CHAPTER 7

SOFTWARE ENGINEERING MANAGEMENT

ACRONYMS
PMBOK® | Guide to the Project Management
Guide Body of Knowledge
SDLC Software Development Life Cycle
SEM Software Engineering Management
SQA Software Quality Assurance
SWY Soﬁware Extension to the PMBOK®
Guide
WBS Work Breakdown Structure
INTRODUCTION

Software engineering management can be defined
as the application of management activities—plan-
ning, coordinating, measuring, monitoring, con-
trolling, and reporting'—to ensure that software
products and software engineering services are
delivered efficiently, effectively, and to the benefit
of stakeholders. The related discipline of manage-
ment is an important element of all the knowledge
areas (KAs), but it is of course more relevant to
this KA than to other KAs. Measurement is also an
important aspect of all KAs; the topic of measure-
ment programs is presented in this KA.

In one sense, it should be possible to manage
a software engineering project in the same way
other complex endeavors are managed. However,
there are aspects specific to software projects
and software life cycle processes that complicate
effective management, including these:

1 The terms Initiating, Planning, Executing,
Monitoring and Controlling, and Closing are used to
describe process groups in the PMBOK® Guide and
SWX.

7-1

Clients often don’t know what is needed or
what is feasible.

Clients often lack appreciation for the com-
plexities inherent in software engineering,
particularly regarding the impact of chang-
ing requirements.

It is likely that increased understanding and
changing conditions will generate new or
changed software requirements.

As a result of changing requirements, soft-
ware is often built using an iterative process
rather than as a sequence of closed tasks.
Software engineering necessarily incorpo-
rates creativity and discipline. Maintaining
an appropriate balance between the two is
sometimes difficult.

The degree of novelty and complexity is
often high.

There is often a rapid rate of change in the
underlying technology.

Software engineering management activities
occur at three levels: organizational and infra-
structure management, project management,
and management of the measurement program.
The last two are covered in detail in this KA
description. However, this is not to diminish the
importance of organizational and infrastructure
management issues. It is generally agreed that
software organizational engineering managers
should be conversant with the project manage-
ment and software measurement knowledge
described in this KA. They should also possess
some target domain knowledge. Likewise, it is
also helpful if managers of complex projects and
programs in which software is a component of
the system architecture are aware of the differ-
ences that software processes introduce into proj-
ect management and project measurement.

7-2 SWEBOK® Guide V3.0

Software
Engineering
Management
SftwaTe Software
Initiation and Software Project Software Project Review and 5 " Engineering
s B " 1 B 3 Closure - Engineering
Scope Definition Planning Enactment Evaluation Management
Measurement
Tools
S A Establish and
Determination . Determining o .
|» and Negotiation L » Process Planning L?;i;n;cntatlon |3 Satisfaction of glﬂenmm“g Sustain
of Requirements Requirements osure Measurvement
Commitment
Software L
- . e Reviewing and Plan the
e i, phema, Do bomn e
nalysis cliverablcs pp! Performance ctivitucs Process
Management
Frovessforilie Effort, Schedule, Implementation Perform the
Rev¥e.w and - and Cost » of Measurement I Measurement
Revision of Estimation Process Process
Requirements
Resource . Evaluate
. Monitor Process
Allocation > Measurement

> Risk Management

Ly Quality

—» Control Process

9 Reporting

Management

L» Plan Management

Figure 7.1. Breakdown of Topics for the Software Engineering Management KA

Other aspects of organizational management
exert an impact on software engineering (for
example, organizational policies and procedures
that provide the framework in which software
engineering projects are undertaken). These poli-
cies and procedures may need to be adjusted by
the requirements for effective software develop-
ment and maintenance. In addition, a number of
policies specific to software engineering may
need to be in place or established for effective
management of software engineering at the orga-
nizational level. For example, policies are usually
necessary to establish specific organization-wide
processes or procedures for software engineering
tasks such as software design, software construc-
tion, estimating, monitoring, and reporting. Such
policies are important for effective long-term
management of software engineering projects
across an organization (for example, establishing
a consistent basis by which to analyze past proj-
ect performance and implement improvements).

Another important aspect of organizational
management is personnel management policies
and procedures for hiring, training, and mentor-
ing personnel for career development, not only at
the project level, but also to the longer-term suc-
cess of an organization. Software engineering per-
sonnel may present unique training or personnel
management challenges (for example, maintaining
currency in a context where the underlying tech-
nology undergoes rapid and continuous change).

Communication management is also often
mentioned as an overlooked but important aspect
of the performance of individuals in a field where
precise understanding of user needs, software
requirements, and software designs is necessary.
Furthermore, portfolio management, which pro-
vides an overall view, not only of software cur-
rently under development in various projects and
programs (integrated projects), but also of soft-
ware planned and currently in use in an organiza-
tion, is desirable. Also, software reuse is a key

factor in maintaining and improving productivity
and competitiveness. Effective reuse requires a
strategic vision that reflects the advantages and
disadvantages of reuse.

