
www.bsc.es

OpenMP Worksharings

Montevideo, October 21st, 2019

Parallel Programming Workshop

Xavier Teruel and Xavier Martorell

Worksharing introduction

Divide the execution of a code region among the threads of a team

In OpenMP, there are four worksharing constructs:

─ workshare construct (only Fortran)

Restriction: worksharings cannot be nested

The single construct

Serializing (1-thread) a portion of the parallel region

Where clause Single construct example
─ private(list)  explained

─ firstprivate(list)  explained

Only one thread of the team executes

the structured block

Very useful in I/O operations

#pragma omp single [clause[[,] clause]...]

{structured-block}

#include <stdio.h>

int main (void)

{

#pragma omp parallel

{

do_parallel_work_1();

#pragma omp single

{

printf ("Hello world!\n") ;

}

do_parallel_work_2();

}

}

This program writes just
one “Hello world!”

Implicit barrier (single)

A implicit barrier at the end of the construct

The nowait clause eliminates the barrier at the end of the construct

#pragma omp parallel

{

do_parallel_work_1();

#pragma omp single

{

printf ("Hello world!\n") ;

}

do_parallel_work_2();

}

do_parallel_work_1();

do_parallel_work_2();

printf();

#pragma omp single nowait

{structured-block}

. . .

#pragma omp single nowait

printf ("Hello world!\n") ;

. . .

do_parallel_work_1();

do_parallel_work_2();

printf();

Copying variables from/to the construct (broadcasting)

The copyprivate clause

Copyprivate description Copyprivate example (input data)
─ support the broadcast of data values to

other threads in the team

─ apply only to private, firstprivate or

threadprivate variables

─ occurs after the execution of the

structured block…

─ … but before of the threads have left the

barrier (at the end of the construct)

#pragma omp single copyprivate(list)

{structured-block}

#include <stdio.h>

void main (void)

{

float x, y;

#pragma omp parallel private(x,y)

{

. . .

#pragma omp single copyprivate(x,y)

{

scanf("%f %f", &x, &y);

}

. . .

}

}

At this point variables ‘x’ and
‘y’ have been broadcasted

Single construct vs master construct

In both cases the structured block is executed by just one thread

The single construct has more overhead (additional synchronization)
─ which thread has captured the token

─ and the implicit barrier at the end

… but also is more flexible: any thread may execute the block

The master construct has less overhead
─ it is just a test (if thread-id == 0)

─ it has no implicit barrier at the end

… but also is more restrictive: only master thread may execute the block

Rule of thumb: if all threads reach the structured block at the same time use master,

otherwise use single

#pragma omp single

{structured-block}

#pragma omp master

{structured-block}

The sections construct

Set of structured blocks distributed among threads

Where clause:
─ private(list)  already explained in previous constructs

─ firstprivate(list)  already explained in previous constructs

─ reduction(operator: variable-list)  already explained in previous constructs

─ nowait  already explained in previous constructs

#pragma omp sections [clause[[,] clause]...]

{

[#pragma omp section]

{structured-block}

[#pragma omp section

{structured-block}]

...

}

The sections construct: description (1)

Building the syntaxis of the sections construct
─ each (selected) structured block is preceded by a section directive

─ only in the first structured block the section directive is optional

─ any section directive must be lexically enclosed in a sections construct

Section construct example

#include "synthetic.h“

void main (void)

{

#pragma omp parallel

#pragma omp sections

{

#pragma omp section

synthetic_phase1();

#pragma omp section

synthetic_phase2();

#pragma omp section

synthetic_phase3();

}

}

#include "synthetic.h“

void synthetic_phase2()

{

#pragma omp section

synthetic_phase2_1();

}

Only in the first structured
block the section directive is
optional

The sections construct: description (2)

Executing the sections construct
─ assignment blocks/threads is implementation defined

─ if no ‘nowait’ clause is present there is an implicit barrier at the end

It can be combined with the parallel construct

Using the “parallel sections” combined construct

#pragma omp parallel sections [clause[[,] clause]...]

