
www.bsc.es

Montevideo, 21-25 October 2019

Based on material from NVIDIA’s GPU Teaching Kit

Efficient Host-Device Data Transfers

Marc Jordà, Antonio J. Peña

PINNED HOST MEMORY

CPU-GPU Data Transfer using DMA

DMA (Direct Memory Access) hardware is used for the data copies to
obtain better efficiency

– Frees CPU for other tasks

– Hardware unit specialized to transfer a number of bytes requested by OS

– Between physical memory address space regions (some can be mapped I/O
memory locations)

– Uses system interconnect, typically PCIe in today’s systems (NVLINK in some new
machines)

CPU Main Memory (DRAM)

GPU card

(or other I/O cards)

DMA Global

Memory

PCIe

3

Virtual Memory Management

Modern computers use virtual memory management
– Many virtual memory spaces mapped into a single physical memory

– Virtual addresses (pointer values) are translated into physical addresses

Not all variables and data structures are always in the physical memory
– Each virtual address space is divided into pages that are mapped into the physical

memory

– Memory pages can be paged out to disk to make room in the DRAM

– Whether or not a variable is in the physical memory is checked at address
translation time

4

Data Transfer and Virtual Memory

DMA uses physical addresses
– When cudaMemcpy() copies an array, it is implemented as one or more DMA

transfers

– Address is translated and page presence checked for the entire source and
destination regions at the beginning of each DMA transfer

– No address translation for the rest of the same DMA transfer so that high efficiency
can be achieved

The OS could potentially page-out the data that is being read or written by
a DMA and page-in another virtual page into the same physical location

5

CPU Memory

GPU card

(or other I/O cards)

DMA Global

Memory

PCIe
Disk

OS

Pinned Memory and DMA Data Transfer

– Pinned memory are virtual memory pages that are specially marked
so that they cannot be paged-out to disk

– Allocated with a special system API function call

– a.k.a. Page Locked Memory, Locked Pages, etc.

– CPU memory that serves as the source or destination of a DMA
transfer must be allocated as pinned memory

6

CUDA Data Transfer Uses Pinned Memory

If source or destination of a cudaMemcpy() in the host memory is not
allocated in pinned memory, it needs to be first copied to a pinned
memory buffer

– extra copy adds overhead

cudaMemcpy() is faster if the host memory (source or destination) is
allocated in pinned memory since no extra copy is needed

7

Allocate/Free Pinned Memory

cudaHostAlloc(), three parameters
– Address of pointer to the allocated memory

– Size of the allocated memory in bytes

– Option – use cudaHostAllocDefault for now

cudaFreeHost(), one parameter
– Pointer to the memory to be freed

8

Using Pinned Memory in CUDA

Use the allocated pinned memory and its pointer the same way as
those returned by malloc();

The only difference is that the allocated memory cannot be paged by
the OS

The cudaMemcpy() function should be about 2x faster with pinned
memory

Pinned memory is a limited resource
– over-subscription may affect system stability

9

Putting It Together - Vector Addition Host Code

Example

int main()

{

 float *h_A, *h_B, *h_C;

…

 cudaHostAlloc((void **) &h_A, N*sizeof(float), cudaHostAllocDefault);

 cudaHostAlloc((void **) &h_B, N*sizeof(float), cudaHostAllocDefault);

 cudaHostAlloc((void **) &h_C, N*sizeof(float), cudaHostAllocDefault);

…

 vecAdd(h_A, h_B, h_C, N);

}

10

TASK PARALLELISM IN CUDA

Serialized Data Transfer and Computation

– So far, the way we use cudaMemcpy serializes data transfer and
GPU computation for VecAddKernel()

Trans. A Trans. B Comp Trans. C

time

Only use one direction,

GPU idle
PCIe Idle

Only use one

direction, GPU

idle

12

Device Overlap

Some CUDA devices support device overlap
– Simultaneously execute a kernel while copying data between device and host

memory

Most GPUs in HPC servers/clusters support it and have 2 DMA engines
– Potential overlapping of:

– Kernel execution

– Copy from host to device

– Copy from device to host

Code to check if execution/copy overlap is supported for a device:

int dev_count;

cudaDeviceProp prop;

cudaGetDeviceCount(&dev_count);

for (int i = 0; i < dev_count; i++) {

 cudaGetDeviceProperties(&prop, i);

 if (prop.deviceOverlap)

...

13

Ideal, Pipelined Timing

– Divide large vectors into segments

– Overlap transfer and compute of adjacent segments

Trans

A.0

Trans

B.0

Trans

C.0

Trans

A.1

Comp

C.0 = A.0 + B.0

Trans

B.1

Comp

C.1 = A.1 + B.1

Trans

A.2
Trans

B.2

Trans

C.1

Comp

C.2 = A.2 + B.2

Trans

A.3
Trans

B.3

14

CUDA Streams

CUDA supports parallel execution of kernels and data copies with
“Streams”

Each stream is a queue of operations
– kernel launches

– cudaMemcpyAsync()calls

Operations (tasks) in different streams can go in parallel
– “Task parallelism”

15

Streams

Requests made from the host code are put into First-In-First-Out
queues

– Queues are read and processed asynchronously by the driver and device

– Driver ensures that commands in a queue are processed in sequence.
E.g., Memory copies end before kernel launch, etc.