In addition to understanding the aspects of
management that are uniquely influenced by soft-
ware projects, software engineers should have
some knowledge of the more general aspects of
management that are discussed in this KA (even
in the first few years after graduation).

Attributes of organizational culture and behav-
ior, plus management of other functional areas
of the enterprise, have an influence, albeit indi-
rectly, on an organization’s software engineering
processes.

Extensive information concerning software
project management can be found in the Guide
to the Project Management Body of Knowledge
(PMBOK® Guide) and the Software Extension to
the PMBOK® Guide (SWX) [1] [2]. Each of these
guides includes ten project management KAs:
project integration management, project scope
management, project time management, project
cost management, project quality management,
project human resource management, project
communications management, project risk man-
agement, project procurement management, and
project stakeholder management. Each KA has
direct relevance to this Software Engineering
Management KA.

Additional information is also provided in the
other references and further readings for this KA.

This Software Engineering Management KA
consists of the software project management pro-
cesses in the first five topics in Figure 7.1 (Initia-
tion and Scope Definition, Software Project Plan-
ning, Software Project Enactment, Review and
Evaluation, Closure), plus Software Engineering
Measurement in the sixth topic and Software
Engineering Management Tools in the seventh
topic. While project management and measure-
ment management are often regarded as being
separate, and indeed each does possess many
unique attributes, the close relationship has led to
combined treatment in this KA.

Unfortunately, acommon perception of the soft-
ware industry is that software products are deliv-
ered late, over budget, of poor quality, and with
incomplete functionality. Measurement-informed

Software Engineering Management 7-3

management—a basic principle of any true engi-
neering discipline (see Measurement in the Engi-
neering Foundations KA)—can help improve
the perception and the reality. In essence, man-
agement without measurement (qualitative and
quantitative) suggests a lack of discipline, and
measurement without management suggests a
lack of purpose or context. Effective management
requires a combination of both measurement and
experience.

The following working definitions are adopted
here:

* Management is a system of processes and
controls required to achieve the strategic
objectives set by the organization.

o Measurement refers to the assignment of val-
ues and labels to software engineering work
products, processes, and resources plus the
models that are derived from them, whether
these models are developed using statistical
or other techniques [3* , ¢7, c8].

The software engineering project management
sections in this KA make extensive use of the
software engineering measurement section.

This KA is closely related to others in the
SWEBOK Guide, and reading the following KA
descriptions in conjunction with this one will be
particularly helpful:

* The Engineering Foundations KA describes
some general concepts of measurement that
are directly applicable to the Software Engi-
neering Measurement section of this KA.
In addition, the concepts and techniques
presented in the Statistical Analysis section
of the Engineering Foundations KA apply
directly to many topics in this KA.

e The Software Requirements KA describes
some of the activities that should be per-
formed during the Initiation and Scope defi-
nition phase of the project.

e The Software Configuration Management
KA deals with identification, control, status
accounting, and auditing of software con-
figurations along with software release man-
agement and delivery and software configu-
ration management tools.

7-4 SWEBOK® Guide V3.0

e The Software Engineering Process KA
describes software life cycle models and the
relationships between processes and work
products.

* The Software Quality KA emphasizes qual-
ity as a goal of management and as an aim of
many software engineering activities.

* The Software Engineering Economics KA
discusses how to make software-related
decisions in a business context.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING
MANAGEMENT

Because most software development life cycle
models require similar activities that may be exe-
cuted in different ways, the breakdown of topics
is activity-based. That breakdown is shown in
Figure 7.1. The elements of the top-level break-
down shown in that figure are the activities that
are usually performed when a software develop-
ment project is being managed, independent of
the software development life cycle model (see
Software Life Cycle Models in the Software
Engineering Process KA) that has been chosen for
a specific project. There is no intent in this break-
down to recommend a specific life cycle model.
The breakdown implies only what happens and
does not imply when, how, or how many times
each activity occurs. The seven topics are:

* Initiation and Scope Definition, which deal
with the decision to embark on a software
engineering project;

* Software Project Planning, which addresses
the activities undertaken to prepare for a suc-
cessful software engineering project from
the management perspective;

» Software Project Enactment, which deals
with generally accepted software engineering
management activities that occur during the
execution of a software engineering project;

e Review and Evaluation, which deal with
ensuring that technical, schedule, cost, and
quality engineering activities are satisfactory;

e Closure, which addresses the activities
accomplished to complete a project;

 Software Engineering Measurement, which
deals with the effective development and

implementation of measurement programs in
software engineering organizations;

» Software Engineering Management Tools,
which describes the selection and use of tools
for managing a software engineering project.

1. Initiation and Scope Definition

The focus of these activities is on effective deter-
mination of software requirements using vari-
ous elicitation methods and the assessment of
project feasibility from a variety of standpoints.
Once project feasibility has been established, the
remaining tasks within this section are the speci-
fication of requirements and selection of the pro-
cesses for revision and review of requirements.

