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The Class NP

We will define two classes of problems called NP and
NP-complete.

We need some new ideas.



Certificate

Recall the independent set problem (decision version):

Independent Set

Given a graph G , is there set S of size ≥ k such that no two nodes
in S are connected by an edge?

Finding the set S is hard (we will see).

But if I give you a set S∗, checking whether S∗ is the answer is
easy: check that |S | ≥ k and no edges go between 2 nodes in S∗.

S∗ acts as a certificate that 〈G , k〉 is a yes instance of
Independent Set.



Efficient Certification

Def. An algorithm B is an efficient certifier for problem X if:

1 B is a polynomial time algorithm that takes two input strings
I (instance of X ) and C (a certificate).

2 B outputs either yes or no.

3 There is a polynomial p(n) such that for every string I :

I ∈ X if and only if there exists string C of length
≤ p(|I |) such that B(I , C ) = yes.

B is an algorithm that can decide whether an instance I is a yes
instance if it is given some “help” in the form of a polynomially
long certificate.



Certifiers

B
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User provides 
instance as usual

Certificate is 
magically guessed



The class NP

NP is the set of languages for which there exists an efficient certifier.

P is the set of languages for which there exists an efficient certifier
that ignores the certificate.

That’s the difference: A problem is in P if we can decided them in
polynomial time. It is in NP if we can decide them in polynomial
time, if we are given the right certificate.
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P ⊆ NP

Theorem

P ⊆ NP

Proof. Suppose X ∈ P. Then there is a polynomial time algorithm
A for X .

To show that X ∈ NP, we need to design an efficient certifier
B(I , C ).

Just take B(I , C ) = A(I ). �

Every problem with a polynomial time algorithm is in NP.



P 6= NP?

The big question:

P= NP?

We know P ⊆ NP. So the question is:

Is there some problem in NP that is not in P?

Seems like the power of the certificate would help a lot.
But no one knows. . . .



Reductions as tool for hardness

We want prove some problems are computationally difficult.

As a first step, we settle for relative judgements:

Problem X is at least as hard as problem Y

To prove such a statement, we reduce problem Y to problem X :

If you had a black box that can solve instances of
problem X , can you solve any instance of Y using
polynomial number of steps, plus a polynomial number of
calls to the black box that solves X ?



Polynomial Reductions

• If problem Y can be reduced to problem X , we denote this by
Y ≤P X .

• This means “Y is polynomal-time reducible to X .”

• It also means that X is at least as hard as Y because if you
can solve X , you can solve Y .

• Note: We reduce to the problem we want to show is the
harder problem.



Polynomial Problems

Suppose:

• Y ≤P X , and

• there is an polynomial time
algorithm for X .

Then, there is a polynomial time
algorithm for Y .

Why?

Call X

Call X
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Reductions for Hardness

Theorem

If Y ≤P X and Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.

Why? If we could solve X in polynomial time, then we’d be able to
solve Y in polynomial time, contradicting the assumption.

So: If we could find one hard problem Y , we could prove that
another problem X is hard by reducing Y to X .



Vertex Cover

Def. A vertex cover of a graph is a set S of nodes such that every
edge has at least one endpoint in S .

In other words, we try to “cover” each of the edges by choosing at
least one of its vertices.

(Yes, “Vertex Cover” is a horrible name: we’re covering edges with
vertices. There’s no hope to change this now.)

Vertex Cover

Given a graph G and a number k, does G contain a vertex cover
of size at most k.



Independent Set to Vertex Cover

Independent Set

Given graph G and a number k, does G contain a set of at least k
independent vertices?

Can we reduce independent set to vertex cover?

Vertex Cover

Given a graph G and a number k, does G contain a vertex cover
of size at most k.



Relation btwn Vertex Cover and Indep. Set

Theorem

If G = (V , E ) is a graph, then S is an independent set ⇐⇒
V − S is a vertex cover.

Proof. =⇒ Suppose S is an independent set, and let e = (u, v)
be some edge. Only one of u, v can be in S . Hence, at least one of
u, v is in V − S . So, V − S is a vertex cover.

⇐= Suppose V − S is a vertex cover, and let u, v ∈ S . There
can’t be an edge between u and v (otherwise, that edge wouldn’t
be covered in V − S). So, S is an independent set. �



Independent Set ≤P Vertex Cover

Independent Set ≤P Vertex Cover

To show this, we change any instance of Independent Set into an
instance of Vertex Cover.

Proof.

