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a b s t r a c t

This paper presents an event driven model predictive control approach for a local energy management
system, enabling residential consumers to the automated participation in demand side management
(DSM) programs. We consider a household equipped with smart appliances, a storage unit, electric vehi-
cles and photovoltaic micro-generation. Resources are coordinated according to the needs of maximizing
self-consumption and minimizing the cost of energy consumption, in a contractual scenario character-
ized by designed or market indexed pricing models, with DSM options. The control action (appliances’
start times, the storage charging profile and the IEC 61851 compliant charging profile of the electric vehi-
cles) is updated every time an event triggers the controller, such as a user request, a price/volume signal
or the notification of a new forecast of micro-generation from the photovoltaic unit. The control frame-
work is flexible enough to meet the real dynamics of a household and short-term grid requirements,
while taking into account user preferences, contractual and technical constraints. A proper set of simu-
lations validates the proposed approach.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The future electricity grid will feature rapid integration of
distributed and renewable energy sources (RES) as a priority for
a sustainable growth of the industrialized countries [1]. The
implications of such a trend are widely being investigated and
the availability of negative and positive balancing power is com-
monly recognized as a basic requirement in order to mitigate the
effects of RES volatility on grid stability and reliability [2,3].
Depending on the size and placement of distributed generators
from consumption, the balancing task can be performed at differ-
ent levels, according to the basic principle ‘‘the smaller the dis-
tance between RES and consumption, the higher the benefit for
the grid.’’ As a matter of fact, when talking about micro-generation
at residential level, a local energy management system (EMS)
matching generation with consumption appears as a meaningful
and cost-effective technological solution both in the consumer
and distribution system operators (DSOs) perspective. Further,
when considering larger amounts of energy, extended control
architectures implementing automated demand side management
(DSM) strategies and several forms of storage devices installed
along the distribution lines are complementary, clean and cost
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Nomenclature

T discretization time step
ct first time step of problem definition
ch last time step of problem definition
dt departure time of the electric vehicle (EV)eC pricing parameter
C electricity tariff
P� estimate of power from non-plannable loads
Ppln estimate of power from planned loads
Ppv estimate of micro-generated power
VPT virtual power threshold
M set of appliances to be planned
Sm first possible start-time interval for the mth plannable

appliance (set by the user)
Em last allowed end-time interval for the mth plannable

appliance (set by the user)
Nm duration of the mth plannable program
Pm mean consumption of the mth plannable appliancebPm peak consumption of the mth plannable appliance
umk Boolean control variable related to the activation of the

mth appliance

x state of charge of the electric energy storage
nst efficiency coefficient of the storage
DPst charging/discharging rate of the storage
ust

k Boolean control variable related to storage charging
operations at kth time interval

vst
k Boolean control variable related to storage discharging

operations at kth time interval
y state of charge of the EV
nev efficiency coefficient of the EV
DPev maximum charging/discharging rate of the EV
uev

k semi-continuous control variable related to EV charging
operations at kth time interval

vev
k semi-continuous control variable related to EV dis-

charging operations at kth time interval
st; ev; pv superscripts referred to, respectively, the electricity

storage, the EV and the photovoltaic panel
max; min; 0 superscripts referred to, respectively, a maximum

and minimum allowed value, and an initial value
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competitive technologies in the balancing markets with respect to
legacy generation, as they can reduce the reliance on expensive
and pollutant power plants taken in stand by hot mode for the
most of time. In the real case, characterized by a combination of
small and medium size generating units from RES, a local energy
management system working at residential level is the key ele-
ment enabling the consumer to optimally benefit from the energy
produced inside the dwelling and to participate in DSM programs
in an automated way, then enlarging his/her level of responsive-
ness and the related economic benefit in reaction to proper signals
[4,5]. Such a system is also promising with respect to the objective
of minimizing the cost related to the energy that exceeds the local
production from the micro-generation, in a scenario characterized
by a time varying electricity tariff. Indeed the recognition of elec-
tricity product differentiation as a meaningful concept for the
improvement of grid operation [6] has resulted in the possibility
for consumers to choose among several pricing schemes character-
ized by different risk levels, based on their flexibility in electricity
usage [7]; the higher the tariff variability during the day, and day
by day, the higher the risk transfer from the retailer to the con-
sumer [8], the higher the need of help for the consumer in order
to optimize energy consumption [9]. Starting from designed tariffs
such as the time of use (ToU) scheme, characterized every day by
the same two or three fares (off-peak, on-peak and sometimes
mid-peak [10]), the variability increases considering market
indexed schemes such as day ahead pricing (DAP), where the
hourly tariff is known on a day ahead basis, and real time pricing
(RTP), where the cost of energy is updated during the day [11]. It
is straightforward to look at ToU and DAP as basic forms of DSM;
however, the implementation of the rigorous DSM concept, as
defined in [12], requires the exchange of intra-day price/volume
signals as additional feature, as a result of a trading in the balanc-
ing markets established in order to meet short-term requirements
of the grid. As a matter of fact, RTP can be seen as a tariff scheme
including DSM features. In the light of above, it is clear that a res-
idential energy management system has to be able to manage
loads taking into account information known in advance, and to
react to real-time user needs and DSM signals, which implies the
solution of a real time load shifting problem.

In this paper we establish an event driven model predictive con-
trol (MPC) approach for a local energy management system
designed to optimally manage the resources of residential electric-
ity prosumers, considering a dwelling equipped with a photovol-
taic (PV) panel, a storage unit, smart household appliances and
an electric vehicle (EV) with back-feeding capability. This paper
provides the natural extension of the work presented in [13],
which detailed the basic load-shifting control rationale of an EMS
targeted for passive electricity consumers. The innovative
contribution of the present paper regards the inclusion of the
micro-generation unit, the electricity storage, and the EV into the
EMS problem formulation, thus considering a reference scenario
focused on electricity prosumers. Moreover, operation of devices
is here coordinated according to different optimization criteria,
such as cost minimization under ToU, DAP and RTP models, self-
consumption maximization and automated overload avoiding.
These objectives are met by dynamically assigning appliances start
times, and optimally controlling the charging process of the stor-
age unit and the EV. Our approach assures the respect of user pref-
erences in the use of electric energy, and has the flexibility needed
to meet the dynamics of real life in a household.

The remainder of the paper is organized as follows. In Section 2
the state of the art is discussed along with the proposed innova-
tions. In Section 3 the system architecture is described. In Section 4
the control system is presented from a functional point of view. In
Section 5 the mathematical formulation of the load shifting prob-
lem is given. Section 6 is dedicated to the presentation and discus-
sion of simulation results. Finally, in Section 7 the conclusions are
drawn.
2. State of the art and proposed innovation

Load management has received increasing attention from
academics and industries during the last decade. Industry has been
the driving sector, and the first one for which pioneer DSM
programs have been deployed [14–16]. Even if load shifting criteria
are strictly connected there to the productive process under
control, the idea of re-optimizing arises as a way to manage distur-
bances and inaccurate system modeling. The same approach
sounds reasonable also when thinking about load control in the
residential sector, which is being faced at different scales with dif-
ferent granularity levels of control.
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A first class of problems are those trying to solve the load shift-
ing problem taking a single household as reference domain. First
guidelines about how a local EMS should work can be dated well
before the arise of the smart grid concept [17,18] and recently pro-
totypal implementations have emerged (see e.g. [19], based on sto-
chastic dynamic programming). Several approaches have been
studied in this research area. In [9] the authors propose an EMS
aimed at minimizing costs while keeping under control the waiting
time for operation of the appliances. The authors correctly argue
that EMSs acting in a RTP environment require price prediction
capabilities. However, integration of storage unit and EVs is only
envisaged, while integration of micro-generation is not treated.
Another interesting approach is presented in [20], where a load
scheduling system based on artificial neural networks is consid-
ered. The appliances self-organize in a distributed way and then
a coordinator corrects their outputs in order to provide a feasible
schedule and enhancing micro-generation self-consumption for
the next day. The approach cannot be used in a real time frame-
work, since the user must provide a list with the appliances to be
executed within the next 24 h. Moreover, non-deferrable loads
are not explicitly taken into account in problem formalization:
these drawbacks are rather recurring in the relevant literature.
Also genetic algorithm techniques have been applied. For example,
in [21], though presenting only an illustrative formulation, the
authors show how the local EMS can be designed to optimize the
size and cyclic operation of battery storage, minimizing the impact
of aging and replacement costs. Local EMSs have been also investi-
gated using the concept of utility function from micro-economy
[22,23]. A significant aspect of the optimization-based approach
in [22] is related to the possibility to work in a RTP framework;
possible drawbacks regard: (i) the need of knowing in advance
the exact daily energy demand, which is a very sensitive data when
referred to a single consumer, and (ii) the provided output, which
consists of a hourly energy allocation, without any indication about
how controlling single loads on a higher temporal resolution, in
order to match the given allocation. In [23] the authors present a
Markov decision process formulation. They apply Q-learning tech-
niques to find policies minimizing a balance of financial costs and
dis-utility deriving from long waiting times. Among the drawbacks,
we mention parameters and utility functions selection, the impos-
sibility to strictly control appliances execution times and prevent
overload and, most of all, the fact that the approach works only
for loads whose power profile can be modulated (only the overall
amount of energy required by the appliance is taken into account,
not its power profile).