1.1. Determination and Negotiation of
Requirements
[3%, ¢3]

Determining and negotiating requirements set
the visible boundaries for the set of tasks being
undertaken (see the Software Requirements KA).
Activities include requirements elicitation, analy-
sis, specification, and validation. Methods and
techniques should be selected and applied, taking
into account the various stakeholder perspectives.
This leads to the determination of project scope in
order to meet objectives and satisfy constraints.

1.2. Feasibility Analysis
[4%, c4]

The purpose of feasibility analysis is to develop a
clear description of project objectives and evalu-
ate alternative approaches in order to determine
whether the proposed project is the best alterna-
tive given the constraints of technology, resources,
finances, and social/political considerations. An
initial project and product scope statement, project
deliverables, project duration constraints, and an
estimate of resources needed should be prepared.

Resources include a sufficient number of
people who have the needed skills, facilities,
infrastructure, and support (either internally or
externally). Feasibility analysis often requires
approximate estimations of effort and cost based
on appropriate methods (see section 2.3, Effort,
Schedule, and Cost Estimation).

1.3. Process for the Review and Revision of
Requirements
[3%, ¢3]

Given the inevitability of change, stakeholders
should agree on the means by which requirements
and scope are to be reviewed and revised (for
example, change management procedures, itera-
tive cycle retrospectives). This clearly implies
that scope and requirements will not be “set in
stone” but can and should be revisited at predeter-
mined points as the project unfolds (for example,
at the time when backlog priorities are created or
at milestone reviews). If changes are accepted,
then some form of traceability analysis and risk
analysis should be used to ascertain the impact
of those changes (see section 2.5, Risk Manage-
ment, and Software Configuration Control in the
Software Configuration Management KA).

A managed-change approach can also form the
basis for evaluation of success during closure of
an incremental cycle or an entire project, based
on changes that have occurred along the way (see
topic 5, Closure).

2. Software Project Planning

The first step in software project planning should
be selection of an appropriate software develop-
ment life cycle model and perhaps tailoring it
based on project scope, software requirements,
and a risk assessment. Other factors to be consid-
ered include the nature of the application domain,
functional and technical complexity, and soft-
ware quality requirements (see Software Quality
Requirements in the Software Quality KA).

In all SDLCs, risk assessment should be an
element of initial project planning, and the “risk
profile” of the project should be discussed and
accepted by all relevant stakeholders. Software
quality management processes (see Software
Quality Management Processes in the Software
Quality KA) should be determined as part of the
planning process and result in procedures and
responsibilities for software quality assurance,
verification and validation, reviews, and audits
(see the Software Quality KA). Processes and
responsibilities for ongoing review and revision
of the project plan and related plans should also
be clearly stated and agreed upon.

Software Engineering Management 7-5

2.1. Process Planning
[3% ¢3, ¢4, c5] [5% cl]

Software development life cycle (SDLC) mod-
els span a continuum from predictive to adaptive
(see Software Life Cycle Models in the Software
Engineering Process KA). Predictive SDLCs are
characterized by development of detailed soft-
ware requirements, detailed project planning, and
minimal planning for iteration among develop-
ment phases. Adaptive SDLCs are designed to
accommodate emergent software requirements
and iterative adjustment of plans. A highly pre-
dictive SDLC executes the first five processes
listed in Figure 7.1 in a linear sequence with revi-
sions to earlier phases only as necessary. Adap-
tive SDLCs are characterized by iterative devel-
opment cycles. SDLCs in the mid-range of the
SDLC continuum produce increments of func-
tionality on either a preplanned schedule (on the
predictive side of the continuum) or as the prod-
ucts of frequently updated development cycles
(on the adaptive side of the continuum).
Well-known SDLCs include the waterfall,
incremental, and spiral models plus various forms
of agile software development [2] [3%*, c2].
Relevant methods (see the Software Engineer-
ing Models and Methods KA) and tools should be
selected as part of planning. Automated tools that
will be used throughout the project should also
be planned for and acquired. Tools may include
tools for project scheduling, software require-
ments, software design, software construction,
software maintenance, software configuration
management, software engineering process, soft-
ware quality, and others. While many of these
tools should be selected based primarily on the
technical considerations discussed in other KAs,
some of them are closely related to the manage-
ment considerations discussed in this chapter.

2.2. Determine Deliverables
[3%*, c4, c5, c6]

The work product(s) of each project activity (for
example, software architecture design docu-
ments, inspection reports, tested software) should
be identified and characterized. Opportunities to
reuse software components from previous proj-
ects or to utilize off-the-shelf software products

7-6 SWEBOK® Guide V3.0

should be evaluated. Procurement of software
and use of third parties to develop deliverables
should be planned and suppliers selected (see
section 3.2, Software Acquisition and Supplier
Contract Management).

