  NVIDIA  devicenum=0
    time(us): 391,494
    34: data region reached 1 time
        34: data copyin reached 1 time
             device time(us): total=479 max=479 min=479 avg=479
        68: data copyout reached 1 time
             device time(us): total=519 max=519 min=519 avg=519
    37: compute region reached 1000 times
        44: kernel launched 1000 times
            grid: [8x1022]  block: [128]
             device time(us): total=248,508 max=268 min=242 avg=248
            elapsed time(us): total=258,569 max=453 min=255 avg=258
        44: reduction kernel launched 1000 times
            grid: [1]  block: [256]
             device time(us): total=27,531 max=83 min=25 avg=27
            elapsed time(us): total=37,589 max=93 min=35 avg=37
        55: kernel launched 1000 times
            grid: [8x1022]  block: [128]
             device time(us): total=114,457 max=170 min=110 avg=114
            elapsed time(us): total=124,880 max=303 min=121 avg=124There  is  a  lot  of  information  here  about  how  the  compiler  mapped  thecomputational kernels in our program to our particular accelerator (in this case, anNVIDIA GPU). We can see three regions. The first one is the memcopy loop neststarting on line 34, which takes only a tiny fraction of the 0.39 seconds of totalsystem time. The second region is the nested computation loop starting on line 44,which  takes  about  0.25  seconds.  The  copyback  (copyout)  loop  then  executesbeginning with line 68. We can see that region takes very little time -- which tellsus there is no other part of the program that takes significant time. If we look atthe main loop nests, we can see these lines:
grid: [8x1022]  block[128]



The terms  grid and  block come from the CUDA programming model. A GPUexecutes groups of threads called thread blocks. To execute a kernel, the applicationlaunches  a  grid of  these  thread  blocks.  Each  block  runs  on  one  of  the  GPUmultiprocessors and is assigned a certain range of IDs that it uses to address aunique data range. In this case our thread blocks have 128 threads each. The gridthe compiler has constructed is also 2D, 8 blocks wide and 1022 blocks tall. This isjust enough to cover our 1024x1024 grid. But we don't really need that many blocks-- if we tell the compiler to launch fewer, it will automatically generate a sequentialloop over data blocks within the kernel code run by each thread.Note: You can let the compiler do the hard work of mapping loop nests, unlessyou are certain you can do it better (and portability is not a concern.) When youdecide to intervene, think about different parallelization strategies (loop schedules):in nested loops, distributing the work of the outer loops to the GPU multiprocessors(on PGI = gangs) in 1D grids. Similarly, think about mapping the work of theinner  loops to the cores  of  the multiprocessors  (CUDA threads,  vectors)  in  1Dblocks. The grids (gangs) and block (vector) sizes can be viewed by setting theenvironment variable ACC_NOTIFY.Try  to  modify  the  code  for  the  main  computational  loop  nests  in  the  filetask4/task4.c. You'll want a gang() and vector() clause on the inner loops, but youmay want to let the compiler decide the dimensions of the outer loops. In that case,you can use a loop directive without any modifying clauses. Look at task4_solution.cif you get stuck. When you’re done, compile and execute the code to see the changein performance you obtained.Looking at task4_solution.c, the gang(8) clause on the inner loop tells it to launch8 blocks in the X(column) direction. The vector(32) clause on the inner loop tellsthe compiler to use blocks that are 32 threads (one warp) wide. The absence ofclause on the outer loop lets the compiler decide how many rows of threads andhow many blocks to use in the Y(row) direction. You can check which value it usedrunning the code with the env. var PGI_ACC_TIME set to 1.



OpenACC Course - Lab 2In this lab you will profile the provided application using either NVIDIA nvprofor  gprof  and  the  PGI  compiler.  After  profiling  the  application,  you  will  useOpenACC to express the parallelism in the 3 most time-consuming routines. Youwill use CUDA Unified Memory and the PGI "managed" option to manage host anddevice memories for you. You may use either the  kernels or  parallel loopdirectives to express the parallelism in the code. Versions of the code have beenprovided in C99 and Fortran 90. The C99 version is available in the c99 directoryand the F90 version is available in the f90 directory.

