www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

@

OpenMP Worksharings

Parallel Programming Workshop

Xavier Teruel and Xavier Martorell

EXCELENCIA

SEVERO
OCHOA

Montevideo, October 21st, 2019

Worksharing introduction

Divide the execution of a code region among the threads of a team
— threads cooperate to do some work (i.e. to share some work)

— better way to split work than using thread-ids

— lower overhead than using tasks - less flexible

In OpenMP, there are four worksharing constructs:
— single construct

— sections construct

— loop construct

Restriction: worksharings cannot be nested

Parallel Programming Workshop Montevideo, October 21st, 2019

The single construct

Serializing (1-thread) a portion of the parallel region
— always attached to a structured block

#fpragma omp single [clause[[,] clause]...]
{structured-block}

Where clause Single construct example

#include <stdio.h>

— nowait intmain (void)

. . . { This program writes just
copyprlvate(llst) #pragma omp parallel one “Hello world!”

{

Only one thread of the team executes do_parallel_work_1();
the structured block fpragma ompsingle

printf ("Helloworld!\n");

Very useful in I/O operations)
do_parallel_work_2();
)

}

Parallel Programming Workshop Montevideo, October 21st, 2019

Implicit barrier (single)

A implicit barrier at the end of the construct

#pragma omp parallel

{

intf();

do_parallel_work_1(); printfi)

#oragma omp single do_parallel_work_1(); , .
prag psing ; . . §
{ - X!
printf ("Helloworld!\n"); ﬁ;—-ﬁ-—?
‘_I 1 N

}

I | do_parallel_work_2();
do_parallel_work_2();

The nowait clause eliminates the barrier at the end of the construct

#pragma omp single nowait
{structured-block}

. ; . do_parallel_work_1(); , printf();
#pragma omp single nowait .)
q " " K] . “
printf ("Helloworld!\n"); o . >
“e R
\J D
.o 0 *

Ld
‘_n N
1

' do_parallel_work_2();

Parallel Programming Workshop Montevideo, October 21st, 2019

Copying variables from/to the construct (broadcasting)

The copyprivate clause
#pragma omp single copyprivate (list)
{structured-block}

Copyprivate description

support the broadcast of data values to
other threads in the team

apply only to private, firstprivate or
threadprivate variables

occurs after the execution of the
structured block...

... but before of the threads have left the
barrier (at the end of the construct)

Parallel Programming Workshop

Copyprivate example (input data)

#include <stdio.h>

void main (void)

{

floatx,y;
#pragma omp parallel private(x,y)

{

#pragma omp single copyprivate(x,y)
{
scanf("%f %f", &x, &y);

} -
} e At this point variables x’ and
} ‘v’ have been broadcasted

Montevideo, October 21st, 2019

Single construct vs master construct

In both cases the structured block is executed by just one thread

#pragma omp single #pragma omp master
{structured-block} {structured-block}

The single construct has more overhead (additional synchronization)
— which thread has captured the token

— and the implicit barrier at the end

... but also is more flexible: any thread may execute the block

The master construct has less overhead

— itisjust a test (if thread-id == 0)

— it has no implicit barrier at the end

... but also is more restrictive: only master thread may execute the block

Rule of thumb: if all threads reach the structured block at the same time use master,
otherwise use single

Parallel Programming Workshop Montevideo, October 21st, 2019

The sections construct

Set of structured blocks distributed among threads

#fpragma omp sections [clause[[,] clause]...]
{

[#pragma omp section]
{structured-block}

[#pragma omp section
{structured-block}]

}

Where clause:

— lastprivate(list)

Parallel Programming Workshop Montevideo, October 21st, 2019

The sections construct: description (1)

Building the syntaxis of the sections construct
— each (selected) structured block is preceded by a section directive

— only in the first structured block the section directive is optional

— any section directive must be lexically enclosed in a sections construct

Section construct example

#include "synthetic.h”

void main (void)
{
#pragma omp parallel
#pragma omp sections
{
#pragma omp section
synthetic_phasel();
#pragma omp section
synthetic_phase2();
#pragma omp section
synthetic_phase3();