2.3. Effort, Schedule, and Cost Estimation
[3%, c6]

The estimated range of effort required for a proj-
ect, or parts of a project, can be determined using
a calibrated estimation model based on historical
size and effort data (when available) and other
relevant methods such as expert judgment and
analogy. Task dependencies can be established
and potential opportunities for completing tasks
concurrently and sequentially can be identified
and documented using a Gantt chart, for exam-
ple. For predictive SDLC projects, the expected
schedule of tasks with projected start times, dura-
tions, and end times is typically produced during
planning. For adaptive SDLC projects, an over-
all estimate of effort and schedule is typically
developed from the initial understanding of the
requirements, or, alternatively, constraints on
overall effort and schedule may be specified and
used to determine an initial estimate of the num-
ber of iterative cycles and estimates of effort and
other resources allocated to each cycle.

Resource requirements (for example, people
and tools) can be translated into cost estimates.
Initial estimation of effort, schedule, and cost is
an iterative activity that should be negotiated and
revised among affected stakeholders until con-
sensus is reached on resources and time available
for project completion.

2.4. Resource Allocation
[3%*, c5, ¢10, c11]

Equipment, facilities, and people should be allo-
cated to the identified tasks, including the allo-
cation of responsibilities for completion of vari-
ous elements of a project and the overall project.
A matrix that shows who is responsible for,
accountable for, consulted about, and informed
about each of the tasks can be used. Resource
allocation is based on, and constrained by, the
availability of resources and their optimal use, as

well as by issues relating to personnel (for exam-
ple, productivity of individuals and teams, team
dynamics, and team structures).

2.5. Risk Management
[3%, 9] [5%, c5]

Risk and uncertainty are related but distinct con-
cepts. Uncertainty results from lack of informa-
tion. Risk is characterized by the probability of an
event that will result in a negative impact plus a
characterization of the negative impact on a proj-
ect. Risk is often the result of uncertainty. The
converse of risk is opportunity, which is charac-
terized by the probability that an event having a
positive outcome might occur.

Risk management entails identification of risk
factors and analysis of the probability and poten-
tial impact of each risk factor, prioritization of
risk factors, and development of risk mitigation
strategies to reduce the probability and minimize
the negative impact if a risk factor becomes a
problem. Risk assessment methods (for example,
expert judgment, historical data, decision trees,
and process simulations) can sometimes be used
in order to identify and evaluate risk factors.

Project abandonment conditions can also be
determined at this point in discussion with all
relevant stakeholders. Software-unique aspects
of risk, such as software engineers’ tendency to
add unneeded features, or the risks related to soft-
ware’s intangible nature, can influence risk man-
agement of a software project. Particular atten-
tion should be paid to the management of risks
related to software quality requirements such as
safety or security (see the Software Quality KA).
Risk management should be done not only at the
beginning of a project, but also at periodic inter-
vals throughout the project life cycle.

2.6. Quality Management
[3%, c4] [4%, c24]

Software quality requirements should be identi-
fied, perhaps in both quantitative and qualitative
terms, for a software project and the associated
work products. Thresholds for acceptable qual-
ity measurements should be set for each software
quality requirement based on stakeholder needs

and expectations. Procedures concerned with
ongoing Software Quality Assurance (SQA) and
quality improvement throughout the development
process, and for verification and validation of
the deliverable software product, should also be
specified during quality planning (for example,
technical reviews and inspections or demonstra-
tions of completed functionality; see the Software
Quality KA).

2.7. Plan Management
[3%, c4]

For software projects, where change is an expec-
tation, plans should be managed. Managing the
project plan should thus be planned. Plans and
processes selected for software development
should be systematically monitored, reviewed,
reported, and, when appropriate, revised. Plans
associated with supporting processes (for exam-
ple, documentation, software configuration man-
agement, and problem resolution) also should be
managed. Reporting, monitoring, and controlling
a project should fit within the selected SDLC and
the realities of the project; plans should account
for the various artifacts that will be used to man-
age the project.

3. Software Project Enactment

During software project enactment (also known
as project execution) plans are implemented and
the processes embodied in the plans are enacted.
Throughout, there should be a focus on adher-
ence to the selected SDLC processes, with an
overriding expectation that adherence will lead to
the successful satisfaction of stakeholder require-
ments and achievement of the project’s objec-
tives. Fundamental to enactment are the ongoing
management activities of monitoring, control-
ling, and reporting.

3.1. Implementation of Plans
[4%, c2]

Project activities should be undertaken in accor-
dance with the project plan and supporting plans.
Resources (for example, personnel, technology,
and funding) are utilized and work products (for

Software Engineering Management 7-7

example, software design, software code, and
software test cases) are generated.

3.2. Software Acquisition and Supplier Contract
Management
[3%, ¢3, c4]

Software acquisition and supplier contract man-
agement is concerned with issues involved in
contracting with customers of the software devel-
opment organization who acquire the deliverable
work products and with suppliers who supply
products or services to the software engineering
organization.

