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Abstract— This paper introduces a hybrid evolutionary op-
timization algorithm as a tool for training an Artificial Neural
Network used for production forecasting of solar energy PV
plants. This hybrid technique is developed in order to exploit
in the most effective way the uniqueness and peculiarities of two
classical optimization approaches, Particle Swarm Optimization
(PSO) and Genetic Algorithms (GA). This procedure essentially
represent a bio-inspired heuristic search technique, which can
be used to solve combinatorial optimization problems, modeled
on the concepts of natural selection and evolution (GA), but
also based on cultural and social behaviours derived from the
analysis of the swarm intelligence and interaction among par-
ticles (PSO). Some simulation results are reported to highlight
advantages and drawbacks of the proposed technique in order
to suitably apply this algorithm to neural network applications
in engineering problems.

I. INTRODUCTION

Computation techniques play an important role in most
engineering problems in which optimization problems have
to be solved. Usually the complex nature of many practi-
cal problems involves an effective use of Artificial Neural
Networks (ANNs) to solve them. ANNs are useful tools
when it is necessary to understand the complex and nonlinear
relationships among data, without any a-priori assumption
concerning the nature of these correlations.

One of the most critical phase in managing ANNs is the
training one, when the weights of the neural connections
have to be set properly [1]. The parameters of the network
have to be optimized in order to reach a good and accurate
output. Therefore the learning process should result in finding
the weights configuration associated to the minimum output
error, namely the optimized weights configuration. Usually
problems are associated to an objective function to be opti-
mized. This function, called also fitness, cost or energy func-
tion, provides the interface between the physical problems
and the optimization algorithm itself. There are often many
problems related to these algorithms. The huge number of
variables is the first difficulty when dealing with one of these
optimizing issues. Secondly, there are lots of configurations
with different values of the objective function which are quite
similar each other and very close to the global optimum
case, even if these configurations are sub-optimal. Generally
finding a solution in an optimization process means to reach
a balance among different and often conflicting goals; as
a consequence such a search could be extremely difficult.
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This article aims to achieve a straightforward and more
effective training phase and the ANN is here used mainly
for forecasting purposes but not from end-user side a [2],
[3].

At a first sight, the approaches used to optimize and train
an ANN may be divided into two main categories: the ones
that need to calculate derivatives in order to optimize the
objective function, namely classical methods, and those that,
starting from an initial position in the solution space, explore
iteratively this space without requiring any derivatives calcu-
lation (e.g. evolutionary methods). They are used to train the
network by learning the nonlinear behavior between input
and output data.

In this paper the authors propose a simple and fast method,
the recently developed Genetical Swarm Optimization algo-
rithm, in order to replace the traditional training processes
of the ANN.

II. CLASSICAL LEARNING ALGORITHMS

Error Back Propagation algorithm is a well known an-
alytical algorithm used for neural networks training. In
literature, there are several forms of back-propagation, all
of them requiring different levels of computational efforts;
the conventional back-propagation method is, however, the
one based on the gradient descent algorithm.

One of the drawbacks of this method is the strong
dependence upon the initial guess. A bad choice of the
starting point may result in the possibility to get stuck in
a local minimum and consequently to find a solution that
is not the best one. Besides, most of the typical problems
requiring optimization often have non-differentiable or/and
discontinuous regions in the solution domain and this fact
introduces difficulties in the application of these traditional
methods based on derivatives calculations. These aspects are
often overcome by evolutionary methods.

The most effective evolutionary algorithm developed until
now is Genetic Algorithm (GA) that is now quite familiar
to the engineering community and widely used [4]. Genetic
algorithms are very efficient at exploring the entire search
space, but are relatively poor in finding the precise local
optimal solution in the covergence region. Some additional
operators can be introduced for GA in order to get a better
predictive power of ANNs selecting an optimal combination
of input variables.

Moreover, in recent years also the Particle Swarm Opti-
mization (PSO) algorithm is gaining increasing attention for
the integration in the training phase of ANNs [5].
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III. GENETICAL SWARM OPTIMIZATION

The GSO algorithm was born as a hybrid evolutionary
technique developed in order to combine the best properties
of GA and PSO and overcome the problem of premature
convergence.

