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Storage devices and demand control may constitute beneficial tools to optimize electricity generation
with a large share of intermittent resources through inter-temporal substitution of load. This paper quan-
tifies the related cost reductions in a simulation model of a simplified stylized medium-voltage grid
(10 kV) under uncertain demand and wind output. Benders Decomposition Method is applied to create
a two-stage stochastic optimization program. The model informs an optimal investment sizing decision
as regards specific ‘smart’ applications such as storage facilities and meters enabling load control. Model
results indicate that central storage facilities are a more promising option for generation cost reductions
as compared to demand management. Grid extensions are not appropriate in any of the scenarios. A sen-
sitivity analysis is applied with respect to the market penetration of uncoordinated Plug-In Electric Vehi-
cles which are found to strongly encourage investment into load control equipment for ‘smart‘ charging
and slightly improve the case for central storage devices.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Since electricity demand and the availability of output from
Renewable Energy Sources (RES) are intermittent by nature, sys-
tem operators have to resort to relatively costly measures such
as reserve energy to maintain system stability. Back-up capacities
are set to become more relevant with increasing shares of RES pen-
etration. In this context, storage devices serve to store excessive
electricity generation and feed-in missing energy in times of need.
An alternative concept of better aligning demand and supply of
electricity through two-way digital communication technology is
commonly referred to as ‘smart metering’. Measures to manage de-
mand with the help of smart meters include demand response and
direct load control. Recent legislation obliges German grid opera-
tors and utilities to install smart metering systems in new and
refurbished dwellings. While legislative pressure spurs investment
in smart metering, it may imply a negative effect on investment
incentives in storage.

This paper scrutinizes load control and storage facilities as po-
tential concurrent options targeting at electricity generation cost
reductions and it quantifies possible substitution effects. Because
of their common purpose, direct load control and centralised stor-
age are two competing or possibly complementary solutions from
the perspective of a vertically integrated power distribution sys-
tem operator and utility. Moreover, it is tested whether storage
and load control could alleviate the need for grid reinforcements
ll rights reserved.
by avoiding capacity shortages. The idea is that avoided shortage
adds value to storage or DSM devices because of capacity upgrade
deferral and added electricity sales [1]. Additionally to these issues,
a methodological purpose of this paper is to demonstrate how sto-
chastic optimization and Benders Decomposition Method can be
sensibly applied to analyze and compare investment options in a
power distribution system setting. The focus lies on short-term
uncertainties and their impact on investment decisions.

There exists a broad range of literature dealing with storage siz-
ing decisions. Refs. [2–6] perform numerical optimizations in a
deterministic setting. Applications of stochastic patterns of gener-
ation and demand can be found in [7–10]. Tan et al. [10] present a
stochastic optimization model of battery sizing for demand man-
agement with emphasis on outage probabilities which is not dealt
with in this paper. Roy et al. [11] apply stochastic wind generation
patterns to a wind-battery system sizing model with deterministic
demand. Ref. [12] do likewise with Plug-in Electric Vehicles (EV) as
storage facilities.

The combination of intermittency of renewable resources and
demand-side-management (DSM) is addressed in [13,14]. Con-
cerning demand-side management (DSM), numerous research
publications were found on investment decisions into DSM. Ki
Lee et al. [15] assess investment into demand management sys-
tems for heating in a national case study for Korea. Paulus and
Borggrefe [16] adopt a system-wide perspective of investment in
DSM in a case study for Germany with focus on industrial consum-
ers. Manfren et al. [17] deal with distributed generation planning,
but avoid making any investment analysis. Neenan and Hemphill
[18] investigate investment from a societal perspective while

http://dx.doi.org/10.1016/j.apenergy.2011.06.008
mailto:aschroeder@diw.de
http://dx.doi.org/10.1016/j.apenergy.2011.06.008
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


Nomenclature

Set
n node with subset nn (1–5)
l line (1–4)
t hour (1–24)
s technology (wind, solar, pv, chp, biomass,

hydro, nuclear, hardcoal, lignite, gas)
sc scenario (1–50)
iter iteration (unlimited)

Variable
D(n, t, sc) demand shifting (kW h)
Sin(n, t, sc) storage inflow (kW h)
Sout(n, t, sc) storage outflow (kW h)
G(n, t, sc, s) generation (kW h)
Is(n) investment in storage (both kW and kW h)
Id(n) investment in a DSM system (absolute number)
P(l, t, sc) phases angle difference (–)

Parameter
q(n, t, sc) consumer demand (kW h)
gmax(n, t, sc, s) maximum generation capacity (kW h)
cg(s) variable generation cost (EUR/kW h)
cs levelized investment cost for storage (EUR/kW h and

EUR/kW)
cd levelized investment cost for DSM (EUR/kW h)
e storage efficiency (%)

dpos(t,n) positive load shift capacity (kW)
dneg(t,n) negative load shift capacity (kW)
lf(l,t,sc) electricity flow (kW)
x(l) line reactance (Ohm)
b(n,n) network susceptance matrix (–)
h(l,n) weighted network matrix (–)
lm(l,n) incidence matrix (–)
lfmax(l) maximal capacity for line flow (kW)
slack(n) slack variable (–)
p(sc) probability (%)
ks dual of fixing storage investment in subproblem (EUR/

kW h and EUR/kW)
kd dual of fixing DSM investment in subproblem (EUR per

dwelling)
a(iter) sub-problem objective (EUR)
IsMasterProblem(n) investment in storage from master problem

(both kW and kW h)
IdMasterProblem(n) investment in a DSM system from master prob-

lem (absolute number)
w wind speed (meter/s)
k Weibull scale parameter (–)
m Weibull shape parameter (–)
r random number with uniform distribution (0–1)
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[19,20] find that investment into DSM appliances might not be all
that profitable in general. It is intended to further investigate this
claim in the present analysis.