This may involve selection of appropriate kinds
of contracts, such as fixed price, time and materi-
als, cost plus fixed fee, or cost plus incentive fee.
Agreements with customers and suppliers typi-
cally specify the scope of work and the deliver-
ables and include clauses such as penalties for late
delivery or nondelivery and intellectual property
agreements that specify what the supplier or sup-
pliers are providing and what the acquirer is pay-
ing for, plus what will be delivered to and owned
by the acquirer. For software being developed by
suppliers (both internal to or external to the soft-
ware development organization), agreements com-
monly indicate software quality requirements for
acceptance of the delivered software.

After the agreement has been put in place, exe-
cution of the project in compliance with the terms
of the agreement should be managed (see chapter
12 of SWX, Software Procurement Management,
for more information on this topic [2]).

3.3. Implementation of Measurement Process
[3%, ¢7]

The measurement process should be enacted dur-
ing the software project to ensure that relevant
and useful data are collected (see sections 6.2,
Plan the Measurement Process, and 6.3, Perform
the Measurement Process).

3.4. Monitor Process
[3%, c8]

Adherence to the project plan and related
plans should be assessed continually and at

7-8 SWEBOK® Guide V3.0

predetermined intervals. Also, outputs and com-
pletion criteria for each task should be assessed.
Deliverables should be evaluated in terms of their
required characteristics (for example, via inspec-
tions or by demonstrating working functionality).
Effort expenditure, schedule adherence, and costs
to date should be analyzed, and resource usage
examined. The project risk profile (see section
2.5, Risk Management) should be revisited, and
adherence to software quality requirements eval-
uated (see Software Quality Requirements in the
Software Quality KA).

Measurement data should be analyzed (see Sta-
tistical Analysis in the Engineering Foundations
KA). Variance analysis based on the deviation of
actual from expected outcomes and values should
be determined. This may include cost overruns,
schedule slippage, or other similar measures.
Outlier identification and analysis of quality and
other measurement data should be performed (for
example, defect analysis; see Software Quality
Measurement in the Software Quality KA). Risk
exposures should be recalculated (see section 2.5,
Risk Management). These activities can enable
problem detection and exception identification
based on thresholds that have been exceeded.
Outcomes should be reported when thresholds
have been exceeded, or as necessary.

3.5. Control Process
[3%*, ¢7, c8]

The outcomes of project monitoring activities
provide the basis on which decisions can be made.
Where appropriate, and when the probability and
impact of risk factors are understood, changes can
be made to the project. This may take the form of
corrective action (for example, retesting certain
software components); it may involve incorpo-
rating additional actions (for example, deciding
to use prototyping to assist in software require-
ments validation; see Prototyping in the Software
Requirements KA); and/or it may entail revision
of the project plan and other project documents
(for example, the software requirements specifi-
cation) to accommodate unanticipated events and
their implications.

In some instances, the control process may
lead to abandonment of the project. In all cases,

software configuration control and software con-
figuration management procedures should be
adhered to (see the Software Configuration Man-
agement KA), decisions should be documented
and communicated to all relevant parties, plans
should be revisited and revised when necessary,
and relevant data recorded (see section 6.3, Per-
form the Measurement Process).

3.6. Reporting
[3% cll]

At specified and agreed-upon times, progress to
date should be reported—both within the orga-
nization (for example, to a project steering com-
mittee) and to external stakeholders (for exam-
ple, clients or users). Reports should focus on
the information needs of the target audience as
opposed to the detailed status reporting within the
project team.

4. Review and Evaluation

At prespecified times and as needed, overall prog-
ress towards achievement of the stated objectives
and satisfaction of stakeholder (user and customer)
requirements should be evaluated. Similarly,
assessments of the effectiveness of the software
process, the personnel involved, and the tools and
methods employed should also be undertaken reg-
ularly and as determined by circumstances.

4.1. Determining Satisfaction of Requirements
[4%, c8]

Because achieving stakeholder satisfaction is
a principal goal of the software engineering
manager, progress towards this goal should
be assessed periodically. Progress should be
assessed on achievement of major project mile-
stones (for example, completion of software
design architecture or completion of a soft-
ware technical review), or upon completion of
an iterative development cycle that results in
a product increment. Variances from software
requirements should be identified and appropri-
ate actions should be taken.

As in the control process activity above (see sec-
tion 3.5, Control Process), software configuration

control and software configuration management
procedures should be followed (see the Software
Configuration Management KA), decisions docu-
mented and communicated to all relevant parties,
plans revisited and revised where necessary, and
relevant data recorded (see section 6.3, Perform
the Measurement Process).

4.2. Reviewing and Evaluating Performance
[3%, 8, c10]

Periodic performance reviews for project per-
sonnel can provide insights as to the likelihood
of adherence to plans and processes as well as
possible areas of difficulty (for example, team
member conflicts). The various methods, tools,
and techniques employed should be evaluated for
their effectiveness and appropriateness, and the
process being used by the project should also be
systematically and periodically assessed for rel-
evance, utility, and efficacy in the project context.
Where appropriate, changes should be made and
managed.

