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a b s t r a c t

Through the application of flexible Time-of-Use (ToU) tariffs, demand side management (DSM) can be
facilitated in order to alleviate grid congestion problems and potential network reinforcement. In this
work, a novel approach to derive ToU tariffs for residential prosumers is described and the potential
impact is verified in a pilot network within the distribution grid of Cyprus comprised of three hundred
prosumers. This pilot network acts as a test-bed for defining the baseline scenario and subsequently
verifying the developed ToU tariffs. The ToU block periods were determined by combining statistical
analysis and a hybrid optimization function that utilizes annealing driven pattern search algorithms. The
ToU rates were calculated by exploiting an optimization function that maintained a neutral electricity bill
in the case where the load profile remained unchanged. The impact of the derived ToU tariffs was first
analysed through a sensitivity analysis performed on the seasonal load profiles of the participants. The
obtained sensitivity analysis results showed that for the summer and winter season, the maximum Load
Factor (LF) was 42.83% and 33.33% respectively and occurred when load was shifted mainly to the off-
peak period. Finally, with the ToU tariffs applied to the pilot network of prosumers, the effectiveness
and potential response of the prosumers to the imposed tariffs, was verified. The results indicated that
the LF was increased while the percentage of total consumption measured during peak hours was
reduced by 3.19%, 1.03% and 1.40% for the summer, middle and winter season respectively. This led to the
conclusion that the derived ToU tariffs are effective in persuading the prosumers to change their energy
behaviour.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The conventional approach to accommodate the increasing
consumption and generation is currently achieved through
network reinforcement, which is expensive and time consuming
[1]. An alternative and appealing approach to mitigate this effect
and at the same time bring benefit to end-customers is to employ
demand side management (DSM) aiming to control the demand
and allow higher penetration of Renewable Energy Sources (RES)
[2e6].

DSM is viewed as an important component of future smart grids
and price-based DSM is a very popular smart pricing scheme
already applied to a large number of residential consumers in
Venizelou).
various countries. In particular, price-based DSM schemes provide
an alternative to the traditional flat tariffs, offering new schemes
such as Critical Peak Pricing (CPP), Real-Time Pricing (RTP) and
Time-of-Use (ToU) tariffs [7,8]. Amongst the different price-based
schemes, the most common is the ToU tariff. ToU pricing is a tar-
iff structure that typically applies to electricity usage over a period
of hours where the price for each period is predetermined and
constant. Time is divided into peak, shoulder and off-peak periods
which reflect the level of demand on the electricity network. Dur-
ing peak periods electricity prices will be more expensive than at
other times. This is absolutely key for the power utilities since it
will allow them to decrease demand during typical peak demand
times and encourage usage when demand is typically very low. By
decreasing peak demand, peak supplied energy can also be lowere
and hence, aggregated savings can be passed on to consumers. ToU
tariffs are commonly preferred by grid operators because the price
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of energy consumption is fixed for different periods of the day in
contrast to other price-based DSM programs, where the price
fluctuates following the real-time cost of electricity [7,8]. In addi-
tion, consumers and utilities have the advantage of risk-averse
attitude to price uncertainties mainly due to fuel price adjust-
ments. A necessary step in the successful and effective imple-
mentation of such schemes is the upgrade of appliances with
automated smart controllers to defer their operation during high
prices [9,10].

Currently, the majority of residential consumers are under a flat
tariff scheme. This does not provide consumers with incentives to
modify their pattern of consumption in periods when the cost of
producing electricity rises [11]. Generally, the variability of the total
residential consumption levels depends on the lifestyle, conve-
nience, and preferences of each residential consumer, and it is
difficult to significantly change unless appropriate incentives are
provided [12]. A flexible energy pricing mechanism is capable of
providing economic incentives and generating such a decrease in
the variability of consumption levels among hourly segments
during the day, which in turn reduces uncertainty of electricity
costs [13]. Time-varying prices could offer consumers better eco-
nomic benefits even if they choose not to change their consumption
habits, however, it gives the possibility of additional economic
savings by adopting demand flexibility programs that, in the long
run, offer additional benefits for load balancing and better grid
performance with high penetration of non-dispatchable renewable
energy sources [14]. In this way, the design of a suitable system of
flexible ToU tariffs can help to operate future distribution and smart
grids [15].

Themain challenges in the development of ToU tariffs include (i)
the quantification of tariff rates (price within each block period)
and (ii) the determination of tariff shape (duration of each block
period) [1]. Even though the duration of each ToU block period can
commonly follow the variation of wholesale prices, it is not feasible
to derive the ToU rates only fromwholesale prices because network
investment and operation costs also need to be included and this
information is not always readily available. In this sense, the design
of ToU tariffs is different to the existing flat rate tariffs, which are
commonly designed by considering all kinds of operation and in-
vestment costs. Additionally, since ToU tariffs facilitate DSM,
further requirements relevant to the optimization of the electricity
provider's objective and constraints, customer response and
acceptance and the regulatory restrictions must be considered. As a
result, the optimal design of ToU tariffs is a field of growing
significance.

Several studies investigated peak pricing with the consideration
of demand uncertainty [16e21], while others extensively investi-
gated peak pricing under supply uncertainty [22e24]. ToU tariffs
were firstly introduced during the 80's and were primarily derived
based on the experience utilities gained on load consumptions [8].
Recently, newmethods and algorithms have been explored in order
to determine the ToU structure in both price and duration. More
specifically, the peak and valley characterization of the load curve is
one of the most important variables to be used as the starting point
for a ToU tariff development [9]. Such a simplistic process to
develop ToU tariffs based on load time series analysis can be useful
only for the deployment of a fundamental two window pattern ToU
tariff. This is not the most favourable option since the two-window
ToU tariff can easily shift the peak period by a couple of hours after
or before the existing peak rather than smoothing the load profile
[10].

A more sophisticated approach is to analyze the spectrum of
load profiles and extract the peak and valleys of the load curve [25].
Spectrum analysis divides the time series into the superposition of
periodic components with different amplitude, phase and
frequency [25]. With this approach the load curve can be converted
from the time to the frequency domain in the scope of highlighting
the effects of all the periodic components contained in the load
sequence and allowing the evaluation of the potential effects of a
possible ToU tariff on load profiles.

A previous study proposed a mixed-integer program for
optimal design of customized ToU tariffs with the most impor-
tant requirements being the number of rate zones, the start and
end times of the ToU zones and the price level of the zones [26].
A specific jump structure to identify the number of rate zones
and the duration of each zone was used in order to develop an
optimization tool, based on an industry-grade optimization suite
(IBM ILOG OPL Studio with the CPLEX solver), which facilitates
integration into a data management system allowing to embed
the optimized decisions into near-real-time decision-making
[26].

Furthermore, in 2007 the Irish Government announced a pilot
smart metering program for domestic and small commercial cus-
tomers. The main scope of this programwas to motivate customers
to utilize DSM through the development of a ToU tariff. It is worth
mentioning that for the participants the electricity during daytime
was more expensive compared to the electricity during the night.
This in turn, led to lower CO2 emissions as the base load generators
emit fewer pollutant gases. The methodology followed for the
development of the ToU tariff comprised of four main principles
[27]. Firstly, the new ToU tariff for an average consumer should
have cost neutrality. Secondly, all the time blocks should reflect the
real cost of electricity and thirdly the tariff structure should be
based on the system peak demand. Finally, the ToU tariff should
include all the energy costs related with the system operation. The
structure of the ToU tariff was based mainly on analysis of existing
demand patterns. The analysis showed that the ToU tariff during
the winter period was a synthesis of three time blocks with 2 h of
peak, shoulder period after and before the peak period and an off
peak/night period. In the weekends and in the summer period the
ToU structure consisted of only two time blocks, shoulder and off
peak/night blocks. Each time block was cost defined using a de-
mand weighted average price. From the calculations made using
the demand weighted prices it was demonstrated that the annual
cost of electricity for an average customer resulted in higher elec-
tricity bill violating the primary set constraint of neutral cost.
Therefore, the ToU tariffs were adjusted in order to attain cost
neutrality.

Finally, Qiao and Li [28] approached the development of ToU
tariffs by applying statistical approaches to the daily load curve.
Specifically, the Continuous Load Curve (CLC) was statistically
analysed in order to determine the peaks and valleys as well as the
duration of each block period. Daily load data over a period of a year
were acquired in order to statically derive the CLC which was
divided into three segments according to the slope change, which
express the peak, valley and flat periods. Subsequently, frequency
statistics were applied to determine the frequency of each load
point in each load segment in order to calculate the probability
index to fit the distribution curve. The probability distribution
curve was derived and the time distribution within a confidence
interval of a percentile was calculated in order to obtain the peak,
valley and flat periods. This approach showed that it can handle the
time division better and yield optimal results with respect to the
period partition, which is one of the most important specifications
for designing ToU tariffs.