As  discussed  in  the  associated  lecture,  this  lab  will  focus  on  IdentifyingParallelism in  the  code  by profiling  the  application  and Expressing  Parallelismusing OpenACC. We will use CUDA Unified Memory to allow the data used on theGPU to be automatically migrated to and from the GPU as needed. Please beaware that you may see an application slowdown until you have completed eachstep of this lab. This is expected behavior due to the need to migrate data betweenthe CPU and GPU memories.Hint: You should repeat steps 2 and 3 for each function identified in step 1 inorder of function importance. Gather a new GPU profile each time and observe howthe profile changes after each step.
Step 0 - Building the codeMakefiles have been provided for building both the C and Fortran versions of thecode. Change directory to your language of choice and run the make command tobuild the code.

https://github.com/mjorda/nvidia-openacc-course-sources/blob/master/labs/lab2/Lecture_2_Steps.png


C/C++

$ cd c99/
$ make

Fortran

$ cd f90/
$ makeThis  will  build  an  executable  named  cg that  you  can  run  with  the  ./cgcommand. You may change the options passed to the compiler by modifying the
CFLAGS variable in c99/Makefile or FCFLAGS in f90/Makefile. You shouldnot need to modify anything in the Makefile except these compiler flags.
Step 1 - Identify ParallelismIn this step, use the NVPROF profiler, or your preferred performance analysistool, to identify the important routines in the application and examine the loopswithin these routines to determine whether they are candidates for acceleration. Usethe command below in the job script to gather a CPU profile.
nvprof --cpu-profiling on --cpu-profiling-mode top-down ./cgOnce the job is done, the *.out file should have the cg program output:
Rows: 8120601, nnz: 218535025
Iteration: 0, Tolerance: 4.0067e+08
Iteration: 10, Tolerance: 1.8772e+07
Iteration: 20, Tolerance: 6.4359e+05
Iteration: 30, Tolerance: 2.3202e+04
Iteration: 40, Tolerance: 8.3565e+02
Iteration: 50, Tolerance: 3.0039e+01
Iteration: 60, Tolerance: 1.0764e+00
Iteration: 70, Tolerance: 3.8360e-02
Iteration: 80, Tolerance: 1.3515e-03
Iteration: 90, Tolerance: 4.6209e-05
Total Iterations: 100 Time: 28.534824sThe *.err file should have the profiling information, which should be somethingsimilar to this:
======== CPU profiling result (top down):
99.87% main
| 81.12% matvec(matrix const &, vector const &, vector const &)
| 11.53% waxpby(double, vector const &, double, vector const &, vector const &)
| 4.55% dot(vector const &, vector const &)
| 2.65% allocate_3d_poisson_matrix(matrix&, int)
| 0.03% free_matrix(matrix&)
|   0.03% munmap
0.13% __c_mset8

======== Data collected at 100Hz frequency



We see from the above output that the matvec, waxpy, and dot routines takeup the majority of the runtime of this application. We will  focus our effort onaccelerating these functions.NOTE: The  allocate_3d_poisson_matrix routine  is  an  initializationroutine that can be safely ignored.
Step 2 - Express ParallelismWithin each of the routines identified above, express the available parallelism tothe compiler using either the  acc kernels or  acc parallel loop directive.As an example, here's the OpenACC code to add to the matvec routine.
void matvec(const matrix& A, const vector& x, const vector &y) {

  unsigned int num_rows=A.num_rows;
  unsigned int *restrict row_offsets=A.row_offsets;
  unsigned int *restrict cols=A.cols;
  double *restrict Acoefs=A.coefs;
  double *restrict xcoefs=x.coefs;
  double *restrict ycoefs=y.coefs;

