
CMSC 451: Polynomial-time Reductions &
NP-completeness

Carl Kingsford

April 28, 2009

The Class NP

We will define two classes of problems called NP and
NP-complete.

We need some new ideas.

Certificate

Recall the independent set problem (decision version):

Independent Set

Given a graph G , is there set S of size ≥ k such that no two nodes
in S are connected by an edge?

Finding the set S is hard (we will see).

But if I give you a set S∗, checking whether S∗ is the answer is
easy: check that |S | ≥ k and no edges go between 2 nodes in S∗.

S∗ acts as a certificate that 〈G , k〉 is a yes instance of
Independent Set.

Efficient Certification

Def. An algorithm B is an efficient certifier for problem X if:

1 B is a polynomial time algorithm that takes two input strings
I (instance of X) and C (a certificate).

2 B outputs either yes or no.

3 There is a polynomial p(n) such that for every string I :

I ∈ X if and only if there exists string C of length
≤ p(|I |) such that B(I , C) = yes.

B is an algorithm that can decide whether an instance I is a yes
instance if it is given some “help” in the form of a polynomially
long certificate.

Certifiers

B

Instance I

Certificate C

User provides
instance as usual

Certificate is
magically guessed

The class NP

NP is the set of languages for which there exists an efficient certifier.

P is the set of languages for which there exists an efficient certifier
that ignores the certificate.

That’s the difference: A problem is in P if we can decided them in
polynomial time. It is in NP if we can decide them in polynomial
time, if we are given the right certificate.

The class NP

NP is the set of languages for which there exists an efficient certifier.

P is the set of languages for which there exists an efficient certifier
that ignores the certificate.

That’s the difference: A problem is in P if we can decided them in
polynomial time. It is in NP if we can decide them in polynomial
time, if we are given the right certificate.

P ⊆ NP

Theorem

P ⊆ NP

Proof. Suppose X ∈ P. Then there is a polynomial time algorithm
A for X .

To show that X ∈ NP, we need to design an efficient certifier
B(I , C).

Just take B(I , C) = A(I). �

Every problem with a polynomial time algorithm is in NP.

P 6= NP?

The big question:

P= NP?

We know P ⊆ NP. So the question is:

Is there some problem in NP that is not in P?

Seems like the power of the certificate would help a lot.
But no one knows. . . .

Reductions as tool for hardness

We want prove some problems are computationally difficult.

As a first step, we settle for relative judgements:

Problem X is at least as hard as problem Y

To prove such a statement, we reduce problem Y to problem X :

If you had a black box that can solve instances of
problem X , can you solve any instance of Y using
polynomial number of steps, plus a polynomial number of
calls to the black box that solves X ?

Polynomial Reductions

• If problem Y can be reduced to problem X , we denote this by
Y ≤P X .

• This means “Y is polynomal-time reducible to X .”

• It also means that X is at least as hard as Y because if you
can solve X , you can solve Y .

• Note: We reduce to the problem we want to show is the
harder problem.

Polynomial Problems

Suppose:

• Y ≤P X , and

• there is an polynomial time
algorithm for X .

Then, there is a polynomial time
algorithm for Y .

Why?

Call X

Call X

Polynomial Problems

Suppose:

• Y ≤P X , and

• there is an polynomial time
algorithm for X .

Then, there is a polynomial time
algorithm for Y .

Why?

Call X

Call X

Reductions for Hardness

Theorem

If Y ≤P X and Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.

Why? If we could solve X in polynomial time, then we’d be able to
solve Y in polynomial time, contradicting the assumption.

So: If we could find one hard problem Y , we could prove that
another problem X is hard by reducing Y to X .

Vertex Cover

Def. A vertex cover of a graph is a set S of nodes such that every
edge has at least one endpoint in S .

In other words, we try to “cover” each of the edges by choosing at
least one of its vertices.

(Yes, “Vertex Cover” is a horrible name: we’re covering edges with
vertices. There’s no hope to change this now.)

Vertex Cover

Given a graph G and a number k, does G contain a vertex cover
of size at most k.

Independent Set to Vertex Cover

Independent Set

Given graph G and a number k, does G contain a set of at least k
independent vertices?

Can we reduce independent set to vertex cover?

Vertex Cover

Given a graph G and a number k, does G contain a vertex cover
of size at most k.

Relation btwn Vertex Cover and Indep. Set

Theorem

If G = (V , E) is a graph, then S is an independent set ⇐⇒
V − S is a vertex cover.

Proof. =⇒ Suppose S is an independent set, and let e = (u, v)
be some edge. Only one of u, v can be in S . Hence, at least one of
u, v is in V − S . So, V − S is a vertex cover.