This paper’s contribution is unique in that no study explicitly
compares the cost saving potential of storage and DSM in a com-
prehensive model including grid representation, endogenous
investment and factors of uncertainty. Whilst an 11 kV distribution
network representation in combination with a benefit analysis for
storage and demand response measures can be found in [21], the
present work complements their analysis by adding endogeneity
to the investment into storage devices and DSM appliances as well
as uncertainty of demand and wind generation. A further contribu-
tion consists in the application of Benders Decomposition Method
to the stochastic program. Decomposition methods can be applied
to numerous bi-level optimization problems in the energy sector,
such as unit-commitment or capacity expansion. To the author’s
best knowledge, an application to evaluating storage and DSM
infrastructure investment is unprecedented.

The article is divided into a descriptive part, including the meth-
odology and model description, an explanation of parameters and
scenarios applied. Subsequently, results are outlined, discussed
and final conclusions are drawn.
2. Model description

A basic direct current (DC) load flow model [22] is adapted to a
situation with DSM and storage management. The model is de-
signed as linear program under a cost minimization regime with
hourly time resolution of two exemplary holidays (winter/sum-
mer). It is coded in General Algebraic Modeling System (GAMS)
and can be solved with the solver CPLEX [23]. A vertically inte-
grated system operator and utility is considered as the cost mini-
mizing agent. As explicated before, the aim of the operator is to
reduce generation cost by performing load management through
storage and DSM. The agent can decide on whether to invest in
storage and DSM technology as well as how to operate it. Still,
the operator is able to shift the vertical demand curve left and
rightwards through direct load control. The extensive-form cost-
minimisation objective reads as follows:

Objectiveðextensive formÞ min
Id; Is;

G;D;

Sin; Sout ; P

XSC

probðSCÞ

�
XN XT XS

CgðSÞ � Gðn; t; sc; sÞ þ IdðnÞ � Cd þ IsðnÞ � Cs

" #
ð1Þ

The agent minimizes generation cost (cg � G) of each technology s as
well as investment cost of DSM (Id � cd) and storage (Is � cs). Besides
generation and investment, the agent can manipulate storage in –
and outflow (Sin and Sout), shed or induce consumption (D) and
transfer electricity from one node to another (P), subject to con-
straints detailed below. All variables are positive.

On the demand side, consumers are aggregated at each of the
10 kV/0.4 kV sub-station nodes n. Thus, a diurnal pattern of con-
sumer demand (without DSM and storage), denoted by q, can be
approximated using standard averaged load profiles weighted by
the number of customers at the respective node. A perfectly inelas-
tic, hence vertical demand function is assumed. This is a funda-
mentally different approach to demand response studies [24,25]
and suitable here, since the focus lies on the producer side. There
is no demand response. The consumer demand q is supplemented
by contributions from DSM and charging of a battery. Note that de-
mand is treated as stochastic parameter and it thus depends on the
set sc.

Demand, supply and network flows constitute the energy bal-
ance constraint per node (2). It incorporates the simultaneity of
generation and consumption as well as the first Kirchhoff rule
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Energy balance
XS

Gðn; t; sc; sÞ þ Soutðn; t; scÞ � qðn; t; scÞ

� Dðn; t; scÞ � Sinðn; t; scÞ �
Xnn

bðnn;nÞ � pðnn; t; scÞ ¼ 0 ð2Þ

On the supply side, a setup is considered where each generation
technology s e S at time t e T and node n e N contributes an amount
G to total electricity generation at marginal unit cost cg, up to its
capacity limit gmax, which is exogenous, time-dependent and trea-
ted as stochastic parameter

Generation limit gmaxðt;n; sc; sÞ � Gðt;n; sc; sÞP 0 ð3Þ

Ideally, investment decisions relating to DSM and storage should
consider grid infrastructure constraints because load shifting may
serve as a mean to avoid capacity shortage and system outage prob-
ability. [1] explicitly take into account this ‘‘delaying capacity
replacement’’ value of DSM devices when appraising the worthiness
of DSM. In the model presented here, a number of grid-related con-
straints are included in order to study the grid impact of storage and
DSM operation. The topology of a lossless DC network with L lines is
described by the L x N network adjacency matrix lm, where lm = 1
means that line l e L starts at node n, while lml,nn = �1 means that
it ends at node nn. Weighting each line with the inverse of its reac-
tance x, the matrix h (4) can be obtained and thus the network sus-
ceptance matrix b (5). If the phase angle of node n at time t is
denoted by P, the flow along line l at time t is given by Eq. (6), where
the sign of lf depends on the direction of the flow. Since P is defined
relative to a reference bus, slackness conditions slack � P = 0 hold,
and a slack(1) = 1 is chosen (that is, P = 0) to set node 1 as the refer-
ence node (8). Physical line capacity constraints are included (7). In
a DC network, only the thermal limit is relevant. If the grid capacity
constraint was violated – which turns out not to be the case in this
specific application – the operator would incur losses through fore-
gone sales of electricity. Additionally, the capacity shortage is fixed
manually ex-post, a penalty cost is applied and the model is re-run
with new capacity figures

