
Trabajo disciplinado en ingeniería de software (TSP, PSP)

Diego Vallespir

Aclaración
La mayoría de las slides provienen del curso del Personal
Software Process del SEI-CMU

Why Projects Fail?

Why Projects Fail?
Project commitments are often unrealistic.

Large projects are harder to control.

Quality problems.

Lack of good leadership and coaching.

And more…

What is the PSP?
The PSP is a personal process for developing software or
for doing any other defined activity. The PSP includes
• defined steps
• forms
• standards

It provides a measurement and analysis framework for
characterizing and managing your personal work.

It is also a defined procedure that helps you to improve
your personal performance.

The PSP Process Flow

The PSP Measurements
The basic PSP data are

• program size
• time spent by phase
• defects found and injected by phase

Both actual and estimated data are gathered on every
item.

Measures derived from these data
• support planning
• characterize process quality

Size Measurement Criteria
Size measurements must be
• related to development effort
• precise
• machine countable
• suitable for early planning

Screen Elements Versus Time

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000

Screen Elements

Ti
m

e
(h

ou
rs

)

C++ LOC Versus Time

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800

C++ LOC

Ti
m

e
(m

in
.)

Planning Overview
• Plans
• allow you to make commitments that you can meet
• provide the basis for agreeing on job scope, schedule,

and resources
• guide the work
• facilitate progress tracking and reporting
• help ensure that key tasks are not overlooked

The Project Planning Framework

Product
delivery

Tracking
reports

Define
requirements

Produce
conceptual

design

Estimate
size

Estimate
resources

Produce
schedule

Develop
product

Size, resource,
schedule

data
Process
analysis

Resources
available

Size
database

Productivity
database

Size Estimating Principles
• Estimating is an uncertain process.
• No one knows how big the product will be.
• The earlier the estimate, the less is known.
• Estimates can be biased by business and other

pressures.

• Estimating is an intuitive learning process.
• Ability improves with experience and data.
• Some people will be better at estimating than others.

Regression Line for Program Size

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500

Estimated Class Size

Ac
tu

al
 A

dd
ed

 a
nd

 M
od

ifi
ed

 S
iz

e

27 C++ programs

Regression Line for Development Time

-10
0
10
20
30
40
50
60
70
80
90

0 100 200 300 400 500

Estimated Class Size

Ac
tu

al
 D

ev
el

op
m

en
t T

im
e

- h
ou

rs

27 C++ programs

The PSP Quality Focus
The defect content of software products must be managed
before more important quality issues can be addressed.

Low defect content is an essential prerequisite to a quality
software process.

Since low defect content can best be achieved where the
defects are injected, engineers should
remove their own defects
determine the causes of their defects
learn to prevent those defects

The Economics of Quality
Software is the only modern technology that relies on
testing to manage quality.

With common quality practices, software groups typically
spend 50+% of the schedule in test
devote more than half their resources to fixing defects
cannot predict when they will finish
deliver poor-quality and over-cost products

To manage cost and schedule, you must manage quality.

To get a quality product out of test, you must put a quality
product into test.

Source: Xerox

Defect-removal Times

1

10

100

1000

10000

Ti
m

e
in

 M
in

ut
es

Design
Review

Design
Inspect.

Code
Review

Code
Inspect.

Unit
Test

System
Test

Defect-removal Phase

5

22

2

25 32

1405

1

10

100

1000

10000

Ti
m

e
in

 M
in

ut
es

Design
Review

Design
Inspect.

Code
Review

Code
Inspect.

Unit
Test

System
Test

Defect-removal Phase

5

22

2

25 32

1405

Defect-removal Rates
Even at the personal level, it is more efficient to find defects
in reviews than in testing.
Unit test finds only about 2 to 4 defects per hour.
Unit test finds about 50% of the defects.
Code reviews find about 6 to 10 defects per hour.
Practiced reviewers can find 70% or more of the defects
before compiling or testing.

Design Review Principles
In addition to reviewing code, your should also review your
designs.

This requires that you
• produce designs that can be reviewed
• follow an explicit review strategy
• review the design in stages
• verify that the logic correctly implements the

requirements

Quality Measures
To do efficient reviews, you must have measures.

The PSP has many useful quality and process-control
measures.
yield
review rate
defects found per unit of size
defects injected and removed per hour

Phase Yield
Phase yield measures the
percentage of the defects in the product that were found by
that phase
defect-removal effectiveness of that process step

Yield can be used to measure the effectiveness of design
and code reviews, inspections, compiling, and testing.