{structured-blocks: sections}

void main (void)

{

#pragma omp parallel sections

{

synthetic_phase1();

#pragma omp section

synthetic_phase2();

#pragma omp section

synthetic_phase3();

}

}

synthetic_phase2();

synthetic_phase3();

synthetic_phase1();

Privatizing variables inside the construct (lastprivate)

The variable inside the construct is a new variable
─ the new variables have the same type than original variable

─ in any worksharing construct it means all threads have a different variable

─ they can be accessed without any kind of synchronization

Already discussed privatization clauses
─ private variables have undefined value when starting the block

─ firstprivate variables are initialized to the value of the original one

The lastprivate clause

─ the lastprivate variables (by default) have undefined value when starting the block

─ the value of the variable in the lexically last section of the set of sections is copied back to the

original variable

─ a variable can be both firstprivate and lastprivate

#pragma omp sections lastprivate(list)

{structured-blocks: sections}

A lastprivate example (with sections construct)
Recovering the sequential consistency with the lastprivate clause

#include <stdio.h>

void main (void) {

int v = 0;

#pragma omp parallel sections lastprivate(v)

{

#pragma omp section

{ v = 1;

synthetic_phase(v);

}

#pragma omp section

{ v = 2;

synthetic_phase(v);

}

#pragma omp section

{ v = 3;

synthetic_phase(v);

}

}

printf("v = %d\n", v);

}

synthetic_phase(2);

synthetic_phase(3);

synthetic_phase(1);

#include "synthetic.h"

void synthetic_phase(int s) {

switch case(s)

{

case 1:

matrix_multiply();

break;

. . .

default:

exit(NOT_IMPLEMENTED);

}

}

The lexically last section
determines the value of
the original variable

Some performance results (synthetic)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 3 4 5 6 7 8

Sp
ee

d
-u

p

Threads

Synthetic (sections)

Threads Total Time Speed-up

1 4,454202 1,00

2 2,562986 1,74

3 1,940174 2,30

4 1,927576 2,31

5 1,934126 2,30

6 1,929955 2,31

7 1,927792 2,31

8 1,941034 2,29

S 4,452954 1,00

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑠𝑒𝑞

𝑇𝑝

Time Results

The optimal amount of parallelism

Parallel decomposition (choosing the entity’s granularity)

www.bsc.es

Montevideo, October 21st, 2019Parallel Programming Workshop

Loop distribution

The loop construct

Distributing a loop among threads

Where clause:
─ private(list)  already explained in previous constructs

─ firstprivate(list)  already explained in previous constructs

─ lastprivate(list)  already explained, but…

─ reduction(operator: list)  already explained, but…

─ schedule(schedule-kind)

─ nowait  already explained in previous constructs

─ collapse(n)

─ ordered

#pragma omp for [clause[[,] clause]...]

{structured-block: loop}

The loop construct: description (1)

The iterations of the associated loop(s) are divided among the threads of the team

Parallel loop requirements
─ loop iterations must be independent (user’s responsibility)

─ loops must follow a form that allows to compute the number of iterations

─ valid data types for loop variables are: integers, pointers and random access iterators (in C++)

#pragma omp for [clause[[,] clause]...]

for (init_expr; test_expr; inc_expr)

The loop construct: description (2)
It can be combined with the parallel construct

Matrix initialization (using the loop construct)

void foo (int *m, int N, int M)

{

int i, j ;

#pragma omp parallel for private(j)

for (i = 0; i < N; i ++)

for (j = 0; j < M; j ++)

m[i * N + j] = 0;

}

New created threads
cooperate to execute
all the iterations of the loop

The i variable is
automatically privatized

The j variable must be
manually privatized

thread-0

thread-1

thread-2

thread-3

N

M

#pragma omp parallel for [clause[[,] clause]...]

{structured-block: loop}

… but other distributions
are also possible

Loop construct and the lastprivate clause

A lastprivate example The lastprivate clause

last logical

iteration

void main(void)

{

int i;

#pragma omp parallel

{

#pragma omp for lastprivate(i)

for (i = 0; i < n-1; i++)

{

a[i] = b[i] + b[i+1];

}

}

a[i] = b[i]; /* i == n-1 here */

}

The logical last iteration
determines the value of
the original variable

#pragma omp for lastprivate(list)

{structured-block: loop}

Loop construct and the reduction clause
All threads accumulate some values into a single variable

Reduction clause example (loop construct)

Using critical is not good enough (besides being error prone)

#pragma omp for reduction(operator:list)

{structured-block}

– the compiler creates a private copy that is
properly initialized (identity)

– the compiler ensures that the shared variable is
properly (and safely) updated with all partial
results

– valid operators are: +, -, *, |, ||, &,
&&, ^, min, max

– but we can also specify user-defined reductions

int vector_sum (int n , int v [n])

{

int i , sum = 0;

#pragma omp parallel for reduction (+ : sum)

{

for (i = 0; i < n ; i ++)

sum += v [i] ;

}

return sum;

}

Private copies initialized to
the identity

Shared variable updated
with all the partial results

Loop data environment: what is the default?