#pragma acc kernels
  {
    for(int i=0;i<num_rows;i++) {
      double sum=0;
      int row_start=row_offsets[i];
      int row_end=row_offsets[i+1];
      for(int j=row_start;j<row_end;j++) {
        unsigned int Acol=cols[j];
        double Acoef=Acoefs[j];
        double xcoef=xcoefs[Acol];
        sum+=Acoef*xcoef;
      }
      ycoefs[i]=sum;
    }
  }
} Add  the  necessary  directives  to  each  routine  one  at  a  time  in  order  ofimportance. After adding the directive, recompile the code, check that the outputhas remained the same, and note the performance difference from your change.Before compiling,  edit  the Makefile and add the required flags to specify thetarget architecture configuration to generate GPU code using managed memory.Also  add  the  flag  that  tells  the  compiler  to  output  information  about  theparallelization process.
$ make
pgc++ -fast -acc -ta=tesla:managed -Minfo=accel main.cpp -o cg
"vector.h", line 16: warning: variable "vcoefs" was declared but never
          referenced
    double *vcoefs=v.coefs;



            ^

matvec(const matrix &, const vector &, const vector &):
      8, include "matrix_functions.h"
          15, Generating copyout(ycoefs[:num_rows])
              Generating
copyin(xcoefs[:],Acoefs[:],cols[:],row_offsets[:num_rows+1])
          16, Loop is parallelizable
              Accelerator kernel generated
              Generating Tesla code
              16, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x 
*/
          20, Loop is parallelizableThe performance may slow down as you're working on this step. Be sure to readthe compiler feedback to understand how the compiler parallelizes the code for you.If you are doing the C/C++ lab, it may be necessary to declare some pointers as
restrict in order for the compiler to parallelize them. You will know if this isnecessary if the compiler feedback lists a "complex loop carried dependency."
Step 3 - Re-Profile ApplicationOnce you have added the OpenACC directives to your code, you should obtain anew profile of the application. For this step, use the NVIDIA Visual Profiler toobtain a GPU timeline and see how the the GPU computation and data movementfrom CUDA Unified Memory interact. Before continuing, read the Getting Startedsection on how to use GUI apps in cluster, if you didn’t read it yet. To run the NVIDIA Visual Profiler in the cluster use the command:
$ ../../launch_nvvpThis will launch the profiler in one of the computating nodes of the cluster for amaximum of 20 minutes. We recommend you to close the profiler as soon as youfinish to check the timeline to not occupy the computing nodes needlessly and allowother users to proceed with their jobs.Once Visual Profiler has started, create a new session by selecting File -> NewSession. Then select the executable that you built by pressing the Browse buttonnext to File, browse to your working directory, select the cg executable, and thenpress  Next.  On the next screen ensure  that  Enable unified memory profiling ischecked and press Finish. The result should look like the image below. Experimentwith Visual Profiler to see what information you can learn from it.



ConclusionAfter  completing  the  above  steps  for  each  of  the  3  important  routines  yourapplication should show a speed-up over the unaccelerated version. You can verifythis by removing the -ta flag from your compiler options. In the next lecture andlab we will replace CUDA Unified Memory with explicit memory management usingOpenACC and then further optimize the loops using the OpenACC loop directive.
BonusIf you used the kernels directive to express the parallelism in the code, try againwith the parallel loop directive. Remember, you will need to take responsibility ofidentifying any reductions in the code. If you used parallel loop, try using kernelsinstead and observe the differences both in developer effort and performance.

https://github.com/mjorda/nvidia-openacc-course-sources/blob/master/labs/lab2/visual_profiler_lab2.png


OpenACC Course - Lab 3In  this  lab  you  will  build  upon  the  work  from  lab  2  to  add  explicit  datamanagement directives, eliminating the need to use CUDA Unified Memory, andoptimize the matvec kernel using the OpenACC loop directive. If you have notalready completed lab 2, please go back and complete it before starting this lab.
Step 0 - Building the codeMakefiles have been provided for building both the C and Fortran versions of thecode. Change directory to your language of choice and run the make command tobuild the code.
C/C++