Utility functions are largely used also for a relevant class of
problems that considers the allocation of energy to a cluster of
consumers served by an energy supplier, by maximizing the social
welfare through distributed optimization. They were first applied
to the energy procurement problem at transmission level [24]. A
similar problem is discussed in [25] for the allocation to small
consumers on a day ahead basis, then not capturing intra-day
dynamics of consumption; in [26] the same approach is used for
intra-day allocation, but time correlations in consumption are
neglected. A significant step forward is given in the series of
works [27–29], where the day ahead capacity procurement and
the real time demand response problems in presence of RES
uncertainty are jointly formalized and coordinated over the two
timescales. Differently from most of the works in this category,
where each utility function is associated with a single consumer,
in these works a utility function together with a specific set of
constraints model a single appliance, then introducing a deeper
granularity in the load shifting control; however as in [23], a
strong assumption is made regarding the ability of appliances to
adapt their demand within a continuous power interval and
without power correlations among phases, which is not true in
practice for EVs with vehicle to grid (V2G) capabilities and above
all for typical white household appliances such as dish-washers
and washing machines. In this sense, household appliances man-
ufacturers recommend a specific power profile for each appliance
program and allow minor deviations such as temporarily suspen-
sions at the end of specific phases. Finally, the authors consider
the need of real time load shifting only as a consequence of RES
realization at delivery time; conversely other events such as the
dynamics of consumer requests and short term grid needs require
a real time control framework: we remark the need of controlling
loads on a event basis to be in line with real life. As far as specif-
ically concerns electromobility, there are several ongoing research
projects working on the topic of EV charging, such as e-DASH [30],
Green eMotion [31] and Mobincity [32], which supports this work.
A lot of works in literature deal with the charging control of EV
clusters (e.g. [33,34]). Some contributions are becoming to appear
also in relation to the residential sector [35,36]. However, none of
the EV control strategies we found in literature explicitly consider
the limitations on the charging control imposed by the interna-
tional standard IEC 61851 [37].

Our work extends the contributions aforementioned for local
EMS working in the home domain, overcoming the highlighted
drawbacks and taking motivation also from the works here men-
tioned on load shifting control through dynamic allocation of
energy to consumers. The characterizing aspects and the innova-
tions of this work are:

(1) The controller is event driven. The control action is updated
in response to events from the environment, such as: user
requests for the execution of an appliance program, EV
charging requests, notification of DSM volume/price signals,
updates of micro-generation power forecasts, RTP notifica-
tions and overload warnings. That allows to take into
account real dynamics of the household.

(2) The controller works based on time varying signals. The con-
troller is able to work in a highly dynamical scenario in
which the tariff is periodically announced by the retailer,
the contractual power threshold may be temporally changed
by the DSO, peak and average load profiles associated to
smart appliances programs vary according to the environ-
mental conditions and short-term forecasts from the
micro-generation unit are frequently updated.

(3) The controller interacts with the market. The controller calcu-
lates the minimum rebate which a qualified market actor has
to give to the consumer for positive reaction to DSM volume
signals, and the cost/saving resulting from reaction to price
signals.

(4) The user is made completely aware about energy consump-
tion and related cost. Through preferences expressed when
asking for each load running, the user can decide how much
the EMS could affect his daily life. That regards both the exe-
cution of plannable loads within the time boundaries speci-
fied by the user, and also the satisfaction of the user
preferences related to the EV charging requests (i.e. duration
of the charging process and desired final state of charge of
the EV).

(5) The exploitation of the micro-generation unit is maximized.
The controller maximizes self-consumption through proper
load shifting and proper control of the EV and storage charg-
ing/discharging processes, always respecting technical con-
straints and user preferences related to the execution of
appliances’ programs and the EV recharging.

(6) The integration of EV charging process in the problem,
including back-feeding capability and the limitations on
control action imposed by the international standard IEC
61851.
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To the best knowledge of the authors, no other work on residen-
tial EMSs deals with efficient integration of smart appliances, stor-
age, EVs and micro-generation, in different contractual scenarios
and always respecting user preferences and habits.
3. System architecture modeling

The system architecture (Fig. 1) consists of a home area network
of sensors (a smart meter and smart plugs to connect legacy appli-
ances), smart devices (smart appliances, an electricity storage, EVs)
and a computing unit (the smart home controller (SHC)). The archi-
tecture is in line with the ones developed in the Italian project E-
Cube [13] and the FP7 project ADDRESS [38], which are reference
projects, respectively, in Italy and in Europe, in the field of active
demand. In the following, a description is given for each device
making part of the architecture, also mentioning data on the
expected cost of the device. In this regard, valuable data can be
found also in [39].
3.1. Smart home controller

The SHC is a software module responsible for the solution of the
load shifting control problem discussed in this paper. In the E-Cube
project, the SHC is hosted by a residential Internet gateway, which
acts as a central node providing connectivity among the smart
devices inside the household and with the actors outside the
household. In particular, from one side, the gateway manages
(through wireless ZigBee connection [40]) data acquisition from
the smart meter, the smart plugs and the smart appliances, and
sends the control signals computed by the SHC to the storage,
the EV, the smart appliances and the smart plugs. On the other
side, the gateway features an Internet connection that can be used
to connect with upper level actors (the retailer, the DSO, etc.) and
receive DSM signals notification (from the DSO or a community
energy management system [25]), tariff updates (from the retailer
or a community energy management system in case of dynamic
pricing schemes) and photovoltaic forecasts updates. Suitable res-
idential gateways will be available on the market at a cost not
exceeding 50 €. The cost is characterized by a decreasing trend
due to the traditional electronics employed. We highlight that
the architecture depicted in Fig. 1 refers to the particular business
model addressed in E-Cube, where the Internet gateway is property
of a service provider (a telecommunication operator in the specific
case) and acts as a platform for the convergence of multiple ser-
vices, including the SHC module but also, e.g., provisioning of
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Fig. 1. The system architecture.
entertainment contents, Internet connection, etc. All the interac-
tions with the outer actors possibly involved in the energy
management problem (i.e. the DSO, the retailer, etc.) are through
the Internet link offered by the gateway. As a matter of fact, as
specified also next, in the E-Cube scenario there is no need to com-
municate with the fiscal meter (property of the DSO) of the house-
hold since a non-fiscal meter is deployed to the purpose of
gathering aggregated consumption data. Other business models
are possible as well, for example the case in which the leading
business actor is the DSO, and the EMS is hosted directly by the
smart meter (see also the next discussion in Section 3.6). Finally,
the minimum functional requirements for the SHC module are as
follows:

(1) The SHC has to maximize self-consumption of power from
the micro-generation plant.

(2) The SHC has to minimize the costs related to energy
consumption.

(3) The SHC has to satisfy the user preferences while avoiding
overloads.

(4) The SHC has to be able to perform near-real time computa-
tion and notification of decisions to the user.

(5) The SHC must efficiently manage the storage and the EV,
taking into account battery aging and losses.

