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ABSTRACT: The increased penetration of photovoltaic (PV) systems introduce new challenges for the stability of 

electricity grids. In this scope, a machine learning technique utilising artificial neural networks (ANN) was implemented 

to forecast the hour-ahead (HA) PV power production without the utilisation of numerical weather prediction (NWP) 

models. Instead, historical PV operational and meteorological data-sets were used for the training and validation stages of 

the model to calculate HA PV power generation data-sets for time t + 1h while the model input parameters (weather 

measurements) were applied for time t. The best-performing model comprised of four input parameters (in-plane global 

irradiance (GI), ambient temperature (Tamb), elevation angle (AlS), azimuth angle (AzS)), a single hidden layer and 22 

hidden neurons. Additionally, the results obtained over a test set period of 55 days demonstrated that accurate HA 

forecasts could be achieved without incorporating NWP since a daily-normalised root mean square error (nRMSE) of 

3.63% was achieved. Finally, the model performed very well during clear sky days with a nRMSE close to 1% whereas 

57% of all days demonstrated a nRMSE below 5%. 
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1 INTRODUCTION 

 

 Accurate PV production forecasting can mitigate the 

power quality effects posed by large shares of distributed 

systems through active grid management and is, 

therefore, an important feature that can assist utilities and 

plant operators in the direction of energy management 

and dispatchability planning. More specifically, short-

term PV production forecasts (intra-hour) are necessary 

for power ramp and voltage flicker prediction as well as 

control operations and dispatch management. On the 

other hand, mid-term PV production forecasting (intra-

day and day-ahead) is used for load consumption and 

production monitoring to control voltage and frequency 

levels and reduce secondary reserve.  

 During the last decades, electricity system operation 

has been upgraded involving PV production forecasts and 

most commonly adopted PV production forecasting 

approaches are based on time series analysis techniques 

[1]. In addition, parametric models for PV production 

forecasting have already been developed [2], [3] but their 

ability to forecast the power output of PV systems is not a 

straightforward process since accurate knowledge of 

system characteristics and behaviour should be provided. 

Therefore, a huge share of research is devoted to the 

development of more sophisticated and flexible 

prediction techniques using non-parametric models based 

on machine learning algorithms [4]–[9]. In order to train 

a PV power forecasting model with identical data, 

weather classification and machine learning techniques 

may be performed [10], [11]. Moreover, joint models 

comprised of  combination of features of a physical 

model combined with artificial neural networks (ANNs) 

were presented elsewhere [7], [12]. Although a 

significant number of PV power forecasting tools have 

been developed, the challenge to provide a global and 

validated (against large scale data-sets) model for 

different PV remains unsolved. Additionally, to improve 

the accuracy of the power prediction of PV systems, 

adaptive methods that can capture system information 

and behaviour without the need of datasheet and 

installation parameters must be employed. This is crucial 

because a large proportion of PV systems includes de-

centralized rooftop installations where knowledge of 

system information is not always available.  

 Furthermore, the system’s behaviour can be 

estimated by processing recent PV operational data-sets. 

using the classical approach of the feedforward neural 

network (FFNN). This method was inspired by the 

method of biological neurons and is the simplest type of 

ANNs. It is a popular and powerful machine learning 

algorithm widely used in other fields for both prediction 

and classification purposes. The classical approach of the 

FFNN with an input, a hidden and an output layer of 

linear and non-linear activation functions can be viewed 

as a convenient way to predict the power output of PV 

systems. FFNN can be trained to develop relational 

weighted chains between internal nodes to overcome the 

limitations of traditional methods to solve complex 

problems, which can be modelled through a supervised 

learning technique based on historical data. Because of 

this chain of relationships, theoretically, multi-layered 

neural networks can be universal approximators and have 

tremendous potential to perform any nonlinear mapping 

through a learning process based on historical time-series 

[13]. In addition, ANNs are efficient for online training 

due to their capability of reflecting the information of 

new instances on a model by changing the weight values 

only.  

 Another approach is to utilise Numerical Weather 

Prediction (NWP) models to forecast weather variables 

[3], [14]–[16]. NWP models deliberates the atmosphere 

as an fluid thus the concept of weather forecasts is to 

parametrise the state of the fluid at a certain time (t) by 

utilising the fluid- and thermo-dynamic equations to 

forecast the state of  the fluid at time (t + n) [17]–[19]. 

The utilisation of mathematical equations and models to 

simulate the atmosphere are not accurate, thus the NWP 

methods are associated with forecasting errors and biases 

[20], [21].  

 In this work, a NWP free methodology for hour-

ahead (HA) PV power production forecasting utilising 



data-driven machine learning models and specifically 

ANNs is proposed in this study. One-year data from a 

reference poly-crystalline silicon (poly-c-Si) PV system 

in Cyprus were used for training and testing the model 

and the forecasting performance results showed that the 

application of this method improves the HA PV 

production forecasting accuracy.  