Even though ToU tariff schemes offer the advantage of price
certainty, the effectiveness of such tariff schemes must be verified
prior to implementation because of the eminent high risk of a new
peak appearing through load shifts at cheaper price periods, posing
negative effects on the optimal operation of system [25e28]. For



Fig. 1. Flowchart of the methodology followed for benchmarking the developed ToU
tariffs.
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several years prosumers in Cyprus used to be under feed-in tariff
contracts but due to the rapid decrease of the cost of PV systems,
the Energy Ministry and the Regulator decided to introduce the
new, at the time, net-metering scheme for residential consumers.
The net-metering scheme that is currently operational in Cyprus is
unique in that prosumers are called upon to cover the system costs
for the services that they offer through a yearly capacity payment
per kWp installed (3 kWpp for residential consumers). Through a
price-based DSM scheme, the local DSO and Regulator aimed to
improve the net-metering scheme by creating new energy policies
that can benefit both the power utility and prosumers who will
inevitably grow in the near future and will become significant
contributors to the energy mix.

In this work, the methodology followed to derive the ToU
tariffs is presented in the scope of incentivizing residential pro-
sumers, to adapt their consumption and reduce electricity costs
through DSM. The ToU tariffs were determined based on both
statistical analysis and optimization algorithms applied to the
residential prosumer profiles. These price-based DSM schemes
will have a significant impact both on the demand and on the grid
as prosumers will benefit from a lower electricity bill and at the
same time peak demands are mitigated, since the ToU tariffs aim
to motivate prosumers to shift loads from peak to valley low-price
periods. The effects of the developed ToU tariffs were first ana-
lysed through the results obtained from a sensitivity analysis
performed to emulate the potential response of three hundred
prosumers, present within the pilot network, who have been
offered the ToU tariffs. The emulated results were subsequently
verified through the load demand data acquired from the pilot
network developed in Cyprus for this purpose, which acts as a
test-bed for the assessment of the implemented ToU tariffs. The
comparability of the ToU and non-ToU (i.e. flat tariffs) samples is
ensured by taking into account only data from the same season
(summer period 2015 e prosumers were charged with flat tariffs
and summer period 2016 e prosumers were charged with ToU
tariffs). In this way the impact of smart metering implementation
on consumer billing options, consumption sensitivities, consumer
energy-related behaviours and cost-benefit implications for
network owners and operators (financial impact) can be observed
on a real world platform.

The rest of the paper is structured as follows: Section 2 covers
the approach followed for the development of the ToU block pe-
riods and their respective rates as well as the methodology used for
investigating the potential impact of the developed tariffs through
a sensitivity analysis. Additionally, the methodology for estimating
the peak kWh reductions due to various ToU price ratios is also
presented in this section. The results of this analysis and the
outcome of applying the developed tariffs on a real pilot network
are presented in Section 3. Important concluding remarks appear in
Section 4 of the paper.

2. Methodology

The methodology followed for establishing the ToU tariffs
(block periods and the corresponding rates) is presented in this
section. The developed ToU tariffs aim to enable a price-based
DSM scheme that can reduce the system cost and improve sys-
tem efficiency. For this purpose, energy consumption and pro-
duction profiles of three hundred consumers-producers
(prosumers) all around Cyprus were examined. Data collection is
essential in order to appropriately design a ToU tariff scheme that
is capable of providing incentives to participating prosumers and
as a result improving the system efficiency. The flowchart in Fig. 1
depicts the methodology followed for developing and bench-
marking ToU tariffs.
2.1. Populate the base case sample of consumers

In support of this work, three hundred prosumers in Cyprus
have been selected, in order to collect consumption and production
datasets from a real-pilot network that emulates a representative
sample of the Cypriot residential prosumers connected to the grid
with a flat tariff scheme. All participating prosumers were
geographically spread throughout Cyprus, in order to cover
different socio-geographical situations, with 2/3 of prosumers
residing in urban areas and 1/3 in rural areas. All participants
completed a questionnaire regarding their energy patterns and all
the energy-intensive appliances as well as the flexible (deferrable)
loads located at their premises. Smart meters (SMs) were installed
to acquire consumption and production profile datasets for each
prosumer. The analysis of usage patterns of each prosumer is
crucial for understanding the variations in peak usage profiles and
deciding a DSM policy that will be acceptable and beneficial [29].
The smart meters operate as communication systems transmitting
30 min average consumption data to a central database platform.
This provided the opportunity to the prosumers and the utility to
monitor their energy consumption for at least one year prior to the
implementation period commenced when the ToU tariffs were
applied.

Effective and targeted training is of paramount importance in an
attempt to maximize the benefits from the application of DSM [30].
Hence, all the participants were educated and informed by trained
staff in order to effectively utilize the ToU tariffs based on their
needs and habits.

Apart from the prosumers the pilot network includes seventeen
weather stations over the geographical spread of the island, urban
and rural areas along with mountainous, inner-country and seaside
locations. The aim is to collect real consumption, generation and
meteorological data to enable the improvement of different policies
(net metering, self-consumption, etc.) through the verification and
optimization of models developed towards smart grid networks.
2.2. Initial and baseline scenario

Peak demand management does not necessarily decrease the
total energy consumption, but could be expected to reduce the
need for investments in networks for meeting peak demands.
Hence, the developed ToU tariffs applied in the residential sector
should be able, if adopted by consumers, to reduce the peak
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demands of the total aggregate (residential, commercial, industrial
and public lighting) consumption. Collecting consumption data is a
vital aspect of developing ToU tariffs that can achieve the desired
peak demand reduction. The progress of collecting consumption
datasets began in 2015 and that year will be referred to as the
reference year. The annual total aggregated consumption of Cyprus
for the reference year was provided by the Transmission System
Operator (TSO) of Cyprus. This represents the initial scenario and
any DSM schemes affecting the total aggregate consumptionwill be
reflected on the electricity power network. Furthermore, for the
reference year, annual consumption datasets were collected from
the installed smart meters in order to validate that the developed
ToU tariffs can benefit the power utility. This is considered as the
baseline scenario and will be compared to the initial scenario to
ensure that the average consumption of the selected sample is
representative of the total aggregate consumption. Also, the base-
line scenario can be a good anchoring point for future evaluations
and can be used to determine the critical success factors for
benchmarking. The seasonal comparisons between the normalized
initial and baseline scenario are illustrated in Fig. 2.

The comparison between the two scenarios shows a strong
correlation equal to 96.7%, 97.8% and 96.1% for the summer, middle
and winter season respectively. The correlation coefficients signi-
fied that the prosumers' consumption profiles (baseline scenario)
show similar behaviour with the total aggregate consumption
(initial scenario). Therefore, the prosumers' profiles used for
deriving the ToU tariffs can be considered as representative of the
total aggregate consumption profile and any improvement made,
due to the application of ToU tariffs, will positively affect the power
utility.

To summarize, the following definitions will be used throughout
the rest of the paper:

� Reference year: Is the year 2015, where the participants were
under the flat tariff, had no knowledge of ToU tariffs and their
energy behaviour was monitored.

� Implementation year: Is the year 2016, where participants were
under the developed ToU tariffs.

� Initial Scenario: Seasonal total aggregate consumption profile
for the whole of Cyprus for the reference year.

� Baseline Scenario: Seasonal consumption profile of the partici-
pants for the reference year as recorded through the SMs.
(c)

Fig. 2. Comparison between the normalized initial and the baseline scenario for: (a)
summer, (b) middle and (c) winter season.
2.3. Establishment of the ToU block periods

The first step in the development of the ToU block periods was
to identify the seasonal electricity demand by utilizing the par-
ticipants' load profiles that were recorded during the reference
year. The annual load profile was categorized into three seasons
(winter, middle and summer) and the process of finding the in-
flection points (i.e. the points on a curve at which the curve
changes from being concave downward to convex upward, or vice
versa) was then applied to the load duration curve (LDC) of each
seasonal residential load profile. Fig. 3 demonstrates the LDC of
the collected data for the winter season of the reference year
which was further used to characterize the overall response and
behaviour of the LDC.

The inflection points indicate points on a curve at which the sign
of the curvature changes, therefore indicating a behavioural change
in load consumption in this case. Four clear inflection points are
observed in Fig. 3, demonstrating that during the winter season the
load profile can be divided into five load segments (split by the
vertical lines: the peak, shoulder and valley block periods). For each
segment (derived from the inflection points) the value of the
cumulative frequency of the hourly load was extracted as an hourly
load frequency histogram with boundary values representing the
ToU block periods.

