
C o p y r i g h t © 2 0 0 1 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d . S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 5

from the editor

The Nine Deadly Sins of
Project Planning
Steve McConnell

E d i t o r i n C h i e f : S t e v e M c C o n n e l l � C o n s t r u x S o f t w a r e � s o f t w a r e @ c o n s t r u x . c o m

A
t a time when some software organiza-
tions have achieved close to perfect
on-time delivery records,1 others con-
tinue to suffer mediocre results. Sur-
veys generally indicate that poor pro-
ject planning is one of the top sources

of problems.
How can you recognize a badly planned

software project? Here are nine of the dead-
liest sins I’ve found in project plan-
ning.

1. Not planning at all
By far the most common plan-

ning problem is simply not planning
at all, and this sin is easily avoided.
A person need not be an expert plan-
ner to plan effectively. I’ve seen nu-
merous instances of projects planned
by rank amateurs that have run well
simply because the people in charge

had carefully considered their project’s specific
needs. Forced to choose between an expert pro-
ject planner who doesn’t carefully think through
his plan or an amateur who has thoroughly eval-
uated his project needs, I’ll bet on the amateur
every time.

2. Failing to account for all project
activities

If Deadly Sin #1 is not planning at all,
Deadly Sin #2 is not planning enough. Some
project plans are created using the assumption
that no one on the software team will get sick,
attend training, go on vacation, or quit. Core
activities are often underestimated to a great
degree. Plans created using unrealistic assump-
tions like these set up a project for disaster.

There are numerous variations on this
theme. Some projects neglect to account for
ancillary activities such as the effort needed to

create setup programs, convert data from pre-
vious versions, perform cutover to new sys-
tems, perform compatibility testing, and other
pesky kinds of work that take up more time
than we would like to admit.

Some late projects propose to catch up by
reducing their originally planned testing cycle;
they reason that there probably won’t be very
many defects to detect or correct. (I leave as an
exercise for the reader to determine why—if
this is really the case—they didn’t plan for a
shorter testing cycle in the first place.)

3. Failure to plan for risk
In Design Paradigms,2 Henry Petroski ar-

gues that the most spectacular failures in bridge
design were generally preceded by periods of
success that led to complacency in the creation
of new designs. Designers of failed bridges
were lulled into copying the attributes of suc-
cessful bridges and didn’t pay enough attention
to each new bridge’s potential failure modes.

For software projects, actively avoiding fail-
ure is as important as emulating success. In
many business contexts, the word “risk” isn’t
mentioned unless a project is already in deep
trouble. In software, a project planner who isn’t
using the word “risk” every day and incorpo-
rating risk management into his plans probably
isn’t doing his job. As Tom Gilb says, “If you do
not actively attack the risks on your project,
they will actively attack you.”3

4. Using the same plan for every
project

Some organizations grow familiar with a
particular approach to running software pro-
jects, which is known as “the way we do things
around here.” When an organization uses this
approach, it tends to do well as long as the new
projects look like the old projects. When new

6 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

FROM THE EDITOR

projects look different, however, reusing
old plans can cause more harm than
good.

Good plans address specific condi-
tions of the project for which they are
created. Many elements can be reused,
but project planners should think care-
fully about the extent to which each el-
ement of a previous plan still applies to
the new project context.

5. Applying prepackaged
plans indiscriminately

A close cousin to Deadly Sin #3 is
reusing a generic plan someone else cre-
ated without applying your own critical
thinking or considering your project’s
unique needs. “Someone else’s plan”
usually arrives in the form of a book or
methodology that a project planner ap-
plies out of the box. Current examples
include the Rational Unified Process,4

Extreme Programming,5 and to some
extent (despite my best intentions to the
contrary) my own Software Project
Survival Guide6 and my company’s Cx-
One. These prepackaged plans can help
avoid Deadly Sins #1 and #2, but they
are not a substitute for thinking about
and optimizing your plans to the
unique demands of your project.

No outside expert can possibly un-
derstand a project’s specific needs as
well as the people directly involved.
Project planners should always tailor
the “expert’s” plan to their specific cir-
cumstances. Fortunately, I’ve found
that project planners who are aware
enough of planning issues to read soft-
ware engineering books usually also
have enough common sense to be selec-
tive about the parts of the prepackaged
plans that are likely to work for them.

6. Allowing a plan to diverge
from project reality

One common approach to planning
is to create a plan early in the project,
then put it on the shelf and let it gather
dust for the remainder of the project.
As project conditions change, the plan
becomes increasingly irrelevant, so by
mid-project the project runs free-form,
with no real relationship between the
unchanging plan and project reality.