Weighted Network Matrix hðl;nÞ ¼ 1
xðlÞ lmðl;nÞ ð4Þ

Network susceptance bðn;nnÞ ¼
XL

hðl; nÞ � lmðl;nnÞ ð5Þ

Line flow lf ðl; t; scÞ ¼
XN

hðl; n; scÞ � pðl; n; scÞ ð6Þ
Line flow limits � lfmaxðlÞ 6 lf ðl; t; scÞ 6 lfmaxðlÞ ð7Þ
Flow convention slackðnÞ � pðn; t; scÞ ¼ 0; slackð1Þ ¼ 1 ð8Þ

The second set of constraints relates to DSM. Investments in load
control infrastructure for DSM have the benefit of allowing inter-
temporal shifts of electricity demand. When direct load control is
made possible, parts of electricity consumption may be shifted to
earlier or later stages up to power limits dneg and dpos, respectively
(9). The system operator does this with the aim of saving cost. dneg

represents the power limit of energy that can be saved at each time
by shifting load away to another period of the day. Accordingly, dpos

is the potential that can be added at each time. Note that both
parameters are defined as positive numbers while contributions
must balance to zero over time (10). The option for DSM is reflected
in an additional contribution to total demand, D.

DSM appliances may yield peak load reductions and thereby
justify infrastructure reinforcement deferral. However, it is disre-
garded that the installation of DSM appliances could yield overall
demand reductions. This is done not only because projections of
demand reduction through DSM devices appear to be fairly uncer-
tain and consumer-specific, ranging between zero and 20%
[13,26,27]. The focus is on direct load control exerted by the sys-
tem operator. Demand response measures and related consump-
tion savings driven by consumer behavior are beyond the scope
of this operatoŕs cost-minimization model.

Storage facilities in the distribution network can take up a posi-
tive charge Sin at time t, convert it (with some loss e) and subse-
quently provide positive amounts Sout, where the overall balance
is governed by capacity constraints (12) as well as input and out-
put kW power constraints, which are set equal to kW h capacity
constraints for reasons of simplicity (13). Note that energy capacity
is set equal to power limit and that there is no continuation value
of left-over storage since the storage device is empty at the last
time period (11)

DSM Limits dnegðn; tÞ � IdðnÞ 6 Dðn; t; scÞ; Dðn; t; scÞ
6 IdðnÞ � dposðn; tÞ ð9Þ

Constant total demand
XSC XT

Dðn; l; scÞ ¼ 0 ð10Þ

Storage balance
XT

½Sinðn; t; scÞ � e� Soutðn; t; scÞ� ¼ 0 ð11Þ

Storage capacity limits
XT

Soutðn; t; scÞ �
XT�1

Sinðn; t; scÞ � e

6 0;
XT

Sinðn; t; scÞ � e�
XT�1

Soutðn; t; scÞ � IsðnÞ 6 0 ð12Þ

Storage power limits IsðnÞ � Soutðn; t; scÞ
P 0; IsðnÞ � Sinðn; t; scÞ ð13Þ

Non-negativity Gðn; t; scÞP 0; Soutðn; t; scÞ
P 0; Sinðn; t; scÞP 0 ð14Þ

The problem is formulated as two-stage stochastic optimization
program, with initial investment at the first stage and operative
optimizations at the second stage, see Fig. 1. Benders Decomposi-
tion Method is applied with conflicting variables being initial
investment levels into storage and DSM [28]. The first-stage (mas-
ter) and the second-stage (recursive sub-problem) are successively
solved in loops until convergence of the upper and lower level
objective is reached. In this case, the sub-problem objective repre-
sents the upper bound as a restriction of the initial problem and
the master problem yields a lower bound as a relaxation of the ini-
tial problem. The solution algorithm stops if the difference between
the minimum upper bound and the current lower bound is less than
or equal to a very small number; otherwise the algorithm contin-
ues. Benders optimality cuts are added to the problem set of con-
straints after each iteration. Moreover, feasibility cuts ensure that
infeasibilities in the sub-problem due to misallocations in the mas-
ter problem are ruled out, see Fig. 1. The Benders approach reduces
computation effort as compared to solving the extensive form ex-
pected-value-problem

Master Objective min
Is ;Id

aþ
XN

IdðnÞ � Cd þ IsðnÞ � Cs ð15Þ

Benders cut aðiter�1Þþ
XN

½kdðnÞ � ðIdðn; iterÞ� Idðn; iter�1ÞÞ
þksðnÞ � ðIsðn; iterÞ� Isðn; iter�1ÞÞ�6aðiterÞ ð16Þ