(6) The SHC has to be able to compute the minimum rebate in
case of DSM signals.

3.2. Household appliances

Household appliances can be classified according to their load-
shifting flexibility and degree of smartness in data processing and
interaction with the user [13]. We recall here the basic distinction
between plannable and non-plannable loads. Plannable loads are
those loads whose start time can be chosen by the SHC according
to proper optimality criteria: the user prepares the appliance to
run and then, instead of starting the appliance, specifies the first
possible start time (denoted by Sm, where subscript m identifies
the appliance) and the last allowed termination time (Em). The cou-
ple ðSm; EmÞ is the so called user preference (UP). Based on environ-
mental variables (e.g. temperature, humidity, pressure, etc.) and
the program selected, the smart appliance calculates an estimate
of the program’s duration Nm and program’s mean and peak power
profiles (time series Pm and bPm). The user preference, Nm; Pm andbPm are sent to the SHC as an input for the control problem: we call
this a ‘‘R event’’ (request event). The user is free to modify previ-
ously submitted requests at his/her free convenience, meaning that
he/she may ask the SHC to anticipate, defer or cancel the execution
of previously planned loads (we call this an ‘‘U event’’ – update
event). Furthermore, the user may even override the system by
deciding to immediately start an appliance, regardless of whether
it was previously planned by the SHC or not (we call this an ‘‘O
event’’ – override event).

Non-plannable loads (i.e. loads whose start time cannot be
decided by the SHC) are taken into account for calculating an esti-
mate of the power available for plannable (smart appliances) and
controllable (storage, EV) household devices. Such a threshold is
built based on the concept of virtual power threshold (VPT) –
defined in [13] as the difference between the contractual power
threshold and the estimated consumption from not plannable
loads – and taking also into account the forecast of the power from
micro-generation and the power discharged from the storage and
the EV. Prototypes of smart household appliances are available at
a cost of about 1000 € (in case of a washing-machine). Once on
the market, the price will be comparable to that of premium
household appliances.



A. Di Giorgio, F. Liberati / Applied Energy 128 (2014) 119–132 123
3.3. Electric energy storage

We assume the storage batteries absorb and supply energy at a
fixed rate DPst . Due to losses, we assume that a portion nstDPstT of
the energy exchanged during the time period T is lost in the con-
version process. nst 2 ð0;1Þ is the efficiency factor. Let x½k� denote
the state of charge at the end of the generic kth time interval, then
the discrete-time dynamics of the storage state of charge is

x½k� ¼ x½k� 1� þ DPstT 1� nst� �
ust

k � 1þ nst� �
v st

k

� �
ð1Þ

where T is the discretization time step, ust
k and vst

k are Boolean con-
trol variables associated, respectively, with the charging and dis-
charging phase (ust

k ¼ 1 if and only if the storage is commanded to
absorb energy during the kth time interval; whereas v st

k ¼ 1 if and
only if the storage is commanded to discharge at k). We further con-
sidered the following technical parameters: power input/output
DPst ¼ 1 kW, efficiency factor nst ¼ 0:02, minimum allowed state
of charge xmin ¼ 1 kW h and maximum allowed state of charge
xmax ¼ 6 kW h. We considered a cost of 190 €/KW h (Lithium-ion
batteries), with an estimated life of 5000 load cycles at 80% depth
of discharge. These data have been obtained based on projections
to 2020 [41] and will be used to derive a proper value for the depre-
ciation term to be included in the formulation in order to account
for battery wear. Finally, it is necessary that the storage state of
charge can be measured, in order to recover from model uncertain-
ties affecting (1).
3.4. Electric vehicle

The EV is modeled similarly to the storage, with the addition of
proper constraints imposed by the user and the charging process.
The user sets the departure time dt and the desired final level of
charge ydes. A charging request including this data is called an
‘‘EV event’’. Similarly to (1), the EV dynamics is given by

y½k� ¼ y½k� 1� þ DPevT 1� nevð Þuev
k � 1þ nevð Þvev

k

� �
ð2Þ

where y½k� is the state of charge at the end of the generic time inter-
val. According to standard IEC 61851, the charging power is a
semi-continuous variable: beyond the standby mode, the current
has to be limited between a positive lower bound and an upper
bound. If DPev denotes the maximum allowed charging power, then
uev

k 2 f0g [ ½a;1�, with a > 0 denoting the minimum allowed
charging rate. It is assumed that V2G power is modeled in the same
way (i.e. vev

k is assumed semi-continuous, with vev
k 2 f0g [ ½a;1�).

The following technical parameters have been considered:
DPev ¼ 3:3 kW; aDPev ¼ 1 kW, efficiency coefficient nev ¼ 0:02,
minimum allowed state of charge ymin ¼ 2 kW h and maximum
allowed state of charge ymax ¼ 17 kW h. In order to derive a depre-
ciation factor to account for the wear of the battery pack, we further
considered a cost of 280 €/kW h for Lithium-ion batteries (a projec-
tion over 2020 [42]), with an estimated life of 192000 km and an
average consumption of 0:21 Kw h/km. Like for the storage, current
market values (around 500–600 €/kW h) are still in general not
compatible with cost-efficient deployment of storage devices in
the context of residential energy management systems.

Like for the storage, we assume that the EV state of charge can
be measured. If that is not the case, at least the initial value of the
state of charge must be known (it can be read by the driver on the
EV dashboard and submitted to the SHC together with the user
preferences on charging). As a matter of fact, starting from the ini-
tial value, the evolution of the state of charge in the future can be
assessed via detailed non-linear simulation models [43].
3.5. Micro-generation

We deal here with photovoltaic micro-generation. We assume
that power forecasts [44] are available at each time of problem for-
mulation. To this end, we consider the possibility that the forecast
(time sequence denoted with Ppv ) is periodically updated during
the day, through proper notifications to the SHC, which we call
‘‘F events’’. Depending on the adopted forecasting technique, the
F event may be notified by a specialized sensor belonging to the
household domain, or by an external actor via the Internet connec-
tion of the residential gateway. We highlight that the proposed
control scheme contributes to increasing the return on PV invest-
ments, being self-consumption maximization one of its objectives.

3.6. Smart meter and smart plugs

The smart meter provides the SHC with aggregated consump-
tion data for the day-ahead computation of the VPT and real-time
notifications of overload warnings, which we call ‘‘W events’’. As
specified above, in the E-Cube project the SHC does not communi-
cate with the DSO-owned fiscal meter, but rather with a non-fiscal
smart meter (which we call in the following ‘‘commercial’’ meter)
installed on purpose immediately downstream of the fiscal meter
(for simplicity, in Fig.1 only the commercial smart meter has been
depicted, leaving out of the picture the fiscal meter, which in
E-Cube has no direct role). As discussed in [39], another possibility
(which requires the direct involvement of the DSO into the busi-
ness model) is the roll-out by the DSOs of new fiscal smart meters
with enhanced communication capabilities (a solution which
would imply no installation costs for the user). As a matter of fact,
as mentioned by the authors in [39], some currently available
models of smart meters are already equipped with network inter-
face cards (the electronic component of the smart meter that takes
care of communication with the outer environment) already pro-
vided with both a wide area network transceiver (to communicate
with the DSO for automated meter reading) and a home area net-
work transceiver (to communicate with the home devices, includ-
ing the SHC). In this case, the data on aggregated consumption
would be provided to the SHC directly by the fiscal smart meter,
as well as the communication with the DSO (in Fig. 1, the smart
meter depicted would be precisely the fiscal smart meter, and
there would be no need to install an additional commercial meter).
Furthermore, considering a business case centered on the DSO, it
would be also reasonable to expect (as discussed in [39]) that the
energy management module would be hosted directly by the smart
meter. In that case, the SHC module depicted in Fig.1 would col-
lapse onto the (fiscal) smart meter, which would thus become
the central element of the home area network, for both control
and communication tasks. However, once again we remark that
the architectural choices depend on the selected business model,
and, to the best of the knowledge of the authors, there is still not
a comprehensive view on the matter. The reader is addressed to
[39] for a discussion on current and future smart meter technolo-
gies, relevant standards, supported functionalities, communication
capabilities, costs assessment, etc. Finally, in case the link between
the smart meter and the SHC is not present (due to the missing of a
commercial meter and the impossibility of establishing a connec-
tion with the fiscal meter), the following considerations apply: (i)
the estimation of the VPT could still be done by processing histor-
ical consumption patterns in case they can be received through the
gateway from the DSO (which acquires them via automatic meter
reading); (ii) it is not possible to detect overloads in real time;
however, given the fact that the VPT is computed based on a con-
servative estimate of the aggregated consumption from non-plan-
nable loads (see [13], Section 5), and also considered the capability
of the fiscal meter to sustain temporary overloads, it can be



Fig. 2. Working logic of the control system.
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concluded that, thanks to the proposed approach, the incidence of
overload events is smaller than in the non-automated case.