5. Closure

An entire project, a major phase of a project,
or an iterative development cycle reaches clo-
sure when all the plans and processes have been
enacted and completed. The criteria for project,
phase, or iteration success should be evaluated.
Once closure is established, archival, retrospec-
tive, and process improvement activities can be
performed.

5.1. Determining Closure
[1, s3.7, s4.6]

Closure occurs when the specified tasks for a
project, a phase, or an iteration have been com-
pleted and satisfactory achievement of the com-
pletion criteria has been confirmed. Software
requirements can be confirmed as satisfied or not,
and the degree of achieving the objectives can
be determined. Closure processes should involve
relevant stakeholders and result in documentation
of relevant stakeholders’ acceptance; any known
problems should be documented.

Software Engineering Management 7-9

5.2. Closure Activities
[2, s3.7, s4.8]

After closure has been confirmed, archiving of
project materials should be accomplished in
accordance with stakeholder agreed-upon meth-
ods, location, and duration—possibly including
destruction of sensitive information, software,
and the medium on which copies are resident.
The organization’s measurement database should
be updated with relevant project data. A project,
phase, or iteration retrospective analysis should
be undertaken so that issues, problems, risks,
and opportunities encountered can be analyzed
(see topic 4, Review and Evaluation). Lessons
learned should be drawn from the project and fed
into organizational learning and improvement
endeavors.

6. Software Engineering Measurement

The importance of measurement and its role in
better management and engineering practices is
widely acknowledged (see Measurement in the
Engineering Foundations KA). Effective mea-
surement has become one of the cornerstones
of organizational maturity. Measurement can be
applied to organizations, projects, processes, and
work products. In this section the focus is on the
application of measurement at the levels of proj-
ects, processes, and work products.

This section follows the IEEE 15939:2008
standard [6], which describes a process to define
the activities and tasks necessary to implement a
software measurement process. The standard also
includes a measurement information model.

6.1. Establish and Sustain Measurement
Commitment
[7*, cl, 2]

* Requirements for measurement. Each mea-
surement endeavor should be guided by
organizational objectives and driven by a set
of measurement requirements established by

2 Please note that these two chapters can be
downloaded free of charge from www.psmsc.com/

PSMBook.asp.

7-10 SWEBOK® Guide V3.0

the organization and the project (for exam-
ple, an organizational objective might be
“first-to-market with new products™).

Scope of measurement. The organizational
unit to which each measurement requirement
is to be applied should be established. This
may consist of a functional area, a single
project, a single site, or an entire enterprise.
The temporal scope of the measurement
effort should also be considered because
time series of some measurements may be
required; for example, to calibrate estima-
tion models (see section 2.3, Effort, Sched-
ule, and Cost Estimation).

e Team commitment to measurement. The

commitment should be formally established,
communicated, and supported by resources
(see next item).

* Resources for measurement. An organiza-
tion’s commitment to measurement is an
essential factor for success, as evidenced by
the assignment of resources for implement-
ing the measurement process. Assigning
resources includes allocation of responsibil-
ity for the various tasks of the measurement
process (such as analyst and librarian). Ade-
quate funding, training, tools, and support to
conduct the process should also be allocated.

6.2. Plan the Measurement Process

[7* cl, c2]

* Characterize the organizational unit. The
organizational unit provides the context for
measurement, so the organizational context
should be made explicit, including the con-
straints that the organization imposes on
the measurement process. The characteriza-
tion can be stated in terms of organizational
processes, application domains, technology,
organizational interfaces, and organizational
structure.

o Identify information needs. Information
needs are based on the goals, constraints,
risks, and problems of the organizational
unit. They may be derived from business,
organizational, regulatory, and/or product
objectives. They should be identified and

prioritized. Then a subset of objectives to be
addressed can be selected, documented, com-
municated, and reviewed by stakeholders.
Select measures. Candidate measures should
be selected, with clear links to the informa-
tion needs. Measures should be selected
based on the priorities of the information
needs and other criteria such as cost of col-
lection, degree of process disruption during
collection, ease of obtaining accurate, con-
sistent data, and ease of analysis and report-
ing. Because internal quality characteristics
(see Models and Quality Characteristics in
the Software Quality KA) are often not con-
tained in the contractually binding software
requirements, it is important to consider mea-
suring the internal quality of the software to
provide an early indicator of potential issues
that may impact external stakeholders.

* Define data collection, analysis, and report-

ing procedures. This encompasses collection
procedures and schedules, storage, verifica-
tion, analysis, reporting, and configuration
management of data.

Select criteria for evaluating the information
products. Criteria for evaluation are influ-
enced by the technical and business objec-
tives of the organizational unit. Information
products include those associated with the
product being produced, as well as those
associated with the processes being used to
manage and measure the project.