This Deadly Sin is exacerbated by
Deadly Sin #5—project planners who

embrace prepackaged methodologies
whole-hog are sometimes reluctant to
change them midstream when they’re
not working. They think the problem is
with their application of the plan
when, in fact, the problem is with the
plan. Good project planning should
occur and recur incrementally through-
out a project.

7. Planning in too much detail
too soon

Some well-intentioned project plan-
ners try to map out a whole project’s
worth of activities early on. But a soft-
ware project consists of a constantly
unfolding set of decisions, and each
project phase creates dependencies for
future decisions. Since planners do not
have crystal balls, attempting to plan
distant activities in too much detail is
an exercise in bureaucracy that is al-
most as bad as not planning at all.

The more work that goes into creat-
ing prematurely detailed plans, the
higher the likelihood the plan will be-
come shelfware (Deadly Sin #6). No
one likes to throw away previous
work, and project planners sometimes
try to force-fit the project’s reality into
their earlier plans rather than labori-
ously revising their prematurely de-
tailed plans.

I think of good project planning like
driving at night with my car’s head-
lights on. I might have a road map that
tells me how to get from City A to City
B, but the distance I can see in detail in
my headlights is limited. On a medium-
size or large project, macro-level pro-
ject plans should be mapped out end-
to-end early in the project. Detailed,
micro-level planning should generally
be conducted only a few weeks at a
time and “just in time.”

8. Planning to catch up later
For projects that get behind sched-

ule, one common mistake is planning
to make up lost time later. The typical
rationalization is that, “The team was
climbing a learning curve early in the
project. We learned a lot of lessons the
hard way. But now we understand
what we’re doing and should be able to
finish the project quickly.” Wrong an-
swer! A 1991 survey of more than 300

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel,
wkeuffel@computer.org

Country Report: Deependra Moitra, Lucent Technologies
d.moitra@computer.org

Design: Martin Fowler, ThoughtWorks,
fowler@acm.org

Loyal Opposition: Robert Glass, Computing Trends,
rglass@indiana.edu

Manager: Don Reifer, Reifer Consultants,
dreifer@sprintmail.com

Quality Time: Jeffrey Voas, Cigital,
voas@cigital.com

STAFF

Senior Lead Editor
Dale C. Strok

dstrok@computer.org

Group Managing Editor
Crystal Chweh

Associate Editors
Jenny Ferrero and

Dennis Taylor

Staff Editors
Shani Murray, Scott L. Andresen,

and Kathy Clark-Fisher

Magazine Assistants
Dawn Craig

software@computer.org

Pauline Hosillos

Art Director
Toni Van Buskirk

Cover Illustration
Dirk Hagner

Technical Illustrator
Alex Torres

Production Artists
Carmen Flores-Garvey and Larry Bauer

Acting Executive Director
Anne Marie Kelly

Publisher
Angela Burgess

Assistant Publisher
Dick Price

Membership/Circulation
Marketing Manager
Georgann Carter

Advertising Assistant
Debbie Sims

CONTRIBUTING EDITORS

Greg Goth, Keri Schreiner, and Gil Shif

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descrip-
tions, reflect the author’s or firm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorsement
by the IEEE or the IEEE Computer Society.

To Submit: Send 2 electronic versions (1 word-processed
and 1 postscript or PDF) of articles to Magazine Assistant,
IEEE Software, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamitos, CA 90720-1314; software@computer.org. Ar-
ticles must be original and not exceed 5,400 words including
figures and tables, which count for 200 words each.

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 7

FROM THE EDITOR

projects found that projects hardly ever
make up lost time—they tend to get
further behind.7 The flaw in the ratio-
nalization is that software teams make
their highest-leverage decisions earliest
in the project—the time during which
new technology, new business areas,
and new methodologies are the least
well understood. As the team works its
way into the later phases of the project,
it won’t speed up; it will slow down as
it encounters the consequences of mis-
takes it made earlier and invests time
correcting those mistakes.

9. Not learning from past
planning sins

The deadliest sin of all might be not
learning from earlier deadly sins. Soft-
ware projects can take a long time, and
people’s memories can be clouded by
ego and the passage of time. By the end
of a long project, it can be difficult to
remember all the early decisions that
affected the project’s conclusion.

One easy way to counter these ten-
dencies and prevent future deadly sins
is to conduct a structured project post-

mortem review.8 A postmortem review
might not erase the sins of projects
past, but it can certainly help prevent
sins on future projects.

References
1. S. Ahuja, “Laying the Groundwork for Suc-

cess,” IEEE Software, vol. 16, no. 6, Nov.–
Dec. 1999, pp. 72–75.