Some comparisons of the performances of GA and PSO
[6] emphasize the reliability and convergence speed of both
methods, but still keep them separate. GA and PSO show
a marked application driven characteristic for any respective
technique: PSO seems to have faster convergence in the first
runs, but often it is outperformed by GA for long simulations,
when the last one finds better solutions.

Some attempts to exploit the qualities of the two algo-
rithms have been done in the last ten years with a kind of
integration of the two strategies [7], [8], but GSO aimed to
reach a stronger co-operation of the two techniques stressing
its hybrid nature and maintaining the GA and PSO integration
for the entire run. In the last few years the authors have
proved repeatedly such an updating technique can improve
traditional evolutionary mechanism for a wide range of
applicationsincreasing individuals’ score by means of an
effective combination of natural selection and knowledge
sharing.

In particular, in [9], [10], we presented some comparisons
of GSO and classical methods performances, emphasizing
the reliability and convergence speed of the first one and
applying it to different case studies. In these previous ex-
periments, for example on large EM optimization problems,
the algorithm proved to be a fast and robust technique,
outperforming classical procedures.

A. The Genetical Swarm Optimization mechanism

The basic concepts of GSO have been presented in [9]: in
every iteration of the population is randomly divided into two
parts which are evolved with GA and PSO techniques respec-
tively. Then the fitness of the newly generated individuals is
evaluated and they are recombined in the updated population
which is again divided into two parts in the next iteration for
the next run of genetic or particle swarm operators.

The population update concept can be easily understood
thinking that a part of the individuals is substituted by new
generated ones by means of GA, while the remaining are the
same of the previous generation but moved on the solution
space by PSO.

The driving parameter of GSO algorithm is the hybridiza-
tion coefficient (hc); it expresses the percentage of population
that in each iteration is evolved with GA: so hc = 0
means the procedure is a pure PSO (the whole population
is processed according to PSO operators), hc = 1 means
pure GA (the whole population is optimized according to GA
operators), while 0 < hc < 1 means that the corresponding
percentage of the population is developed by GA, while the
rest with PSO technique.

In [9] GSO has been tested on problem of different
dimensions: while for a small number of unknowns GSO
performance is similar to GA and PSO ones, if the size of the

problem increases, GSO behavior improves and outperforms
GA and PSO during iterations. Moreover, the best hc value
found in that preliminary study does not depend on the
dimension of the problem, as it has been reported also in
[11]. Furthermore, the obtained best hc value (0.2) means
that, for a big-sized problem, the basic PSO can be strongly
improved by adding a small percentage of genetic operators
on the population.

In further studies a convenient value was found to be
0.2 ≤ hc ≤ 0.3 for several fitness functions, but the authors
extended the class of GSO algorithms by considering several
variation rules for hc, in order to explore different hybridiza-
tion strategies for the GSO algorithm and to compare new
approaches with others already present in literature. The full
set of hybridization rules considered by the authors is also
reported in [9].

B. Recently developed enhancements

In [10] the authors introduced new rules for varying the
hc value during the run, to combine more efficiently the
properties of GA and PSO, in order to have a general
procedure. In fact for engineering optimization problems
the best mix of GA and PSO operators can be not always
obvious. In particular there are situations where a fixed hc
is the right choice, and others where a variable hc(k) during
the run is better. This means that also the “amount” of
hybridization plays a role in affecting the performances of
this procedure, but the correct value for hc is hardly known a
priori. Therefore the authors chose to let the procedure adjust
the hc(k) value by itself during the iterations, according to
a predefined set of rules.

In the dynamical approach the hc parameter is updated
during iterations according to the following rule:

hc(k′) =

{
hc(k) + ν e−ξ k′

K

N if Δf̂(k′) < Δf̂(k)
hc(k) if Δf̂(k′) ≥ Δf̂(k)

(1)

where: k′ = k+Δk, ν = ±1 (versus), ξ = 2 (damping), and
Δf̂(k′) = f̂(k′) − f̂(k); here f̂(k′) is the best fitness value
obtained after k′ iterations and Δk = 5.