Sub objective min
G;D;

Sin; Sout;p

XSC

probðSCÞ

�
XN XT XS

cgðsÞ � Gðn; t; sc; sÞ
" #

ð17Þ



Fig. 1. Algorithm used for solving the two-stage problem. Source: Own illustration.
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Fixing variables to results of Master Problem
Is ¼ Is;Masterproblem; Id ¼ Id;Masterproblem; dualskdðnÞand ksðnÞ ð18Þ

The relaxed master problem objective (15) includes a, the objective
value of the sub-problem and is restricted by the Benders cut (16).
The recursive sub-problem objective function is Eq. (17). Concern-
ing the Benders cut, kd and ks correspond to the duals of the con-
straints (18) which fix the variables Id and Is to their values
resulting from the corresponding master problem. aiter is a decision
variable setting the lower bound to the recourse problem after each
iteration iter. Note that the iteration counter is added in the variable
sets in Eq. (16) unlike all previous equations.
3. Application to a simple distribution system

This section describes the application of the presented model to
a simple five-node 10 kV medium-voltage-grid with characteristics
representative for a typical distribution system structure in sub-ur-
ban Germany. Assumptions regarding the application are detailed
hereafter.
3.1. Generation

Nine technologies are part of the generation mix in this applica-
tion: Six technologies – hydro, nuclear, lignite, hard coal, gas and
biomass – have generation capacities with full availability at any
time (up to a technical factor, e.g. due to maintenance
requirements, taken from [29]). Three technologies have varying
availability, with wind output being treated as stochastic parame-
ter. Small-scale heat-controlled CHP diurnal patterns follow an
approximation in [1] for both winter and summer and they are
weighted by a seasonal factor to account for higher heating de-
mand (and thus more electricity supply) during winter. Likewise,
Fig. 2. Frequency and power output under wind speeds with average wind speed 5.22
photovoltaic power (PV) exposes different daily profiles by season
adapted to a central German location [30] (see Fig. 2).

It is assumed that generation capacities are distributed differ-
ently between the nodes of the small network – while the bulk
of power will be available via the grid supply point, some of the
CHP, PV and biomass capacity is located at the demand nodes.
These assumptions are summarized in the parameters gmax, speci-
fying the maximum available power from each generation technol-
ogy per time slot and per node. Incremental generation cost is
illustrated in Table 1. The figures are independent from the utiliza-
tion rate of a generation technology.

Special attention is given to generation data of wind power
which is treated as stochastic parameter. A Weibull probability dis-
tribution is used to create random samples of wind speeds just as
in [11]. Eq. (19) includes w, the wind speed, r, a random number
uniformly distributed between 0 and 1, a scale and a shape param-
eter k and m. The shape parameter equals 2 (typical for Central
Europe) and the scale parameter varies by time-of-day [7,11,14]
and it is calibrated to match a typical on-shore location in the cen-
ter of Germany
Inverse of the Weibull cumulative distribution function

w ¼ �k � ½lnð1� rÞ�
1
m ð19Þ

Knowing that energy potential per second (the power) varies in
proportion to the cube of the wind speed (in m/s) it is then possible
to calculate actual wind energy production in kW h. The number of
wind rotors and their conversion efficiency are calibrated so as to
match a share of wind energy in total production conform to pro-
jections in [29]. Cut-in, rated and cut-out wind speeds are indi-
cated in [11]. The maximum of wind output is scaled to
537.44 kW with 800 m2 of rotor surface installed. The simulated
random diurnal profiles (Fig. 3) of wind output are validated
against observed data in [14,31] (Fig. 4) and simulations in [11].
m/s at specified cut-in and cut-out rates. Source: Own production based on [11].



Table 1
Available capacity and projections of marginal generation cost incl. carbon cost in 2020. Sources: Based on [29].

Available energy (per day, aggregated over all nodes)

Demand peak [kW] 1100

Technology type Source Wind
time-dependent

PV
time-dependent

CHP
time-dependent

Biomass
flexible

Hydro
flexible

Nuclear
flexible

Lignite
flexible

Coal
flexible

Gas
flexible

Total

Installed capacity
(Germany 2020) [GW]

Prognos et al. (2010) 40.9 33.3 4 7.85 7.7 6.7 22.4 28.5 24.4 175.75

Electricity generation
(Germany 2020) [TWh]

Prognos et al. (2010) 94 31 20 37 7.5 49.2 145.2 120.2 40.4 544.5

Capacity utilization
(where relevant)

Calculation 10.6% 57.1%

Technical availability
(where relevant)

Prognos et al. (2010) 88% 90% 93% 86% 84% 84%

Installed capacity [kW]
(in model)

Calculation 537.44 437.57 52.56 103.15 101.18 88.04 294.34 374.50 320.63 2309.42

Available energy, per day
[kW h] (in model)

Calculation Varying Varying Varying 2178.57 2185.51 1965.07 6075.27 7549.94 6463.81 31638.31

Technology Wind PV CHP Hydro Biomass Nuclear Lignite Coal Gas
Marginal cost [EUR/kW h] 0.0001 0.0002 0.0003 0.0004 0.0005 0.010 0.04 0.038 0.07

Fig. 3. Simulated diurnal profiles of mean wind speed and output in winter (right). Source: Own production.
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The fact that wind speed is simulated as a Markov, non path-
dependent, process may imply a slight over-valuation of invest-
ment into flexible storage and DSM.

