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Optimal Power Flow Management for Grid
Connected PV Systems With Batteries
Yann Riffonneau, Seddik Bacha, Member, IEEE, Franck Barruel, and Stephane Ploix

Abstract—This paper presents an optimal power manage-
ment mechanism for grid connected photovoltaic (PV) systems
with storage. The objective is to help intensive penetration of
PV production into the grid by proposing peak shaving service
at the lowest cost. The structure of a power supervisor based
on an optimal predictive power scheduling algorithm is pro-
posed. Optimization is performed using Dynamic Programming
and is compared with a simple ruled-based management. The
particularity of this study remains first in the consideration of
batteries ageing into the optimization process and second in the
“day-ahead” approach of power management. Simulations and
real conditions application are carried out over one exemplary
day. In simulation, it points out that peak shaving is realized with
the minimal cost, but especially that power fluctuations on the grid
are reduced which matches with the initial objective of helping
PV penetration into the grid. In real conditions, efficiency of the
predictive schedule depends on accuracy of the forecasts, which
leads to future works about optimal reactive power management.

Index Terms—Batteries, dynamic programming (DP), energy
management, optimization, photovoltaic (PV) power systems,
storage.

I. INTRODUCTION

T O FACE the increase of the electricity demand, the re-
duction of fossil fuel resources and the need of reducing

CO emissions, grid connected renewable power systems have
gained outstanding interest. In this context, wind and photo-
voltaic (PV) generation appear as the most promising issues. Es-
pecially, PV is highly developing in the building energy sector
for which it is particularly relevant. This progression clearly ap-
pears in Fig. 1 through distributed grid connected systems in-
crease. According to the incentive policies to help PV develop-
ment and taking into account the reduction of the costs, expan-
sion of grid connected PV systems is expected to continue in the
next decade. Because of its intermittent and irregular nature, PV
generation makes grid management harder. Consequently, for
some authors [2], [3] , PV production into the grid is considered
to be limited.
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Fig. 1. Cumulative PV systems installed in the IEA country [1].

One of the major challenges for PV systems remains in the
matching of the intermittent energy production with the dy-
namic power demand. A solution is to add a storage element
to these nonconventional and intermittent power sources [4],
[5] . In this case, the hybrid system, composed of a PV gener-
ator, local loads, electricity storage, and the grid, can perform
many applications [6]. However, the integration of grid con-
nected storage is currently limited by two constraints.
1) Regulations: At the moment, grid connected storage in

an end-user installation is forbidden to prevent abusive benefit
from electricity purchase of incentive feed-in tariff attributed to
PV power. However, it is expected that regulations will become
more flexible as in the example of the new German feed-in law
from EGG [7].
2) Power Flow Management: An electrical storage element

generates expensive investment and operation costs with strong
operating constraints. In this context and considering that sub-
ventions are restricted in the short-term future, the objective is
to reduce operation costs by managing the power flows in the
system. It is an optimization problem that consists of optimizing
the use of the storage, the use of the PV source, and to match
the local production with the local consumption.
This paper deals with power flows management for grid

connected PV systems with storage (GPVS) with a focus on
optimal scheduling. Section II presents the analyzed system. It
describes the structure of the power flow supervisor proposed
and introduces the power management and optimization tools.
Section III presents the modeling of the components of the
system. Section IV describes the optimization method and its
application to solve the power management problem. Section V
carries out results from simulations in a specific context.
Section VI presents experimental application in real condition
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Fig. 2. Power direction and sign convention in the system studied.

and Section VII concludes the study and introduces the reactive
management concept.

II. SYSTEM ARCHITECTURE

A. Presentation of the System

A scheme of the studied system is presented in Fig. 2. The
different power directions are represented. The sign convention
in Fig. 2 is used as a reference throughout the whole paper.
The main components of the hybrid system are the PV gener-
ator, the batteries’ energy storage, the user loads, the distribu-
tion grid, and the electronics power converters. The parameters

and are, respectively, the values of the
state of charge and state of health of the batteries, whose calcu-
lations are detailed in Section III.
According to the sign convention, the laws of physics require

the power balance in the system described by

(1)

The first limitations on the operation of the system are the
physical constraints formulated by (1)–(4). These constraints
are set to limit the batteries’ degradation and ageing

(2)

(3)

(4)

Another limitation is imposed by the usage of the system:
as mentioned before, where the target is peak shaving, such
as the power exchange with the grid, is limited to a maximum
threshold value as formulated by

(5)

Performing peak shaving with the PV generator and the
storage helps the penetration of PV electricity into the grid.
First, it makes the grid management easier as the load profile
is smoothed. Second, it reduces the CO emissions as the peak
power is generally supplied by rapid startup power plants that
are important CO producers.