The above statistical analysis is capable of deriving the ToU block
periods based on the analysis of the maximum and minimum
consumption load segments and identification of the duration of
the block periods from the constructed hourly load frequency his-
togram of each segment. The deviation between the evaluated ToU
block periods and the seasonal residential prosumer load profile,
was assessed by utilizing the mean absolute percentage error
(MAPE) and root mean square error (RMSE) metrics, which resulted
in an annual average MAPE and RMSE of 8.65% and 19.95%,
respectively. The errors are quite high hinting that the derived ToU



Fig. 3. Load Duration Curve (LDC) of the annual typical residential power demand for
the winter season of the reference year.
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block periods are insufficient to accurately describe the energy
behaviour of the investigated sample.
Fig. 4. Seasonal aggregated residential power demand and derived ToU block periods
based on the statistical and optimization method.
2.4. Optimization of the ToU block periods

In order to optimize the statistically derived ToU block periods,
the blocks obtained by utilizing the seasonal LDC were used as the
initial conditions of an optimization algorithm. The objective
function of the optimization algorithm aims to minimize the RMSE
between the power demand of the derived block periods and the
selected load profile, which is given as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k¼1

ðPToUbk � PkÞ2
vuut (1)

where, PToUbk is the power demand of the derived block period, Pk is
the load profile and n is the total sampling interval. Based on this
equation, PToUbk is the variable to be optimized and changes ac-
cording to the desired levels. In particular, the first iteration of the
optimization procedure uses the output ToU block period (PToUbk) of
the statistical model as the initial condition. Then, a hybrid function
to calculate the optimized ToU block periods was developed. The
hybrid function is an optimization function that combines Simu-
lated Annealing (SA) [31] and Pattern Search (PS) [32] algorithms to
improve the value of the RMSE.

SA is a metaheuristic algorithm that exploits locally optimal
solutions. However, unlike a greedy approach, it also explores
inferior solutions probabilistically. Such a move helps to avoid
getting trapped in the local optimum [33]. This approach can
approximately find the optimum solution but it may also miss out
and get stuck in local minima. As a result, the developed hybrid
function utilizes the PS algorithm as a second optimization pro-
cedure. PS is a numerical optimization algorithm for derivative
free optimization or non-continuous functions. Hence PS can be
used for problems that do not require the gradient of the problem/
function. Such optimization solvers belong to the group of direct
search methods in which the algorithm searches a set of points
around the current point looking for the one which the objective
function has a lower value than the value at the current point.
More specifically, a pattern is a set of vectors vi that the PS algo-
rithm uses to determine which points to search at each iteration.
Therefore, PS finds a sequence of points, x0, x1, x2, …, that approach
an optimal solution. The value of the function at each iteration
either decreases or remains the same from each point in the
sequence to the next. For the case of using the generating set
search (GSS) algorithm with positive basis 2N pattern, 2N vectors
will be created, where N is the number of independent variables
for the objective function. For example, if the optimization prob-
lem has two independent variables, the pattern will consist of the
following four vectors {vi} [32]:

fvig ¼ f½1 0 �; ½0 1 �; ½ �1 0 �; ½0 �1 �g (2)

At each step, the algorithm searches a set of points, called a
mesh, for a point that improves the objective function. PS forms the
mesh by generating a set of vectors {di} from multiplying each
pattern vector vi by a scalar Dm which is the mesh size and in this
case is defined as the time difference (1 h). Then the set of vectors
{di} is added to the current point (the initial point or the point
which derived the best objective function at the previous step) and
the point of this mesh that improves the objective function is
selected. If the algorithm successfully obtained a better point, the
mesh sizeDm remains unchanged (multiplying by 1). This is so as to
keep an hour difference from the previous point (problem partic-
ularities). If the algorithm fails to improve the objective function,
the mesh size reduces to half. The optimization procedure stops to
operate if one of the following exists: (i) the maximum iterations
have been reached, (ii) the objective function cannot be improved
furthermore, (iii) the algorithm runs until a time limit has been
reached, (iv) the distance between two consecutive iterations and
the mesh size is less than a specific tolerance and (v) the number of
objective function evaluations performed by the algorithm reaches
a maximum value of evaluations.

The combination of the statistical analysis using the LDC on a
seasonal basis along with the developed hybrid function for opti-
mizing the derived blocks, yielded a MAPE and RMSE between the
evaluated ToU block periods and the seasonal residential con-
sumption that was improved to 2.43% and 7.63%, respectively. The
statistically derived and the optimized ToU blocks are depicted in
Fig. 4.

The optimization approach clearly demonstrated that the peak
consumption period is charged with the higher tariff, while the
lowest tariff occurs during the valley period. Once again in this
approach another period is clearly identified representing the
transitional (shoulder) period from the minima to the maxima and
vice-versa. These time periods are important as they can be used by
prosumers to cover their needs that can be shifted from the peak
periods but cannot wait until the off-peak period (e.g. cooking and
devices without smart control). In addition to this, the transitional
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period smooths the load profile and avoids shifting the peak to
other hours of the day [10].

2.5. Estimation of the optimum ToU rates

Besides the identification of the ToU block periods the estima-
tion of the applicable ToU rates for the corresponding periods is
essential. The optimized ToU rates were calculated using an opti-
mization algorithm which can derive a constrained minimum of a
scalar function of several variables starting from initial conditions
and are subject to linear multivariable constraints and bounds.
More specifically, the ToU rates were calculated based on the con-
strained optimization function shown in (3), which finds the min-
imum off-peak rate (Ratelow) while maintaining a constant
difference between the peak-shoulder rate and off peak-shoulder
rate. This can provide financial incentives to the consumers to
consider shifting their consumption from consecutive periods [34].
The constraints depicted in (3.1) and (3.2) were used in order to
keep the peak (Ratehigh) and off-peak rate (Ratelow) per kWh higher
and lower than the existing flat rate respectively. These relation-
ships are the most important criterion since the peak period should
always represent the highest rate whereas the off-peak period the
lowest rate and never vice-versa. The development of the ToU rates
was also based on the seasonal average prosumers' load profile
registered during the reference year, with the constraint of main-
taining a neutral electricity bill in the case where the load profile
remains unchanged. For this purpose, the existing flat rate, fixed
charge and fuel price readjustment were vital in order to calculate
the average electricity bill of the prosumers. In addition, a multi-
plier factor of 0.65 was used as a margin to maintain a balance
between the current flat rates and derived ToU rates. These values
were included in constraint (3.3) to ensure that the off-peak price
per kWh (Ratelow) of the ToU rates will never be lower than the
electricity production cost. The initial values of the low, medium
and high rate were set to 0.1, 0.15 and 0.2 respectively.

Optimization function for the Ratelow:

min Ratelow
Ratelow2<

¼ 2,Ratemedium � Ratehigh (3)

Subject to:

Ratelow <Rateflat (3.1)

Ratehigh >Rateflat (3.2)

Ratelow �
�
Rateflat � Costfixed þ Costfuel

�
,0:65 (3.3)

where, Costfixed is the fixed cost per kWh and Costfuel is the fuel
readjustment price per kWh.

2.6. Sensitivity analysis on the potential impact of the developed
ToU tariffs

Before applying the derived ToU tariffs on the prosumers
comprising the pilot network, their potential impact on the resi-
dential load profile was investigated through a sensitivity analysis.
The intention was to evaluate the effect of shifting loads due to the
application of ToU tariffs. Shifting loads from peak to off-peak and
shoulder periods can be considered as a representative reaction
that might emerge due to the application of ToU tariffs. More
specifically, an optimization function was applied to the partici-
pants' average load profile on a seasonal basis in order to maximize
the Load Factor (LF) or equally flatten the profile to reduce the
variability of the consumption levels. Increasing the LF can be
recognized as an outcome of the load shifting technique that could
diminish the average unit cost (demand and energy) of the kWh
and therefore lead to substantial savings for the power utility and
subsequently for the consumers. The LF is defined as the average
load divided by the peak load in a specified time period:

LF ¼ Average Load
Maximum Load� Period

(4)

This was achieved by exploiting the following optimization
function:

maxf ðxÞ
x

¼

P48
i¼1

xi

max x,48
(5)

Subject to:

X48

i¼1

xi;before DSM ¼
X48

i¼1

xi;after DSM (5.1)

max xbefore DSM >max xafter DSM (5.2)

where, x is the power at time interval i, xi,before DSM and xi,after DSM the
power before and after applying the DSM technique respectively.
The main objective of the optimization function is to maximize the
LF of the total residential load profile, at each time interval, by
shifting the usage time of a variety of household deferrable appli-
ances by a selected percentage (5e20%).
2.7. Estimation of the peak kWh reduction due to possible various
ToU price ratios

In order to estimate the peak kWh reduction due to possible
various ToU price ratios, the constant elasticity of substitution (CES)
was utilized as an expenditure function. In economic terms, the
elasticity of substitution measures the shape of the indifference
curves that underlie the consumer's utility function. It is related to
the own price and cross price elasticities of demand through the
Slutsky equation in microeconomics [35]:

Own price elasticity of demand ¼ compensated own price
elasticity of demandþ (income elasticity of demand� budget share
of commodity in question).