Investment decisions into storage and DSM consider a long time
frame and confront with uncertainty about the future generation
technology mix. Whilst an investment appraisal should consider
today’s investment cost, generation cost reductions accrue in the
uncertain future and should therefore be estimated accordingly.
From the perspective of 2011, the year 2020 is a reasonable repre-
sentative ‘average’ year regarding the penetration of renewable en-
ergy resources over the life-time of a storage or DSM investment.
Therefore, a hypothetical generation limit of each generation tech-
nology is derived from a forecast for the year 2020 given in [29].
The available installed capacity in Germany is scaled down. The
share of installed capacity versus yearly peak demand in the model
network corresponds to that of the national grid [29]. Optimized
generation profiles are outlined in the results section.

3.2. Demand

360 dwellings are assumed to be connected per 10–0.4 kV
transformer. Each consumer unit is equivalent to a 1.99-person
household, a representative mix for Germany [29]. The share of
commerce and households is 21% and 79% in the model. The indus-
trial sector is left out in the model because – by law – industrial
consumers are already equipped with appliances for DSM when
yearly consumption exceeds 100,000 kW h.

A random sampling method is utilized for the simulation of de-
mand realizations. Random sampling techniques are popular in
risk analysis and used in research on electricity topics [10,11]. Sim-
ulated stochastic demand values (Figs. 5 and 6) are drawn from a
normal probability distribution with time-varying mean and stan-
dard deviation under the assumption of independence between
wind power output and demand. The simulation creates 50 profiles
which include the possibility of very extreme events. The mean
values of demand realizations are taken from [32] and averaged
over months and types of day so as to create two single daily mean
profiles per year with 24 h each (summer/winter) as indicated in
Fig. 7. Standard deviations of demand variability are known to
the optimizing agent based on empirical demand realizations at
the EEX wholesale intraday market [33]. Deriving medium-voltage
demand variability from wholesale market demand fluctuations is
reasonable for model systems with aggregation of a high number
of consumers. The more consumers are aggregated, the less volatile
is energy consumption [34]. Fluctuating demand profiles outlined
in [14,35], projected profiles for 2020 in [13] and empirical data
in [36,31] were consulted for validation of the sampled demand
profiles here. Maximum and minimum sampled demand in the
modeled system figure at 1100 kW and 240 kW, excluding EV. This
is a spread of factor five and a deviation of 60–90% around the



Fig. 4. Feed-in and load of non-power-metered consumers in 2010 in a Western German distribution grid. Source: [37].

Fig. 5. Sampled demand profiles in winter and summer. Source: Own production based on [32].

Fig. 6. Convergence of sample demand mean with an increasing amount of scenarios. Source: Own production.
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Fig. 7. Deterministic mean standard load profile with corridor for upper and lower bounds of the DSM potential on a winter holiday. Additionally, the graph plots one EV
charging profile. Sources: Own production based on [32,35,37].

Table 2
Storage investment cost data compiled from various sources. Mechanical bulk storage included for reference but not considered in the calculations. Sources: [27,39–41]

Conversion Storage type EUR (kW h) EUR (kW) Cycles (100%) Efficiency (%)

Mechanical Supercapacitor 3800–4000 100–400 10,000–100,000 95–100
Flywheels 1000–3000 300 20,000–60,000 90–95
Pumped hydro 60–150 500 20,000–50,000 70–85
Compressed air 30–120 550 9000–20,000 70–80

Electro-chemical Nickel–metal hydride 700–800 - 500–3000 65
Nickel–Cadmium 350–800 175 1000–3000 60–70
Sodium–sulfur 200–900 150 2000–3000 85–90
Lithium–ion 200–500 175 3000–6000 95–100
Vanadium redox-flow 100–1000 175 2000–3000 75–85
Zinc–bromine 50–400 175 >2000 70
Lead acid 50–300 175 200–1100 75
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average system demand (561 kW). Empirical data from 2010 in
[37] exposes a spread of factor 4 between peak and lowest de-
mand. For an isolated island with 90,000 inhabitants, Ref. [14]
show that the spectrum of demand values ranges 75–100% of the
mean value either way while maximum and minimum yearly de-
mand differ by factor eight. The spread of demand simulations in
the model system here is thus comparable with empirical profiles
at other distribution systems.