» Provide resources for measurement tasks. The

measurement plan should be reviewed and
approved by the appropriate stakeholders to
include all data collection procedures; storage,
analysis, and reporting procedures; evaluation
criteria; schedules; and responsibilities. Crite-
ria for reviewing these artifacts should have
been established at the organizational-unit
level or higher and should be used as the basis
for these reviews. Such criteria should take
into consideration previous experience, avail-
ability of resources, and potential disruptions
to projects when changes from current prac-
tices are proposed. Approval demonstrates
commitment to the measurement process.

¢ Identify resources to be made available for

implementing the planned and approved

measurement tasks. Resource availability
may be staged in cases where changes are
to be piloted before widespread deployment.
Consideration should be paid to the resources
necessary for successful deployment of new
procedures or measures.

* Acquire and deploy supporting technologies.
This includes evaluation of available supporting
technologies, selection of the most appropriate
technologies, acquisition of those technologies,
and deployment of those technologies.

6.3. Perform the Measurement Process

[7%, cl, c2]

* Integrate measurement procedures with rel-
evant software processes. The measurement
procedures, such as data collection, should
be integrated into the software processes
they are measuring. This may involve chang-
ing current software processes to accommo-
date data collection or generation activities.
It may also involve analysis of current soft-
ware processes to minimize additional effort
and evaluation of the effect on employees to
ensure that the measurement procedures will
be accepted. Morale issues and other human
factors should be considered. In addition, the
measurement procedures should be commu-
nicated to those providing the data. Training
and support may also need to be provided.
Data analysis and reporting procedures are
typically integrated into organizational and/
or project processes in a similar manner.

* Collect data. Data should be collected, veri-
fied, and stored. Collection can sometimes
be automated by using software engineer-
ing management tools (see topic 7, Soft-
ware Engineering Management Tools) to
analyze data and develop reports. Data may
be aggregated, transformed, or recoded as
part of the analysis process, using a degree
of rigor appropriate to the nature of the data
and the information needs. The results of
this analysis are typically indicators such as
graphs, numbers, or other indications that
will be interpreted, resulting in conclusions
and recommendations to be presented to
stakeholders (see Statistical Analysis in the

Software Engineering Management 7-11

Engineering Foundations KA). The results
and conclusions are usually reviewed, using
a process defined by the organization (which
may be formal or informal). Data providers
and measurement users should participate
in reviewing the data to ensure that they are
meaningful and accurate and that they can
result in reasonable actions.

e Communicate results. Information products
should be documented and communicated to
users and stakeholders.

6.4. Evaluate Measurement
[7*, 1, c2]

e Evaluate information products and the mea-
surement process against specified evalu-
ation criteria and determine strengths and
weaknesses of the information products or
process, respectively. Evaluation may be
performed by an internal process or an exter-
nal audit; it should include feedback from
measurement users. Lessons learned should
be recorded in an appropriate database.

* Identify potential improvements. Such
improvements may be changes in the format
of indicators, changes in units measured, or
reclassification of measurement categories.
The costs and benefits of potential improve-
ments should be determined and appropriate
improvement actions should be reported.

e Communicate proposed improvements to the
measurement process owner and stakehold-
ers for review and approval. Also, lack of
potential improvements should be commu-
nicated if the analysis fails to identify any
improvements.

7. Software Engineering Management Tools
[3%, ¢5, c6, 7]

Software engineering management tools are often
used to provide visibility and control of software
engineering management processes. Some tools
are automated while others are manually imple-
mented. There has been a recent trend towards
the use of integrated suites of software engineer-
ing tools that are used throughout a project to
plan, collect and record, monitor and control, and

7-12 SWEBOK® Guide V3.0

report project and product information. Tools can
be divided into the following categories:

Project Planning and Tracking Tools. Project
planning and tracking tools can be used to esti-
mate project effort and cost and to prepare project
schedules. Some projects use automated estima-
tion tools that accept as input the estimated size
and other characteristics of a software product
and produce estimates of the required total effort,
schedule, and cost. Planning tools also include
automated scheduling tools that analyze the tasks
within a work breakdown structure, their esti-
mated durations, their precedence relationships,
and the resources assigned to each task to pro-
duce a schedule in the form of a Gantt chart.

Tracking tools can be used to track project
milestones, regularly scheduled project status
meetings, scheduled iteration cycles, product
demonstrations, and/or action items.

Risk Management Tools. Risk management
tools (see section 2.5, Risk Management) can
be used to track risk identification, estimation,
and monitoring. These tools include the use of
approaches such as simulation or decision trees
to analyze the effect of costs versus payoffs

and subjective estimates of the probabilities of
risk events. Monte Carlo simulation tools can
be used to produce probability distributions of
effort, schedule, and risk by combining multiple
input probability distributions in an algorithmic
manner.