In the case of electricity demand, this measures the percentage
shift in consumption across time periods (such as peak to off-peak)
in response to price changes that alter the price relationship be-
tween the two time periods (e.g. changing the price ratio). For
example, in the case of a ToU rate, the peak to off-peak elasticity of
substitution represents the percentage change in the ratio of peak
to off-peak usage that occurs in response to a given change in the
ratio of peak to off-peak prices while all other factors are held
constant.

The most commonly used [36e39] CES electricity expenditure
function is the following:

CðP1; P2; EÞ ¼
�
aPr1 þ ð1� aÞPr2

�1
r,FðEÞ (6)

where, P1 ¼ peak price, P2 ¼ off-peak price, F(E) ¼ a scalar function
of electricity services E (e.g. heating, cooling, lighting etc), the
parameter r determines the elasticity of substitution and a is a
weight.

Using the Shephard's Lemma yields [40], the least-cost peak and
off-peak electricity demands are equal to:



V. Venizelou et al. / Energy 142 (2018) 633e646 639
vC=vP1
¼ X1 ¼ aPr�1

1 Gð1=rÞ�1FðEÞ; (7)

vC=vP2
¼ X2 ¼

�
1� aPr�1

2 Gð1=rÞ�1
�
FðEÞ (8)

where,

G ¼ �
aPr1 þ ð1� aÞPr2

�
(9)

Although F(E) is unobservable, we can use the ToU price ratios
and consumption data to estimate the following equation:

lnðX1=X2Þ ¼ b0 þ b lnðP1=P2Þ (10)

where,

b0 ¼ ln½að1� aÞ�; (11)

b ¼ r� 1 (12)

In econometric analysis, the elasticity at a certain range can be
estimated from a typical linear regression model using the slope
coefficients, the price and quantity estimates. However, in practice
it is more convenient to estimate these elasticities by applying a
log-linear form, as the elasticities (which will be constant) can be
estimated directly from the slope coefficients. Additionally, it is
known that:

s≡vlnðX1=X2Þ=vlnðP1=P2Þ (13)

therefore s ¼ �b

Since ln(X1/X2) varies between participants and seasons, we
assume that the intercept b0 is a linear function that represents the
pre-pilot consumption.

For the regression model, we used a modified version of the
regression model proposed by C.K. Woo et al. [41]:

lnðX1kt=X2ktÞ¼gþQ lnðQktÞþb lnðP1kt=P2ktÞþf1 lnðHktÞ
þf2 lnðCktÞþ

X
m

mmMmtþu1Wdt þu2Wet þ εkt

(14)

The model describes the variation in participant k's peak to off-
peak ratio on day t where, g is an intercept, εkt is a random-error,
ln(Qkt) is the pre-pilot consumption and ln(P1kt/P2kt) is the peak
to off-peak price ratio whose coefficient is b ¼ �s.

Additionally, the weather is accounted for by ln(Hkt) and
ln(Ckt) which is the natural logarithm of daily heating and
cooling degree hours respectively. Daily heating degree hours
(HDH) is the daily sum of max(20�C e hourly temperature, 0) for
the winter and autumn season, while the daily cooling degree
hours (CDH) were estimated by the daily sum of max(hourly
temperature e 20�C, 0) for the summer and spring season. The
ambient temperature datasets were acquired from the installed
weather stations. Based on the results of the questionnaire, the
primary space-heater of the participants is electric and therefore
the variable that distinguishes electric to oil heater owners was
not considered.

Furthermore, to capture the effect of each month on the con-
sumption ratio, twelve month-of-the-year binary indicators were
used. The variable Mmt is equal to unity if day t is in month m and
zero otherwise, where m ¼ {1, …,12} for each month of the year.
Similarly, two binary indicators,Wdt andWet, were utilized in order
to capture the effect of the weekdays and weekends on the con-
sumption ratio.
To estimate the regression coefficients three methods were
employed. The first one is the ordinary least squares (OLS), which is
one of the most commonly used methods to produce initial results
[42,43].

For the second method, the clustered robust standard errors
(CRSE) were used for gauging the coefficient estimates' precision
and p-values [44].

Finally, due to the huge sample size, panel-data analysis was
also performed. To implement this a) a fixed-effects and b) a
random effects model was employed. CRSE were used for both the
aforementioned models.

The hourly peak kW reduction was estimated using the meth-
odology that was proposed by Ref. [41] and was based on [45]. By
considering ln(X1/X2) ¼ Z as the non-random portion of the
regression line and by using simple algebraic manipulation we can
write the peak kWh usage (S) as:

S ¼ X1=X ¼ ez=ð1þ ezÞ (15)

where X is equal to X1þX2 and represents the daily total con-
sumption. This implies that the peak consumption is given as:

X1 ¼ SX0lnðX1Þ ¼ lnðSÞ þ lnðXÞ (16)

Furthermore, the changes in peak consumption can be derived
in percentage by using:

DX1=X1 ¼DS=Sþ DX=X
¼ load shifting effect þ Total consumption effect

(17)

However, as indicated by the author of [46], for a “revenue-
neutral” time-varying tariff, such as the one developed in our study,
the total consumption effect is close to zero. For this reason the
total consumption effect was neglected and the peak consumption
reduction was based solely on the load shifting effect. Since load
shifting depends on the pre-pilot profile and the price-ratio, theDS/
S value was estimated by utilizing the regression equation using
different price ratios that range from 2:1 to 12:1 for all three sea-
sons (winter, middle, summer).

3. Results

The duration of each ToU block, the respective ToU rates, the
results of the sensitivity analysis carried out to evaluate the effect
of shifting loads from the peak to lower rate periods as well as
the estimated peak kWh reductions are presented in this section.
A comparison of the participants' energy behaviour between the
the reference year and the ToU implementation year is also
explored.

3.1. Developed ToU tariff

The summer, middle and winter season ToU tariffs obtained
from the optimization method applied to the seasonal load curves
and the average load profile of the participating prosumers are
presented in Fig. 5 (a), (b) and (c), respectively. All plots clearly
show three distinct segments for the off-peak, shoulder and peak
period.

The derived ToU tariffs and periods for each segment for every
season are summarized in Table 1.

The value of the peak, shoulder and off-peak price was calcu-
lated at 18.85, 14.85 and 10.85 Vcents/kWh, respectively, fulfilling
in parallel all the set optimization criteria. In addition, the period of
each ToU block varied according to the season, with the highest
peak duration occurring for the middle season and the lowest for
the winter season.



(a)

(b)

(c)

Fig. 5. Derived ToU tariffs and average load profiles of participating prosumers for: (a)
summer, (b) middle and (c) winter season.
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Every six months, the developed ToU tariffs were re-evaluated
and applied to the selected sample. Consequently, at the end of
the implementation year two different ToU price ratios were
applied to the selected sample.
Table 1
Derived ToU periods for each block period per season.

Block Price (Vcents/kWh) Winter Period (DeceMar)

Peak 18.85 16:00e21:59
Shoulder 14.85 06:00e15:59

22:00e23:59
Off-peak 10.85 00:00e05:59
3.2. Sensitivity analysis based on the Load Factor

To evaluate the impact of the developed ToU tariffs, a sensitivity
analysis based on the LF was carried out. More specifically the sea-
sonal average load profile of the participants was divided into a
number of main load type categories. The percentage of each cate-
gory was estimated by conducting a statistical analysis on the listed
appliances included on the questionnaire completed by the partic-
ipants. A load shifting (LS) technique was applied for percentiles
between 5 and 20% (in steps of 5%) exclusively on the category of the
listed deferrable loads. The participants should be able to shift the
electricity consumption of these appliances from peak periods to
lower rate periods, usually through timers, and therefore minimize
their electricity cost. The sensitivityanalysis included two scenarios:
i) shifting deferrable loads mainly to off-peak periods ii) shifting
deferrable loads mainly to shoulder periods.