Yield (for a phase) =
100 * (defects found) / (defects found + not found)

Defect-Removal Filters

Development
Injects
defects

Development
Injects
defects

%

Development
Injects
defects

%

%

Phase
yield

Phase
yield

Phase
yield

Process
yield

Defect
injection
phase

%

Defect
removal
phase

Yield Estimates
Yield can be estimated but not precisely calculated until all
defects have been found through test and product use.

Yield measures are most useful when the developers and
testers record all of the defects.
design and code review defects
compile defects
test defects

By using process-control measures, you are more likely to do
high-yield reviews.

Potential Control Parameters
To be useful, process control measures must be available
during the process. Examples are
size units reviewed per hour
defects found per hour
defects found per size unit

While no control parameter directly correlates with phase
yield, review rate is the most useful control parameter.

Review rate is the parameter used in the PSP.

2015

Leading a Development Team

TSP Overview

What Is the Team Software Process?

The Team Software Process (TSP) is an integrated set of practices for
developing software.
The TSP is a process-based solution to common software engineering
and management challenges:

● cost and schedule predictability
● productivity and product quality

● process improvement

Topics
The TSP

● establishes self-managed teams
● is guided by a defined process framework
● provides a team-based project planning process guided by a

coach
● includes metrics for tracking project status and product quality

● provides immediate, measurable benefits

TSP Team Member Roles
All team members have traditional roles; for example developer, tester,
or inspector.
They also share self-management responsibilities through eight
defined management roles.

● Customer Interface
● Design
● Implementation
● Planning
● Process
● Quality
● Support
● Test

Team
Leader

The Team Leader’s Role
The team leader does not typically take one of the aforementioned eight team roles.
The team leader’s role on a TSP team is to

● guide the team in doing its work
● support the self-managed team concept

● take the time to reach full consensus on all important issues
● ensure that the team establishes high standards for the work
● promote and facilitate team problem solving

● provide management support to the team and interface with management
for the team

● protect the team so that team members can focus on the project

The TSP Defined Process Framework

TSP is based on a defined process framework.

The TSP process framework was designed to be integrated with
existing processes, methods, and tools.
Processes within the framework can be tailored by the team under the
guidance of a TSP coach.
The TSP process

● guides the work (but doesn’t constrain it)
● ensures consistency of results
● promotes effective communication
● stimulates individual and team improvement

Algunos Elementos del TSP

● Fases

● Medidas
● Roles
● Scripts (guías para expertos)
● Best practices
● Herramienta de soporte al proceso

Fases

El TSP es un marco, por ende, las fases pueden ser ampliadas y
cambiadas. Sin embargo, se debe respetar el marco en lo que
refiere a las best practices.
● Planning
● Requirements
● System Test Plan

● REQ Inspection
● High-Level Design
● Integration Test Plan
● HLD Inspection

Fases (2)

● Detailed Design

● DLD Review
● DLD Inspection
● Code
● Code Review
● Compile

● Code Inspection
● Unit Test

PSP + Inspecciones

Fases (3)

● Build and Integration Test

● System Test
● Postmortem

Medidas

● El TSP recolecta datos de la ejecución del proceso así como del
producto.

● Estos datos sirven para planificar (datos históricos) y para hacer
el seguimiento del proceso, producto y proyecto.

● Las medidas base son las mismas que en el PSP.

Scripts y Best practices

● Scripts

– Cada una de las fases del TSP tiene al menos un script
asociado. Los scripts, al igual que en el PSP, guían el trabajo
del experto.

● Best practices
– Estas son prácticas fundamentales que permiten mantener la

calidad del producto y, a través de esta, mantener controlado
el proyecto/proceso/producto.

– Actividades de prevención: planificación, diseño y
postmortem.

– Actividades de remoción temprana de defectos: revisiones e
inspecciones.

Planning and Team Building
The TSP launch process addresses planning and team building.
A typical launch takes two-four days. Small teams need less time.

● The launch is considered part of the project work.
● All team members participate.

● The launch is guided by a TSP coach.
Management provides the goals and
constraints for the project.
The team then develops its plan for
meeting management’s objectives.
If necessary, the team negotiates with
management to arrive at a mutually
agreeable outcome.