B. Power Flow Supervisor

To perform optimal power flow management, a supervisor
whose structure is presented in Fig. 3 is proposed. It is composed

Fig. 3. Proposed structure of the power flow management supervisor.

of three stages that are described below. The input data and the
time range of the output data of each stage are shown.
The forecasting stage provides the necessary predicted input

data to the optimization stage. Because the more reliable the
forecasts, the more efficient the power management, many tech-
niques tominimize the prediction error have been developed [8],
[9]. The forecasts are calculated from months to hours.
During the predictive optimization stage, the power flow

management problem is solved. It is called predictive optimiza-
tion as the resolution is built on the a priori knowledge of the
future from the forecasts. The step time of this stage is from
hours to 10 min.
The local control stage is in charge of assigning the command

to the power electronic elements in order to apply the power
flow schedule from the optimization stage. This stage operates
within a time scale from 1 min to 1 ms.
This study focuses on the predictive optimization stage. The

forecast data (irradiance W/m , ambient temperature
C , user loads consumption profile W ,

and electricity grid price [ /kWh]) are considered known. To
find out how to solve the power management problem, a quick
overview of the suitable tools is proposed in Section II-C.

C. Power Management and Optimization Tools

The method to perform power management optimization is
chosen according to the nature of the problem (component, con-
straints, and performance index). The main purpose of this work
is to find the power flow scheduling that minimizes the energy
bill of the owner of the system over the studied period. The input
data (irradiance, ambient temperature, user’s load consumption
profile, and electricity grid price) are variable and their predic-
tion is uncertain. It is a constrained problem in a finite horizon
because the length of the studied period is known. The compo-
nents (powers in the system) are “a priori” continuous and the
constraints and objective function are not particularly derivable
or linear. The proposed overview is inspired from the fields of
stand-alone PV systems, grid connected PV systems, and hybrid
electric vehicles (HEVs).
A ruled-based management may be applied. Power flows are

managed according to a set of case-triggered rules built from
heuristic knowledge [10]. Operation of the system is restricted
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to the developed rules that have to ensure that the constraints
are satisfied, but optimization is not guarantee [11]–[13]. A first
step to optimization is to determine the rules from a fuzzy logic
controller such as in [14] and [15]. It is also important to notice
that the development of a set of triggered rules becomes quickly
fastidious because of the number of possibilities.
As a first step, a nonoptimal ruled-based algorithm has been

developed. It guarantees operation of the system with respect to
the constraints. The ruled-based powers schedule will be used as
the reference to compare the performances of the optimization
algorithms.
The most commonly used techniques for optimization are

linear programming (LP) [16]–[18], dynamic programming
(DP) [18]–[20], and quadratic programming by formulating the
problem in relaxing form with the Lagrangian multipliers [18],
[21], and [23].
According to its name, LP implies that the problem is linear.

In our case, to formulate the problem on linear form, it is neces-
sary to integrate a binary variable and so a discrete value vari-
able [17]. In this case, LP cannot solve the problem and mix in-
teger linear programming (MILP) has to be used, such as in [16].
MILP gives very good results as the problem is correctly formu-
lated and demands low computing resources. However, themain
limitation is the need of a specific mathematical solver [16]. In
the perspective of future work, it is interesting to notice that LP
and MILP become also very unsuitable techniques for reactive
optimization (modification) of the predictive strategy according
to actual measurement. Actually, in this case, the problem has
to be solved again over the period left at each unpredicted dis-
turbance with the forecast (important computation time).
DP is a graph-based technique corresponding to the shorter