• Given an instance of Independent Set 〈G , k〉, with |G | = n

• we ask our Vertex Cover black box if there is a vertex cover of
with n − k vertices.

By our previous theorem, S is an independent set iff V − S is a
vertex cover.

So: G has a independent set of size k iff G has a vertex cover of
size n − k .



Vertex Cover ≤P Independent Set

Actually, we also have:

Vertex Cover ≤P Independent Set

Proof. To decide if G has an vertex cover of size k, we ask if it has
a independent set of size n − k . �

So: Vertex Cover and Independent Set are equivalently difficult.



NP-completeness

Def. We say X is NP-complete if:

• X ∈ NP

• for all Y ∈ NP, Y ≤P X .

If these hold, then X can be used to
solve every problem in NP.

Therefore, X is definitely at least as
hard as every problem in NP.

NP

X

Y1
Y2

Y3

Y4P



NP-completeness and P=NP

Theorem

If X is NP-complete, then X is solvable in polynomial time if and
only if P = NP.

Proof. If P = NP, then X can be solved in polytime.

Suppose X is solvable in polytime, and let Y be any problem in
NP. We can solve Y in polynomial time: reduce it to X .

Therefore, every problem in NP has a polytime algorithm and
P = NP.



Reductions and NP-completeness

Theorem

If Y is NP-complete, and

1 X is in NP

2 Y ≤P X

then X is NP-complete.

In other words, we can prove a new problem in NP-complete by
reducing some other NP-complete problem to it.

Proof. Let Z be any problem in NP. Since Y is NP-complete,
Z ≤P Y . By assumption, Y ≤P X . Therefore: Z ≤P Y ≤P X . �



Boolean Formulas

Boolean Formulas:

Variables: x1, x2, x3 (can be either true or false)

Terms: t1, t2, . . . , t`: tj is either xi or x̄i

(meaning either xi or not xi ).

Clauses: t1 ∨ t2 ∨ · · · ∨ t` (∨ stands for “OR”)
A clause is true if any term in it is true.

Example 1: (x1 ∨ x̄2), (x̄1 ∨ x̄3), (x2 ∨ v̄3)

Example 2: (x1 ∨ x2 ∨ x̄3), (x̄2 ∨ x1)



Boolean Formulas

Def. A truth assignment is a choice of true or false for each
variable, ie, a function v : {x1, . . . , xn} → {true, false}.

Def. A CNF formula is a conjunction of clauses:

C1 ∧ C2,∧ · · · ∧ Ck

Example: (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x2 ∨ v̄3)

Def. A truth assignment is a satisfying assignment for such a
formula if it makes every clause true.



SAT and 3-SAT

Satisfiability (SAT)

Given a set of clauses C1, . . . , Ck over variables X = {x1, . . . , xn} is
there a satisfying assignment?

Satisfiability (3-SAT)

Given a set of clauses C1, . . . , Ck , each of length 3, over variables
X = {x1, . . . , xn} is there a satisfying assignment?



Cook-Levin Theorem

Theorem (Cook-Levin)

3-SAT is NP-complete.

Proven in early 1970s by Cook. Slightly different proof by Levin
independently.

Idea of the proof: encode the workings of a Nondeterministic
Turing machine for and instance I of problem X ∈ NP as a SAT
formula so that the formula is satisfiable if and only if the
nondeterministic Turing machine would accept instance I .

We won’t have time to prove this, but it gives us our first hard
problem.



Reducing 3-SAT to Independent Set

Thm. 3-SAT ≤P Independent Set

Proof. Suppose we have an algorithm to solve Independent Set,
how can we use it to solve 3-SAT?

To solve 3-SAT,

• you have to choose a term from each clause to set to true,

• but you can’t set both xi and x̄i to true.

How do we do the reduction?



3-SAT ≤P Independent Set
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x2
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(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)



Proof

Theorem

This graph has an independent set of size k iff the formula is
satisfiable.

Proof. =⇒ If the formula is satisfiable, there is at least one true
literal in each clause. Let S be a set of one such true literal from
each clause. |S | = k and no two nodes in S are connected by an
edge.

=⇒ If the graph has an independent set S of size k , we know that
it has one node from each “clause triangle.” Set those terms to
true. This is possible because no two are negations of each other.
�



General Proof Strategy

General Strategy for Proving Something is NP-complete:

1 Must show that X ∈ NP. Do this by showing there is an
certificate that can be efficiently checked.

2 Look at all the problems that are known to be NP-complete
(there are thousands), and choose one Y that seems “similar”
to your problem in some way.

3 Show that Y ≤P X .