Only in the first structured
block the section directive is
optional

Parallel Programming Workshop

Montevideo,

#Hinclude "synthetic.n”
void synthetic_phase2()
{
#pragma omp section
synthetic_phase2_1();
}

October 21st, 2019

The sections construct: description (2)

Executing the sections construct

— assignment blocks/threads is implementation defined
— if no ‘nowait’ clause is present there is an implicit barrier at the end

It can be combined with the parallel construct

#pragma omp parallel sections [clause[[,] clause]...]
{structured-blocks: sections}

Using the “parallel sections™ combined construct

void main (void) synthetic_phase2(); I
I
{ K | .
K3 1 S
. —— {E——
H#pragma omp parallel sections <o o
{ synthetic_phase3(); %, I N
. 1
synthetic_phasel(); synthetic_phasel();

#pragma omp section
synthetic_phase2();
#pragma omp section
synthetic_phase3();

Parallel Programming Workshop Montevideo, October 21st, 2019

Privatizing variables inside the construct (lastprivate) @

The variable inside the construct is a new variable

— the new variables have the same type than original variable

— in any worksharing construct it means all threads have a different variable
— they can be accessed without any kind of synchronization

Already discussed privatization clauses

— private variables have undefined value when starting the block

— firstprivate variables are initialized to the value of the original one

The lastprivate clause

#pragma omp sections lastprivate (list)

{structured-blocks: sections}

— the lastprivate variables (by default) have undefined value when starting the block

— the value of the variable in the lexically last section of the set of sections is copied back to the
original variable

— a variable can be both firstprivate and lastprivate

Parallel Programming Workshop Montevideo, October 21st, 2019

A lastprivate example (with sections construct)

Recovering the sequential consistency with the lastprivate clause

#include <stdio.h> #include "synthetic.h"
void main (void) {
intv=_0; void synthetic_phase(int s) {
#pragma omp parallel sections lastprivate(v) switch case(s)
{ {
H#pragma omp section case 1:
{v=3 The lexically last section matrix_multiply();
synthetic_phase(v); determines the value of break;
} the original variable e
#pragma omp section default:
{ v=2; exit(NOT_IMPLEMENTED);
synthetic_phase(v); }
} }
#pragma omp section
{ v=3;
synthetic_phase(v); synthetic_phase(2); 1
} K | .
} — R
g,
printf("v=%d\n",v); synthetic_phase(3); ‘—_.'
} synthetic_phase(l);I

Parallel Programming Workshop Montevideo, October 21st, 2019

Some:performance results (synthetic)

Time Results

Threads TotalTime Speed-up

1 4,454202 1,00
2 2,562986 1,74
3 1,940174 2,30
4 1,927576 2,31
5 1,934126 2,30
6 1,929955 2,31
7 1,927792 2,31
8 1,941034 2,29
S 4,452954 1,00
TS e
Speedup = 4
p

Parallel Programming Workshop

4.00

3.50

0.50

0.00

Synthetic (sections)

Threads

Montevideo, October 21st, 2019

The optimal amount of parallelism

Parallel decomposition (choosing the entity’s granularity)
— Where entity may be a (section) structured block, or a (loop) chunk, or a task

— Parallelization [usually] may occur at different application levels
» Higherlevels - coarse grain granularity
» Small synchronization overhead
» [oadimbalance (includinglack of parallelism)
» Deeperlevels - fine grain granularity
» Greaterpotential forparallelism (and hence speed-up)
» More synchronization overhead

— The optimal decision is a trade off (but sometimes is difficult to find)

Werk units (<) (%) Werk units

Werk grain (4°) () Werk grain
Lack of parallelism ® Synchro. overhead

CORIISE fine

Parallel Programming Workshop Montevideo, October 21st, 2019

www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Loop distribution

Parallel Programming Workshop Montevideo, October 21st, 2019

The loop construct

Distributing a loop among threads
— always attached to a for loop (do in Fortran)

#fpragma omp for [clause[[,] clause]...]