Communications Tools. Communication tools
can assist in providing timely and consistent
information to relevant stakeholders involved in a
project. These tools can include things like email
notifications and broadcasts to team members
and stakeholders. They also include communica-
tion of minutes from regularly scheduled project
meetings, daily stand-up meetings, plus charts
showing progress, backlogs, and maintenance
request resolutions.

Measurement Tools. Measurement tools sup-
port activities related to the software measure-
ment program (see topic 6, Software Engineer-
ing Measurement). There are few completely
automated tools in this category. Measurement
tools used to gather, analyze, and report project
measurement data may be based on spreadsheets
developed by project team members or organiza-
tional employees.

Software Engineering Management 7-13

MATRIX OF TOPICS VS. REFERENCE MATERIAL

2
= S 2
2 & =
= 2 = <
To 2% S S e
= L = B
w g = e
= £ = &)
@ < S
g =
=)
1. Initiation and Scope
Definition
1.1. Determination and 3
Negotiation of Requirements
1.2. Feasibility Analysis c4
1.3. Process for the Review and 3
Revision of Requirements
2. Software Project Planning
2.1. Process Planning c2,¢3,c4,c5 cl
2.2. Determine Deliverables c4d, c5, c6
2.3. Effort, Schedule, and Cost
.. c6
Estimation
2.4. Resource Allocation c5, ¢l0, cll
2.5. Risk Management c9 c5
2.6. Quality Management c4 c24
2.7. Plan Management c4
3. Software Project Enactment
3.1. Implementation of Plans c2
3.2. Software Acquisition and 3. cd
Supplier Contract Management ’
3.3. Implementation of o
Measurement Process
3.4. Monitor Process c8
3.5. Control Process c7,c8
3.6. Reporting cll
4. Review and Evaluation
4.1. Determining Satisfaction of
Requirements
4.2. Reviewing and Evaluating
Performance c8, cl0

7-14 SWEBOK® Guide V3.0

Management Tools

2
= S =
1 &
2 S 2 =
> < = =
N =5 e - i-a
o 2 T =0 - =
T—n 9 = 1
a £ = 5
- E £ &
R < S
g =
=)
5. Closure
5.1. Determining Closure
5.2. Closure Activities
6. Software Engineering
Measurement
6.1. Establish and Sustain ol &
Measurement Commitment ’
6.2. Plan the Measurement
cl, c2
Process
6.3. Perform the Measurement
cl, c2
Process
6.4. Evaluate Measurement cl, c2
7. Software Engineerin
" &l mng c5, ¢6, c7

FURTHER READINGS

A Guide to the Project Management Body of
Knowledge (PMBOK® Guide) [1].

The PMBOK® Guide provides guidelines for
managing individual projects and defines project
management-related concepts. It also describes
the project management life cycle and its related
processes, as well as the project life cycle. It is
a globally recognized guide for the project man-
agement profession.

Software Extension to the Guide to the
Project Management Body of Knowledge
(PMBOK® Guide) [2].

SWX provides adaptations and extensions to
the generic practices of project management
documented in the PMBOK® Guide for manag-
ing software projects. The primary contribution
of this extension to the PMBOK® Guide is a
description of processes that are applicable for
managing adaptive life cycle software projects.

IEEE Standard Adoption of ISO/IEC 15939 [6].

This international standard identifies a process
that supports defining a suitable set of measures
to address specific information needs. It identi-
fies the activities and tasks that are necessary to
successfully identify, define, select, apply, and
improve measurement within an overall project
or organizational measurement structure.

J. McDonald, Managing the Development of
Software Intensive Systems, Wiley, 2010 [8].

This textbook provides an introduction to project
management for beginning software and hard-
ware developers plus unique advanced material
for experienced project managers. Case studies
are included for planning and managing verifica-
tion and validation for large software projects,
complex software, and hardware systems, as well
as inspection results and testing metrics to moni-
tor project status.

Software Engineering Management 7-15

REFERENCES

[1] Project Management Institute, 4 Guide to the
Project Management Body of Knowledge
(PMBOK(R) Guide), 5th ed., Project
Management Institute, 2013.

[2] Project Management Institute and [EEE
Computer Society, Software Extension to
the PMBOK® Guide Fifth Edition, Project
Management Institute, 2013.

[3*] R.E. Fairley, Managing and Leading
Software Projects, Wiley-IEEE Computer
Society Press, 2009.

[4*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[5*] B. Boehm and R. Turner, Balancing Agility
and Discipline: A Guide for the Perplexed,
Addison-Wesley, 2003.

[6] IEEE Std. 15939-2008 Standard Adoption of
ISO/IEC 15939:2007 Systems and Software
Engineering—Measurement Process,
IEEE, 2008.

[7*] J. McGarry et al., Practical Software
Measurement: Objective Information
for Decision Makers, Addison-Wesley
Professional, 2001.

[8] J. McDonald, Managing the Development of
Software Intensive Systems, John Wiley and
Sons, Inc., 2010.