path algorithms. The advantage is that the performance index
and the constraints can hold all the natures (linear or not, dif-
ferential or not, convex or concave, etc.) and no specific math-
ematical solver is needed. DP can also be used for reactive op-
timization by correcting the predictive strategy at each unpre-
dicted disturbance according to the real values. As DP works
on discrete or sequential problems, evolution of the system has
to be decomposed into several steps [20] and [21] . A sim-
ilar approach has been used in [22] for deterioration and main-
tenance model of wind turbines. The weakness of this tech-
nique is its high memory needs when the studied period is long
and discretized with a small time step [10]. However, it is not
problematic if the computation parameters are well chosen. In
addition, the computation time can be reduced by appropriate
modifications.
Quadratic programming gives very good results since the

problem is formulated in a relaxing form through the La-
grangian multiplier. However, this method needs the objective
function to be convex (or concave), which generally implies
simplifications of the problem [18], [21] . In [21], it is carried
out that these simplifications are the main origins of the errors
between the ideal and the calculated solution. Also, quadratic
programming is suitable only for a small problem (less than
50 variables) and works only with continuous variables. This
technique is a strong candidate for reactive optimization and
the most used in HEV application as in [23] and [24].

From this overview, DP has been chosen to perform optimal
power flow management. The Bellman algorithm, detailed in
Section IV, has been chosen.

III. SYSTEM MODELING

In this section, we present the modeling of the PV generator,
the batteries, and the power converter. The grid is considered as
a perfect power source or power sink.

A. PV Generator

The PV generator has been modeled by a linear power source
according to the ambient temperature and the irradiance level
[25], [26] . Output power of the total generator at the maximum
power point (MPP) is obtained from (6) and (7), where parame-
ters are obtained from information available from the manufac-
turer data sheets [nominal operating cell temperature (NOCT)
and standard test condition (STC)]

(6)

where , , , , , , and are the
generator output power at the MPP, the rated PV power at the
MPP and STC, the irradiance level at STC, the power tempera-
ture coefficient at MPP, the cell temperature, and the number of
modules in series and in parallel that composed the generator,
respectively. The STC measure conditions are C,

W/m , and wind speed of 1 m/s.
The cell temperature is obtained from (7), where

and are the ambient air temperature and the NOCT.
The NOCT measurement conditions are C,

W/m and wind speed of 1 m/s

(7)

In this paper, the PV generator is composed of poly-
crhistalline modules with 72 cells in series that are all consid-
ered to be at the same temperature. The temperature coefficient
“ ” of the modules is C, the “ ” is C,
the “ ” of each module is 165 W.

B. Batteries

This study has been performed with flat plate lead acid bat-
teries. The model presented corresponds to this technology.
1) State of Charge (SOC): Estimation of lead acid batteries’

SOC is not obvious and it is still the subject of many studies
[27]–[29]. The specific SOC calculation from [30] and [31] has
been chosen for this study. It takes into account the variation of
the quantity of charge in the process as a function of the cur-
rent rates and the ambient temperature. As this model has al-
ready been used and described in [32], presentation of calcula-
tion in this paper is restricted to (8) and (9), where “ ” is
the batteries’ capacity at each instant, “ ” is the capacity
of reference, is the initial quantity of charge, and
and are, respectively, the quantity of charge exchange
during the charge and discharge process. The capacity of ref-
erence “ ” varies according to the ageing process express
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by (11) and (12). For more details, the reader is encouraged to
read [30]–[32]

(8)

(9)

2) Ageing Process: State of Health (SOH) of batteries is de-
fined by (10) where is the nominal capacity of refer-
ence available from the manufacturer data sheet [31]

(10)

Degradations of the performances of batteries during the
ageing process have been modeled by [31] and [33]. It is rep-
resented as losses of capacity of reference that are considered
linear according to the depth of discharge of batteries [34], [35]
. From experimental results performed at the INES institute and
presented in [33], linear ageing coefficients “ ” for different
battery technologies have been carried out. The coefficient “ ”
has a value of for lead acid technology.
At each step size, if the battery’s operation is a discharge,

the new capacity of reference is obtained by (11) from capacity
losses calculated with (12)

(11)

(12)

Replacing in (10) by expressions (11) and (12) and
the SOH according to the SOC variation is expressed by

(13)

