# ---------------------------------------- # LOCATION-TRANSPORTATION PROBLEM # USING BENDERS DECOMPOSITION # (using primal formulation of subproblem) # ---------------------------------------- ### SUBPROBLEM FOR EXTREME POINT ### set ORIG; # shipment origins (warehouses) set DEST; # shipment destinations (stores) param supply {ORIG} > 0; param demand {DEST} > 0; param fix_cost {ORIG} > 0; param var_cost {ORIG,DEST} > 0; param unmet_cost {DEST} default 150; param build {ORIG} binary; # = 1 iff warehouse built at i var Ship {ORIG,DEST} >= 0; # amounts shipped var Unmet {DEST} >= 0; # unmet demand minimize Ship_Cost: sum {i in ORIG, j in DEST} var_cost[i,j]*Ship[i,j] + sum {j in DEST} unmet_cost[j]*Unmet[j]; subj to Supply {i in ORIG}: sum {j in DEST} Ship[i,j] <= supply[i] * build[i]; subj to Demand {j in DEST}: sum {i in ORIG} (Ship[i,j]) + Unmet[j] = demand[j]; ### MASTER PROBLEM ### param nCUT >= 0 integer; param supply_price {ORIG,1..nCUT} <= 0.000001; param demand_price {DEST,1..nCUT}; var Build {ORIG} binary; # = 1 iff warehouse built at i var Max_Ship_Cost; minimize Total_Cost: sum {i in ORIG} fix_cost[i] * Build[i] + Max_Ship_Cost; subj to Cut_Defn {k in 1..nCUT}: Max_Ship_Cost >= sum {i in ORIG} supply_price[i,k] * supply[i] * Build[i] + sum {j in DEST} demand_price[j,k] * demand[j];