2. H. Petroski, Design Paradigms, Cambridge
Univ. Press, Cambridge, U.K., 1994.

3. T. Gilb, Principles of Software Engineering
Management, Addison-Wesley, Reading,
Mass., 1988.

4. P. Kruchten, The Rational Unified Process: An
Introduction, 2nd ed., Addison-Wesley, Read-
ing, Mass., 2000.

5. K. Beck, Extreme Programming: Embrace
Change, Addison-Wesley, Reading, Mass.,
2000.

6. S. McConnell, Software Project Survival
Guide, Microsoft Press, Redmond, Wash.,
1997.

7. M. van Genuchten, “Why Is Software Late?
An Empirical Study of Reasons for Delay in
Software Development,” IEEE Trans. Soft-
ware Eng., vol. 17, no. 6, June 1991, pp.
582–590.

8. B. Collier, T. Demarco, and P. Fearey, “A De-
fined Process for Project Postmortem Review,”
IEEE Software, vol. 13, no. 4, July–Aug.
1996, pp. 65–72.

EDITOR IN CHIEF:
Steve McConnell

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

software@construx.com

EDITOR IN CHIEF EMERITUS:
Alan M. Davis, Omni-Vista

ASSOCIATE EDITORS IN CHIEF

Design: Maarten Boasson, Quaerendo Invenietis
boasson@quaerendo.com

Construction: Terry Bollinger, Mitre Corp.
terry@mitre.org

Requirements: Christof Ebert, Alcatel Telecom
christof.ebert@alcatel.be

Management: Ann Miller, University of Missouri, Rolla
millera@ece.umr.edu

Quality: Jeffrey Voas, Cigital
voas@cigital.com

Experience Reports: Wolfgang Strigel,
Software Productivity Center; strigel@spc.ca

EDITORIAL BOARD

Don Bagert, Texas Tech University
Richard Fairley, Oregon Graduate Institute

Martin Fowler, ThoughtWorks
Robert Glass, Computing Trends

Natalia Juristo, Universidad Politécnica de Madrid
Warren Keuffel, independent consultant
Brian Lawrence, Coyote Valley Software

Karen Mackey, Cisco Systems
Deependra Moitra, Lucent Technologies, India

Don Reifer, Reifer Consultants
Suzanne Robertson, Altantic Systems Guild

Wolfgang Strigel, Software Productivity Center
Karl Wiegers, Process Impact

INDUSTRY ADVISORY BOARD

Robert Cochran, Catalyst Software (chair)
Annie Kuntzmann-Combelles, Q-Labs

Enrique Draier, PSINet
Eric Horvitz, Microsoft Research

David Hsiao, Cisco Systems
Takaya Ishida, Mitsubishi Electric Corp.

Dehua Ju, ASTI Shanghai
Donna Kasperson, Science Applications International

Pavle Knaflic, Hermes SoftLab
Günter Koch, Austrian Research Centers

Wojtek Kozaczynski, Rational Software Corp.
Tomoo Matsubara, Matsubara Consulting

Masao Matsumoto, Univ. of Tsukuba
Dorothy McKinney, Lockheed Martin Space Systems

Nancy Mead, Software Engineering Institute
Stephen Mellor, Project Technology

Susan Mickel, AgileTV
Dave Moore, Vulcan Northwest

Melissa Murphy, Sandia National Laboratories
Kiyoh Nakamura, Fujitsu

Grant Rule, Software Measurement Services
Girish Seshagiri, Advanced Information Services

Chandra Shekaran, Microsoft
Martyn Thomas, Praxis

Rob Thomsett, The Thomsett Company
John Vu, The Boeing Company

Simon Wright, Integrated Chipware
Tsuneo Yamaura, Hitachi Software Engineering

MAGAZINE OPERATIONS COMMITTEE

Sorel Reisman (chair), James H. Aylor, Jean Bacon,
Thomas J. Bergin, Wushow Chou, William I.

Grosky, Steve McConnell, Ken Sakamura, Nigel
Shadbolt, Munindar P. Singh, Francis Sullivan,

James J. Thomas, Yervant Zorian

PUBLICATIONS BOARD

Rangachar Kasturi (chair), Angela Burgess (pub-
lisher), Jake Aggarwal, Laxmi Bhuyan, Mark Chris-

tensen, Lori Clarke, Mike T. Liu, Sorel Reisman,
Gabriella Sannitti di Baja, Sallie Sheppard, Mike

Williams, Zhiwei Xu

November/December ’01:
Extreme Programming from a
CMM Perspective

January/February ’02:
Building Systems Securely from
the Ground Up

March/April ’02:
Building Internet Software

May/June ’02:
Knowledge Management in
Software Engineering

U p c o m i n g T o p i c s