{structured-block: loop}

Where clause:

— lastprivate(list) - already explained, but...
— reduction(operator: list) - already explained, but...
— schedule(schedule-kind)

— collapse(n)
— ordered

Parallel Programming Workshop Montevideo, October 21st, 2019

The loop construct: description (1)

The iterations of the associated loop(s) are divided among the threads of the team

Parallel loop requirements
— loop iterations must be independent (user’s responsibility)
— loops must follow a form that allows to compute the number of iterations

#pragma omp for [clause[[,] clause]...]

for (init expr; test expr; inc expr)

— valid data types for loop variables are: integers, pointers and random access iterators (in C++)

Parallel Programming Workshop Montevideo, October 21st, 2019

The loop construct: description (2)

It can be combined with the parallel construct
#pragma omp parallel for [clause[[,] clause]...]

{structured-block: loop}

Matrix initialization (using the loop construct)
... but other distributions

voidfoo (int*m, intN, int M) New created threads M are also possible
{ cooperate to execute >

inti,j; all the iterations of the loop
#pragma omp parallel for private(j) The i variable is
for (= 0Ny automatically privatized
for(j=0; i

mli*N+j]=0; The j variable must be
manually privatized

Parallel Programming Workshop Montevideo, October 21st, 2019

Loop construct and the lastprivate clause

A lastprivate example
#pragma omp for lastprivate (list)
{structured-block: loop}

— lastprivate variables (by default) have
undefined value when starting the block

— the value of the variable in the last logical

iteration of the loop is copied back to
the original variable

— a variable can be both firstprivate and
lastprivate

Parallel Programming Workshop

The lastprivate clause

void main(void)
{
inti;
#pragma omp parallel
{
#pragma omp for lastprivate(i)
for(i=0;i<n-1;i++)

{

The logical last iteration
determines the value of
the original variable

alil= b[i]+ b[i+1];

}
}

a[il=Db[i];/* i==n-1here */
}

Montevideo, October 21st, 2019

Loop construct and the reduction clause (=

All threads accumulate some values into a single variable

#pragma omp for reduction (operator:list)
{structured-block}

Reduction clause example (loop construct)

intvector sum(intn,intv[n])

{ — the compiler creates a private copy that is
inti,sum=0; properly initialized (identity)
#pragma omp parallel for reduction (+ : sum) — the compiler ensures that the shared variable is

{

Private copies initialized to properly (and safely) updated with all partial
for(i=0;i<n;i++) the identity

results
sum+=v/[i];

— i . - %
} Shared variable updated valid Operat?rs are: +, ’ P I B P
return sum; with all the partial results &&, ~, min, max

— but we can also specify user-defined reductions
Using critical is not good enough (besides being error prone)

}

Parallel Programming Workshop Montevideo, October 21st, 2019

Loop data environment: what is the default?

Pre-determined data-sharing attributes

— the loop iteration variable(s) in the associated for-loop(s) of a for, parallel for, distribute or
taskloop constructs is (are) private

Implicit data-sharing rules, depends on the construct
— For the loop region the default data sharing attribute is shared

Parallel Programming Workshop Montevideo, October 21st, 2019

The loop schedule clause @

The schedule clause determines which iters are executed by each thread in the team

#pragma omp for schedule (kind[,chunk-size])
{structured-block: loop}

— If no schedule clause is present then it is implementation defined

There are several possible options as schedule kind
— static|[, chunk-size]

— dynamic[, chunk-size]

— qguided[, chunk-size]

— auto

— runtime

Parallel Programming Workshop Montevideo, October 21st, 2019

The loop schedule clause: static

The static schedule (with no chunk-size parameter)
— the iteration space is broken in chunks of approximately the same size
— then these chunks are assigned to the threads in a Round-Robin fashion

N
thread-0
#pragma omp parallel for private(j) schedule(static)
for (i=0;i<N;i++) N thread-1
for(j=0;j<M;j++) thread-2
m[i*N+j]=0;
. V[reass |

The static schedule (with chunk-size parameter) - interleaved
— the iteration space is broken in chunks of size N
— these chunks are assigned to the threads in a Round-Robin fashion

N thread-0 10iters
#pragma omp parallel for private(j) schedule(static,10) :Z:ggg:g 101ters
for(i=0;i<N;i++
()))) N thread-0
for(j=0;j<M;j++) thread-1
m[i*N+j]=0;
thread-x 10iters
4 thread-x+1

