
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220630837

Time	boxing	planning:	buffered	moscow	rules

Article		in		ACM	SIGSOFT	Software	Engineering	Notes	·	November	2011

DOI:	10.1145/2047414.2047428	·	Source:	DBLP

CITATIONS

4

READS

122

1	author:

Eduardo	Miranda

Carnegie	Mellon	University

25	PUBLICATIONS			150	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Eduardo	Miranda	on	31	May	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/220630837_Time_boxing_planning_buffered_moscow_rules?enrichId=rgreq-26b37587dc3767d283eeb64000eaba15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYzMDgzNztBUzoxMDI5MTM0Mzk0MzY4MTBAMTQwMTU0Nzg4NDg5MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220630837_Time_boxing_planning_buffered_moscow_rules?enrichId=rgreq-26b37587dc3767d283eeb64000eaba15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYzMDgzNztBUzoxMDI5MTM0Mzk0MzY4MTBAMTQwMTU0Nzg4NDg5MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-26b37587dc3767d283eeb64000eaba15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYzMDgzNztBUzoxMDI5MTM0Mzk0MzY4MTBAMTQwMTU0Nzg4NDg5MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Miranda2?enrichId=rgreq-26b37587dc3767d283eeb64000eaba15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYzMDgzNztBUzoxMDI5MTM0Mzk0MzY4MTBAMTQwMTU0Nzg4NDg5MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Miranda2?enrichId=rgreq-26b37587dc3767d283eeb64000eaba15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYzMDgzNztBUzoxMDI5MTM0Mzk0MzY4MTBAMTQwMTU0Nzg4NDg5MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carnegie_Mellon_University?enrichId=rgreq-26b37587dc3767d283eeb64000eaba15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYzMDgzNztBUzoxMDI5MTM0Mzk0MzY4MTBAMTQwMTU0Nzg4NDg5MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Miranda2?enrichId=rgreq-26b37587dc3767d283eeb64000eaba15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYzMDgzNztBUzoxMDI5MTM0Mzk0MzY4MTBAMTQwMTU0Nzg4NDg5MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Miranda2?enrichId=rgreq-26b37587dc3767d283eeb64000eaba15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYzMDgzNztBUzoxMDI5MTM0Mzk0MzY4MTBAMTQwMTU0Nzg4NDg5MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


 

Time boxing planning: Buffered Moscow rules 
Eduardo Miranda 

Institute for Software Research 
Carnegie Mellon University 

 

ABSTRACT 
Time boxing is a management technique which prioritizes schedule over 
deliverables but time boxes which are merely a self, or an outside, 
imposed target without agreed partial outcomes and justified certainty 
are at best, an expression of good will on the part of the team. This 
essay proposes the use of a modified set of Moscow rules which 
accomplish the objectives of prioritizing deliverables and providing a 
degree of assurance as a function of the uncertainty of the underlying 
estimates. 

Categories and Subject Descriptors 
D.2.9 [Management]: Copyrights, Cost estimation, Life cycle, 
Productivity, Programming teams, Software configuration management, 
Software process models (e.g., CMM, ISO, PSP), Software quality 
assurance (SQA), Time estimation 

General Terms 
Management, Economics 

Keywords 
Time boxing planning, prioritization rules, release planning, agile, 
incremental delivery, requirements prioritization, design to schedule 

1. INTRODUCTION 
Time boxing is a management technique which prioritizes schedule over 
deliverables. This means that if during the execution of the task it is 
anticipated that all requested deliverables will not be ready by a set 
completion date, the scope of the work will be reduced so that a smaller, 
yet still useful, output is produced by such date. The two dimensions of 
the time box are the length of time it is given and the resources 
available during that time. The time box concept can be applied to 
individual tasks and single iterations but the focus of this proposal is in 
larger aggregates, such as a release or a project, culminating in the 
delivery of an agreed functionality to a customer. 