The sensitivity analysis performed to emulate the response of
the pilot network of prosumers to the imposed ToU tariffs, yielded
important results on the potential improvement of the average
residential load profile. The resulting average load profiles of the
residential prosumers, after deferring load segments from the peak
to the off-peak periods, for the all three seasons, are demonstrated
in Fig. 6.

The results highlight that overall the derived load profiles were
improved due to the load increase occurring mainly during the off-
peak hours, however, this does not apply for the summer season. As
shown in Fig. 6a, during the summer season and for the case of
shifting 20% of deferrable load, the demand was significantly
reduced during the peak hours (15:00 p.m.) and increased on the
off-peak hours (00:00 a.m.), which resulted in a transfer of the peak
demand from peak period to off-peak period. Additionally, a slight
increase in demand during the transition of off-peak to shoulder
period (06:00e07:00 a.m.) was observed for all the investigated
cases of the summer season. This is more evident during the
summer season due to the difference between the peak and the
lowest demand being the minimum of all three seasons and thus
implying that the summer load profile is flatter compared to the
winter and middle seasons. Therefore, shifting a relatively high
percentage of consumption load can lead to the displacement of the
peak demand. In addition to the summer profile being flatter, the
low duration of the shoulder period following-up the off-peak
period caused the small increase of the demand during that tran-
sition period. This occurred due to the lack of time to potentially
shift the usage time of the appliances.

In order to evaluate the impact of shifting segments of defer-
rable loads to the off-peak period, the average residential LF for
each one of the cases was calculated. Table 2 summarizes the LF
results for different LS percentages and for each season.

The results demonstrated that the average residential LF was
increased in all cases, while the maximum LF improvement occurs
during the summer season (highest peak demand season). Like-
wise, this is more noticeable during that season, due to the fact that
the summer load profile was already flatter, before applying DSM,
compared to the winter and middle seasons. In this respect, any
improvements to the LF, especially for high demand seasons, can
benefit the utility.
Summer Period (JuneSep) Middle Period (Apr, May, Oct, Nov)

09:00e18:59 08:00e20:59
07:00e08:59
19:00e00:59

06:00e07:59
21:00e23:59

01:00e06:59 00:00e05:59



Table 2
Residential Load Factor (LF) for the load shifting technique (off-peak period sce-
nario) per season.

LF-Summer (%) LF-Middle (%) LF-Winter (%)

Average load profile 40.65 32.94 32.48
Case 1: 5% LS 41.29 33.34 32.69
Case 2: 10% LS 41.79 33.48 32.90
Case 3: 15% LS 42.30 33.36 33.12
Case 4: 20% LS 42.83 33.21 33.33
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The same approach was conducted to analyze the impact of
shifting deferrable loads mainly to the shoulder periods. The
resulting average load profiles of the residential prosumers, for the
load shifting technique, are demonstrated in Fig. 7.

The sensitivity analysis results showed that shifting loads to the
shoulder periods for the summer andmiddle season can potentially
lead to the creation of a second peak demand during a specific
period as shown in Fig. 7a and b. This can be considered as an
outcome of the low duration of the shoulder period that follows
immediately after the off-peak period. However, this is not the case
(a)

(b)

(c)

Fig. 6. Load Shifting (LS) of deferrable loads from peak to off-peak periods for: (a)
summer, (b) middle and (c) winter season.

(a)

(b)

(c)

Fig. 7. Load Shifting (LS) of deferrable loads from peak to shoulder periods for: (a)
summer, (b) middle and (c) winter season.



Table 3
Residential Load Factor (LF) for the load shifting technique (shoulder period) per
season.

LF-Summer (%) LF-Middle (%) LF-Winter (%)

Average load profile 40.65 32.94 32.48
Case 1: 5% LS 41.15 33.25 32.64
Case 2: 10% LS 41.51 33.56 32.80
Case 3: 15% LS 41.88 33.88 32.97
Case 4: 20% LS 41.92 34.21 33.13

Fig. 8. Comparison of the average load profile of all the participant prosumers be-
tween the summer season of the reference year (2015) and the respective season of the
implementation year (2016).

V. Venizelou et al. / Energy 142 (2018) 633e646642
for the winter season as shown in Fig. 7c, where the respective
shoulder period is longer compared to the one of summer and
middle season and therefore participants are able to disperse the
usage time of their appliances in a more convenient way.

Finally, the changes that occurred on the LF by shifting loads due
to the ToU tariffs to the shoulder segments, are summarized in
Table 3. The obtained results indicated that the average residential
load profile can benefit from the specific DSM technique as the LF is
increased in all cases.

The comparative assessment of the LF results, when shifting
load segments to the shoulder or off-peak periods, further showed
that there is a slight improvement in the LF when shifting loads
mainly to off-peak periods compared to shoulder periods. Addi-
tionally, the sensitivity analysis proved that the application of the
developed ToU tariffs can benefit the electricity utility by
improving the LF for all the investigated cases.
3.3. Real implementation of the developed ToU tariffs in a pilot
network

The proposed DSM price-based scheme was approved by both
the local Distribution System Operator (DSO) which is the Elec-
tricity Authority of Cyprus (EAC) and the Cyprus Energy Regulatory
Authority (CERA) for one year of real pilot-implementation. Before
the pilot application of the developed ToU tariffs, the candidate
participants were informed about the scope and objectives of
testing the tariffs on residential prosumers and had the option to
either participate voluntarily or entirely “opt-out” and thus stay on
the prevailing flat tariff.

Prosumers who chose to participate in the pilot applicationwere
provided bill protection. In this respect, for each bimonthly period
the participants paid the lower of the two calculated bills e the bill
they would have paid had they stayed on the prevailing tariff or the
bill they would pay on the ToU tariffs. In addition to the calculation
of the two bills, each bimonthly period the DSO examined if the
participants were “active” by comparing their energy profiles with
the baseline of the respective period.

A prosumer can be considered “active” if at least one of the
following rules apply:

� Load percentage recorded during the peak period was reduced
compared to the one of the baseline profile for the respective
bimonthly period;

� Load percentage recorded during the off-peak period was
increased while the load percentage recorded during the peak-
period remained the same, compared to the baseline profile for
the respective bimonthly period.

The aforementioned criteria successfully eliminated any unin-
tended revenue loss caused by free riders (consumers with below
average peak consumption shares who will experience bill de-
creases without load shifting).

The derived ToU tariffs were applied to the prosumers of the
pilot network, for the year of 2016 (implementation year), in order
to provide insight into the prosumers' ability to adjust their de-
mand timing as a result of the time varying rates. The plot of Fig. 8
demonstrates that over the implementation period, the application
of the ToU tariffs created incentives for the prosumers to shift their
energy demand from the peak to off-peak periods, driven by the
price variations.

The percentage of the total normalized consumption, corre-
sponding to each ToU block, for the reference year (2015) and the
year of the implementation of the developed ToU tariffs (2016) is
depicted in Table 4.

It can be clearly seen that the percentage of consumption during
the peak hours of the implementation year is reduced by 3.19%,
1.03% and 1.40%, compared to the reference year, for the summer,
middle and winter season, respectively. This indicates that the ToU
tariffs led the participating prosumers to apply DSM techniques.
Furthermore, an increase of the LF from 40.65% (reference year) to
41.43% (implementation year) was observed, which can also be
considered as another benefit of the applied ToU tariffs. This ap-
pears to be similar to the sensitivity analysis' LFs that were esti-
mated for the case 1 and case 2 of the off-peak and shoulder
scenarios respectively. Based on the conducted sensitivity analysis,
the developed ToU tariffs can achieve a LF up to 42.83%, leading to
the conclusion that further training might be required in order to
exploit the full benefits of the applied ToU tariffs. Continuous en-
ergy performance behaviour feedback and information (through a
dedicated website, tablet application etc.) should be provided to
the participants for effective and correct use of the applied ToU
tariffs, in the scope of their successful implementation for both
utility and prosumer benefit.

3.4. Estimation of the peak kWh reduction due to possible various
ToU price ratios

For the regression model, the two ToU tariff schedules (original
and re-evaluated) were utilized for estimating the regression co-
efficients while the sample size was equal to 109,500 (300
prosumers� 365 days). The OLS method has the drawback of being
very sensitive to the presence of outliers or high-leverage points
[47] and therefore outliers were removed when using this method.
Although this led to a reduction of the sample size by approxi-
mately 0.07%, it is in line with the approach followed in similar
studies [41,43].

The p-value for each term tests the null hypothesis that the
coefficient is equal to zero (no effect). A low p-value (<0.05) in-
dicates that the null hypothesis can be rejected. In other words, a



Table 4
Comparison of the consumption percentage between the year 2015 and 2016.