Smart plugs are provided both with metering functions and
control capabilities: they provide local consumption data (used
to estimate the incidence of non-plannable loads) and they are
capable of interrupting supply of energy (this functionality can
be deployed to respond to overload warnings). Prototypes of
smart-plugs are available at a cost of about 110 €, with a signifi-
cantly (9% per year) decreasing cost-trend. We highlight that the
basic version of the algorithm described in this paper does not
require the installation of smart plugs (they are mostly needed in
order to develop fine overload-avoiding strategies, while a good
estimate of non-plannable loads consumption can be obtained also
through the proper elaboration of the measurements coming from
the smart meter and the smart appliances [13]). Concluding, the
combined action of the smart meter, smart appliances and proper
estimation algorithms, together with the introduction of strategi-
cally placed smart plugs, is considered the optimal solution for
effective and viable monitoring of the domestic environment [39].

3.7. Aggregator

In case the household is part of an energy community, an aggre-
gator may be considered at the interface between the SHC and the
market/DSO [38]. It is in charge of generating DSM signals for the
SHC in the form of price/volume signals, based on balancing mar-
ket trading or specific DSO paybacks. We call ‘‘DSM event’’ the
notification of a DSM signal to the SHC. Further, in case of RTP,
we assume that the aggregator notifies the tariff to the SHC on a
hourly ahead basis. Even though such a notification can be techni-
cally seen as a price signal, for the sake of clearness we call it a ‘‘P
event’’.

3.8. Notes on deriving costs and benefits

The migration to energy management architectures will be a
gradual process. We designed the architecture based on compo-
nents that either are in place in today’s households, or are close
to the market and will be present in houses of the future (gate-
ways, EVs, smart appliances, smart plugs and residential storages).
Furthermore, the architecture is modular (i.e. it can work with a
subset of devices) and can be built incrementally, following the
process of household renovation. Naturally, current implementa-
tions are characterized by high prototypal costs. However, studies
[38] indicate that the value generated for users (in the form of eco-
nomic saving) and DSOs (through DSM for grid support, distributed
energy resources (DER) integration, etc.) is expected in the future
to outbalance costs, which will decrease significantly due to the
advancement of technologies (especially with respect to storage
devices).
Table 1
Events, related actors and notifications.

Event Actor generating the event Notification to the actor

R event User Appliance start time, cost
EV event User Cost
F event Forecasting operator Not applicable (NA)
W event Smart meter NA
DSM event Aggregator Minimum rebate
P event Aggregator NA
U event User Update outcome
O event User Override outcome
4. SHC working logic

The control system is designed with the aim of optimally react-
ing to events (Fig. 2). Each time an event triggers the SHC, the SHC
verifies the set of loads for which a request exists, and the bound-
ary conditions in terms of user preferences, energy tariff C, current
VPT, micro-generation power Ppv and planned power from previous
iterations Ppln. Then it retrieves the current state of charge of the
storage and the EVs currently in the home domain and solves a dis-
crete time open loop optimal control problem. The outputs of the
problem are the control signals to the storage and the EV, and
the best times to run the smart appliances. Event after event, con-
trol is updated (by solving the updated control problem) in order to
‘‘follow’’ optimality, thus optimizing consumptions. We call this
mechanism event driven MPC, to distinguish it from traditional
MPC concept [45].

The user is always free to interact with the SHC to submit new
requests, update previously expressed preferences or even override
the system by, e.g., forcing the execution of an appliance scheduled
by the SHC for future times. In particular, in case the user updates
previously submitted preferences, the SHC reacts by simply per-
forming an iteration of the control problem in which the updated
user preferences are considered. As a result, the schedule of the
previously planned devices is consequently updated. In case of
an override event instead (e.g. a user willing to immediately start
an appliance), the appliance in question communicates to the
SHC the expected load profile characterizing the requested pro-
gram, and the SHC performs an iteration of the control problem
in which the specified load profile is added to the power curve
Ppln of planned loads already started. Also, even if not explicitly
considered in this paper, appliances already running at the
moment of computing may be temporarily suspended after specific
phases, only in case of DSM events (this is suggested by the appli-
ances manufacturers for avoiding service degradation and guaran-
teeing flexibility during emergency operation of the grid).

All the user requests are preliminary examined (i.e. before com-
putation) by the SHC in order to verify that they are correctly for-
matted. However, that is not sufficient to guarantee that a
particular user request can be satisfied according to the specified
user preferences (for example that, in case of EV charging, the final
desired state of charge will be reached). That depends on the cur-
rent state of the household environment (i.e. the loads running at
the time of the request, etc.). Nonetheless, a definitive notification
can be given by the SHC to the user after solving the load shifting
problem (see Table 1). If the problem is infeasible, the SHC notifies
the user and may also suggest, in case of EV charging for example,
the minimum additional time required to reach the desired final
state of charge.
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Finally, we highlight that, prior to computation, the SHC
updates the current state of the household domain by performing
the following updating tasks:

� It acquires the current state of charge of the EV (in case a charg-
ing session is active in that moment).
� It acquires the current state of charge of the storage.
� It verifies which of the plannable loads scheduled in the previ-

ous iterations have started and which instead have not started
yet (the latter can be re-scheduled in the forthcoming iteration).
� It updates the value of vector Ppln, which represents the aggre-

gated load consumption of all the plannable loads that have
already started and that cannot be re-scheduled anymore by
the SHC. The knowledge of vector Ppln allows the SHC to avoid
to plan a new load in a temporal interval in which a previously
planned load is currently working (to be precise, the overlap
could be allowed by the SHC if it does not lead to overload
and it is deemed convenient).

Furthermore, depending on the event triggering the controller,
the SHC updates also other relevant quantities, such as: the tariff
(price event), the forecast on PV production (forecast event), the
power threshold (DSM event, volume signal), the set of loads to
be scheduled (request event and EV event). So doing, the model
considers the temporal correlations between iterations, in the
sense that decisions taken in past iterations are taken into account
when solving the current iteration of the problem.
5. Mathematical formulation

This section details the optimal control problem based on
mixed integer linear programming (MILP) that the SHC solves each
time it is triggered by an event. The problem is set up in a discrete-
time framework (T is the time step). The temporal interval of
problem definition goes from the time instant when the SHC is
triggered (called ct – current time), to the time instant denoted
by ch (control horizon), which, in general, varies depending on
the chosen length of the control window (ch� ct). In particular,
the control window can be chosen fixed iteration after iteration
(i.e. sliding control window approach) or, as for the simulations in
this paper, the value of ch can be fixed instead, so that the problem
is defined up to a specified time instant (as in the case the problem
is defined on a daily basis). In any case, ch has to be chosen such
that it ‘‘covers’’ all the user requests (including both requests to
run smart appliances and requests for EV charging).