$ cd c99
$ make

Fortran

$ cd f90
$ makeThis  will  build  an  executable  named  cg that  you  can  run  with  the  ./cgcommand. You may change the options passed to the compiler by modifying the
CFLAGS variable in c99/Makefile or FCFLAGS in f90/Makefile. You shouldnot need to modify anything in the Makefile except these compiler flags.
Step 1 - Express Data MovementIn the previous lab we used CUDA Unified Memory, which we enabled with the
ta=tesla:managed compiler option, to eliminate the need for data managementdirectives. Replace this compiler flag in the Makefile with -ta=tesla and try torebuild the code.
C/C++With the managed memory option removed the C/C++ version will fail to buildbecause the compiler will not be able to determine the sizes of some of the arraysused in compute regions. You will see an error like the one below:
PGCC-S-0155-Compiler failed to translate accelerator region (see -Minfo 
messages): Could not find allocated-variable index for symbol (main.cpp: 15)



FortranThe Fortran version of the code will  build successfully and run, however thetolerance value will be incorrect with the managed memory option removed.
$ ./cg
 Rows:      8120601 nnz:    218535025
 Iteration:  0 Tolerance: 4.006700E+08
 Iteration: 10 Tolerance: 4.006700E+08
 Iteration: 20 Tolerance: 4.006700E+08
 Iteration: 30 Tolerance: 4.006700E+08
 Iteration: 40 Tolerance: 4.006700E+08
 Iteration: 50 Tolerance: 4.006700E+08
 Iteration: 60 Tolerance: 4.006700E+08
 Iteration: 70 Tolerance: 4.006700E+08
 Iteration: 80 Tolerance: 4.006700E+08
 Iteration: 90 Tolerance: 4.006700E+08
  Total Iterations:          100

We can correct both of these problems by explicitly declaring the data movementfor the arrays that we need on the GPU. In the associated lecture we discussed theOpenACC structured data directive and the unstructured enter data and exit
data directives. Either approach can be used to express the data locality in thiscode, but the unstructured directives are probably cleaner to use.
C/C++In the allocate_3d_poisson_matrix function in matrix.h, add the followingtwo directives to the end of the function.
#pragma acc enter data copyin(A)
#pragma acc enter data 
copyin(A.row_offsets[:num_rows+1],A.cols[:nnz],A.coefs[:nnz])The  first  directive  copies  the  A  structure  to  the  GPU,  which  includes  the
num_rows member  and the  pointers  for  the three  member  arrays.  The seconddirective then copies the three arrays to the device. Now that we've created spaceon the GPU for these arrays, it's necessary to clean up the space when we're done.In the free_matrix function, add the following directives immediately before thecalls to free.
#pragma acc exit data delete(A.row_offsets,A.cols,A.coefs)
#pragma acc exit data delete(A)
  free(row_offsets);
  free(cols);
  free(coefs);



Notice that we are performing the operations in the reverse order. First we aredeleting the 3 member arrays from the device, then we are deleting the structurecontaining those  arrays.  It's  also critical  that  we place  our  pragmas  before thearrays are freed on the host, otherwise the exit data directives will fail.Now go into  vector.h and  do  the  same  thing  in  allocate_vector and
free_vector with the structure  v and its member array v.coefs. Because weare copying the arrays to the device before they have been populated with data, usethe create data clause, rather than copyin.If you try to build again at this point, the code will still fail to build because wehaven't told our compute regions that the data is already present on the device, sothe  compiler  is  still  trying  to  determine  the  array  sizes  itself.  Now go  to  thecompute regions (kernels or  parallel loop) in  matrix_functions.h and
vector_functions.h and use the present clause to inform the compiler thatthe arrays are already on the device. Below is an example for matvec.
#pragma acc kernels present(row_offsets,cols,Acoefs,xcoefs,ycoefs)Once you have added the  present clause  to all  three  compute regions,  theapplication should now build and run on the GPU, but is no longer getting correctresults. This is because we've put the arrays on the device, but we've failed to copythe  input  data  into  these  arrays.  Add  the  following  directive  to  the  end  of
initialize_vector function;
#pragma acc update device(v.coefs[:v.n])This will copy the data now in the host array to the GPU copy of the array.With this data now correctly copied to the GPU, the code should run to completionand give the same results as before.
FortranTo make the application return correct answers again, it will be necessary to addexplicit data management directives. This could be done using either the structured
data directives  or  unstructured  enter data and  exit data directives,  asdiscussed in the lecture. Since this program has clear routines for allocating andinitializing the data structures  and also deallocating,  we'll  use  the unstructureddirectives to make the code easy to understand.