Summer (%) Middle (%) Winter (%)

Time Block 2015 2016 2015 2016 2015 2016
Peak 42.70 39.51 36.11 35.08 61.02 59.62
Shoulder 24.01 25.66 15.12 16.87 22.89 23.33
Off-peak 33.29 34.82 48.77 48.05 16.08 17.05

V. Venizelou et al. / Energy 142 (2018) 633e646 643
coefficient that has a low p-value is likely to be a meaningful
addition to a model because changes in the coefficient's value are
related to changes in the response variable. The regression results,
based on the model (14) that is described in the methodology
section, for the winter, middle and summer season are presented in
Tables 5e7 respectively. The p-value for each coefficient is included
in the parenthesis.

The low R2 value indicates that the estimated regression ex-
plains 6.89, 4.17 and 6.91% of the variance in the natural logarithm
of the consumption ratio for the winter, middle and summer period
respectively for the OLS method. Similar observations are obtained
when CRSE were included in the regression. Additionally, the ob-
tained results highlight that all coefficients are statistically signif-
icant (p-value < 0.05) with one exception: the coefficient estimates
yielded from the panel-data analysis with fixed effects were sta-
tistically insignificant (p-value > 0.05), even with the use of the
CRSE.

As depicted, the coefficient for ln(P1kt/P2kt) is negative and
relatively high for all seasons and methods, implying that partici-
pant responsiveness to the time-varying prices is adequate and that
the developed ToU tariff structure is a major driver in the reduction
of the consumption ratio. Similarly, the coefficient estimates of q
that correspond to ln(Qkt) are negative, supporting that total con-
sumption has a compelling role in the peak kWh reduction.

The coefficient estimates for the daily HDH ln(Hkt) are negative,
thus indicating that falling temperatures tend to reduce the par-
ticipants' consumption ratio. However, the coefficient estimates for
the daily CDH ln(Ckt) are positive, supporting that rising tempera-
tures tend to increase the participants' consumption ratio. This is
understandable as the results from the questionnaire showed that
space-cooling units and swimming pool pumps are two of the most
commonly used major electric loads during the summer period.
This can also be verified by the month-of-the-year binary in-
dicators. The coefficient estimates revealed that during the warm-
est month of each investigated season, the participants'
consumption ratio is the highest.

Furthermore, the day-of-the-week indicators (Wdt, Wet)
demonstrate that during the weekdays the ratio of peak to off-peak
Table 5
Regression results based on the developed tariffs for the Winter period. The p-value for

Winter Period

Ordinary Least Squares
(OLS)

Clust
Stand

R2 0.0689 0.066
Intercept: g 3.0539 (<0.0001) 2.893
ln(Qkt): q �0.0788 (0.0230) �0.07
ln(P1kt/P2kt): b �0.1646 (0.0350) �0.16
ln(Hkt): 41 �0.0047 (0.0087) �0.00
ln(Ckt): 42 0.0037 (0.0030) 0.003
M12t ¼ 1 if t in December; 0, otherwise: m12 0.0584 (0.0048) 0.056
M01t ¼ 1 if t in January; 0, otherwise: m01 0.0552 (0.0034) 0.059
M02t ¼ 1 if t in February; 0, otherwise: m02 0.0468 (0.0050) 0.041
M03t ¼ 1 if t in March; 0, otherwise: m03 0.0761 (0.0027) 0.073
Wdt ¼ 1 if t in weekdays; 0, otherwise: u1 0.0397 (<0.0001) 0.031
Wet ¼ 1 if t in weekends; 0, otherwise: u2 0.0312 (<0.0001) 0.024
consumption is higher. This was expected as the participants spent
more time at their residence during the weekends and therefore it
is easier to shift the usage-time of their appliances from peak to
either shoulder or off-peak periods.

Using the regression coefficient estimates shown in Table 5
through 7, the percentage kWh reductions by price ratio were
computed. The mean percentage kWh reduction by price ratio and
the lower and upper bounds (¼mean ± 2.5 standard deviations) for
the three seasons are illustrated in Fig. 9. The results confirm the
percentage peak reductions estimated by the average seasonal
profiles (Table 4).

Both of the applied ToU tariff ratios lie within the range of 1.5
and 2 (in particular 1.73 for the first and 1.6 for the re-evaluated
design) and it is obvious that higher ratios can potentially lead to
higher peak reductions. However, applying a higher ratio to the
selected sample is not an easy task due to the fact that the off-peak
price is close, and in some periods equal, to the lowest price that the
power utility can provide electricity. Consider the two following
cases that result in higher price ratios:

a) The off-peak rate remains constant while the peak rate in-
creases: This will have two potential outcomes. Firstly, con-
sumers will not be willing to participate in the optional ToU
tariffs due to the high peak rate and therefore they will tend to
stay on the flat tariff. Secondly, consumers will voluntarily
participate on the optional ToU tariffs and in their attempt to
reduce their electricity bills they will shift a relatively high
percentage of peak kWh either to the shoulder or the off-peak
period thus moving the peak consumption to these periods.

b) The off-peak rate increases and the peak rate increases: In this
case, the off-peak rate will be close to the prevailing flat rate
while the peak rate will be too high compared to the flat rate.
Therefore, since at this early stage of introducing ToU tariffs it is
optional for the consumers to participate, theywill prefer to stay
on the current flat tariffs.

For the aforementioned reasons, at this moment it is difficult to
investigate a ratio that is higher than 2.
each coefficient is included in the parenthesis.

ered Robust
ard Errors (CRSE)

Fixed Effects
with CRSE

Random Effects
with CRSE

6 e e

9 (<0.0001) 2.8974 (<0.0001) 2.9657 (<0.0001)
70 (0.0180) �0.0769 (0.0702) �0.0773 (0.0140)
28 (0.0120) �0.1618 (0.0310) �0.1499 (<0.0001)
49 (0.0082) �0.0027 (0.0456) �0.0156 (0.0115)
1 (<0.0001) 0.0042 (0.0690) 0.0015 (0.0266)
3 (<0.0001) 0.0561 (0.0687) 0.0537 (<0.0001)
7 (<0.0001) 0.0545 (0.0368) 0.0529 (<0.0001)
4 (<0.0001) 0.0482 (0.0209) 0.0530 (<0.0001)
2 (<0.0001) 0.0766 (0.0234) 0.0698 (<0.0001)
8 (<0.0001) 0.0235 (0.0650) 0.0326 (<0.0001)
8 (<0.0001) 0.0128 (0.0753) 0.0278 (<0.0001)



Table 6
Regression results based on the developed tariffs for the Middle period. The p-value for each coefficient is included in the parenthesis.

Middle Period

Ordinary Least Squares
(OLS)

Clustered Robust
Standard Errors (CRSE)

Fixed Effects
with CRSE

Random Effects
with CRSE

R2 0.0417 0.0358 e e

Intercept: g 3.2568 (<0.0001) 3.2725 (<0.0001) 3.2678 (<0.0001) 3.2304 (<0.0001)
ln(Qkt): q �0.0891 (0.0212) �0.0874 (0.0097) �0.0871 (0.0460) �0.0867 (0.0101)
ln(P1kt/P2kt): b �0.0704 (0.0110) �0.0732 (0.0021) �0.0729 (0.0661) �0.0726 (0.0270)
ln(Hkt): 41 �0.1051 (0.0081) �0.1086 (<0.0001) �0.1058 (0.0674) �0.1149 (<0.0001)
ln(Ckt): 42 �0.0523 (0.0013) �0.0502 (<0.0001) �0.0602 (0.0460) �0.0585 (0.0360)
M10t ¼ 1 if t in October; 0, otherwise: m10 0.0213 (0.0035) 0.0197 (<0.0001) 0.0185 (0.0510) 0.0192 (0.0197)
M11t ¼ 1 if t in November; 0, otherwise: m11 0.0264 (0.0022) 0.0255 (<0.0001) 0.0325 (0.0590) 0.0320 (0.0296)
M04t ¼ 1 if t in April; 0, otherwise: m04 0.0297 (0.0029) 0.0303 (<0.0001) 0.0343 (0.0420) 0.0281 (0.0173)
M05t ¼ 1 if t in May; 0, otherwise: m05 0.0465 (0.0011) 0.0420 (<0.0001) 0.0510 (0.0421) 0.0421 (<0.0001)
Wdt ¼ 1 if t in weekdays; 0, otherwise: u1 0.0302 (<0.0001) 0.0310 (<0.0001) 0.0312 (0.0243) 0.0317 (<0.0001)
Wet ¼ 1 if t in weekends; 0, otherwise: u2 0.0271 (<0.0001) 0.0284 (<0.0001) 0.0254 (0.0187) 0.2444 (<0.0001)

Table 7
Regression results based on the developed tariffs for the Summer period. The p-value for each coefficient is included in the parenthesis.