– The stream to use is specified as an extra argument

host thread

cudaMemcpyAsync()

kernel launch
cudaMemcpyAsync() FIFO

device driver

16

To allow concurrent copying and kernel execution, use multiple
streams

– Operations in the same stream will be executed in order

– Operations in different streams can potentially be executed at the same time

 · Depends on availability of corresponding hardware (gpu cores or DMA engines)

– Potential to use multiple streams depends on the algorithm

Example:

C = A*A + B*B

Streams cont.

host thread
Stream 0

device driver

Stream 1

18

cudaMemcpyAsync()

kernel launch
cudaMemcpyAsync()

kernel launch
cudaMemcpyAsync()

squareKernel squareKernel

vecAddKernel

Copy C to host

Copy A to GPU Copy B to GPU

Pipelined vecAdd Host Code

cudaStream_t stream0, stream1;

cudaStreamCreate(&stream0);

cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0

float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc() calls for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go

here

21

Pipelined vecAdd Host Code (Cont.)

for (int i=0; i<n; i += SegSize*2) {

 cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);

 cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);

 vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0,…);

 cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);

 cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);

 cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1);

 vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

 cudaMemcpyAsync(d_C1, h_C+i+SegSize, SegSize*sizeof(float),…, stream1);

}

22

Wait Until All Tasks Have Completed
– cudaStreamSynchronize(stream)

– Used in host code

– Takes one parameter – stream identifier

– Wait until all tasks in a stream have completed

– E.g., cudaStreamSynchronize(stream0)in host code ensures that all tasks
in stream0 have completed

– This is different from cudaDeviceSynchronize()
– Also used in host code

– No parameter

– Waits until all tasks in all streams have completed for the current device

– cudaEventSynchronize(event)

– Events can be inserted in a stream with cudaEventRecord(…)

– Waits until all work in the stream previous to the event record has finished

– Also cuda{Stream,Event}Query(…)to check if job is done, but
without waiting for it to finish

30

CUDA Graph API – Since CUDA 10

31

QUIZ

Question 1

Which of the following is a correct CUDA API call that

allocates 1,024 bytes of pinned memory for h_A?

a) cudaHostAlloc((void **) h_A, 1024, cudaHostAllocDefault);

b) cudaPinnedAlloc((void **) h_A, 1024, cudaPinnedAllocDefault);

c) cudaHostAlloc((void **) &h_A, 1024, cudaHostAllocDefault);

d) cudaPinnedAlloc((void **) &h_A, 1024, cudaPinnedAllocDefault);

33

Question 1 - Answer

Which of the following is a correct CUDA API call that

allocates 1,024 bytes of pinned memory for h_A?

a) cudaHostAlloc((void **) h_A, 1024, cudaHostAllocDefault);

b) cudaPinnedAlloc((void **) h_A, 1024, cudaPinnedAllocDefault);

c) cudaHostAlloc((void **) &h_A, 1024, cudaHostAllocDefault);

d) cudaPinnedAlloc((void **) &h_A, 1024, cudaPinnedAllocDefault);

34

Question 2

Which of the following statements is true?

a) Data transfer between CUDA device and host is done by DMA

hardware using virtual addresses.

b) The OS always guarantees that any memory being used by DMA

hardware is not swapped out.

c) If a pageable data is to be transferred by cudaMemcpy(), it needs to

be first copied to a pinned memory buffer before transferred.

d) Pinned memory is allocated with cudaMalloc() function.

35

Question 2 - Answer

Which of the following statements is true?

a) Data transfer between CUDA device and host is done by DMA

hardware using virtual addresses.

b) The OS always guarantees that any memory being used by DMA

hardware is not swapped out.

c) If a pageable data is to be transferred by cudaMemcpy(), it needs

to be first copied to a pinned memory buffer before transferred.

d) Pinned memory is allocated with cudaMalloc() function.

Explanation: (A) is incorrect – DMA uses physical addresses.

(B) OS does not guarantee so unless the memory is pinned. (D)

Pinned memory is allocated with the cudaHostAlloc() function.

36

Question 3

Which of the following CUDA API call can be used to perform

an asynchronous data transfer?

a) cudaMemcpy();

b) cudaAsyncMemcpy();

c) cudaMemcpyAsync();

d) cudaDeviceSynchronize();

37

Question 3 - Answer

Which of the following CUDA API call can be used to perform

an asynchronous data transfer?

a) cudaMemcpy();

b) cudaAsyncMemcpy();

c) cudaMemcpyAsync();

d) cudaDeviceSynchronize();

38

Question 4

What is the CUDA API call that makes sure that all previous

kernel executions and memory copies in a device have been

completed?

a) __syncthreads()

b) cudaDeviceSynchronize()

c) cudaStreamSynchronize()

d) __barrier()

39

Question 4 - Answer

What is the CUDA API call that makes sure that all previous

kernel executions and memory copies in a device have been

completed?

a) __syncthreads()

b) cudaDeviceSynchronize()

c) cudaStreamSynchronize()

d) __barrier()

40

www.bsc.es

Thank you!

For further information please contact

marc.jorda@bsc.es, antonio.pena@bsc.es