TSP Development Strategy

A team can begin using TSP on a newly
started project or on a project that is
already underway (any cycle or phase
of a cycle).
The TSP planning cycle begins with
a launch or a re-launch and ends
with a postmortem.

Business and
technical goals Launch

Development
cycleDevelopment

cycleDevelopment
cycle

Relaunch

Cycle
postmortem

Project
postmortem

Work products,
status, measures

Lessons, new goals,
new goals, new risks

Approach, plans,
estimates,
commitment

The TSP Launch Process

A qualified coach guides the team
through a defined process to develop
its plan and to negotiate that plan with
management.

1

Establish
product and
business goals

1

Assign roles
and define
team goals

2

Produce
development
strategy &
process

3

Build overall
and near-term
plans

4

Develop the
quality plan

5

Build individual
& consolidated
plans

6

Conduct risk
assessment

7

Prepare
management
briefing &
launch report

8

Hold
management
review

9

Launch
postmortem

Class Discussion - Coaches

What is the role of a coach on a team?

The TSP Coach

The TSP coach is a TSP expert who works collaboratively with the team leader to
ensure project success. The coach

● guides the TSP team through the TSP launch process
● coaches the TSP team members as they work on the project

● is not a team member or the team leader

The TSP coach is an expert in the TSP process.
● TSP information products provide expert-level guidance with the assumption

that a coach will be assisting the team.
● Every team and project is different and how the TSP is specifically

implemented depends on the particular project context. The coach assists
the team in tailoring the TSP appropriately.

Tracking and Status Reporting

A self-managed team makes their own plan and is held accountable for
managing their plan.
For a TSP project, four base measures are collected to support tracking
against the plan. They are:

● schedule (that is, completion status of tasks)
● size

● time
● defects

What the Base Measures Provide

Base Measures provide the necessary information to answer important
questions about the project.

● When do we expect to finish?
● How confident are we in that expectation?
● Why are we behind/ahead of schedule?
● How do we spend our time?

● What do we expect the quality of the final product to be?
● How confident are we in that expectation?
● When are defects being injected and removed?
● How effective are our reviews and inspections?

TSP Benefit: Reduction in System Test Time

Typical software project teams spend 40-50% of their effort in system
test, finding and fixing defects.
By sending cleaner code to system test, the total time spent in system
test can be reduced to 9-15%.

Reducing system test time increases the time that teams can
spend in developing product during a typical year-long release
cycle … by almost 50%.

Results: Schedule and Effort Deviations

Before TSP

Percent Average Schedule Deviation

-20 0 20 60 100 14040 80 120-40 160

After TSP

Before TSP

Percent Average Effort Deviation

-60 -40 -20 20 60 1000 40 80-80 120

After TSP

Schedule Deviation

Effort Deviation

25th to 75th percentile

Outlier

Max/min data point

N = 15

N = 15

N = 16

N = 16

[Source: McAndrews, D. 2000]

“It is an interesting and important point that projects with low defects potentials and high
defect removal efficiency (DRE) above 96% percent are faster and cheaper than the
same size projects with poor DRE below 90%.” Capers Jones

0

2

4

6

8

10

12

14

1 2 3 4 5 TSP

Delivered
Defects
per KLOC

Results: Defects Delivered

CMMI Maturity Level

[Source: Jones, C. 2011]Note: Function points were translated to KLOC using backfire method (1FP = 100 LOC) .

0

2

4

6

8

10

12

14

16

18

20

Delivered
Defects
per KLOC

TSP Compared to Other Methodologies

[Source: Jones, C. 2012]
* RUP is Rational Unified Process.

Note: Function points were translated to KLOC using backfire method (1FP = 100 LOC) .

The Importance of Developer Training

In order to be successful with TSP, each member of the team is trained so
that they acquire skills to

● make realistic plans
● negotiate commitments
● track their work
● produce high quality products

References

McAndrews, D. The Team Software Process: An Overview and Preliminary Results of Using
Disciplined Practices (CMU/SEI-2000-TR-015, ADA387260). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2000.
http://www.sei.cmu.edu/publications/documents/00.reports/00tr015.html.

Jones, C. Software Quality in 2010: A Survey of the State of the Art.
http://www.sqgne.org/presentations/2010-11/Jones-Nov-2010.pdf (2011).

Jones, C. Software Quality in 2011: A Survey of the State of the Art.
http://sqgne.org/presentations/2011-12/Jones-Sep-2011.pdf (2012).