In this application electricity consumption of EV is incorporated
into the stochastic reference demand q. A load pattern is assumed
with 8 h domestic charging time at a rate of 1.6 kW, referred to as
Level 1 charging speed, see Fig. 7. A full charge per night
(12.8 kW h) would correspond to a 100 km range. Note that EV
are not equivalent to storage facilities in the model. This implies
no vehicle-to-grid technology is considered here. Uncontrolled
EV solely behave as additional consumers whose load can be cur-
tailed and shifted if DSM appliances are installed. Charging behav-
ior is under full control of the system operator if the EV is
connected to a smart meter. Different penetration rates of EV are
tested from zero to 10%, that is zero to 10% of the consumers
own an EV.
3.3. Load control

The DSM potential for average households and commerce is de-
rived from a study report for the City of Mannheim, Germany [35]
and triangulated with [38]. EV availability is added to the DSM po-
tential. The resulting potential can be observed for each time slice
in Figs. 7 and 13. Fig. 7 plots an average load profile for a household
with the corridor of maximum and minimum load when DSM
appliances are installed. Positive and negative shifts are possible
and their potential is asymmetric. The potential to increase energy
load at each time, dpos, is generally larger than dneg.

The total cost of equipment for DSM figures in between 160 and
350 EUR per installed system [27]. The application here refers to
the so-called Advanced Metering System (AMM), which includes
two-way communication via an integrated router gateway in each
dwelling. This system enables time-of-use pricing and direct load
control up to the capacities detailed in Fig. 13. The cost figure in-
cludes investment into hardware such as meter, gateway, router
and its initial installation. In order to calculate lifetime cost, a
6.5% annual discount rate is applied with a lifetime of 16 years
[27].
3.4. Storage

The model considers investment into a central large-scale sta-
tionary battery with endogenous capacity and conversion effi-
ciency factor of 75%. The focus is on batteries instead of
mechanical conversion systems (pumped hydro, compressed air
storage) for batteries require little up-front installation cost. To ac-
count for different battery technologies, the cost input data is var-
ied. Approximated cost data of equipment and installation is
compiled in Table 2 for reference [39,41]. In the cost consider-
ations, a life-time of 3000 cycles is assumed at 80% depth of dis-
charge with one cycle being completed every three days, hence a
life-time of 12 years. To facilitate tractability and increase compu-
tation speed, the three dimensioning vectors of a storage unit –



Fig. 8. Stylized 5-node distribution grid configuration in series connection and encircled location inside a reference distribution grid in Western Germany. Source: Own
illustration and based on [31].
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capacity in kW h, charge rate and discharge rate in kW – are all set
equal in this analysis. Such assumption is justifiable in a setting
with hourly time resolution where ramping constraints and thus
power limits are of secondary importance in contrast to capacity
limits. In the real world, actual batteries often feature power limits
even higher than energy capacity limit. This holds true notably for
storage devices that serve as reserve for capacity markets.
3.5. Grid

A stylized configuration is simulated with characteristics that
approximate realistic grids, as illustrated in Fig. 8 [42,31]. The grid
representation used in the case study here consists of five nodes,
one of them the grid supply point (GSP) and additionally demand
nodes with 10 kV/400 V transformers. The nodes are connected
in line so as to simulate a ‘worst-case’ topology. The analysis re-
strains to the 10 kV-level of a stylized distribution network. An
application of the presented DC flow model to a 400 V level is del-
icate for the DC load model does not include reactive power. At
400 V level, voltage drop limits and reactive power are of high rel-
evance. Large-scale generation, including wind turbines and pump
storage, is assumed to be connected at the 10 kV level, whilst DG
and EV are part of the underlying 400 V grid. 10 kV overhead lines
have a lateral surface of 70 mm2 with associated capacity of 185
Ampere. In a 10 kV DC setting this results in a maximum capacity
limit of 1850 kW. A typical reactance of the 10 kV network is
around 0.4 Ohm/km [1,42]. Upgrade costs of overhead circuits in
a comparable 11 kV grid lie at 3102 €/MW/km [1]. It is assumed
all lines are 2 km long and line flows do not incur transmission
losses. Grid reinforcements are not included as variable in the
model equations delineated above but calculated ex-post in case
grid capacity represents a shortage.
4. Results

The linear problem is implemented in GAMS, using the solver
CPLEX 9.0 [23] with standard options. A 1.3 GHz CPU machine exe-
cutes the stochastic linear program for one exemplary day in be-
tween 2 and 8 min time, depending on cost parameter values. Up
to 20 iterations are needed. The deterministic model is solved
within a few seconds time.

As shown in Fig. 9, storage devices are found to pay off at invest-
ment cost below 850 EUR/kW h of capacity. For instance, if costs
amount to 300 EUR/kW h, storage devices are profitable up to a
size of roughly 0.5 MWh capacity (and MW power limit) in the
framework of the model, depending on the degree of EV penetra-
tion. That corresponds to about one fifth of installed generation
capacity (2309 kW) and one half of peak demand (1100 MW) in
the system. In total, it is found that less than 1% of aggregated elec-
tricity consumption is stored in most scenarios (Fig. 10). A higher
number of EV, hence additional load, further improves the case
for storage devices. Given these numbers, it can be concluded that
even relatively expensive technologies such as Nickel–Cadmium
and Nickel–metal hydride batteries seem to be profitable. In con-
trast, super-capacitors and flywheels need to severely cut their cost
in order to become competitive. 2011 investment cost lies between
2000 and 4000 EUR/kW h.