Parallel Programming Workshop Montevideo, October 21st, 2019

The loop schedule clause: dynamic & guided

The dynamic schedule
— if no chunk-size is specified, default is 1
— threads dynamically grab iterations until all iterations have been executed

/ 10 iters

U thread-0 10iters
#pragma omp parallel for private(j) schedule(dynamic, 10)

for (i=0;i<N;i++) thread-1 N
for(j=0;j<M;j++
(J, J= Tl) thread-2
mli*N+j]=0; 10it
iters
thread-3 \ N%10

The guided schedule (variant of dynamic)
— if no chunk-size is specified, default is 1
— chunks decreases in size as threads grab iterations (at least chunk-size)

ce thread-0 xx iters
#pragma omp parallel for private(j) schedule(guided, 10) ,
for(i=0;i<N;i++) thread-1 ound
for(j=0;j<M;j++) thread-2
m[i*N+j]=0;

10 iters
N%10

thread-3

Parallel Programming Workshop Montevideo, October 21st, 2019

The loop schedule clause: static vs dynamic (& guided) @

Static schedulers Dynamic (and guided) schedulers

Low overhead Higher overhead
Good Locality (usually) Not very good locality (usually)
Can have load imbalance problems Can solve imbalance problems

Which scheduler should work better with a specific loop?

— if all threads reach the loop region at the same time
— if all the iterations have the same weight (work)
— if consecutive loops using the same data (e.g. matrix)

— if threads may reach the loop at different times
— if not all the iterations have the same weight (work)

- static

- dynamic(guided)

Parallel Programming Workshop Montevideo, October 21st, 2019

The loop schedule clause: auto & runtime

The auto schedule (if you want to experiment)

— in this case, the implementation is allowed to do whatever it wishes
— do not expect much of it as of now

- N

- thread-0
| #pragma omp parallel for private(j) schedule(auto) =
| for(i=0;i<N;i++) thread-1 N)

s A - - I
| for(i=Gii<Mij+) thread-2 0
| m[i*N+j]=0;
... thread-3 N/

The runtime schedule (delayed until run-time)
— using the OMP_SCHEDULE environment variable

— using the omp_set schedule() API service call

... S export OMP_SCHEDULE=static,1024

| #pragma omp parallel for private(j) schedule(runtime) S ./myMatrixMultiply

- for(i=0;i<N;i+t+) Computing matrix multiplication...
- for(j=0;j<M;j++)

| mli*N+j]=0;

Parallel Programming Workshop Montevideo, October 21st, 2019

Avoiding the implicit barrier (loop)

The nowait clause: eliminates the barrier at the end of the loop

#pragma omp for nowait
{structured-block}

This allows to overlap the execution of non-dependentloops

#define N 1000 — independent iterations (in between loops) 2

S
e .mam(vm i we can overlap them
inti,a[N], b[N];

— if same iteration space = a better solution

#pragma omp parallel would be to (manually) fuse the loops
{
parallel for
#pragma omp for nowait —I——
for(i=0;i<N;i++) _.::"__—.E:'_
. ;O -
alil=0; x K
parallel fok

#pragma omp for
for(i=0;i<N;i++)
b[i]l=0;
}
}

Parallel Programming Workshop Montevideo, October 21st, 2019

Avoiding the implicit barrier (loop)

The nowait clause: eliminates the barrier at the end of the loop

#pragma omp for nowait
{structured-block}

But also overlap the execution of “some” dependentloops

#define N 1000 — static scheduler, same iteration space, and
voidmain (void){ dependent (on index) iterations (in between
nti, a[N], bINJ; loops) = we can overlap them
#pragma omp parallel — a better solution would be to (manually) fuse
{ the loops

#pragma omp for schedule(static) nowait

for(i=0;i<N;i++) parallel for :)
ali]l=0; T —

! :E'_—-l—‘?
#pragma omp schedule(static) for
for(i=0;i<N;i++)

alil=alil+fool(i);

}

parallel fok

}

Parallel Programming Workshop Montevideo, October 21st, 2019

Avoiding the implicit barrier (loop)