Pre-determined data-sharing attributes
─ threadprivate variables are threadprivate

─ dynamic storage duration objects are shared (malloc, new,…)

─ static data members are shared

─ variables declared inside the construct (static  shared / automatic  private)

─ the loop iteration variable(s) in the associated for-loop(s) of a for, parallel for, distribute or

taskloop constructs is (are) private

─ the loop iteration variable in the associated (and unique) for-loop of a simd construct is linear

─ the loop iteration variables in the associated (multiple) for-loops of a simd construct are

lastprivate

Explicit data-sharing clauses (shared, private, firstprivate,…)
─ If default clause present, what the clause says (none is very useful!!!)

Implicit data-sharing rules, depends on the construct
─ For the loop region the default data sharing attribute is shared

The loop schedule clause

The schedule clause determines which iters are executed by each thread in the team

There are several possible options as schedule kind

#pragma omp for schedule(kind[,chunk-size])

{structured-block: loop}

The loop schedule clause: static

The static schedule (with no chunk-size parameter)

The static schedule (with chunk-size parameter)  interleaved

. . .

#pragma omp parallel for private(j) schedule(static)

for (i = 0; i < N; i ++)

for (j = 0; j < M; j ++)

m[i * N + j] = 0;

. . .

thread-0

thread-1

thread-2

thread-3

N

. . .

#pragma omp parallel for private(j) schedule(static,10)

for (i = 0; i < N; i ++)

for (j = 0; j < M; j ++)

m[i * N + j] = 0;

. . .

thread-0
thread-1
thread-2
thread-3

N thread-0
thread-1

thread-x+1
thread-x

10 iters
10 iters

10 iters

.

.

.

The loop schedule clause: dynamic & guided

The dynamic schedule

The guided schedule (variant of dynamic)

. . .

#pragma omp parallel for private(j) schedule(dynamic, 10)

for (i = 0; i < N; i ++)

for (j = 0; j < M; j ++)

m[i * N + j] = 0;

. . .

. . .

#pragma omp parallel for private(j) schedule(guided, 10)

for (i = 0; i < N; i ++)

for (j = 0; j < M; j ++)

m[i * N + j] = 0;

. . .

N

10 iters
10 iters

10 iters

.

.

.

N%10

thread-0

thread-1

thread-3

thread-2

N

xx iters

yy iters

10 iters

.

.

N%10

thread-0

thread-1

thread-3

thread-2

The loop schedule clause: static vs dynamic (& guided)

Which scheduler should work better with a specific loop?

static

dynamic (guided)

Dynamic (and guided) schedulers

Higher overhead

Not very good locality (usually)

Can solve imbalance problems

Static schedulers

Low overhead

Good Locality (usually)

Can have load imbalance problems

The loop schedule clause: auto & runtime

The auto schedule (if you want to experiment)

The runtime schedule (delayed until run-time)

. . .

#pragma omp parallel for private(j) schedule(auto)

for (i = 0; i < N; i ++)

for (j = 0; j < M; j ++)

m[i * N + j] = 0;

. . .

. . .

#pragma omp parallel for private(j) schedule(runtime)

for (i = 0; i < N; i ++)

for (j = 0; j < M; j ++)

m[i * N + j] = 0;

. . .

thread-0

thread-1

thread-3

thread-2

N

$ export OMP_SCHEDULE=static,1024

$./myMatrixMultiply

Computing matrix multiplication…

Avoiding the implicit barrier (loop)

The nowait clause: eliminates the barrier at the end of the loop

This allows to overlap the execution of non-dependent loops

#define N 1000

void main (void) {

int i, a[N], b[N];

#pragma omp parallel

{

#pragma omp for nowait

for (i = 0; i < N ; i ++)

a [i] = 0;

#pragma omp for

for (i = 0; i < N ; i ++)

b [i] = 0;

}

}

– independent iterations (in between loops) 
we can overlap them

– if same iteration space  a better solution
would be to (manually) fuse the loops

#pragma omp for nowait

{structured-block}

parallel for

parallel for

Avoiding the implicit barrier (loop)

The nowait clause: eliminates the barrier at the end of the loop

But also overlap the execution of “some” dependent loops

#define N 1000

void main (void) {

int i, a[N], b[N];