To be effective, time boxing requires that [1]:  

1. The features or user requirements1 that make up the total delivery 
are grouped into functionally complete subsets; 

2. The subsets are prioritized so it is clear which requirements should 
be implemented first and which ones could be eliminated if there is 
not enough time to complete all of them; and 

3. Reasonable assurance is provided to the customer about the 
feasibility of a given subset within the imposed frame 

Time boxes which are merely a self, or an outside, imposed target 
without agreed partial outcomes and justified certainty are at best, an 
expression of good will on the part of the team. 

Prioritization is traditionally made by asking the customer to rank his or 
her preferences into a series of categories such as “Must have”, “Should 
have”, “Could have” or “Won’t have” where the “Must have” category 
contains all requirements that must be satisfied in the final delivery for 
the solution to be considered a success. The “Should have” represents 
high-priority items that should be included in the solution if possible. 

                                                                 

 

1 This two terms will be used loosely and alternatively to refer to a discrete 
capability requested by the sponsor of the work 

The “Could have” corresponds to those requirement which are 
considered desirable but not necessary. They will be included if there is 
any time left after developing the previous two. “Won’t have” are used 
to designate requirements that will not be implemented in a given time 
box, but may be considered for the future. These categories are 
commonly known by the acronym “Moscow” [2]. Less used techniques 
include the pairwise comparisons, cumulative voting, top ten 
requirements and EVOLVE [3]. 

With the exception of EVOLVE [4] which uses a complex search 
procedure to maximize value within the constraints imposed by the 
available resources; all the techniques above suffer from the same 
problem: they are either unconstrained or arbitrarily constrained. For 
example in the “top ten” technique the “must have” would be limited to 
the 10 more important requirements. Why 10? Why not eleven or 
twelve or nine? This lack of constraints means that in general, as long as 
the aggregated effort is within the project budget there is no limit to the 
number of requirements that are assigned to the “must have” category 
with which the prioritization process ends up not prioritizing anything at 
all. 

In this article we describe a simple requirement prioritization method 
that: 1) Redefines the MOSCOW categories in terms of the team’s 
ability to complete the requirements assigned to them; and 2) Constrains 
the number of requirements that the customer can allocate to each 
category as a function of the uncertainty of the estimates which makes it 
possible to give the sponsor certain reassurances with regards to their 
achievability or not. The MOSCOW categories are redefined as follows: 

1. Must Have: Those features that the project, short of a calamity, 
would be able to deliver within the defined time box 

2. Should Have: Those features that have a fair chance of being 
delivered within the defined time box 

3. Could Have: Those features that the project could deliver within 
the defined time box if everything went extraordinarily well, i.e. if 
there were no hiccups in the development of requirements assigned 
to higher priority categories  

4. Won’t have features, those for which there is not enough budget to 
develop them 

Therefore, the fitting of requirements into these categories is not an a 
priori decision but rather a consequence of what the development team 
believes can be accomplished under the specific project context and 
budget. 

 
In the past I have associated a delivery probability of 90, 45 and 20% 
with each of the categories, but this quantification it is only possible if 
one is willing to make assumptions about the independence or 
covariance of the actual efforts, the number of requirements included in 
each category and the type of distributions underlying each estimate; or 
to use a method such as Monte Carlo simulation to expose the 
distribution of the total effort for each category. If we are not willing to 
make this, quoting specific numbers is just an analogy, all we can 
justifiable say is that the likelihood of delivering all requirements in the 
“must have” category would roughly double the  

likelihood of those in the “should have” category and quadruple that of 
those in the “could have” one.  



 

2. THE IDEA 
The process requires that each feature or requirement to be developed 
has a two points estimate2: a normal completion effort3  and a safe 
completion one.  The normal completion effort is that, which in the 
knowledge of the estimator has a fair chance of being enough to 
develop the estimated feature while the safe estimate is that which will 
be sufficient to do the work most of the time but in a few really bad 
cases.  

If we wanted to be reassured of being able to deliver all features under 
most circumstances we would need to plan for the worst case, which 
means scheduling all deliverables using their safe estimate. This, more 
likely than not, will exceed the boundaries of the time box4. See Figure 
1.a.  