The nowait clause: eliminates the barrier at the end of the loop

#pragma omp for nowait
{structured-block}

But also overlap the execution of “some” dependentloops, but not all of them

#tdefine N 1000

e — no static scheduler: same iteration space, and
void main (void) {

inti, a[N], b[N]; dependant (on index) iterations (in between
loops) 2 NO
#ipragma omp parallel * asolution would be to (manually) fuse the loops
{#pragma omp for schedule(dynamic) nowait — not the same iteration space: static scheduler
for (i=0;i<N;i++) and dependent (on index) iterations (in
alil=0; between loops) 2 NO

tpragma omp for schedule(dynamic) - f:leper.\dence (arbitrary |_n any index): same
for (i=0;i<N;i+) iteration space and static scheduler 2 NO

alil=ali]+foo(i);
}) &
}

Parallel Programming Workshop Montevideo, October 21st, 2019

The collapse clause

Allows to distribute work from a set of n-nested loops

— loops must be perfectly nested (no instruction in between)
— the nest must traverse a rectangular iteration space
— combines both iteration spaces to create a single one

Using the collapse clause over two loops
#define N ?? — useful when first loop (or both) have only a few
#define M ?22? . .

iterations (e.g., N = 64)

void main (void) {

increase the amount of created parallelism

inti, j;
#pragma omp parallel
{
#pragma omp for collapse(2) ey
UG|S5 ISl i for (idx=0; idx< (N * M); idx ++) {
for(j=0;] < M;]++) foo filidx), filicx));
foo(i,j); 1)
}

Parallel Programming Workshop Montevideo, October 21st, 2019

www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Additional synchronization

Parallel Programming Workshop Montevideo, October 21st, 2019

Synchronizing the execution

Threads need to impose some ordering in the sequence of their actions
— execute in a logical order certain regions
— mutual exclusion in the execution of a given region

— wait in a location until all other threads have reach the same location
— wait until a given condition is accomplished

OpenMP provides different synchronization mechanisms

— barrier directive
— atomic construct

Parallel Programming Workshop Montevideo, October 21st, 2019

The barrier directive

Threads cannot proceed after a barrier point until
— all threads reach the barrier

‘ #pragma omp barrier

— some constructs have an implicit barrier at the end (e.g., the parallel construct)

Synchronizing threads between two phases in a parallel region

#pragma omp parallel Forces all foo()’s too

{ happen before all bar()’s
foo();
#pragma omp barrier
bar ();

} Implicit barrier

Parallel Programming Workshop Montevideo, October 21st, 2019

Mutual-exclusion for simple read & update operations

The atomic construct

— special mechanism of mutual exclusion to “read & update” operations
— only supports simple read & update expressions

» e.g.,x += 1 - whole expressionis protected

» X =X -foo() 2 only protects the read & update part, foo()is not protected

Usually it is much more efficient than a critical construct...
... butit is not compatible/interop with it = |intx=3;

#pragma omp parallel num_threads(2)
intx =1; {
#pragma omp parallel num_threads(2) #pragma omp atomi

May execute an atomic
{ X+t

T — j———— and a critical block at
#pragma omp atomic y ... the “same time”
bt _ updates x here

#pragma omp critita
} X++;

printf("%d\n",
The atomic construct is just an additional mechanism to fix data races

Parallel Programming Workshop Montevideo, October 21st, 2019

Summary: OpenMP worksharings

OpenMP worksharings: single, section, loop and

— distribute work among threads without using thread-id (neither num-threads)
— parallel decomposition trade off: coarse and fine granularity

— control how the work is distribute (loop) using the schedule clause

— new ways to control the data environment in these news constructs

Additional synchronization constructs

— the barrier directive > synchronize threads
— the atomic directive - other mechanism to fix data races

Parallel Programming Workshop Montevideo, October 21st, 2019

www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Intellectual Property Rights Notice

The User may only download, make and retain a copy of the materials for his/her use for non-commercial and
research purposes. The User may not commercially use the material, unless has been granted prior written consent by
the Licensor to do so; and cannot remove, obscure or modify copyright notices, text acknowledging or other means of
identificationor disclaimers as they appear. For further details, please contact BSC-CNS.

Parallel Programming Workshop Montevideo, October 21st, 2019

www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Thank you!

For further information please visit/contact
http://www.linkedin.com/in/xteruel
xavier.teruel@bsc.es

Parallel Programming Workshop Montevideo, October 21st, 2019