The formulation given below is based on the relevant assump-
tion that the price paid for the energy injected into the grid (say
Csell) is always smaller than any value of the energy tariff (i.e.
Csell
6minkfCkg, being Ck the electricity tariff). The assumption is

nowadays generally confirmed by the electricity market data and
consistent with the objective of minimizing RES injections into
the grid. As a matter of fact, the following considerations apply
under the above assumption: (i) it is always more convenient for
the user to self-consume the energy generated by the PV panel,
rather than selling it to the grid; (ii) it is always more convenient
to self-consume the energy discharged from the storage or the
EV, rather than injecting it into the grid. As a result, the given prob-
lem formulation leads to self consumption maximization and does
not need to optimize the energy exchanges with the grid (since the
optimal strategy is always to maximize self-consumption, and the
energy injections into the grid can be computed consequently once
the amount of self-consumed energy is known). Furthermore, the
assumption makes possible to derive a linear formulation for the
cost minimization problem treated here (which is relevant for
the purpose of practical implementation). As a further logical step
in the SHC problem, in future works a (non-linear) extension of
the formulation presented here will be given in order to optimize
the energy trades with the grid (which is necessary only in
case the assumption does not hold). Finally, a second assumption,
taken only for ease of discussion, is that only one EV per time is
being recharged.
5.1. Objective function

The objective function J to be minimized has an economic
meaning and is written to capture: (i) the cost due to devices’ acti-
vation, (ii) the saving coming from self-consumption and (iii) the
value given by the additional energy possibly stored at the end of
the control horizon with respect to the beginning.

The objective function J is therefore given by

J ¼
X
m2M

XEm�Nmþ1

k¼S�m

XkþNm�1

i¼k

Pm½i� kþ 1�TC½i�
( )

umk þ
Xch

k¼ct

DPstTC½k�

� ðust
k � v st

k Þ þ
Xch

k¼ct

DPstTDstðust
k þ vst

k Þ þ
Xdt

k¼ct

DPevTC½k�ðuev
k

� vev
k Þ þ

Xdt

k¼ct

DPevTDevðuev
k þ vev

k Þ �
Xch

k¼ct

maxfPpv ½k�

� P�½k�;0gTC½k�vpv
k � eCXch

k¼ct

DPstT ð1� nstÞust
k � ð1þ nstÞv st

k

� �
ð3Þ

The first term of J is related to the cost of energy consumption
resulting from the execution of plannable loads to be scheduled
by the SHC. The binary decision variable umk is equal to one if and
only if the mth plannable load is scheduled for starting at the begin-
ning of the kth time interval. The term

PkþNm�1
i¼k Pm½i� kþ 1�TC½i�umk

is the resulting cost in case the appliance starts at k. The parameter
S�m, defined as S�m ¼ maxfSm; ctg, identifies the first feasible start
time for the mth appliance, which is different from the first possible
start time Sm specified by the user upon request. In particular, in the
case of new user requests S�m is equal to Sm while, in case of
appliances already scheduled in the past but not already started
at ct – i.e. the appliances to be rescheduled – it may happen that
Sm 6 ct, and therefore S�m ¼ ct should be chosen as the first feasible
start time for the appliance. Therefore, the start time k of the mth
appliance can be chosen (see the summation over index k) in the
interval ½S�m; Em � Nm þ 1�, always respecting temporal user prefer-
ences. Finally, the total cost related to all the plannable appliances
is obtained by summing over index m.

The second and third terms of J are related to the control of the
charging and discharging cycles of the storage. The Boolean control
variable ust

k (vst
k ) is equal to one if and only if the storage recharges

(discharges) during the kth time interval. Variables ust
k and vst

k are
equal to zero in standby mode. The term DPstTC½k�ðust

k � v st
k Þ

accounts for the cost or saving related to the energy charged or dis-
charged by the storage at k. The term DPstTDstðust

k þ vst
k Þ is instead a

depreciation term that accounts for the economic cost (i.e. loss of
life) associated to wear of the storage deriving from the charging
or discharging operations at k.

The fourth and fifth terms of the objective function are related
to the control of the EV. Variables uev

k and vev
k are semi-continuous

in this case (see Section 5.2.1). DPev is the maximum allowed
charging/discharging power. Dev is the EV depreciation factor. Dev

is the average depreciation per kW h charged or discharged by
the EV. Parameters Dst and Dev are technology dependent and can
be computed based on the cost of the related device and its
expected life [21]. The introduction of the depreciation terms is
such that the devices are activated only in case the deriving eco-
nomic benefits outbalance the expected costs coming from wear.
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The sixth term of the objective function is related to the saving
coming from self-consumption of energy. The term maxfPpv ½k�
�P�½k�;0g indicates the amount of micro-generation power avail-
able for controlled devices. The real variable vpv

k 2 ½0;1� is needed
to take into account the amount of micro-generation power actu-
ally consumed by controlled household devices (see also constraint
(12) below).

The last term in (3) is an estimate of the value associated with
the energy accumulated in the storage at the end of the control
problem (i.e. at ch). That amount of energy has an associated value
in the sense that it allows the storage to be discharged in a future
time, leading to savings. The fact that such a value is associated to
future (i.e. beyond the current control horizon ch) operations of the
storage makes possible to implement different pricing strategies,
that is, different choices for the cost parameter eC are possible. A
conservative strategy (adopted in the simulations below) would
be to set eC to, e.g., the minimum value of the energy tariff observed
in the past. Other more balanced strategies are possible as well,
like setting eC to a future expected value of the tariff (if known),
or to a moving average of the tariff observed in the past. Notice that
a similar term can be included also for the EV, but for the sake of
simplicity we avoid doing that here.

Finally, in (3) all the economic terms relevant to the problems
have been included. Other secondary optimization terms (with no
direct associated economic meaning) can be included in (3) in
order to refine the optimization model, as explained in Section 5.4.

5.2. Constraints

A number of technical and economic constraints must be con-
sidered in order to obtain a meaningful formulation.

5.2.1. Constraints on variables’ nature
The problem includes binary, semi-continuous and continuous

variables

umk 2 f0;1g; ust
k 2 f0;1g; vst

k 2 f0;1g
uev

k 2 0 [ ½a;1�; vev
k 2 f0g [ ½a;1�; vpv

k 2 ½0;1�
ð4Þ
5.2.2. Overload avoiding
A constraint must be put in order to prevent overloads

X
m2Mk

Xmin k;Em�Nmþ1f g

i¼maxfSm ;k�Nmþ1g

bPm½k� i�umi

( )
þ Ppln½k� þ DPstðust

k � vst
k Þ

þ DPevðuev
k � vev

k Þ � Ppv ½k� 6 VPT½k� 8k 2 ½ct; ch�

ð5Þ

Mk represents the set of plannable loads possibly active in the kth
time interval: Mk ¼ fm 2 M : Sm 6 k 6 Emg. The term Ppln½k� refers
to the power of plannable appliances started in previous iterations
and possibly still active after ct. The introduction of such a term
prevents any ‘‘interference’’ or ‘‘overlap’’ between loads planned
in the past and still active at ct, and loads to be planned in the
current iteration of the problem. Looking at (5), and recalling the
definition of VPT given in [13] (i.e. the difference of the contractual
power threshold and the forecast aggregated power consumption
from non-plannable loads), it is clear that the quantity
VPT þ Ppv ½k� þ DPevvev

k þ DPstvst
k defines the threshold on the power

that can be absorbed by the smart appliances, the storage and the
EV. Note that, since Ppv ½k� and VPT½k� are conservative estimates
[13], in very rare circumstances it might happen that an overload
state is reached even if (5) is satisfied. In such cases, the SHC issues
an overload warning, and a series of countermeasures can be taken,
including the forced activation of the storage unit and, in case that
is not enough, the prioritized shedding of loads [13].
5.2.3. Constraints on devices activation
Only one start time per plannable load can be selectedXEm�Nmþ1

k¼S�m

umk ¼ 1; m 2 M ð6Þ

This is not related with the possibility of interrupting plannable
loads. If we assume that appliances can be suspended only once,
then suspension can be simply handled by conceptually dividing
the program into two sub-programs: one which is rigid, and a sec-
ond one, which is the suspended portion of the program, which can
be seen as a new plannable program subject to particular ‘‘user
preferences’’ (the maximum allowed interruption period). If pro-
grams can be suspended more than once, then new decision vari-
ables and proper constraints have to be included in the formulation.