 

 

2 EXPERIMENTAL SETUP 

 

2.1. Outdoor test facility description 

 The outdoor test facility of the University of Cyprus 

includes a fixed plane infrastructure for outdoor 

performance assessments at both the module and system 

level. The installed poly-c-Si system was mounted in a 

portrait arrangement on aluminium mountings, at the 

optimum annual energy yield plane-of-array (POA) angle 

for Cyprus of 27.5˚.  

 The PV system was connected to a data-acquisition 

platform, used for the monitoring and storage of 

meteorological and PV operational data. The 

performance of the system and the prevailing 

meteorological conditions were recorded according to the 

requirements set by the IEC 61724 [22]. Specifically, the 

irradiance and meteorological measurements include the 

in-plane global irradiance (GI), relative humidity (RH), 

wind direction (Wa), wind speed (Ws) and ambient 

temperature (Tamb). The PV system operational 

measurements include the maximum power current (Imp), 

voltage (Vmp) and power (Pmp), as measured at the output 

of the PV array (DC side) [23], [24].  

 

2.2 PV system description 

 The PV system comprises of five poly-c-Si PV 

modules. The modules of the system are connected in 

series to form a PV string at the input of a string inverter. 

The main technical specifications of the test PV system 

are summarised in Table I. 

 

Table I: Installed PV system technical characteristics. 

 

Technical characteristic Parameter 

Modules 5 × poly-c-Si 

System power (datasheet) 1365 Wp 

Installation date 01/06/2015 

Efficiency  14.40% 

 

3 METHODOLOGY 

  

 The HA PV power production forecasting model was 

based on a FFNN that employed recent historical data-

sets of a reference PV system, as the training parameters 

of the model. The best-performing neural network was 

chosen through a series of validation tests performed by 

identifying optimum combinations of input parameters, 

sizes and hyper (architectural) parameters of the model 

(optimal hidden layers, neurons, iterations and learning 

function). The historical PV operational and 

meteorological data-sets were used for both the training 

and validation stages of the model. For each model, the 

training step yielded the respective HA PV power (output 

parameter) for time t + 1h while the model input 

parameters (weather measurements) were applied for 

time t. The aim of the training step was to develop a 

model which is capable of accurately forecasts the power 

generation for time t + 1h, based on the relationships 

established between the weather measurements of time t 

(without incorporating forecasted weather data) and the 

actual output PV produced power of the reference system 

at time t + 1h.  

In particular, the annual historical data-sets of the 

reference system and prevailing weather conditions were 

divided into three subsets, the training, validation and 

testing set. The training and validation sets were utilised 

in order to implement the best-performing model, by 

varying the training period from 30% to 70% of the 

actual data-set. The model inputs included the 

meteorological parameters in addition to the solar 

elevation angle (AlS) and solar azimuth angle (AzS) that 

were calculated using solar position algorithms [25], [26]. 

Additionally, the hyper parameters of the neural network 

were tested by varying the number of hidden neurons, 

layers, iterations and learning function. The validation set 

was employed in order to evaluate the performance of the 

various neural network models and therefore identify the 

best performing model, while the test set was applied in 

order to yield forecasting results for the developed model. 

The complete methodological steps followed for the 

development of the short-term HA PV power production 

forecasting model are exhibited in Fig. 1 and Eq. (1). 

 

 
Figure 1: Training, validation and testing phases of the 

short-term HA PV power production forecasting model. 
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Where PDC(t + 1) is the power for time t + 1, GI(t), 

Tamb(t), … , are the weather measurements for time t. 

3.1 Neural network 

 A Bayesian Regularization Neural Network (BRNN) 

is essentially a simple Multi-Layer Perceptron (MLP), in 

which a Bayesian regularization has been applied to its 

training function. The proposed model is given by Eq. (2) 

[27], [28]: 
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where ei ~ N (0, σ2 e), s is the number of neurons, wk is the 

weight of the k-th neuron, bk is a bias for the k-th neuron, 

βj
[k] is the weight of the j-th input to the net, and gk(·) is 

the activation function: 
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 The model will minimise according to Eq. (4) [27], 

[28] 

 

F E aED W   (4) 

 

where ED is the error of sum squares, EW is the sum of 

squares of network parameters (weights and biases). EW 



is the sum of squares of network parameters (weights and 

biases), β and α are the dispersion parameters for weights 

and biases.  

 The regularisation term applied was the squared sum 

of the weights of the neural network [29]: 
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where α and β are coefficients assigned to each term. The 

second term in Eq. (5) is called weight decay, as it 

ensures that the weights of the network do not exceed the 

total error of the network. 

 After the data were fed into the network, the density 

function for the weights can be updated according to 

Bayes’ rule [28]: 
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where D represents the data-set, M the model used for the 

Neural Network and w is the vector of neural network’s 

weights. P(w|α, Μ) represents the values of weights 

prior to the data-set input. P(D|w,β, Μ) is the probability 

of the data occurring based on the weights. P(D|a,β, Μ) is 

a normalisation factor, which ensures that the total 

summation of the probability is one. 

 In addition, the regularisation term is used to prevent 

overfitting, by controlling the effective complexity of the 

neural network. The regularisation of the designed 

networks in this study was performed by adding a penalty 

equal to the L2-norm of the weights, in order to reduce 

the value of the weights by the same factor. 