Equation (12) is always positive as it is computed only in
discharge. The new capacity of reference calculated by (11) is
replaced into the SOC estimation (8) such as ageing involves
performance modification.
3) Voltage (“ ”): As a simple representation of the

global behavior, the voltage of batteries has been considered
linear in charge and in discharge as a function of the SOC
(calculated as time integration of the current). From linear
interpolation of experimental results carried out at the INES
institute, the voltage of batteries in charge and discharge is
determined by (14) and (15), where “ ” is the number of
batteries of 12 V connected in series. Experimental results and
linear interpolation are presented in Fig. 4

(14)

(15)

This modeling is elementary but appropriate for this appli-
cation as it is simple and significantly representative of the be-
havior in the range of operation conditions of the system. The
battery’s power “ ” in (1) and (3) is obtained bymultiplying
the battery’s voltage modeled here by the input or output bat-
tery’s current.

Fig. 4. Experimental measures and linear modeling of the charge and discharge
voltage as a function of SOC (12-V lead acid battery and IBAT is constant at a
rate of 5 h).

Fig. 5. Measures and identified converter efficiency curves [36].

C. Converter Efficiency

The power electronics converters have been modeled ac-
cording to their efficiency as a function of the input normalized
power, where losses are assumed to be a quadratic function.
The conversion efficiency formulation (16) is carried out from
a quadratic interpolation of an experimental curve generated at
the INES institute [36]

(16)

where “ ” is the normalized input power of the converter
.

Fig. 5 shows the efficiency curvemeasured andmodeled from
identification. The average error is 0.17%. Calculation of effi-
ciency with (16) is applied on the PV converter, the batteries’
converter and the dc/ac and ac/dc conversion of the bidirectional
converter.

IV. DP AND POWER FLOW MANAGEMENT

This section details the optimization stage procedure of the
supervisor presented in Fig. 3. The first subsection summarizes
the problem to be solved with the constraints and the objective
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function. The second subsection presents the application of the
DP to solve the problem.

A. Problem Formulation

The system studied is presented in Fig. 2 in Section II and
the operating constraints, defined by (1)–(5) are summarized as
follows:

(17)

(18)

(19)

(20)

(21)

Constraint (17) comes from the law of physics, constraints
(18)–(20) are physical constraints to limit the batteries’ degra-
dations and ageing, and constraint (21) corresponds to the peak
shaving application.
It is assumed that the loads are not controllable but have to be

supplied at any time. Forecasts on load consumption are used to
find the power management strategy.
The objective function of supplying the user loads at the best

cost is expressed by (22). It amounts to minimizing the final
value of the cash flow “CF” over the entire studied period. The
cash flow is composed of the cash received “CR” and the cash
paid “CP”

(22)

The cash received is the benefits made from any electricity
operation related to an agreement with the grid operator. Gen-
erally, it corresponds to the benefits from selling PV electricity.
However, some new agreements, such as [7], enable us to make
benefits from the self-consumption of energy from the PV gen-
erator. In this case, cash received corresponds to both bene-
fits. The cash paid corresponds to all the operation costs of the
system. In our case, it is composed of the cost of electricity pur-
chase from the grid and of the ageing cost of batteries. As a very
important cost; ageing of batteries is taken into account in the
optimization process through the calculation of the SOH. De-
tails of ageing cost calculation are presented in Section IV-B.
The cash received or paid is a power (kW) multiplied by a price
( /kW) so its value is directly related to the power flowmanage-
ment. The power sign convention in Fig. 2 has been defined such
that the cash received is negative and the cash paid is positive.
It is important to note that constraint (21) is not necessarily

strict such that if it is not satisfied, the solution is not rejected
but a penalty cost is applied. In this way, all the solutions are
taken into account which gives more flexibility to the system.

B. Dynamic Programming

DP has been used to solve the optimization problem. Defi-
nitions and fundamental principles may be found in [37]. The
problem is formulated as a system evolution divided in a multi-
stage decision process. At any time “ ,” the state of the system
is determined by a set of quantity called states variables. In our
case, the state of the system corresponds to the SOC of the bat-

Fig. 6. Batteries’ SOC space and the possible trajectories for the case of three-
step time.

teries, discretized with a step size of “ .” At each step time
“ ,” the batteries can take any of the discretized value
in a range that guarantees constraint (18). Fig. 6 illustrates an
example of an SOC space for three time steps. All possible tra-
jectories from the initial state at the initial time to all the allowed
states at the final time are represented.
A transition between two states during one time step corre-

sponds to a SOC variation written “ .” As each
corresponds to a battery’s power value, the constraint (19) is
translated in terms of SOC variation as presented by (23). This
reduces the computation time to check the satisfaction of the
constraints