#pragma omp parallel

{

#pragma omp for schedule(static) nowait

for (i = 0; i < N ; i ++)

a [i] = 0;

#pragma omp schedule(static) for

for (i = 0; i < N ; i ++)

a [i] = a [i] + foo (i);

}

}

– static scheduler, same iteration space, and
dependent (on index) iterations (in between
loops)  we can overlap them

– a better solution would be to (manually) fuse
the loops

#pragma omp for nowait

{structured-block}

parallel for

para llel for

Avoiding the implicit barrier (loop)

The nowait clause: eliminates the barrier at the end of the loop

But also overlap the execution of “some” dependent loops, but not all of them

#define N 1000

void main (void) {

int i, a[N], b[N];

#pragma omp parallel

{

#pragma omp for schedule(dynamic) nowait

for (i = 0; i < N ; i ++)

a [i] = 0;

#pragma omp for schedule(dynamic)

for (i = 0; i < N ; i ++)

a [i] = a [i] + foo (i);;

}

}

– no static scheduler: same iteration space, and
dependant (on index) iterations (in between
loops)  NO

• a solution would be to (manually) fuse the loops

– not the same iteration space: static scheduler
and dependent (on index) iterations (in
between loops)  NO

– dependence (arbitrary in any index): same
iteration space and static scheduler  NO

#pragma omp for nowait

{structured-block}

The collapse clause

Allows to distribute work from a set of n-nested loops

Using the collapse clause over two loops

#define N ??

#define M ???

void main (void) {

int i, j;

#pragma omp parallel

{

#pragma omp for collapse(2)

for (i = 0; i < N; i ++)

for (j = 0; j < M; j ++)

foo (i , j) ;

}

}

#pragma omp for

for (idx = 0; idx < (N * M); idx ++) {

foo (fi(idx) , fj(idx)) ;

}

– useful when first loop (or both) have only a few
iterations (e.g., N = 64)

– increase the amount of created parallelism

www.bsc.es

Montevideo, October 21st, 2019Parallel Programming Workshop

Additional synchronization

Synchronizing the execution

Threads need to impose some ordering in the sequence of their actions
─ execute in a logical order certain regions

─ mutual exclusion in the execution of a given region

─ wait in a location until all other threads have reach the same location

─ wait until a given condition is accomplished

OpenMP provides different synchronization mechanisms
─ master construct already explained in previous sessions

─ critical construct  already explained in previous sessions

─ barrier directive

─ atomic construct

─ taskwait directive  will be explained in following sessions (tasking)

─ taskgroup construct  will be explained in following session (tasking)

─ depend clause  will be explained in following sessions (tasking)

The barrier directive

Threads cannot proceed after a barrier point until

─ and all previously generated work is completed

Synchronizing threads between two phases in a parallel region

#pragma omp barrier

#pragma omp parallel

{

foo ();

#pragma omp barrier

bar ();

}

Forces all foo()’s too
happen before all bar()’s

Implicit barrier

foo()

bar()

Mutual exclusion for simple read & update operations

The atomic construct

Usually it is much more efficient than a critical construct…

… but it is not compatible/interop with it 

The atomic construct is just an additional mechanism to fix data races

int x =1;

#pragma omp parallel num_threads(2)

{

#pragma omp atomic

x++;

}

printf("%d\n", x);

Only one thread at a time
updates x here

Prints “3”

int x =1;

#pragma omp parallel num_threads(2)

{

#pragma omp atomic

x++;

. . .

#pragma omp critical

x++;

}

printf("%d\n", x);

May execute an atomic
and a critical block at
the “same time”

Prints “?”

Summary: OpenMP worksharings

OpenMP worksharings: single, section, loop and workshare

Additional synchronization constructs

www.bsc.es

Montevideo, October 21st, 2019Parallel Programming Workshop

Intellectual Property Rights Notice

The User may only download, make and retain a copy of the materials for his/her use for non-commercial and
research purposes. The User may not commercially use the material, unless has been granted prior written consent by
the Licensor to do so; and cannot remove, obscure or modify copyright notices, text acknowledging or other means of
identification or disclaimers as they appear. For further details, please contact BSC-CNS.

www.bsc.es

For further information please visit/contact

Thank you!

Montevideo, October 21st, 2019

http://www.linkedin.com/in/xteruel

xavier.teruel@bsc.es

Parallel Programming Workshop