A second constraint is on the storage: only one mode (charging/
discharging/standby) per time interval can be selected

ust
k þ v st

k 6 1 8k 2 ½ct; ch� ð7Þ

A similar constraint holds for the EV. However, since control vari-
ables in this case are not Boolean, it is not sufficient to pose
uev

k þ vev
k 6 1 at the generic kth time interval. Instead, we pose

Iðuev
k Þ þ Iðvev

k Þ 6 1 8k 2 ½ct; dt� ð8Þ

where with little abuse of notation, we denote with Iðuev
k Þ and Iðvev

k Þ
two Boolean variables equal to one if, respectively, uev

k and vev
k are

greater than zero. We force that by imposing Iðuev
k ÞP uev

k and
Iðvev

k ÞP vev
k .

5.2.4. State constraints
The constraint on storage capacity is xmin

6 x½k� 6 xmax

8k 2 ½ct; ch�, where x½k� is the state of charge at the end of the kth
time interval. The state of charge x½k� can be expanded by writing
the explicit solution of the dynamics (1). The following constraint
is obtained

xmin
6 x0 þ DPstT

Xi

k¼ct

ð1� nstÞust
k �

Xi

k¼ct

ð1þ nstÞvst
k

( )
6 xmax 8i 2 ½ct; ch� ð9Þ

where x0 is the storage initial state of charge at ct. The reader can
derive a similar constraint for the EV.

Further, the final state of charge of the storage has to be equal or
greater than a reference value xref (to prevent the economic saving
coming from mere storage discharging)

x0 þ DPstT
Xch

k¼ct
ð1� nstÞust

k �
Xch

k¼ct

ð1þ nstÞvst
k

( )
P xref ð10Þ

Instead, the constraint on the final state of charge of the EV is simply
related to the EV user preferences (desired final state of charge ydes)

y0 þ DPevT
Xdt

k¼ct

ð1� nevÞuev
k �

Xdt

k¼ct

ð1þ nevÞvev
k

( )
P ydes ð11Þ
5.2.5. Constraints on distributed energy resources
A constraint must be put in order to ensure that the savings

reported in the objective function (3) really occur, in the sense that
the incoming energy from the storage, the EV and the micro-gen-
eration is actually absorbed by the controllable devices. We pose

DPstv st
k þ DPevvev

k þmaxfPpv ½k� � P�½k�;0gvpv
k

6

X
m2Mk

Xmin k;Em�Nmþ1f g

i¼max Sm ;k�Nmþ1f g
Pm½k� i�umi

( )
þ DPstust

k þ DPevuev
k

þ Ppln½k� 8k 2 ½ct;dt� ð12Þ
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in order to ensure that the power accounted by the saving terms in
the objective function (3) is always less or equal than the power
consumed by the household (i.e. the power which determines a sav-
ing is really self-consumed by the household devices). The reader
can derive a similar constraint for k 2 ½dt þ 1; ch� (in which EV terms
have to be neglected). Constraint (12) plays a fundamental role in
maximizing self-consumption, as it encourages the residential node
in always behaving as a passive node, a behavior which is highly
beneficial to the grid and will be probably rewarded in the future
by the distribution system operator. We take Pm as a good estimate
of the lower energy consumption profile of the appliance: the con-
straint must be conservative.

5.3. Overall problem definition

The generic iteration of the SHC energy management problem
can be summarized as follows.

SHC event driven optimal control problem. For a given trigger
time ct, an electricity tariff C (estimated or known, depending on the
tariff scheme), a virtual power threshold sequence VPT, a planned
power sequence Ppln from previous SHC iterations, an estimate of
non-plannable power P�, a forecast of micro-generated power Ppv , a
storage unit, an EV charging request characterized by desired depar-
ture time dt and desired final state of charge ydes, a set M of user
requests with related average and peak power time sequences (P; bP)
and UPs intervals (Sm; Em), minimize J subject to the constraints dis-
cussed in Section 5.2.

Hence, the control problem is based on MILP [46].

5.4. Model refinements

The formulation given above includes all the objective function
terms and all the constraints which are necessary for achieving fea-
sible and cost-efficient solutions under the taken assumptions. In
particular, the given formulation highlights the concept of the
SHC as a mean to generate value both for the user (through ratio-
nale usage of electric energy) and the DSO/grid (through imple-
mentation of DSM programs). Some model refinements can be
considered when moving to the practical implementation phase.
As a matter of fact, the problem given in Section 5.3 is character-
ized, in general, by many solutions. Hence, ‘‘secondary’’ terms in
the objective function can be introduced in order to choose optimal
solutions which match particular criteria. For example, solutions
can be preferred in which, being the costs equal, the appliances fin-
ish the job earlier, or the EV is recharged faster. That can be
achieved by adding to the objective function (3) the following
terms

X
m2M

XEm�Nmþ1

k¼S�m

aðk� S�mÞumk þ
Xch

k¼ct

bðk� ctÞDPstTðust
k þ vst

k Þ

þ
Xdt

k¼ct

cðk� ctÞDPevTðuev
k þ vev

k Þ ð13Þ

where a; b and c are parameters small enough not to ‘‘interfere’’
with the terms in (3) (i.e. several orders of magnitude smaller than
the terms of C). The terms aðk� SmÞ; bðk� ctÞ and cðk� ctÞ are
therefore fictitious costs linearly increasing with time. They have
the effect of selecting the optimal solution characterized by early
activation of devices.

6. Simulation results

We present three simulation studies. The first one is related to
normal operation of the system in case the tariff over all the con-
trol horizon is known in advance. We refer to DAP (but the
approach works also for more ‘‘static’’ designed tariffs, such as flat
rates and ToU tariffs). The second simulation case deals with reac-
tion to DSM signals, and the concept of minimum rebate for accep-
tance of DSM signals is introduced. The third simulation deals with
RTP.

The details on the specific load profiles considered for the sim-
ulations are reported in Table 2 (load profiles from ID 1 to ID 6 have
been provided by the appliances manufacturer Electrolux s.p.a.,
while the consumption profiles of the programs ID 7 and ID 8 have
been built based on information from the respective manufacturers
[47,48]). The tariff used in the simulation is based on the Italian
PUN (‘‘prezzo unico nazionale’’) tariff (Fig. 3a) [49], which results
from day ahead trading. Measured PV power curves were used
(Fig. 3b) [50], while the estimate of non-plannable power was
taken from [13]. Simulations span over one day (i.e. we choose a
fixed control horizon), from 05:00 to 05:00 of the following day.
This choice (05:00 AM) derives from the consideration that such
an hour (or a close time) can be considered as the time in which
all the requests related to the previous day (including night-time
EV charging) have been satisfied and no new ones for the coming
day are pending. The time step T is equal to five minutes.

Simulations have been performed on an INTEL
� Core i5-3230 M

CPU, 2.40 GHz, 8 GB RAM computer, running the MS WINDOWS
� 8

64-bit operating system. The simulation environment has been
built in MATLAB� R2011b. The MILP problem defined in Section 5.3
has been solved by calling from MATLAB� the cplexmilp function,
made available by the CPLEX� for MATLAB� feature of the IBM�

ILOG� CPLEX� Optimizer (version 12.5). The CPLEX� for MATLAB�

module allows a user to define optimization problems and solve
them within MATLAB� (via the cplexmilp function in this case).

6.1. Normal operations – DAP scheme

We simulate the reaction of the SHC to the sequence of events
reported in the first row of Table 3. The events’ trigger times are
reported in the second row of the table, while the third and the
fourth rows report the time boundaries related to the simulated
events. Three EV charging requests have been simulated: EV1
demands for 5 kW h, EV2 demands for 3 kW h and EV3 for 11
kW h. For ease of exposition, the F event simply consists in a noti-
fication of a 50% reduction in the forecast PV power generated in
the time interval indicated in Table 3. Given these events, three dif-
ferent scenarios have been simulated: (i) non-automated scenario,
in which the storage is not considered, loads are immediately
started by the user and the EV charging is uncontrolled and starts
at maximum power as soon as the EV is plugged; (ii) pure load-
shifting scenario, in which the storage is again not considered but
the SHC optimizes the EV charging process and the choice of the
appliances’ start times, and (iii) fully automated scenario, in which
the smart appliances, the storage and the EVs are managed (includ-
ing storage and EV discharging) according to the control strategy
presented in this paper. The appliances’ start times computed by
the SHC in the fully automated scenario are reported in the third
block of the table. In the fourth block of the table, c denotes the
total cost obtained in the non-automated scenario, while cop and
cs

op denote, respectively, the cost in the pure load-shifting scenario
and the cost in the fully automated scenario. The rows below cop

and cs
op report the savings achieved, respectively, in the pure

load-shifting scenario and in the fully automated scenario, with
respect to the non-automated scenario.