(23)

For each , first the “ ” and “ ” are calcu-
lated according to the a priori knowledge of the loads consump-
tion “ ” and the PV availability “ ,” and second, the
corresponding CF value is obtained. As an example, if the cash
received comes only from feed-in PV power, the corresponding
CF of one SOC transition is expressed by (24), where “FiT” is
the feed-in tarif, “EgP” is the electricity grid price, and “BrC”
is the battery’s replacement cost defined as follows:

(24)

The replacement cost is the translation of the degradation of
the batteries. It is calculated by (25) according to the variation
of SOH during each time step. Replacing SOH by its formula-
tion (13); the SOH variation is expressed by (26) and is a linear
function according to the SOC variation and the ageing coeffi-
cient. The SOH decreases only during the discharge process so
expressions (25) and (26) are negative as it is calculated only in
discharge

(25)

(26)
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The replacement cost BrC is calculated by (27) such as it
satisfies (28). The sign of the SOH variation is inverted to make
the BrC positive

(27)

(28)

Formulated as above, the problem is to find the optimal se-
quence of SOC transition from the initial time to the final time
that achieves the final state from the initial state with the lower
CF value. To solve this shorter path problem, the Bellman’s al-
gorithm, described in [37] and [38], has been used. Fig. 7 shows
the flowchart of the algorithm with the detailed computation of
the weight of the arcs. An example and results are presented in
Section V.

V. SIMULATIONS AND RESULTS

A. Context and Parameters Values

The optimization has been performed in the economical con-
text of a French standard electricity price. For instance, to illus-
trate the upcoming economical context, no subvention for the
PV power is considered: The energy fed into the grid is pur-
chased at the same price as the electricity sold to the final con-
sumer. It is assumed it is allowed to feed the grid with power
from batteries, but it is not paid. However, it is allowed to charge
the batteries from the grid. Fig. 8 is a scheme of the system with
the energy meters.
In this context, the cash flow paid and received are expressed

by (29), (30), and (31), where “FiT” is the feed-in tariff, “EgP”
is the electricity grid price, and “ ” is the energy measured
with the meter “ .” Calculation of the cash received by (30)
and (31) guaranties the purchase of only the power fed into the
grid from the PV generator. According to the power’s sign con-
vention defined in Fig. 2, the cash received expressed by (29) is
negative

(29)

Since

(30)

else

(31)

The constraints are expressed by (17)–(21) and the objective
function is (22), according to the values of Table I.
Constraint (19) is expressed in terms of “ ” as (23).

Constraint (21) is not strict, such that if it is not satisfied, the
grid penalty factor “GpF” is applied to the over power according
to (32).
If :

(32)

The input values are forecast coming from meteorological
data “ ” “ ” , forecasts of the loads consumption pro-
file “ ” , and the electricity prices “ ” “ ” .
Experimental measurements performed at the INES institute in
2007 are used as meteorological forecasts. Similarly, the fore-
casts on load consumption aremeasurements achieved in Cham-
béry (France) for a family of three people with an off-peak/on-
peak electricity agreement and an electrical heating system. Ac-
cording to this agreement, the load profile carries out high fluc-
tuation and power peaks. This profile has been chosen because
it is a standard situation in France. As the load profile is already
optimized according to off-peak/on-peak electricity prices, the
simulation and optimization presented below have been per-
formed in the context of a single fixed electricity price. The size
of the system is set to the value provided by Table II and has
been determined with the sizing method proposed in [39].