In the so-called self-adapting approach, the rule imple-
mented for the self-adaptation comes, in part, from the very
simple and reliable PSO technique: in fact, if we consider
the value of hc(k′) in the k′-th iteration, then we can call
hcv(k′) the variation between hc(k′) and hc(k) and so we
can write:

hc(k′) = hc(k) + hcv(k′) (2)

Therefore, the problem is simply to find the right velocity
update to properly change hc during the run. According to
the PSO similarity, we can define a personal best hcp value
that has been obtained during the run and therefore write:

hcv(k′) = ω · hcv(k) + φ · η · (hcp − hc(k)) (3)

where hcp is chosen analyzing the slope of the fitness
score increase, during the iterations, i.e. if in iteration k̄ the
increment of fitness is higher than in the previous history,
then hcp = hc(k̄).



Fig. 1. Simplified view of the implemented feed-forward ANN with details on input, output, and hidden layers.

The overall results reported by the authors in cited papers
show that, although the static GSO is generally the more
fast and robust strategy in order to optimize multi-modal
functions, a self-adaptive approach is a suitable and reliable
solution especially when the proper hc value is not known a
priori for a specific problem.

IV. PHOTOVOLTAIC ENERGY PRODUCTION FORECAST

Energy management needs real-time optimization of en-
ergy production, transfer, storage and consumption in smart
cities, villages and also rural areas [12], [13]. In fact, it
is possible to conceive an energy hub as a micro-grid
where electrical loads and small generation systems (such
as renewables in the range of 25-100kW) are integrated
into a Low Voltage (LV) distribution network with micro-
storing systems (composed i.e. by the integration of electric
vehicle into the grid infrastructure). By this point of view, an
energy hub appears as a micro-marketplace since it should be
composed by generation units, storing devices and a small
number of consumers and it can operate interconnected to
the main distribution grid or in autonomous way in case
of external fault. By integrating instant access to energy
forecasting into the architecture of energy hubs, it is possible
to have economic scheduling of micro-generators and to trade
energy and information with local providers [14].

Load and energy production forecasting has always been
crucial for the effectiveness of power system planning and
operation [5]. Lots of electric power companies are now
forecasting power load based on traditional prediction meth-
ods [15]. However, since the relationship between power
load and factors influencing power production is nonlinear,
it is difficult to identify its nonlinearity by using traditional
prediction methods.

Since the complexity of this scenario requires the capa-
bility to predict the dynamics of the system and to offer an
optimal management it has been proposed the application
of an Artificial Neural Network (ANN) integrated to an
optimization algorithm in order to create a predictive model
of the physical system and to provide an efficient control of
resources and information [16]. To implement this approach,
evolutionary optimization procedures adaptively and dynam-
ically analyzing consumer profiles have been defined.

In recent years, renewable energy sources have increased
the complexity of this scenario: solar power is getting more
and more important as an alternative and renewable energy
source, especially for small autonomous electrical power
systems, villages and also rural areas. PV plants can also
be connected to the traditional grid for energy distribution,
but variations in solar power can cause, in general, voltage
and frequency fluctuations.

Advanced forecasting through evolutionary computation
techniques provide utilities with reliable production predic-
tions and the opportunity to plan for additional power supply
and to make proactive actions. This aspect can have an
impact on the economic balance of the systems especially
in an integrated smart grid solution perspective.

On the one hand these tools provide the ability to use
stored energy or electric vehicle load to firms and renewable
productions, increasing their intrinsic value. On the other
hand, in this way the system-plant management is capable to
plan appropriate preventive maintenance strategies in order to
minimize energy losses due to unproductive suspensions. It
can be estimated savings up to 0.5 M$/MW per year adopting
these predictive algorithms in the renewable energy sector
and just the 10% of these are due to an optimized operating
efficiency [17].

Increased solar power penetration is possible if measures
are taken concerning solar radiation forecasting. This pro-
cedure may also affect the energy efficiency of the conven-
tional power stations, since it affects the operation point of
the power units. Prediction of solar power is therefore of
importance for efficient load management and operation of
the system. It has been suggested in literature [18] that solar
power forecast could be based on the use of ANNs. They
are particularly appealing because of their ability to model
an unspecified nonlinear relationship between production
and weather variables. In fact, usually the complex nature
of many engineering problems may involve to consider
Soft Computing computational techniques in order to solve
optimization tasks. ANN is an effective computing method,
in order to easily process the dynamic behavior of time-
varying variable, as previously presented by the authors in
[5]. It is a computational model that simulates the features
and behavior of the human brain neural networks. It consists