The  allocate_3d_poisson_matrix in  matrix.F90  handles  allocating  andinitializing the primary array. At the end of this routine, add the following directivefor copying the three arrays in the matrix type to the device;
!$acc enter data copyin(arow_offsets,acols,acoefs)These three arrays can be copied in separate  enter data directives as well.Notice that because Fortran arrays are self-describing, it's unnecessary to providethe array bounds, although it would be safe to do so as well. Since we've allocatedthese arrays on the device, they should be removed from the device when we aredone with them as well. In the  free_matrix subroutine of matrix.F90 add thefollowing directive;
!$acc exit data delete(arow_offsets,acols,acoefs)
deallocate(arow_offsets)
deallocate(acols)
deallocate(acoefs)Notice  that  the  exit  data directive  appears  before  the  deallocatestatement. Because the OpenACC programming model assumes we always beginand end execution on the host, it's necessary to remove arrays from the devicebefore freeing them on the host to avoid an error or crash. Now go add  enter
data and  exit  data directives  to  vector.F90  as  well.  Notice  that  the
allocate_vector routine only allocates the array, but does not initialize it, so
copyin may be replaced with create on the enter data directive.If we build and run the application at this point we should see our tolerancechanging once again, but the answers will still be incorrect. Next let go to eachcompute directive (kernels or  parallel loop) in matrix.F90 and vector.F90and inform the compiler that the arrays used in those regions are already present onthe device. Below is an example from matrix.F90.
!$acc kernels present(arow_offsets,acols,acoefs,x,y)At this point the compiler knows that it does not need to be concerned with datamovement in our compute regions, but we're still getting the wrong answer. Thelast change we need to make is to make sure that we're copying the input data tothe device before execution. In vector.F90 add the following directive to the end of
initialize_vector.
vector(:) = value
!$acc update device(vector)



Now that we have the correct input data on the device the code should runcorrectly once again.
NOTE for  C/C++  and  Fortran:  One  could  also  parallelize  the  loop  in

initialize_vector on the GPU, but we choose to use the  update directivehere to illustrate how this directive is used.
Step 2 - Optimize Loops - Vector LengthNow that we're running on the GPU and getting correct answers , let's apply ourknowledge of the code to help the compiler make better decisions about how toparallelize our loops. We know from the allocate_3d_poisson_matrix routinethat  the  most  non-zero  elements  we'll  have  per  row  is  27.  By  examining  thecompiler output, as shown below, we know that the compiler chose a vector lengthof 128 for the  matvec loops. This means that with the compiler-selected vectorlength of 128, 101 vector lanes (threads) will go unused. Let's tell the compiler tochoose a better vector length for these loops.
matvec(const matrix &, const vector &, const vector &):
      8, include "matrix_functions.h"
          15, Generating 
present(row_offsets[:],cols[:],Acoefs[:],xcoefs[:],ycoefs[:])
          16, Loop is parallelizable
              Accelerator kernel generated
              Generating Tesla code
              16, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x 
*/
          20, Loop is parallelizableOn an NVIDIA GPU the vector length must be a multiple of the warp size of theGPU, which on all NVIDIA GPUs to-date is 32. This means that the closest vectorlength we can choose  is  32.  Depending on whether  the  code uses  kernels or
parallel loop, we can specify the vector length one of two ways.
KernelsWhen  using  the  kernels directive,  the  vector  length  is  given  by  adding
vector(32) to the loop we want to use as the vector loop. So for our matvecloops, we'd apply the vector length as shown below.
C/C++