It is clear that by scheduling features at the safe level, the most work we 
can accommodate within the time box boundaries is that depicted by the 
patterned area in Figure 1.b. So for the “must have” category the 

                                                                 

 
2  More sophisticated approaches such as Statistically Planned Incremental 
Deliveries – SPID [1]  will require three points estimates and the specification of  
an underlying distribution  

3 As I did in the redefining of the MOSCOW categories in this article I am 
avoiding the temptation of calling these estimates the 50% and the 90% 
probability estimates to prevent giving a false sense of mathematical exactness, 
which will require the making of additional assumptions or an analysis that might 
not be justified by the practical impact of the added accuracy and precision. 
4 If a single project had to ensure against all possible risks and uncertainty, its 
price would be prohibitive [5] 

customer must select, from among all requirements, those which are 
more important for him until exhausting the number of development 
hours available while scheduling them at the safe effort level.  This is 
the constraint missing in other prioritization methods and the key to 
provide a high level of confidence, in spite of the uncertainty of the 
estimates and the speed of execution, in the delivery of features in this 
category. 

Once the “must have” requirements have been selected, we will re-
schedule them using their normal estimates, see figure 1.c, and reserve 
the difference between the two effort levels as a buffer to protect their 
delivery.  We will repeat the process for the “should have” and “could 
have” requirements using the size of the buffer protecting the previous 
category as the initial budget for the current one, see figure 1.d. The 
requirements that could not be accommodated in any category at their 
safe level become the “won’t have”s. 

We can see now why we said at the beginning of this essay that the 
“must have” category will have double the likelihood of being 
completed of the “should have” and quadruple that of the “could have”. 

We are almost certain that all the requirements in the “must have” 
category can be completed within the time box because a requirement 
was only included in it if there was enough room to develop it under a 
worst case assumption. The “should have” category also have their 
requirements scheduled at the safe level, but with respect to the overall 
time box this level of confidence is contingent on the sum of the actual 
efforts spent on all the requirements in the “must have” subset being 
equal or less than the sum of their normal development times. This 
roughly halves the likelihood of completing all “should have” 
requirements within the time box. Similarly the likelihood of 
completing all the “could have” would be half of that of delivering all 
the “should have” or a quarter of the “must have”. 

Time box 

Development activities scheduled at their safe level 

Must have release at safe level Lower priority deliverables 

Must have using the normal 
estimate 

Should have at normal

Could have at 
safe 

Won’t 
have 

Startup activities Other support and management activities 

Startup activities Other support and management activities 

Startup activities Other support and management activities 

Buffer

Must have using the normal 
estimate 

Startup activities Other support and management activities 

Buffer

Buffer

a. 

b. 

c. 

d. 
Must have using the normal 

estimate 

Should have at safe level 
Lower priority 

deliverables 

Startup activities Other support and management activities 

Buffer

e. 

Figure 1 The overall approach 



 

3. A NUMERICAL EXAMPLE 
Table 1 shows the backlog for an imaginary project with a total budget 
(time box) of 180hrs. Assuming that the startup, and the support and 
management activities require 60hrs. leave us with a development 
budget of 120 hrs. The table lists the name of the features, the normal 
and the safe estimates and the name of other requirements or features in 
which the current one depends on. For example feature “H” will have a 
normal estimate of 10 hours, a safe estimate of 20 hours and depends on 
“J” and “K”, meaning that these two features must be present for “H” to 
provide any business value.  

Table 1 Product backlog 

Features Normal Estimate Safe Estimate Dependencies 
A 20 40 B, C 
B 7 9  
C 20 30  
D 5 7 E 
E 6 7  

F 5 6  
G 20 40  
H 10 20 J, K 
I 15 30  
J  12 15  
K 8 10  
L 10 18  
 

Let’s assume that from a pure business perspective the preferences of 
the project sponsor are: F, D, A, G, K, E, L, J, H, I, B, C. In a real 
project this choices will be made during the prioritization meeting. 