B. Results and Graph

The simulation has been carried out in 24 hours for the 22nd
of February as an exemplary day to figure out optimization re-
sults. The DP algorithm whose flowchart is shown in Fig. 6 has
been developed with the Matlab software. Regarding the results
presented here, the computation time is less than one minute.
The power scheduling obtained with the DP optimization al-

gorithm is presented in Fig. 9. In this figure, positive battery
power corresponds to a charge and negative power to a dis-
charge. Positive grid power corresponds to a consumption and
negative grid power to feed-in power. Fig. 10 shows the SOC
variation corresponding to the power schedule of Fig. 9.
As expected, the power exchanged with the grid is maintained

to the maximum limit. The batteries’ operation is managed to
satisfy the constraints regarding the lower cost for the owner of
the system.
As an SOC of 50% is not enough to guarantee peak shaving

later in the day, the batteries are charged in the morning. Charge
is completed from the grid because there is no PV production.
As shown in Fig. 10, the batteries are fully discharged after the
first peak loads. The charge process is not directly launched as
there is a period to wait for more PV production. The batteries
are charged as much as possible with the PV power as it is the
optimal operation according to the economical context. In this
case, the use of the PV power is considered to be optimal. The
second peak load is in priority shaved with PV power and bat-
teries are used only when the solar production is not sufficient.
With this management, it is observed in Fig. 9 that the feed-in

power is minimized, which reduces the power flow fluctuation
on the grid. As shown in Fig. 10, the SOC of the batteries returns
to its initial value at the end of the day. The initial SOC of 50%
(and final also) has been chosen such that it gives the maximum
of flexibility to the power management of the next day and so
in a day-ahead supervision.
The results obtained with DP are compared with the ones ob-

tained with a simple ruled-based algorithm presented in Figs. 11
and 12. The rules are defined such as the batteries aremaintained
to their maximum SOC to guarantee peak shaving. As there is
no forecasting, charge of the batteries is performed with the first
available power source (PV or grid) according to the constraints:
the PV power is in priority used to supply the loads.
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Fig. 7. Flowchart of DP algorithm developed for power management.

The ruled-based algorithm works with continuous values of
the components as the DP needs discrete values, which explains

the differences in power profiles, in SOC variation, and the
“steps” of the batteries’ power that appear in Fig. 9.
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Fig. 8. Scheme of the system with the energy meters.

TABLE I
SIMULATION PARAMETER VALUES

TABLE II
SIZE OF THE ELEMENTS OF THE SYSTEM STUDIED

Fig. 9. Power schedule with DP optimization.

The ruled-based algorithm is interesting because the power
exchange with the grid is maintained to the maximum bound
and the constraints are satisfied. The two figures carry out that
the batteries are charged as soon as possible with the first avail-
able source. Consequently, the solar energy produced during the
most powerful period is not locally used but is injected into the

Fig. 10. SOC schedule of batteries with DP optimization.

Fig. 11. Power schedule with simple ruled-based management.

Fig. 12. SOC schedule of batteries with ruled-based management.

grid and creates power fluctuations. In this case, it is consid-
ered that the use of the solar power is not optimized. Because
there is no forecasting, the charge at the beginning of the day is
the consequence of the main rule and not a prediction of future
needs. As the rule is to keep the batteries as full as possible, the
final SOC is maximum and different than the initial one. In this
condition, the flexibility of the management of the next day is
restricted as the batteries are full and the charge operation will



RIFFONNEAU et al.: OPTIMAL POWER FLOW MANAGEMENT FOR GRID CONNECTED PV SYSTEMS WITH BATTERIES 317

TABLE III
FINAL VALUE OF THE OBJECTIVE FUNCTIONS FOR EACH

POWER MANAGEMENT

not be possible. This way, it is considered that the ruled-based
management is not the most suitable for day-ahead supervision.
The final value of the objective function (cash flow) for the

DP optimization and the ruled-based management is presented
in Table III. The DP algorithm gives a lower value as it is an op-
timization. Gains with DP optimization are around 13% higher
than with the ruled-based management but it is very dependent
of the economical context.

VI. EXPERIMENTATION OF THE MANAGEMENT IN
REAL CONDITIONS

The optimal management proposed in this study is based on
the forecasts on the meteorological conditions (“ ” and “ ”
for the PV production) and on the loads profile consumption.
According to this important assumption, this section studies the
power flows in the system when the predictive power sched-
uling, from the predictive optimization, is applied in real condi-
tions. In this objective, the DP algorithm has been implemented
into a microcontroller and tested in real-time operation. This has
been realized on the experimental bench “RTLab” that is pre-
sented in Section VI-A and in [40] and [41]. To evaluate the in-
terest of optimal predictive scheduling, the results are compared
with the ruled-based strategy, also implemented in the micro-
controller and applied in the same conditions. At the moment,
studies in real conditions are limited to the case of a different PV
power production from the forecasts. The loads power profile is
considered a priori perfectly known. The real conditions have
been simulated as representative perturbations on the forecast
according to the real behavior of the meteorological parameters.