#pragma acc kernels present(row_offsets,cols,Acoefs,xcoefs,ycoefs)
  {
    for(int i=0;i<num_rows;i++) {
      double sum=0;



      int row_start=row_offsets[i];
      int row_end=row_offsets[i+1];
      #pragma acc loop device_type(nvidia) vector(32)
      for(int j=row_start;j<row_end;j++) {
        unsigned int Acol=cols[j];
        double Acoef=Acoefs[j];
        double xcoef=xcoefs[Acol];
        sum+=Acoef*xcoef;
      }
      ycoefs[i]=sum;
    }
  }

Fortran

!$acc kernels present(arow_offsets,acols,acoefs,x,y)
do i=1,a%num_rows
  tmpsum = 0.0d0
  row_start = arow_offsets(i)
  row_end   = arow_offsets(i+1)-1
  !$acc loop device_type(nvidia) vector(32)
  do j=row_start,row_end
    acol = acols(j)
    acoef = acoefs(j)
    xcoef = x(acol)
    tmpsum = tmpsum + acoef*xcoef
  enddo
  y(i) = tmpsum
enddo
!$acc end kernels

Parallel LoopWhen using parallel loop the vector length is given at the top of the region,as shown below.
C/C++

#pragma acc parallel loop present(row_offsets,cols,Acoefs,xcoefs,ycoefs) \
        device_type(nvidia) vector_length(32)
for(int i=0;i<num_rows;i++) {
    double sum=0;
    int row_start=row_offsets[i];
    int row_end=row_offsets[i+1];
#pragma acc loop reduction(+:sum) device_type(nvidia) vector
    for(int j=row_start;j<row_end;j++) {
      unsigned int Acol=cols[j];
      double Acoef=Acoefs[j];
      double xcoef=xcoefs[Acol];
      sum+=Acoef*xcoef;
    }
    ycoefs[i]=sum;
}

Fortran

!$acc parallel loop private(tmpsum,row_start,row_end) &
!$acc& present(arow_offsets,acols,acoefs,x,y)         &
!$acc& device_type(nvidia) vector_length(32)



do i=1,a%num_rows
  tmpsum = 0.0d0
  row_start = arow_offsets(i)
  row_end   = arow_offsets(i+1)-1
  !$acc loop reduction(+:tmpsum) device_type(nvidia) vector
  do j=row_start,row_end
    acol = acols(j)
    acoef = acoefs(j)
    xcoef = x(acol)
    tmpsum = tmpsum + acoef*xcoef
  enddo
  y(i) = tmpsum
enddoNotice  that  the above  code adds  the  device_type(nvidia) clause  to  theaffected loops. Because we only want this optimization to be applied to NVIDIAGPUs, we've protected that optimization with a device_type clause and allowedthe  compiler  to  determine  the  best  value  on  other  platforms.  Now that  we'veadjusted the vector length to fit the problem, let's profile the code again to see howwell it's performing. Using Visual Profiler, let's see if we can find a way to furtherimprove performance.The folders intermediate.kernels and intermediate.parallel containthe correct code for the end of this step. If you have any trouble, use the code inone of these folders to help yourself along.
Step 3 - Optimize Loops - Profile The ApplicationJust  as  in  the  last  lab,  we'll  use  the  NVIDIA Visual  Profiler  to  profile  ourapplication. Start it with the command:
$ ../../launch_nvvpOnce Visual Profiler has started, create a new session by selecting File -> NewSession. Then select the executable that you built by pressing the Browse buttonnext to File, browse to your working directory, select the cg executable, and thenpress  Next. On the next screen press  Finish. Visual Profiler will run for severalseconds to collect a GPU timeline and begin its guided analysis.In the lower left, press the "Examine GPU Usage" button. You may need toenlarge the bottom panel of the screen by grabbing just below the horizontal scrollbar at the middle of the window and dragging it up until the button is visible. Afterthis runs, click on "Examine Individual Kernels" and select the top kernel in thetable. After selecting the top kernel, press the "Perform Kernel Analysis" button togather further performance information about this kernel  and wait  while VisualProfiler collects additional data ***(this make take several minutes)***. When this



completes, press "Perform Latency Analysis". The screenshot below shows VisualProfiler at this step.