⇐= Suppose V − S is a vertex cover, and let u, v ∈ S . There
can’t be an edge between u and v (otherwise, that edge wouldn’t
be covered in V − S). So, S is an independent set. �

Independent Set ≤P Vertex Cover

Independent Set ≤P Vertex Cover

To show this, we change any instance of Independent Set into an
instance of Vertex Cover.

Proof.

• Given an instance of Independent Set 〈G , k〉, with |G | = n

• we ask our Vertex Cover black box if there is a vertex cover of
with n − k vertices.

By our previous theorem, S is an independent set iff V − S is a
vertex cover.

So: G has a independent set of size k iff G has a vertex cover of
size n − k .

Vertex Cover ≤P Independent Set

Actually, we also have:

Vertex Cover ≤P Independent Set

Proof. To decide if G has an vertex cover of size k, we ask if it has
a independent set of size n − k . �

So: Vertex Cover and Independent Set are equivalently difficult.

NP-completeness

Def. We say X is NP-complete if:

• X ∈ NP

• for all Y ∈ NP, Y ≤P X .

If these hold, then X can be used to
solve every problem in NP.

Therefore, X is definitely at least as
hard as every problem in NP.

NP

X

Y1
Y2

Y3

Y4P

NP-completeness and P=NP

Theorem

If X is NP-complete, then X is solvable in polynomial time if and
only if P = NP.

Proof. If P = NP, then X can be solved in polytime.

Suppose X is solvable in polytime, and let Y be any problem in
NP. We can solve Y in polynomial time: reduce it to X .

Therefore, every problem in NP has a polytime algorithm and
P = NP.

Reductions and NP-completeness

Theorem

If Y is NP-complete, and

1 X is in NP

2 Y ≤P X

then X is NP-complete.

In other words, we can prove a new problem in NP-complete by
reducing some other NP-complete problem to it.

Proof. Let Z be any problem in NP. Since Y is NP-complete,
Z ≤P Y . By assumption, Y ≤P X . Therefore: Z ≤P Y ≤P X . �

Boolean Formulas

Boolean Formulas:

Variables: x1, x2, x3 (can be either true or false)

Terms: t1, t2, . . . , t`: tj is either xi or x̄i

(meaning either xi or not xi).

Clauses: t1 ∨ t2 ∨ · · · ∨ t` (∨ stands for “OR”)
A clause is true if any term in it is true.

Example 1: (x1 ∨ x̄2), (x̄1 ∨ x̄3), (x2 ∨ v̄3)

Example 2: (x1 ∨ x2 ∨ x̄3), (x̄2 ∨ x1)

Boolean Formulas

Def. A truth assignment is a choice of true or false for each
variable, ie, a function v : {x1, . . . , xn} → {true, false}.

Def. A CNF formula is a conjunction of clauses:

C1 ∧ C2,∧ · · · ∧ Ck

Example: (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x2 ∨ v̄3)

Def. A truth assignment is a satisfying assignment for such a
formula if it makes every clause true.

SAT and 3-SAT

Satisfiability (SAT)

Given a set of clauses C1, . . . , Ck over variables X = {x1, . . . , xn} is
there a satisfying assignment?

Satisfiability (3-SAT)

Given a set of clauses C1, . . . , Ck , each of length 3, over variables
X = {x1, . . . , xn} is there a satisfying assignment?

Cook-Levin Theorem

Theorem (Cook-Levin)

3-SAT is NP-complete.

Proven in early 1970s by Cook. Slightly different proof by Levin
independently.

Idea of the proof: encode the workings of a Nondeterministic
Turing machine for and instance I of problem X ∈ NP as a SAT
formula so that the formula is satisfiable if and only if the
nondeterministic Turing machine would accept instance I .

We won’t have time to prove this, but it gives us our first hard
problem.

Reducing 3-SAT to Independent Set

Thm. 3-SAT ≤P Independent Set

Proof. Suppose we have an algorithm to solve Independent Set,
how can we use it to solve 3-SAT?

To solve 3-SAT,

• you have to choose a term from each clause to set to true,

• but you can’t set both xi and x̄i to true.

How do we do the reduction?

3-SAT ≤P Independent Set

x1

x3x2

x2

x4x3

x1

x4x2

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)

Proof

Theorem

This graph has an independent set of size k iff the formula is
satisfiable.

Proof. =⇒ If the formula is satisfiable, there is at least one true
literal in each clause. Let S be a set of one such true literal from
each clause. |S | = k and no two nodes in S are connected by an
edge.

=⇒ If the graph has an independent set S of size k , we know that
it has one node from each “clause triangle.” Set those terms to
true. This is possible because no two are negations of each other.
�

General Proof Strategy

General Strategy for Proving Something is NP-complete:

1 Must show that X ∈ NP. Do this by showing there is an
certificate that can be efficiently checked.

2 Look at all the problems that are known to be NP-complete
(there are thousands), and choose one Y that seems “similar”
to your problem in some way.

3 Show that Y ≤P X .