A. Presentation of RTLab and Implementation of the
Management

The model of the system presented in the previous sections
has been implemented in the RT-Lab HILBox 4U digital
system. This system provides tools for running simulations
of highly complex models on a multiprocessor architecture
communicating via ultralow-latency technologies to achieve
high-speed computations [40]. RT-Lab handles synchronization
and real-world interfacing using fast input/output (I/O) boards
and data exchanges for hardware-in-the-loop/power-in-the-loop
(HIL/PIL) applications. Its architecture consists in an eight-pro-
cessor (two Intel Xeon quad-core 2.33 GHz) machine ex-
changing data on a shared memory. Their PCI bus is connected
to the digital and analog I/O system via an FPGA controller.
There are 2 16, 16-bit analog inputs and outputs, with a high
update rate of 1 s. The digital interface consists of 2 16 I/O
allowing a data rate of 1 MHz. The model of the system has
been implemented in Matlab/Simulink software where specific
blocks for RTLab operation have been added. These blocks
are necessary to perform fixed time step simulation involving
dynamics and discrete events asynchronous with respect to
the simulation clock. The optimization algorithm is integrated

Fig. 13. Scheme of the application of the predictive strategy in real conditions.

in Simulink as an S-function such that it can be implemented
in the microcontroller. The complete model is then compiled,
loaded into the above-described hardware, and executed in real
time [41].

B. Application in Real Time and Real Conditions

When the model is executed in the microcontroller, it first
computes the predictive optimization stage (the DP algorithm)
to obtain the anticipative strategy to apply over the next 24 hours
(schedule of the power to exchange with the batteries). Then, the
anticipative strategy is applied in the simulated real conditions.
The power exchanged with the grid on these new conditions
is obtained from the power balance (1). The anticipated sched-
uling on “ ” is applied whatever the real conditions such as
physical constraints (3) and (4) are guaranteed even if the peak
shaving constraint (5) on “ ” is not. A scheme of the ap-
plication of the predictive strategy in simulated real conditions
is presented in Fig. 13. As shown on this figure, the “artificial”
perturbations on PV are considered of two natures:
1) Global error on the daily production according to the fore-
casts. This error is due from the imperfect and approximate
forecasts on the meteorological data used to predict the PV
production over the day. This is a “low frequency” pertur-
bation. In real cases, this error is generally in the range
from 10% to 20%. Generally, the error on the daily PV
production is low but the pattern of the production profile
is different than expected. This perturbation is created by
multiplying the predictive PV production by a factor that
varies from 0.6 to 1.4 as a sinus function during the daily
PV production period. In this way, the pattern of the PV
production profile is modified but the error on the daily
production is in the range of the considered perturbation.

2) Local error on the power with rapid variations. This per-
turbation is due from the clouds or such other inescapable
and fast perturbations on the PV power. This is a “high-fre-
quency” perturbation. This error is created by multiplying
the predictive PV power by a random factor that varies as
a Gaussian distribution around 1 with a variance of 0.01.
The sample time for this perturbation is 10 s.

The real-time application has been performed for the 22nd of
February as the same day as the simulation results above. For a
question of time, as the bench test operates in real time and the
perturbations are related only to the PV power, the experiment
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Fig. 14. Comparison between the forecasted and the real PV power for the
22nd of February.

Fig. 15. Profiles of power exchanged with the grid in real conditions for ap-
plication of the predictive strategy and rule-based strategy for the 22nd of Feb-
ruary.

has been performed only for the duration of 12 hours from hours
6 to 18. Fig. 14 compares the forecast of the PV power used
to calculate the predictive strategy and the real PV power after
applying the artificial perturbations. On this figure, the rapid and
local variations as the low variations on the global production
from the sinus signal are clearly visible.