Visual Profiler is telling us that the performance of the matvec kernel is limitedby the amount of parallelism in each gang (referred to as  "block size" in CUDA).Scrolling down in the Results section I see that the Occupancy is 25%. Occupancyis a measure of how much parallelism is running on the GPU versus how muchtheoretically could be running. 25% occupancy indicates that resources are sittingidle due to the size of the blocks (OpenACC gangs).NOTE: 100% occupancy is not necessary for high performance, but occupancybelow 50% is frequently an indicator that optimization is possible.Scrolling further down in the  Results section we reach the  Block Limit metric,which will be highlighted in red. This is shown in the screenshot below.

https://github.com/mjorda/nvidia-openacc-course-sources/blob/master/labs/lab3/lab3-nvvp-block-limit.png


This  table  is  showing  us  that  the  GPU  streaming  multiprocessor  (SM) cantheoretically run 64 warps (groups of 32 threads), but only has 16 to run. Lookingat the Warps/Block and Threads/Block rows of the table, we see that each blockcontains 1 warp, or 32 threads, although it could run many more. This is becausewe've told the compiler to use a vector length of 32. As a reminder, in OpenACCmany  gangs run independently of each other, each gang has 1 or more  workers,each of which operates on a vector. With a vector length of 32, we'll need to addworkers  in  order  to  increase  the  work  per  gang.  Now  we  need  to  inform thecompiler to give each gang more work by using worker parallelism.
Step 4 - Optimize Loops - Increase ParallelismTo increase the parallelism in each OpenACC gang, we'll use the worker level ofparallelism to operate on multiple vectors within each gang. On an NVIDIA GPUthe vector length X number of workers must be a multiple of 32 and no larger than1024,  so  let's  experiment  with  increasing  the  number  of  workers.  From just  1worker up to 32. We want the outermost loop to be divided among gangs andworkers, so we'll specify that it is an gang and worker loop. By only specifying thenumber of workers, we allow the compiler to generate enough gangs to use up therest of the loop iterations applying worker parallelism.

https://github.com/mjorda/nvidia-openacc-course-sources/blob/master/labs/lab3/lab3-nvvp-occupancy.png


KernelsWhen using the  kernels directive, use the  loop directive to specify that theouter loop should be a  gang and  worker loop with 32 workers as shown below.Experiment with the number of workers to find the best value.
C/C++

#pragma acc kernels present(row_offsets,cols,Acoefs,xcoefs,ycoefs)
{
#pragma acc loop device_type(nvidia) gang worker(32)
    for(int i=0;i<num_rows;i++) {
      double sum=0;
      int row_start=row_offsets[i];
      int row_end=row_offsets[i+1];
      #pragma acc loop device_type(nvidia) vector(32)
      for(int j=row_start;j<row_end;j++) {
        unsigned int Acol=cols[j];
        double Acoef=Acoefs[j];
        double xcoef=xcoefs[Acol];
        sum+=Acoef*xcoef;
      }
      ycoefs[i]=sum;
    }
}

Fortran

!$acc kernels present(arow_offsets,acols,acoefs,x,y)
!$acc loop device_type(nvidia) gang worker(32)
do i=1,a%num_rows
  tmpsum = 0.0d0
  row_start = arow_offsets(i)
  row_end   = arow_offsets(i+1)-1
  !$acc loop device_type(nvidia) vector(32)
  do j=row_start,row_end
    acol = acols(j)
    acoef = acoefs(j)
    xcoef = x(acol)
    tmpsum = tmpsum + acoef*xcoef
  enddo
  y(i) = tmpsum
enddo
!$acc end kernels

Parallel LoopWhen using the  parallel loop directive, use  gang and  worker to specifythat  the  outer  loop  should  be  a  gang and  worker loop  and  then  add
num_workers(32) to specify 32 workers, as shown below. Experiment with thenumber of workers to find the best value.
C/C++