In our example, the first requirement to be selected for the “must have” 
category would be requirement “F”, applying the process described 
below we have: 

௜ାଵݐ݁݃݀ݑܤ݈ܾ݈݁ܽ݅ܽݒܣ ൌ ௜ݐ݁݃݀ݑܤ݈ܾ݈݁ܽ݅ܽݒܣ െ ௜݁ݐܽ݉݅ݐݏܧ݂݁ܽܵ
ൌ ݏݎ120݄ െ ݏݎ6݄ ൌ  ݏݎ114݄

Successive requirements are selected as per table 2. Notice that feature 
“G” cannot be included in the “must have” subset at the safe level 
because it does not fit into the available budget. At this point the 
customer must decide whether to resign “G” to another category, if 
possible, or rearrange the previous selection. For the sake of the 
example let’s assume requirement “G” is passed on, and the customer 
chooses “K” which follows in his rank of preferences and is schedulable 
in the available budget. 

After including “K” there is no other requirement that can be included 
in the “must have” category, so requirements F, D, E, A, B, C, and K 
are re-schedule at their normal level: 

ݐ݁݃݀ݑܤ݁ݒܽܪݐݏݑܯ ൌ ෍ ௜݁ݐܽ݉݅ݐݏܧ݈ܽ݉ݎ݋ܰ
௜∈ሼி,஽,ா,஺,஻,஼,௄ሽ

ൌ 	5	 ൅ 	5	 ൅ 	6	 ൅ 	20	 ൅ 	7	 ൅ 	20	 ൅ 	8	 ൌ  ݏݎ71݄	

ݎ݂݂݁ݑܤ݁ݒܽܪݐݏݑܯ ൌ ݐ݁݃݀ݑܤ݈ܾ݈݁ܽ݅ܽݒܣ െ ݐ݁݃݀ݑܤ݁ݒܽܪݐݏݑܯ
ൌ 120 െ 71 ൌ  ݏݎ49݄

 

Table 2 Assigning requirements to the “must have” category 

Features Reason for 
selection 

Available 
Budgeti 

Safe 
Estimatei 

Available 
Budgeti+1 

F Customer 
preference 

120 6 114 

D, E Customer 
preference, 
Dependenc
y 

114 14 100 

A, B, C Customer 
preference, 
Dependenc
y 

100 79 21 

G Customer 
preference 

21 40 -19 

K Customer 
preference 

21 10 11 

 

The process is now repeated using the  ݎ݂݂݁ݑܤ݁ݒܽܪݐݏݑܯ  as the 
available budget for the “should have” CATEGORY, see table 3, and 
the  ݄ܵݎ݂݂݁ݑܤ݁ݒܽܪ݈݀ݑ݋  for the “could have”. See table 4. 

Table 3 Assigning requirements to the “should have” category 

Features Reason for 
selection 

Available 
Budgeti 

Safe 
Estimatei 

Available 
Budgeti+1

G Customer 
preference 

49 40 9 

 

Table 4 Assigning requirements to the “could have” category 

Features Reason for 
selection 

Available 
Budgeti 

Safe 
Estimatei 

Available 
Budgeti+1 

L Customer 
preference 

29 18 11 

 

After including “L” nothing more could be included in the available 
effort at the safe estimate level and in consequence “H”, “I” and “J” are 
declared “won’t have”. 

The final subsets are: 

 Must have: F, D, E, A, B, C, K 
 Should have: G 
 Could have: L 
 Won’t have: H, I, J 

4. EXECUTION 
Figure 2 shows the initial plan resulting from the prioritization process.  
Now imagine that during the execution of the project feature “A” takes 
40hrs, its worst case, instead of the 20 allocated to it in the plan. This 
will push the development of features “G” and “L” to the right. This 
would leave us with 29hrs to develop “G”, 9 more than the 20hrs 
estimated at 50%, so one can say there still is a fair chance the customer 
will get it. If “G” takes 20 hours the budget remaining in the box will be 
9 hours, one less than the 10 estimated at 50%, so in this case the 
chance of the customer getting L would be slim. See Figure 3. 