Summer Period

Ordinary Least Squares
(OLS)

Clustered Robust
Standard Errors (CRSE)

Fixed Effects
with CRSE

Random Effects
with CRSE

R2 0.0691 0.0625 e e

Intercept: g 2.7782 (<0.0001) 2.7375 (<0.0001) 2.7342 (<0.0001) 2.2888 (<0.0001)
ln(Qkt): q �0.0345 (0.0247) �0.0380 (0.0126) �0.0389 (0.0650) �0.0412 (0.0045)
ln(P1kt/P2kt): b �0.1385 (0.0190) �0.1309 (0.0030) �0.1302 (0.0521) �0.1298 (<0.0001)
ln(Hkt): 41 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
ln(Ckt): 42 0.0769 (0.0046) 0.0720 (<0.0001) 0.0530 (0.0360) 0.0697 (0.0210)
M06t ¼ 1 if t in June; 0, otherwise: m06 0.0533 (0.0041) 0.0569 (<0.0001) 0.0497 (0.0502) 0.0521 (0.0002)
M07t ¼ 1 if t in July; 0, otherwise: m07 0.0598 (0.0038) 0.0611 (<0.0001) 0.0552 (0.0471) 0.0578 (<0.0001)
M08t ¼ 1 if t in August; 0, otherwise: m08 0.0528 (0.0072) 0.0510 (<0.0001) 0.0567 (0.0688) 0.0564 (<0.0001)
M09t ¼ 1 if t in September; 0, otherwise: m09 0.0317 (0.0065) 0.0349 (<0.0001) 0.0298 (0.0428) 0.0335 (<0.0001)
Wdt ¼ 1 if t in weekdays; 0, otherwise: u1 0.0355 (<0.0001) 0.0375 (<0.0001) 0.0315 (0.0587) 0.0368 (0.0160)
Wet ¼ 1 if t in weekends; 0, otherwise: u2 0.0246 (<0.0001) 0.0267 (<0.0001) 0.0235 (0.0535) 0.0253 (0.0005)
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Furthermore, when evaluating ToU tariff schemes it is crucial to
investigate how a change in the electricity prices affects the
household welfare. By utilizing the CES unit expenditure function
(14), the welfare improvement indicator I is equal to:

I ¼ CES expenditure fucntionToU rates

CES expenditure fucntionFlat rate
(18)

where for the flat rate, P1kt ¼ P2kt.
When applying (18) the results highlight that the cost index I is

less than one, for the whole sample, thus proving that the devel-
oped ToU tariff is welfare improving [48].

4. Conclusions

The methodology followed to develop optimal Time of Use
(ToU) tariffs for residential prosumers in order to promote effective
Demand Side Management (DSM) practices is presented in this
paper. In support of this work, the load profiles of three hundred
prosumers comprising a pilot network in Cyprus were recorded for
one year (reference year). Using the collected datasets, the initial
and baseline scenarios were defined in order to verify that an
improvement on the participants' consumption profile will benefit
the total aggregate consumption.

Initially the ToU block periods were derived by applying statis-
tical analysis on the Load Duration Curve (LDC) of the seasonal load
profiles of the participants. The Mean Absolute Percentage Error
(MAPE) and Root Mean Square Error (RMSE) metrics between the
derived ToU block periods and the seasonal total residential power
demand were 8.65% and 19.95% respectively. The MAPE and RMSE
metrics were reduced to 2.43% and 7.63%, respectively, by
combining the results of the statistical analysis with a hybrid
optimization function that utilizes Simulated Annealing and
Pattern Search algorithms. The ToU rates were calculated by
exploiting an optimization function that maintained a neutral
electricity bill in the case where the load profile remained
unchanged.

Before applying the developed ToU tariffs to the participants
located within the pilot network, a sensitivity analysis was con-
ducted in order to estimate their potential impact. The main
objective was to maximize the Load Factor (LF) of the seasonal
residential load profile. For the summer and winter season, the
maximum LF was 42.83% and 33.33% respectively and occurred
when load was shifted mainly to the off-peak period.

The developed ToU tariffs were approved by both the Electricity
Authority of Cyprus and the Cyprus Energy Regulatory Authority
andwere applied to the prosumers of the pilot network for one year
(implementation year). The results obtained, highlight that the ToU
tariffs applied to the pilot network are effective to persuade the
participants to shift loads from the peak to off-peak and shoulder
periods. This was verified by observing the variation of the LF as
well as the percentage of total consumption during peak hours
when compared to the year before the real implementation of the
derived ToU tariffs. More specifically, with respect to the reference
year, the LF was increased from 40.65% to 41.43%, while the per-
centage of total consumption measured during peak hours was
reduced by 3.19%, 1.03% and 1.40% for the summer, middle and
winter season respectively. In the end, the impact of various ToU
price ratios on the peak kWh usage was investigated. Higher price
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Fig. 9. Estimation of peak kWh reduction due to various ToU price ratios for the: (a)
winter, (b) middle and (c) summer season.
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ratios, than the one used, indicated higher peak kWh reductions.
However, increasing the ratio for the case of Cyprus is difficult at
the moment. Nevertheless, as the PV penetration levels increase
and the aggregate consumption profile changes then the fixed
electricity cost will change. This will result in different off-peak
prices and a greater selection of feasible price ratios. The method-
ology followed in this work can achieve this by adapting the ToU
tariff structure (block periods and rates) based on the fixed elec-
tricity cost and the system's profile.

Acknowledgment

This work was funded through the SmartPV project which is co-
financed by the program LIFE (LIFEþ Environment Policy and
Governance) of the European Union under the grant agreement
number LIFE 12/ENV/CY/000276.

The authors are immensely grateful to Prof. Sofronis Clerides for
providing useful insight on the economic analysis performed.

References

[1] Li R, Wang Z, Gu C, Li F, Wu H. A novel time-of-use tariff design based on
Gaussian Mixture Model q. Appl Energy 2016;162:1530e6.

[2] Funke S, Speckmann M. Demand side management in private households e

actual potential, future potential, restrictions. In: Energy-efficient computing
and networking. Berlin Heidelberg: Springer; 2011. p. 29e36.

[3] Gelazanskas L, Gamage KAA. Demand side management in smart grid: a re-
view and proposals for future direction. Sustain Cities Soc 2014;11:22e30.

[4] Gottwalt S, Ketter W, Block C, Collins J, Weinhardt C. Demand side manage-
ment d a simulation of household behavior under variable prices. Energy
Policy 2011;39(12):8163e74.

[5] European Commission. European technology platform smart grids: vision and
strategy for Europe's electricity networks of the future 2006;19(3).

[6] L�opez MA, De Torre S, Martín S, Aguado JA. Electrical Power and Energy
Systems Demand-side management in smart grid operation considering
electric vehicles load shifting and vehicle-to-grid support. Electr Power En-
ergy Syst 2015;64:689e98.

[7] Philippou N, Hadjipanayi M, Makrides G, Efthymiou V, Georghiou GE. Effective
dynamic tariffs for price-based Demand Side Management with grid-
connected PV systems. Eindhoven: PowerTech, 2015 IEEE; 2015. p. 5.

[8] Schare S. TOU rates as if prices mattered: reviving an industry standard for
Today's utility environment. In: 14th biennial ACEEE conference on energy
efficiency in buildings; 2008. p. 281e92.

[9] Wang D, Ren C, Sivasubramaniam A, Urgaonkar B, Vaidt K, Pennsylvania T.
ACE : abstracting, characterizing and exploiting datacenter power demands.
In: IEEE international symposium on workload characterization (IISWC);
2013. p. 44e55.

[10] Torriti J. Price-based demand side management: assessing the impacts of
time-of-use tariffs on residential electricity demand and peak shifting in
Northern Italy. Energy Aug. 2012;44(1):576e83.

[11] Hobman EV, Frederiks ER, Stenner K, Meikle S. Uptake and usage of cost-
reflective electricity pricing: insights from psychology and behavioural eco-
nomics. Renew Sustain Energy Rev 2016;57:455e67.

[12] Li L, Gong C, Tian S, Jiao J. The peak-shaving efficiency analysis of natural gas
time-of-use pricing for residential consumers: evidence from multi-agent
simulation. Energy 2016;96:48e58.

[13] Kim J, Shcherbakova A. Common failures of demand response. Energy
2011;36(2):873e80.

[14] Campillo J, Dahlquist E, Wallin F, Vassileva I. Is real-time electricity pricing
suitable for residential users without demand-side management? Energy
2016;109:310e25.