Appliances for DSM prove hardly profitable in the deterministic
model setting, which echoes a finding of [19,20]. Likewise, the sto-
chastic model predicts DSM to be little beneficial in the absence of
EV. Only if all-inclusive investment costs boil down to 200 EUR per
consumer, investment into load control technology may become
beneficial. Note that 2009 cost for AMM systems lies 260 EUR
and projections for 2020 figure at a minimum of 160 EUR (EcoFys,
2009). The break-even point (tolerance threshold) for investment
into DSM increases up to 700 EUR when 10% of consumers own



Fig. 9. Investment into storage and DSM under varying investment cost and penetration degree of electric vehicles. The dotted line corresponds to results of the deterministic
model. Curves are interpolated from several mode runs. Source: Own production.
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electric vehicles. Such strong shift clearly outlines that a high num-
ber of EV induces investment into load control equipment. When
in competition to each other at current cost, investment into stor-
age devices is thus clearly favored to DSM systems. This effect is
minimal or partly reversed when EV penetration is high. Obviously,
storage devices offer more flexibility to load management than
does DSM.

The grid capacity is sufficient for a securely functioning system
in all scenarios. Even with high penetration of EV, grid capacity con-
stitutes no severe shortage since line flows do not exceed 60% of
thermal capacity limits at any time slice and any scenario, as shown
in Fig. 10 (total limit 1850 kW). Moreover, alternative grid configu-
rations such as a meshed grid would rather improve the situation. It
can be concluded that no grid reinforcements are required at 10 kV
level in the model setting. The grid representation constitutes a
stylized grid with realistic characteristics so as to be able to gener-
alize conclusions to a certain extent. While the stylized grid seems
to be well equipped for additional future loads, this does not mean
grid extensions are not needed at 400 V low-voltage level. In order
to undertake studies at 400 V level, an AC network model would be
appropriate. Such model would incorporate reactive power and
voltage drops which are of high relevance in low-voltage grids.

At specific hours in summer, the system exposes an over-supply
of renewable feed-in. In these moments, DSM and storage opera-
tions are crucial. Figs. 10–12 illustrate how load profiles are
adapted to better align with renewable feed-in. Overall, the system
predicts between 50% and 60% of demand to be covered by renew-
able energy generation in the absence of storage and DSM, which is
more optimistic than future projections for Germany in [29] (34%
Fig. 10. Storage operation, DSM operation and line flows in the course of a day in two sce
807 of the 1440 consumers have DSM appliances installed (right graph). Source: Own p
renewable generation by 2020). The use of storage and DSM
slightly improves the coverage through renewable resources.
Fig. 10 illustrates how line flows narrowly coincide with storage
use indicating that line flows are to a great extent driven by storage
operations. It is found that the introduction of storage devices en-
hances line flows at certain moments, see Fig. 10. This implies a
stronger capacity use rate than in the absence of storage, notably
in peak periods, i.e. midday. All in all, grid system reliability is
not affected by storage and DSM operation since line flows do
not exceed a critical bound at any moment, neither with nor with-
out storage and DSM.

A sensitivity study regarding the presence of EV in the year
2020 is illustrated in Fig. 9. This is done to address the question
of how EV modify the value of storage and load control. Obvi-
ously, a high number of vehicle charging augments demand and
uncertainty and therefore strengthens the case for storage devices
and DSM. If 10% of the consumers own and drive EV, investment
into DSM appliances is likely to rise by more than 50% as com-
pared to a world in absence of EV. All in all, results suggest that
EV strongly induce investment into load control facilities. This re-
sult pretty much reflects the trivial fact that most EV are sold to
home owners along with smart metering systems. A potential
alternative to smart EV home charging solutions could have been
to install central storage devices and let EV owners charge when-
ever they like (so-called dumb charging). However, the value of
storage increases only slightly in the EV scenario. This result indi-
cates that installing DSM appliances for EV owners to allow for
smart charging is a much better solution than installing central
storage.
narios. Summed over all nodes, there are 309 kW h storage capacity (left graph) and
roduction.



Fig. 11. Renewables feed-in, original demand and load after storage and DSM shifts. Source: Own production.

Fig. 12. Generation profile in a specific scenario on a winter day. Source: Own production.
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5. Discussion

It was found out that investment into storage is in general rel-
atively more profitable than DSM systems from an operator’s point
of view. Practical and management aspects strengthen the position
of central stationary batteries for storage versus DSM systems.
Central storage devices are much easier to handle than a high num-
ber of dispersed DSM systems. The latter also require decent com-
munication systems for interaction between consumers and supply
in order to be fully effective [43]. Furthermore, Storage offers a
constant load potential at any time. When installing DSM systems,
the availability of DSM potential is dependent on the consumer
and it may be temporarily very low. Thus, storage devices offer
more flexibility as compared to DSM systems. A drawback of stor-
age is that it requires higher upfront investment cost and it may
not go with consumption reductions in general. Consumption
reductions can be reached through demand response programmes
and the offering of variable tariffs with the help of DSM systems.
This latter effect (demand response) is left out in this paper’s
analysis.