C. Experimental Results and Discussions

An important remark is that all the algorithms and strategies
presented in this paper, including the optimal predictive algo-
rithm, can be implemented into a microcontroller and executed
in real time and in real conditions. The modifications are to
translate the algorithms, initially in Matlab format, into a lower
level language understandable by the microcontroller. This is a
significant result as an issue to a rapid industrial development.
The power exchanges with the grid from application of the

predictive strategy and ruled-based strategy in real conditions
and real time are presented on Fig. 15. The SOC of batteries are
compared in Fig. 16. According to the method of application,
the SOC profile for the predictive strategy in real condition is
the same as the one anticipated and presented in Fig. 10. The
load profile is not presented as the same as the one in Fig. 9.

Fig. 16. Profiles of SOC of batteries in real conditions for application of the
predictive strategy and rule-based strategy for the 22nd of February.

As expected when the predictive strategy is applied in real
conditions, the anticipated schedule is followed since there is
no perturbation (Fig. 15). As the predictive power of batteries
is imposed, in real conditions the perturbations are balanced on
the power exchanged with the grid. As observed in Fig. 15, all
the rapid variations appear on the power exchanged with the
grid and when the PV power is higher than predicted, more
power is injected into the grid. In the same way, when the PV
power is lower than anticipated, the grid supplies more power.
In real conditions, this mode of operation does not guaranty the
peak shaving constraint (5) on “ ”, as observed on Fig. 15
around 14:30.
For the ruled-based strategy, the constraint on the power ex-

changed with the grid in real conditions is always guaranteed.
However and as expected, the equality constraint on the initial
and final SOC of batteries is not respected. As shown on Fig. 16,
batteries are fully charged at the end of the day which restricts
the flexibility of the management of the next day. Also and as
remarked before, use of the PV power is not optimized as it is
mainly used to feed the grid instead of charging the batteries.
In this way, the objective function is also not optimized. The
ruled-based algorithm is the easiest one to implement and to de-
velop at an industrial scale but it does not reach the objective and
it limits the flexibility of a day-to-day management. In this con-
sideration, the ruled-based algorithm does not present interests
for our study and has been used only as a reference for compar-
ison with the strategy proposed.
Theses results and comparisons lead to the reflection about

the type of control to apply in real conditions to guaranty all the
constraints and in the ideal case why not also to guaranty opti-
mality according to the real conditions and the objective func-
tion. The question of performing a new predictive optimization
from updates forecast can also be asked.
Finally, it is carried out that the management in real condi-

tions is strongly dependent on the accuracy of the forecasts and
on the reactive mode of operation that is applied. However, pre-
dictive optimization is a necessary stage to reach the final objec-
tive of optimal management in real conditions. In this consider-
ation, a significant step has been achieved implementing the pre-
dictive algorithm into a microcontroller to real-time execution.
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VII. CONCLUSION AND FUTURE WORK

In this paper, a predictive control system based on a DP ap-
proach, that optimizes the power flow management into a grid
connected PV system with storage, has been presented. Ac-
cording to the power supervisor proposed in Section II-C, the
study focuses on predictive optimization from “a priori” known
forecasts. The objective was to perform peak shaving with the
lower cost for the owner of the system. The particularity of the
approach lies in the consideration of the batteries’ ageing into
the day-ahead power management.
Simulations and real-time operation in simulated real condi-

tions have been performed and results compared with a ruled-
based management. In simulation over 24 hours, predictive op-
timization provides around 13% of gain on the electricity bill
for the economical context of the study. Implementation of the
predictive optimization algorithm into a microcontroller to per-
form real-time management figured out the industrial poten-
tiality of the method proposed. Operation of the management in
real conditions has validated the results and assumptions from
simulations. Performances of the management in real conditions
strongly depend of the accuracy of the forecasts and of the mode
of operation. This important conclusion leads to many questions
about reactive power management without denying the impor-
tance and the necessity of the predictive optimization stage.
The management developed helps integration of PV power

into the grid as peak loads are shaved. Depending of the reac-
tive management in real conditions, the power fluctuation of
the PV production is balanced to the power exchanged with
the grid or with the batteries. In this context, next and future
works will deal with reactive management for real condition op-
erations. From the conclusion of this study, a different reactive
management will be developed and compared in real condition
operations. Specifically, an optimal reactive management, de-
veloped from the DP algorithm of the predictive optimization
stage, will be proposed. In this way, the sum of the works will
achieved to a complete power management system that is reac-
tive such as optimal management is guaranteed according to the
real conditions.
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