#pragma acc parallel loop present(row_offsets,cols,Acoefs,xcoefs,ycoefs) \
        device_type(nvidia) gang worker vector_length(32) num_workers(32)



for(int i=0;i<num_rows;i++) {
    double sum=0;
    int row_start=row_offsets[i];
    int row_end=row_offsets[i+1];
#pragma acc loop reduction(+:sum) device_type(nvidia) vector
    for(int j=row_start;j<row_end;j++) {
      unsigned int Acol=cols[j];
      double Acoef=Acoefs[j];
      double xcoef=xcoefs[Acol];
      sum+=Acoef*xcoef;
    }
    ycoefs[i]=sum;
}

Fortran

!$acc parallel loop private(tmpsum,row_start,row_end) &
!$acc& present(arow_offsets,acols,acoefs,x,y)         &
!$acc& device_type(nvidia) gang worker num_workers(32) vector_length(32)
do i=1,a%num_rows
  tmpsum = 0.0d0
  row_start = arow_offsets(i)
  row_end   = arow_offsets(i+1)-1
  !$acc loop reduction(+:tmpsum) device_type(nvidia) vector
  do j=row_start,row_end
    acol = acols(j)
    acoef = acoefs(j)
    xcoef = x(acol)
    tmpsum = tmpsum + acoef*xcoef
  enddo
  y(i) = tmpsum
enddo

After experimenting with the number of workers, performance should be similarto the table below.
Workers K40

1

2 61.03544

4 31.36616

8 16.71916

16 8.81069

32 6.488389

ConclusionIn this lab we started with a code that relied on CUDA Unified Memory tohandle data movement and added explicit OpenACC data locality directives. Thismakes the code portable to any OpenACC compiler and accelerators that may not



have  Unified  Memory.  We used  both  the  unstructured  data  directives  and the
update directive to achieve this.Next we profiled the code to determine how it could run more efficiently on theGPU we're using. We used our knowledge of both the application and the hardwareto find a loop mapping that ran well on the GPU, achieving a 2-4X speed-up overour starting code.The table below shows runtime for each step of this lab on an NVIDIA TeslaK40 GPU.

Step K40

Unified Memory 8.458172

Explicit Memory 8.459754

Vector Length 32 11.656281

Final Code 4.802727



OpenACC Course - Lab 4During this lab you will implement the advanced OpenACC techniques explainedin the last lecture;
• A pipelined GPU version of a Mandelbrot set generation app as an exampleof asynchronous programming
• A multi-GPU Jacobi solver combining OpenACC and MPI

Pipelined Mandelbrot setSince this code is the one presented during the lecture, you should already befamiliar with the process to implement the pipelined GPU version. To recap, hereare the steps needed to incrementally improve the Mandelbrot code to reach ourgoal:1. Implement the GPU version using the pragmas we’ve been using in all thelabs. You may need the routine pragma, too.2. Break the image creation into several kernels, where each generates a part ofthe final image.3. Improve  the  handling  of  data  by  removing  unecessary  HtoD  copies  andtelling OpenACC to start DtoH copies as soon as each kernel finishes (checkthe update directive).4. Use several asynchronous queues to enable the parallel execution of unrelatedcopies and kernel executions. Remember to wait for the async work to finish.If the queue creation time is noticeable, try reusing a few queues instead ofcreating a new one for each block.You can experiment with the number of blocks you divide the image to see whichone gives the best time.
Multi-GPU Jacobi with OpenACC + MPIBefore starting, we need extra steps to setup the environment for this lab towork in the Minotauro cluster. Run the following commands:
$ module unload pgi
$ module unload bullxmpi
$ module load pgi/16.9
$ module load openmpi/1.10.2_cuda_pgi



For the C version, also run:
$ export OMPI_CC=pgccYou will have to run these commands every time you login to the cluster to workin this lab.Notice that this lab also includes a new job script (job_mpi.sh) that must be usedto run this lab’s code in the cluster.

The lab is divided in three tasks:1. Add MPI boiler plate code2. Distribute work across the GPUs3. Overlap communication and computation to improve multi-GPU scalabilityComplete  the  missing  parts  of  the  code  and  execute  the  code  to  see  theimprovement you get after each task. If you want to make sure your code is corrector you get stuck, check the solution provided with each task.
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