TABLE I

STRUCTURE OF INPUT LAYER

Neuron Variable name Range

i1 Day (1–366)

i2 Time (0:00–23:59)

i3 Cloud cover index (0–8)

i4 Air temperature (0–30) ◦C

i5 Wind speed (0–20) km/h

i6 Air humidity (0–100) %

i7 UV index (0–3)

i8 Precipitation (0–50) mm

i9 Air pressure (1000–1040) mbar

of an interconnected group of artificial neurons that suitably
processes information according to the strength of connec-
tions among them. In more practical terms neural networks
are non-linear statistical data modeling tools. They can be
used to model complex relationships between inputs and
outputs or to find patterns in data.

As shown in Figure 1, weather forecasts are a key input
when the ANN is used for forecasting. But, in case of rapid
changes in solar radiation or temperature at the forecast day,
produced power changes greatly and forecast error would
increase. In traditional prediction methods the ANN uses all
similar days data to learn the trend of similarity. However,
learning all similar days’ data is quite complex, and it does
not help if weather conditions change suddenly. Therefore,
it is necessary to integrate the neural network structure
with real time information coming from local meteorological
stations and, in particular, from surrounding regions and
cities, where the weather change has already occurred.

V. SIMULATION RESULTS

In order to compare the different optimization approaches
for training the ANN, a production forecasting problem
has been considered with a different perspective compared
to [15]. The focus is to highlight how fast and accurate
the methods are in determining and optimizing the neural
networks weights associated to the considered problem.

After a trial campaign, the network architecture which
have provided better results present two hidden layers, as
shown in Fig. 1. In particular, the number of neurons in the
input layer is 22, as reported in Table I, which describes the
meteorological parameter provided from the weather forecast
service.

TABLE II

STRUCTURE OF OUTPUT LAYER

Neuron Variable name Range

o1 SM 4200S-2 Produced power (0–4) kW

o2 SM 4200S-3 Produced power (0–4) kW

o3 SM 35C-4 Produced power (0–35) kW
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Fig. 2. Single-day detailed view for the three plants.

The neurons in the two hidden layers are, respectively,
17 and 9, while the output layer is composed of 3 neurons,
since 3 different produced-power forecasts are considered:
in fact, the authors performed simulations for three different
photovoltaic power plants in order to test their method at
various scale, since they have different productive capacity,
as shown in Table II. To compare the numerical results it is
important to underline that the three plant locations present
exactly the same GPS reference points. Therefore the weather
conditions can be assumed identical for the three PV plants.

Different time horizons can be considered in load forecast-
ing: short term (day and several days), medium term (week
and several weeks), long term (year and several years), and
forecasts for different lead time can be used for different
aims. We chose a short term time base for this specific
application. In particular Fig. 2 shows some details for three
days with different weather conditions. The neural network
optimized by GSO exhibit good predictive performances in
all the operative conditions, in a complete sunny day, a partly
cloudy one and even a plant maintenance day.

Figure 3 shows the complete data set simulations around
two months and the NN behaviour doesn’t change with
respect to the plant power size.

GSO here was used for the learning process of the artificial
neural network and weights values of the ANN were changed
to reach the minimum error in the network output in a faster
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Fig. 3. The complete data-set from the three plants.

and easier way compared with EBP. Also other evolutionary
procedures as PSO and standard GA were compared with
the classical EBP in order to perform a comparison in terms
of convergence rate and final obtained result (e.g. [19]), but
GSO has already proven to outperform both GA and PSO.

VI. CONCLUSIONS

In this work the authors propose an effective and robust
evolutionary procedure, called GSO, in order to replace
classical training processes for Artificial Neural Networks.
Energy plant prediction is very important in industrial ap-
plications. An accurate prediction enables to mitigate the
price risk associated with the power exchange, for instance
signing more bilateral contracts. Besides, a good estimate of
the load profile results in avoiding economic penalties on the
balancing market.

GSO emerges as a fast and simple method for ANNs
training phase. Its ability to find the global best configuration
of network weights makes it suitable for wide use in neural
network applications for a wide spectrum of engineering
problems.
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