Fig. 4 reports the outcome of SHC control after event R5. The
line in red represents the threshold on the power available for
the controllable devices (as said in Section 5.2.2, it is computed
as VPT þ Ppv ½k� þ DPevvev

k þ DPstv st
k ). The power consumption pro-

files of the appliances, of the storage and the EV are represented
as colored bars. The bars of loads active at the same time are



Table 2
Load specifications, including: appliance, load ID, number of phases of the selected program, duration of each phase, mean power consumption and peak power consumption of
the program.

Appliance ID Phases Dt ðminÞ P ðkWÞ P̂ ðkWÞ

Washing mach. 40 �C 1 6 [5,10,15,5,5,10] [0.02,2.0,0.02,0.02,0.02, 0.05] [0.15,2.1,0.15, 0.15,0.2,0.55]
Dryer 2 1 [105] [2.4] [2.7]
Washing mach. 60 �C 3 7 [5,25,20,5,10,10,20] [0.04,2.0,0.3,0.06,0.06, 0.06,0.08] [0.2, 2.1,2.1,0.2,0.3,0.3,0.5]
Dishwasher Normal 4 6 [15,30,10,5,20,50] [0.07,1.4,0.1,0.07,2.0, 0.01] [0.1, 2.1,1.2,0.1,2.2,0.02]
Washing mach. 95 �C 5 8 [25,5,60,20,10,10,10,20] [0.3,0.05,2.1,0.1,0.1,0.1, 0.1,0.3] [2.1,0.3,2.2,0.2,0.6,0.8,0.8, 1.1]
Dishwasher E8 6 6 [20,15,35,10,20,50] [0.07,2,0.07,0.07, 1.8,0.01] [0.1, 2.1,0.1,0.25,2.3,0.02]
Water heater 7 1 [140] [1.2] [1.2]
Oven 8 1 [40] [2.1] [2.1]
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Fig. 3. PUN tariff (a) and PV power curve (b) used in the simulations.
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Fig. 4. Normal operation: aggregated power profile after event R5.
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superimposed, in order to easily visualize overload conditions. The
curve in green represents the power from micro-generation, while
the dashed line represents power discharged by the storage. The
dotted vertical line denotes the current time (bars referring to
appliances started before the current time are colored the same
way). The analysis of Fig. 4 is explicative of how optimal energy
management is achieved. First of all, loads and EV charging are
shifted as far as possible under the PV curve in order to maximize
self-consumption. The portion of load exceeding the PV curve is
then managed through proper load shifting and storage discharge
control. It can be noticed for example that the EV charging power
tracks the PV curve during large part of the charging session, while
most of the additional energy needed to satisfy the user charging
request is taken by charging at maximum power during the tariff
Table 3
Simulation scenario setup (rows 1–4) and results (rows 5–19) in case of normal operation

Event ID Start R1 R2 R3 F EV 1 R4
Trigger time 05:00 08:00 08:20 08:40 09:00 12:00 13:00

Start time NA 08:00 08:20 08:40 11:30 12:00 13:00
End time NA 13:00 13:20 13:40 13:00 16:00 19:00

Load ID Plan Plan Plan Plan Plan Plan Plan
Load 1 NA 10:10 10:10 09:00 12:05 12:10 12:10
Load 4 NA NA 10:55 09:10 09:00 09:00 09:00
Load 2 NA NA NA 10:55 10:25 10:25 10:25
Load 6 NA NA NA NA NA NA 15:55
Load 5 NA NA NA NA NA NA NA
Load 7 NA NA NA NA NA NA NA
Load 8 NA NA NA NA NA NA NA
Load 3 NA NA NA NA NA NA NA
Load 4 NA NA NA NA NA NA NA

c (€cent) �164.3 �157.5 �131.2 �67.7 �58.4 23 39.1

cop (€cent) �164.3 �159.8 �141.4 �80.2 �65.2 0.04 17.5
Saving (%) 0 1.4 7.7 18.4 11.5 99.8 55.1

cs
op (€cent) �172.2 �168.5 �152.5 �97.7 �83.6 �10.1 8.9

Saving (%) 4.8 6.9 16.2 44.4 43.1 143.7 77.1
valley between 13:00 and 14:00. The storage also recharges under
the PV curve and releases power to feed the other load exceeding
the PV curve (see the dashed line representing storage discharging
before 12:30). Storage discharging can be also implemented to pre-
vent overloads (notice the activation of the storage around 18:00).
From the figure, it can be seen also that the energy previously dis-
charged is then planned to be recovered by the storage during
night-time, taking advantage of the low tariff. Fig. 5 displays the
final planning (the one after event EV3). All the UPs are always
respected and the threshold on power is never violated (thanks
to proper load shifting and, around 19:30, thanks also to the con-
tribution of storage and EV discharging). It can be seen that conve-
nient overnight EV charging is selected. The control action exerted
by the SHC is evident when considering the final planning obtained
in the non-automated scenario (see Fig. 6). It is evident in that case
s.

R5 U EV1 R6 EV 2 R7 O R7 R8 R9 EV 3
13:30 14:00 15:00 17:00 19:00 19:00 20:00 20:30 21:00

14:00 14:00 15:00 17:00 19:00 19:00 20:00 20:30 21:00
18:00 15:00 20:00 21:00 21:00 NA 23:00 23:30 05:00

Plan Plan Plan Plan Plan Plan Plan Plan Plan
12:10 12:10 12:10 12:10 12:10 12:10 12:10 12:10 12:10
09:00 09:00 09:00 09:00 09:00 09:00 09:00 09:00 09:00
10:25 10:25 10:25 10:25 10:25 10:25 10:25 10:25 10:25
16:30 15:55 15:50 15:50 15:50 15:50 15:50 15:50 15:50
15:15 14:30 14:30 14:30 14:30 14:30 14:30 14:30 14:30
NA NA 15:55 15:55 15:55 15:55 15:55 15:55 15:55
NA NA NA NA 20:20 19:00 19:00 19:00 19:00
NA NA NA NA NA NA 21:25 20:45 20:45
NA NA NA NA NA NA NA 21:20 21:20

72.7 72.7 111.9 165.7 194.6 194.6 213.9 240.3 428.7

54.8 57.3 101.6 157.8 185.8 186.7 204.4 230.2 383.9
24.6 21.1 9.2 4.7 4.5 4 4.4 4.2 10.4

46.8 49.7 93.7 150.2 177.3 178.1 195.7 221.6 376.2
35.5 31.6 16.2 9.4 8.8 8.4 8.5 7.7 12.2
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Fig. 5. Normal operation: final aggregated power profile (after event EV3).
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Fig. 6. Final planning in the non-automated scenario, obtained by ignoring the
overload constraint during simulation (i.e. the planning is not feasible in practice
due to overloads).
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that the user requests cannot be satisfied due to overloads (in that
regard, notice that the values of c in Table 3 have been computed
by neglecting the overload constraint, since they correspond to
load configurations that may be non-feasible in practice due to
overloads).

A more detailed analysis can be carried out by examining
Table 3, which reports the evolution of the appliances’ start times
and the evolution of the total cost event after event. In particular,
for each load (specified by the ‘‘Load ID’’ in the first column), the
corresponding row of the table reports the evolution of the load’s
start time as computed by the SHC after the events specified in
the first row of the table, so that the last column of the table
reports the final start times (the ones computed after event EV3).
It is seen that, whenever necessary, the SHC updates the start times
of the previously planned loads in order to manage the new events.
It is also interesting to examine the evolution of the costs event
after event, as the number of loads managed by the SHC increases.
The SHC initializes itself at 05:00, when it has no loads to manage.
The revenues (negative costs) computed after the first iteration (i.e.
at 05:00) come from the expected future injection of PV power into
the grid. In the fully automated scenario the revenue is higher
because the storage is planned to absorb part of the energy from
the PV plant. It is seen that it is always c P cop > cs

op, but it can
be noticed that the difference between cs

op and cop tends to be small
after the SHC has managed a large number of loads (compare the
values at the end of the table). The difference is great instead in
case of mildly loaded scenarios, especially when the aggregated
energy of the scheduled loads is comparable to the cumulative
PV energy. As a matter of fact, in that case the storage can be
loaded under the PV curve and can be used by the SHC to feed
the portion of the loads that cannot be shifted under the PV curve.
As a result, costs are negative or close to zero (see Table 3, from
event R3 to event R4). Besides R and EV events, the table reports
also a forecast event (visible also in the above figures), an update
event (U EV1 – at 14:00 the user anticipates the termination of
the charging session from 16:00 to 15:00) and an override event
(O R7 – at 19:00 the user ignores the start time suggested by the
SHC for load 8 and forces the SHC to start the load immediately).