5. DEALING WITH CHANGES AND DEFECTS 
Changes are natural. When a change occurs it should be ranked against 
current priorities and if accepted it will be at the expense of an already 
planned requirement or by changing the time box itself. 

With respect to defects a sensible strategy is to fix all critical and major 
defects within the time allocated at the subset in which they are 
discovered, postponing minor defects to the end of the project and 
giving the customer the choice between fixing the problems and 
developing additional functionality.  



 

6. BUSINESS IMPLICATIONS 
It is obvious that acknowledging from the very start of the project that 
the customer might not receive everything requested requires a very 
different communication, and perhaps marketing, strategy from that of a 
project that promises to do it, even when nobody believes it will do it. 

The premise, in which the method is based, is that businesses are better 
off when they know what could realistically be expected than when they 
are promised the moon, but no assurances are given with respect as to 
when they could get it. 

To be workable for both parties, the developer and the sponsor, a 
contract must incorporate the notion that an agreed partial delivery is an 
acceptable, although not preferred, outcome. A contract that offloads all 
risk in one of the parties would either be prohibitive or unacceptable to 
the other. The concept of agreed partial deliveries could adopt many 
forms. For example the contract could establish a basic price for the 

“must have” set with increasingly higher premiums for the “should 
have” and “could have” releases. Conversely the contract could propose 
a price for all deliverables and include penalties or discounts if the 
lower priority releases are not delivered. The advantage for the project 
sponsor is that, whatever happens, he can rest assured that he will get a 
working product with an agreed subset of the total functionality by the 
end of the project on which he can base his own plans. 

A similar idea could be applied to any reward for the people working in 
the project. No reward will be associated with delivering the “must 
have” release since the team members are simply doing their jobs. 
Subsequent releases will result in increased recognition of the extra 
effort put into the task. The relative delivery likelihood associated with 
each release could be used to calculate the reward’s expected value. 

7. SUMMARY 
 

 
 

 Figure 3 Must have release is delayed because “A” takes longer than the scheduled budget 

We have presented a simple prioritization procedure that can be 
applied to the ranking of requirements at the release as well as the 
project level.  

The procedure does not only captures customer preferences, but by 
constraining the number of features in the “must have” set as a 
function of the uncertainty of the underlying estimates, is able to 
offer project sponsors a high degree of reassurance in regards to the 

delivered of an agreed level of software functionality by the end of 
the time box. 

This simplicity is not free. It comes at the expense of the claims we 
can make about the likelihood of delivering a given functionality and 
a conservative buffer. Users seeking to make more definitive 
statements than “short of a calamity” or optimize the buffer size 
should consider the use of a more sophisticated approach such like 
the one described in Planning and Executing Time Bound Projects [1] 

Time box 

G 

L H, I, J 

F, D, E, A, B, C, K 

Startup activities Other support and management activities 

49 hrs 

29 hrs 

29G 

Time box 

L 

F, D, E, A, B, C, K 

Startup activities Other support and management activities 

49 hrs 

Delay due to A 

Figure 2 Original plan. Time box = 180 hrs, Startup and other support and management activities 60 hrs, 
development budget 120 hrs 



 

which requires considerably more information and an understanding 
of the problems associated with the elicitation of probabilities. 8. REFERENCES 

[1] Miranda, E., Planning and Executing Time Bound Projects, 
IEEE Computer, March 2002 

[2] Stapleton, J., DSDM Business Focused Development, 2nd ed. 
London, Addison Wesley, 2003 

[3] Berander P, Andrews A, Requirements prioritization. 
Aurum,Wohlin (Eds.),Engineering and Managing Software 
Requirements, Berlin, Springer Verlag, 2005． 

[4]  Greer D, Ruhe G, Software release planning: an evolutionary 
and iterative approach． Information and Software 
Technology, Vol. 4, 2004， 

[5] Kitchenham B, Linkman S Estimates, Uncertainty and Risk, 
IEEE Software, May 1997 

 

 

View publication statsView publication stats

https://www.researchgate.net/publication/220630837