What is the point of using a stochastic model? Results of the
deterministic model indicate a tendency to under-invest as com-
pared to the stochastic model’s outcome. Fig. 9 indicates that
deterministic investment levels (dotted line) can be up to 50% low-
er than in the stochastic model (continuous lines) for storage. For
both, storage and DSM, investment levels are consistently higher
in the stochastic model. The value of the stochastic solution
(VSS) is estimated to figure at around 0.5–5% of total system costs,
indicating a gain in efficiency when using the stochastic model as
opposed to the deterministic model. The VSS allows us to obtain
the goodness of the expected solution value when the expected
values are replaced by the random values for the input variables.
It can be concluded that the cost of disregarding uncertainty lies
at around 0.5–5% of total generation costs. On the other hand,



Fig. 13. dneg and dpos for households and commercial units in kW during a day. EV profiles excluded. Source: Own production based on [37,35].

4710 A. Schroeder / Applied Energy 88 (2011) 4700–4712
the execution time of the stochastic model with a sample of 50
draws is roughly 15 times higher than the deterministic model.
Computation times largely vary depending on the cost input data,
though. All in all, the stochastic model is superior for it provides
efficiency gains at reasonable additional CPU effort. The determin-
istic model appears to induce wrong long-term investment deci-
sions and under-values the flexibility provided by storage and
DSM.

The extensive form stochastic model solves in about the same
time as the Benders Decomposition Model. If the model was ex-
tended so as to diminish stylization, the Benders model computa-
tion time should improve in comparison to the extensive form. This
conjecture is supported by the fact that Benders Decomposition is
most suitable for outsized problems characterized by a capacious
set of variables, nodes and parameters. In these conditions it may
be valuable to isolate a group of decision variables and investigate
the problem partially with Benders method. The decomposition
model presented here shall constitute a basis for further models
of larger size.

6. Conclusions

This paper presents a DC load flow model applied to investment
in storage and DSM facilities in a stylized medium-voltage grid.
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The model incorporates uncertainty in demand and wind output
and uses Benders Decomposition to distinguish the investment
choices from operative optimizations. It is shown how Benders
Decomposition Method can be meaningfully applied to a small-
scale investment problem in a network-constrained industry. The
model is capable of reflecting multiple formats of short-term
uncertainties in system constraints at the operational dispatch
stage.

The model results indicate that grid reinforcements at 10 kV le-
vel are not necessary in any scenario. Capacity utilization rates do
not hit the 60% bound, which implies there is little harm to system
stability.

Results suggest that storage devices are beneficial at capacity
cost of up to 850 EUR/kW h under the stipulated conditions. This
implies that relatively expensive storage technologies such as
Nickel–Cadmium and Nickel-metal hydride storage are profitable
at current cost. Flywheels and large-scale capacitors are not com-
petitive unless cost is reduced to 25% of 2011 cost.

DSM is not beneficial in any scenario, particularly in the deter-
ministic model. Investment is beneficial up to an all-inclusive cost
of roughly 200 EUR per consumer. This break-even point (tolerance
threshold) boosts when consumers own EV, implying that EV
strongly encourage investment into load control systems. The find-
ing reflects the actual fact that most EV are sold along with ad-
vanced (‘smart’) metering systems.

As a logical consequence, it is found that investment into stor-
age is likely to crowd out investment into DSM appliances in the
model setting. Since both options are direct alternatives for energy
management, ‘smart meters’ seem to be of little economic value to
the system operator in the absence of EV. Unless governments
strongly encourage DSM through obligations (beyond current obli-
gations) and financial incentives or the promotion of EV, storage
facilities are the better option for a vertically integrated distribu-
tion system operator facing the conditions of this model. The pres-
ent paper aimed at modeling conditions that would be
representative for a section of a stylized distribution system in
Germany.

It could be shown, that the stochastic model produces more effi-
cient solutions than its deterministic counterpart. The cost of dis-
regarding uncertainty lies at 0.5–5% of total generation cost. The
analysis demonstrates that a stochastic treatment of wind and de-
mand patterns significantly augments the case for the use of stor-
age. The break-even point for investment decisions into storage
increases from 350 to 850 EUR/kW h when uncertainty of wind
and demand are taken into account. Hence, the deterministic mod-
el leads to considerable under-investment into storage.

All in all, the results are highly sensitive to the assumed invest-
ment cost for storage and load management devices. EV are an-
other cause for variations, yet, to a lesser extent. The calculations
indicate that the value of storage strongly varies with the intermit-
tency of wind output. The value of DSM is less sensitive to wind but
more sensitive to EV penetration.

There are a number of conceptual caveats to the analysis which
constitute areas for improvement. Energy saving through demand
response is entirely factored out. The model may therefore under-
estimate the value of DSM to a minor extent. Furthermore, the
investment cost for batteries is calculated on a diurnal basis with
a fixed number of cycles per day. Fixing the cycles is a necessary
step to obtain an exogenous cost figure but somewhat arguable
since the cycles are endogenously determined in the model. An-
other drawback of this model is that some potential business cases
of batteries and DSM are not included. Besides peak load reduc-
tions and network reinforcement deferral, [21] point to other ben-
efits of using storage devices. For instance, balancing markets as
potential business field for batteries are not included in the present
model. Other shortcomings are the stylized grid configuration and
the absence of ramping constraints for storage, which can be in-
cluded in a further model of larger size. An application to a grid
of larger size is planned for a subsequent paper.
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