Fig. 7 displays the storage control evolution at three different
times of the day. The portion of control lying at the left of the line
of current time is the control actuated in the past; the portion at
the right is the planned control sequence. As commented before,
at early hours the storage is planned to absorb energy from
micro-generation. Then, as the number of appliances to be served
increases, the storage tends to discharge to feed them and then
recovers energy in periods characterized by a convenient tariff.
The state evolution corresponding to the control sequences in
Fig. 7 is depicted in Fig.8. Note that at the end of the control hori-
zon the storage recovers the initial state of charge (saving does not
come from mere discharging). Fig. 9 reports the final state and con-
trol evolution related to EV2 charging request, which is fulfilled on
time.

In the above simulation we did not impose any time out to the
solver (i.e. either the algorithm converged to an optimum, or it
reached an incumbent sufficiently close to the optimum [46]).
The average computational time was 3:83 s, while the maximum
waiting time was 15:3 s. Also, excellent approximate solutions
could be achieved by imposing a time out to the solver. For exam-
ple, after imposing a time out of 5 s, the average optimality gap
[46] was only 2:12%. Performances can be improved by designing
problem-tailored solution algorithms, able to exploit the particular
structure of the problem. This is one of the research lines we are
currently developing.

6.2. Demand side management

The SHC enables the household to join ‘‘active demand pro-
grams’’ [38], through automatic rescheduling of planned loads
and updating of storage and EV control sequences. To test the
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Fig. 11. Estimates of the electricity tariff (the thickest line is the final tariff).

Table 5
Comparison of the final start times obtained in the DAP and the RTP scenarios.

Load ID 1 4 2 6 5 7 8 3 4

Start time DAP 12:10 09:00 10:25 15:50 14:30 15:55 19:00 20:45 21:20
Start time RTP 12:05 09:00 10:25 13:30 15:10 16:00 19:00 20:45 21:20
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strength of the proposed approach, we keep the same simulation
scenario as above and simulate SHC reaction to a DSM volume sig-
nal notified at 16:00 and demanding for a 1 kW reduction of the
contractual power threshold between 17:00 and 19:00 (a con-
gested period, see Fig. 5). Fig. 10 displays the final outcome, while
the details of the simulation are presented in Table 4. In particular,
the last column of the table presents the final planning of the appli-
ances, which is equal to that in Table 3 since, in this case, the DSM
signal is managed by the SHC by properly controlling the storage
and the EV, while the loads working at DSM time cannot be
rescheduled since they have already started when the DSM is noti-
fied (see the second column of Table 4). The contribution of storage
discharging is therefore relevant for avoiding overload, as it can be
seen from Fig. 10 (notice the storage discharging immediately after
the volume reduction).

Table 4 also reports the costs obtained in the pure load-shifting
scenario (cdsm

op ) and the ones obtained in the fully automated
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Fig. 10. Aggregated power profile after the DSM event.

Table 4
Simulations results: DSM operations.

Event ID DSM EV 2 R7 O R7 R8 R9 EV 3
Trigger time 16:00 17:00 19:00 19:00 20:00 20:30 21:00

Start time 17:00 17:00 19:00 19:00 20:00 20:30 21:00
End time 19:00 21:00 21:00 NA 23:00 23:30 05:00

Load ID Plan Plan Plan Plan Plan Plan Plan
Load 1 12:10 12:10 12:10 12:10 12:10 12:10 12:10
Load 4 09:00 09:00 09:00 09:00 09:00 09:00 09:00
Load 2 10:25 10:25 10:25 10:25 10:25 10:25 10:25
Load 6 15:50 15:50 15:50 15:50 15:50 15:50 15:50
Load 5 14:30 14:30 14:30 14:30 14:30 14:30 14:30
Load 7 15:55 15:55 15:55 15:55 15:55 15:55 15:55
Load 8 NA NA 20:20 19:00 19:00 19:00 19:00
Load 3 NA NA NA NA 21:25 20:45 20:45
Load 4 NA NA NA NA NA 21:20 21:20

cdsm
op (€cent) 101.6 158.9 186.8 187.7 205.4 231.2 384.9

cdsm;s
op (€cent) 93.1 151.1 180 180.1 197.9 223.7 378.2
scenario (cdsm;s
op ). Comparing Table 4 with Table 3 it is seen that

costs have raised. The analysis of such kind of data provides a ratio-
nale for the computation of the minimum rebate that a qualified
market actor has to provide to the user for positive acceptance of
the DSM program. The rebate should further take into account
and remunerate at least the investment cost in household equip-
ment and a remuneration to the user for any discomfort deriving
from the participation in the DSM program.

6.3. Real time pricing

In this subsection we consider a RTP scheme in which the tariff
is notified on a hourly basis, one hour in advance. The scenario con-
sidered is the fully automated one. In particular, we keep the same
sequence of events of Section 6.1, simulating also hourly price noti-
fications and tariff prediction updates. The SHC in this case works
based on estimates of the tariff. In particular, we emulate two
properties of efficient price predictors: the first one requires the
expected value of the price estimate to be equal to the actual value
of the tariff. Secondly, the variance of the estimate is assumed to be
increasing in time and small for short prediction horizons.

Let us regard the PUN displayed in Fig. 3a as the actual tariff
resulting from RTP (known only at the end of the simulation). Then
we can emulate the two properties above by ‘‘artificially’’ generat-
ing the tariff predictions starting from the PUN in Fig. 3a and
superposing to it a uniformly distributed random sequence with
zero mean and a support size linearly growing from zero (corre-
sponding to a price notification) to a maximum value ĉ at the end
of the prediction horizon. We took ĉ ¼ 7 €cent/kW h for a 24 h
ahead prediction (a challenging value: the average energy compo-
nent of the tariff in the simulation days is 7:0822 €cent/kW h).
Some of the resulting simulated price predictions are reported in
Fig. 11. Thin lines refer to predictions in the early hours of the
day (notice they are not accurate). Thicker lines refer to predictions
obtained later in the day. The thickest line represents the final tar-
iff. Table 5 reports the outcome of RTP simulations. The final cost is
377:4 €cent, compared to 376:2 €cent obtained in the case of DAP.
The difference is negligible, in spite of the great variability of sim-
ulated tariff predictions.
7. Conclusions and future work

This work has discussed a control framework for the optimal
energy management of a household equipped with smart
appliances, smart plugs, a smart meter, a storage unit, a local
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micro-generation plant and an EV point of recharge. The problem
has been addressed both from a user perspective (satisfaction of
UPs, costs minimization and maximization of self-consumption),
but also enabling the interaction with upper-level market or grid
actors. Event driven MPC provides the flexibility and robustness
needed in a dynamical context characterized by the interaction
with the user, uncertainty and time-varying signals. Several
developments are currently being investigated, including the
analysis of the theoretical properties of the control approach, the
investigation of DSM strategies acting on a significant number of
SHCs and the introduction of the SHC concept in micro-grids and
energy communities. Other major future works will regard the
investigation on minimum software and hardware requirements
for the unit hosting the SHC module (an issue which is strictly
related to the task of developing efficient and tailored solution
algorithms) and a comprehensive and detailed cost-benefit analy-
sis of the proposed residential energy management system, per-
formed using approaches like the ones presented in [51,52] to
generate highly realistic sequences of events.
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