[15] He Y, Wang B, Wang J, Xiong W, Xia T. Residential demand response behavior
analysis based on Monte Carlo simulation : the case of Yinchuan in China.
Energy 2012;47(1):230e6.

[16] Carlton D. Peak load pricing stochastic demand. Am Econ Rev 1977;67(5):
1006e10.

[17] Crew MA, Fernando CP. Theory of peak-load pricing: a survey. J Regul Econ
1995:215e48.

[18] Sherman BR, Visscher M, Johnson B, Leland H. Second-best pricing with sto-
chastic demand. Am Econ Rev 1978;68(1):41e53.

[19] Gardner Brown J, Johnson MB. Public utility pricing and output under risk. Am
Econ Rev 1969;59(1):119e28.

[20] Meyer RA. Monopoly pricing and capacity choice under Uncertainty. Am Econ
Rev 1975;65(3):326e37.

[21] Borenstein S, Holland S. On the efficiency of competitive electricity markets
with time-invariant retail prices. Rand J Econ 2005;36(3):469e93.

[22] Chao H. Peak load pricing and capacity planning with demand and supply
uncertainty. Bell J Econ 2017;14(1):179e90.

[23] Coate S. Public utility pricing and capacity choice under Risk : a rational ex-
pectations approach. J Regul Econ 1989;317(1970):305e17.

[24] Fernando CS. Peak-load pricing and reliability under uncertainty. J Regul Econ
1993;5(1):5e23.

[25] Yu C, Nan D, Yangkai REN. Investigation on electric load peak and valley
characters and demand response evaluation based on spectral analysis. In:
International conference on advanced power system automation and pro-
tection (APAP); 2011. p. 1258e62.

[26] Flath CM. An optimization approach for the design of time-of-use rates. In:
IECON - 39th annual conference of the IEEE industrial electronics society;
2013. p. 4727e32.

[27] Conlon P. ESB International Report: development of domestic and SME time of
use tariff structures for a smart metering program in Ireland. 2008.

[28] Hui-ting Q, Yi-jie L. Research of peak and valley period partition approach on
statistics. In: 4th international conference on electric utility deregulation and
restructuring and power technologies (DRPT); 2011. p. 1774e9.

[29] Thakur J, Chakraborty B. Demand side management in developing nations: a
mitigating tool for energy imbalance and peak load management. Energy
2016;114:895e912.

http://refhub.elsevier.com/S0360-5442(17)31773-5/sref1
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref1
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref1
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref2
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref2
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref2
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref2
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref3
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref3
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref3
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref4
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref4
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref4
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref4
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref4
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref5
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref5
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref6
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref6
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref6
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref6
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref6
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref6
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref7
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref7
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref7
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref8
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref8
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref8
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref8
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref9
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref9
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref9
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref9
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref9
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref10
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref10
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref10
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref10
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref11
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref11
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref11
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref11
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref12
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref12
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref12
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref12
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref13
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref13
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref13
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref14
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref14
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref14
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref14
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref15
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref15
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref15
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref15
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref16
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref16
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref16
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref17
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref17
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref17
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref18
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref18
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref18
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref19
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref19
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref19
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref20
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref20
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref20
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref21
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref21
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref21
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref22
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref22
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref22
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref23
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref23
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref23
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref24
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref24
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref24
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref25
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref25
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref25
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref25
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref25
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref26
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref26
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref26
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref26
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref27
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref27
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref28
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref28
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref28
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref28
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref29
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref29
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref29
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref29


V. Venizelou et al. / Energy 142 (2018) 633e646646
[30] Thakur J, Chakraborty B. A study of feasible smart tariff alternatives for smart
grid integrated solar panels in India. Energy 2015;93:963e75.

[31] Ingber L. Adaptive simulated annealing (ASA): lessons learned. In: Invit Pap a
Spec issue Pol J. Control Cybern. "Simulated Annealing Appl. Comb. Optim.;
1995.

[32] Kolda TG, Lewis RM, Torczon V. SANDIA Report: “A generating set direct
search augmented Lagrangian algorithm for optimization with a combination
of general and linear constraints. 2006.

[33] Saha BK, Misra S, Pal S. SeeR: simulated annealing-based routing in oppor-
tunistic mobile networks. IEEE Trans Mob Comput 2017;1233(c):1.

[34] Wu Qiuwei, Wang Lei, Cheng Haozhong. Research of TOU power price based
on multi-objective optimization of DSM and costs of power consumers. In:
IEEE international conference on electric utility deregulation, restructuring
and power technologies. Proceedings; 2004. p. 343e8.

[35] Wood JC. Vilfredo pareto: critical assessments of leading economists, vol. 2.
Taylor & Francis; 1999.

[36] Faruqui A, Malko J. The residential demand for electricity by time-of-use: a
survey of twelve experiments with peak load pricing. Energy 1983;8:781e96.

[37] Faruqui A, Segici S. Household response to dynamic pricing of electricity: a
survey of 15 experiments. J Regul Econ 2010;38:193e225.

[38] Aigner DJ. The residential electricity time-of-use pricing Experiments : what
have we Learned ?. University of Chicago Press; 1985.

[39] Woo CK, Ho T, Shiu A, Cheng YS, Horowitz I, Wang J. Residential outage cost
estimation : Hong Kong. Energy Policy 2014;72:204e10.
[40] Varian HR. Microeconomic analysis. second ed. New York: W. W. Norton & Co;

1984.
[41] Woo CK, Li R, Shiu A, Horowitz I. Residential winter kWh responsiveness

under optional time-varying pricing in British Columbia. Appl Energy
2013;108:288e97.

[42] Woo CK, Horowitz I, Olson A, Debenedictis A. Cross-hedging and forward-
contract pricing of electricity in the pacific northwest. Manag Decis Econ
2011;32(4):265e79.

[43] Woo CK, Horowitz I, Sulyma IM. Relative kW response to residential time-
varying pricing in british columbia. IEEE Trans Smart Grid 2013;4(4):
1852e60.

[44] Wooldridge JM. Econometric analysis of cross section and panel data. Cam-
bridge, Massachusetts: MIT Press; 2010.

[45] Park R, Acton JP. Large business customer response to time-of-day electricity
rates. J Econom 1984;26:229e52.

[46] Woo CK, Kollman E, Orans R, Price S, Horii B. Now that California has AMI,
what can the state do with it ? Energy Policy 2008;36:1366e74.

[47] De Souza SVC, Junqueira RG. A procedure to assess linearity by ordinary least
squares method. Anal Chim Acta 2005;552:25e35.

[48] Woo CK. A note on measuring household welfare effects of time-of-use ( TOU
) pricing. Energy J 2017;5(3):171e81.

http://refhub.elsevier.com/S0360-5442(17)31773-5/sref30
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref30
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref30
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref31
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref31
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref31
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref32
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref32
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref32
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref33
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref33
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref34
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref34
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref34
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref34
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref34
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref35
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref35
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref35
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref36
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref36
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref36
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref37
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref37
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref37
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref38
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref38
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref39
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref39
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref39
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref40
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref40
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref40
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref41
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref41
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref41
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref41
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref42
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref42
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref42
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref42
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref43
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref43
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref43
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref43
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref44
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref44
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref45
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref45
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref45
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref46
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref46
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref46
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref47
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref47
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref47
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref48
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref48
http://refhub.elsevier.com/S0360-5442(17)31773-5/sref48

	Development of a novel time-of-use tariff algorithm for residential prosumer price-based demand side management
	1. Introduction
	2. Methodology
	2.1. Populate the base case sample of consumers
	2.2. Initial and baseline scenario
	2.3. Establishment of the ToU block periods
	2.4. Optimization of the ToU block periods
	2.5. Estimation of the optimum ToU rates
	2.6. Sensitivity analysis on the potential impact of the developed ToU tariffs
	2.7. Estimation of the peak kWh reduction due to possible various ToU price ratios

	3. Results
	3.1. Developed ToU tariff
	3.2. Sensitivity analysis based on the Load Factor
	3.3. Real implementation of the developed ToU tariffs in a pilot network
	3.4. Estimation of the peak kWh reduction due to possible various ToU price ratios

	4. Conclusions
	Acknowledgment
	References