 

3.2 Model architecture 

 The acquired annual data-set of the PV system was 

divided into three different sets in order to determine the 

optimal parameters for the neural network. The annual 

data-set was separated into the train, validation and test 

set with the 70:15:15% portion approach [30]. The 

70:15:15% data split portion was selected in order to 

include systematic information for the training but to also 

preserve sufficient data-points for validation and testing. 

The data splitting techniques involved the partitioning of 

data into an explicit training set used to develop the 

model, the validation set used to tune the parameters of 

the model and the test set necessary to evaluate the model 

performance on unseen data.  The training, validation and 

testing set, comprised of the model inputs which included 

the measurements of GI, Tamb, RH, Ws, Wa and the 

calculated parameters of AzS and AlS. Finally, the DC 

Pmp was the output parameter of the model. 

 In order to achieve optimal forecasting performance, 

different input feature combinations and hidden layer 

topologies (number of hidden units) were investigated 

while training the network models. The initially designed 

FFNN, which was subsequently used in the tuning 

process comprised of two inputs (GI, Tamb), four hidden 

nodes and an output layer (Pmp) (see Fig. 2). The optimal 

model parameters were identified by comparing the 

performance of the developed models based on the 

training and validation sets. Re-iteration of the process 

(epochs) was performed until the results from the 

network became acceptable, indicating low performance 

error while avoiding over-training the network, that may 

result in over-fitting.  

 Lastly, the tuned networks were then evaluated by 

feeding the test set input variables and assessing the 

actual measured power against the predicted power 

according to some performance assessment metrics (that 

will be discussed later). 

 

 
Figure 2: Network interconnection diagram (NID) of a 

FFNN. 

 

3.3 Model performance assessment 

 The forecasting performance accuracy was assessed 

based on several predefined metrics when the test set was 

applied to the developed algorithms. The metrics 

commonly used in PV production forecasting 

applications include the mean absolute error (MAE), 

mean absolute percentage error (MAPE), root mean 

square error (RMSE) and normalised RMSE (nRMSE) to 

the nominal PV system peak power: 
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where yactual,i and yforecasted, is the actual and predicted 

power respectively, Pnominal is the nominal peak power of 

the PV system (1365 W). 

 

 

4 RESULTS 

  

 In order to establish an accurate HA PV power 

production forecasting model, it is necessary to analyse 

the sensitivity of the output on the input variables. For 

this purpose, the influence of each input parameter on the 

output power, was examined by calculating the Pearson 

Correlation Coefficient (PCC), which measures the 

direction and strength of the linear relationship between 

two variables. Table II summarises the results from the 

PCC between the investigated features. 

 

 

 

 



Table II: Pearson Correlation Coefficient between PV 

power output and environmental factors under typical 

weather conditions. 

 

Pearson Correlation Coefficient 

 Maximum Power, Pmp 

Incident global irradiance, GI 0.86 

Sun elevation angle, AlS 0.77 

Relative humidity, RH -0.74 

Ambient temperature, Tamb -0.60 

Wind direction, Wa -0.10 

Wind speed, Ws 0.10 

Sun azimuth angle, AzS -0.01 

 

 Intending to select only the highly linearly correlated 

input parameters, a threshold was set at the Pearson 

Coefficient; i.e. |PCC| ≥ 0.5. The parameters complying 

with the set threshold level were the GI, AlS, Tamb and 

RH. In order to achieve a model optimisation, different 

input parameter combinations at the input layer of each 

devised network were investigated comprising not only 

of the highly correlated parameters but also the remaining 

input parameters that exhibited non-linear behaviour. 

However, the highly correlated input parameters were 

expected to achieve high accuracy and feature 

importance. In addition, the number of hidden units was 

set to an empirical value between the total of the number 

of inputs and output layer nodes. Table III tabulates the 

validation results based on the nRMSE of the input 

feature analysis to the FFNN model. 

 

Table III: Input feature parameter models and the 

corresponding nRMSE. 

 

Input features 

Hidden 

Layer 

Neurons 

nRMSE 

(%) 

GI, Tamb 2 5.50 

GI, Tamb, AlS 3 5.27 

GI, Tamb, RH 3 5.68 

GI, Tamb, RH, AlS 4 5.33 

GI, Tamb, Walpha, WS 4 6.10 

GI, Tamb, AlS, AzS 4 4.60 

GI, Tamb, WS, RH 4 5.13 

GI, Tamb, AzS, AlS, Wa, WS, RH 7 5.77 

 

 The results clearly demonstrated that the optimum 

feature combination included all the input variables (GI, 

Tamb, AzS, AlS), confirming that FFNNs could detect both 

the linear and non-linear behaviours among the input and 

output parameters. Varying the number of input features 

resulted in an nRMSE ranging from 6.10% to 4.60%, 

which highlights the robustness of neural networks.  

 To further improve the accuracy of the predictions of 

the optimal network, the effect of varying the number of 

hidden units on the prediction accuracy was also 

investigated. The results presented in Fig. 3, demonstrate 

that the nRMSE decreases with the increasing number of 

hidden units, in the case of the training set.  

 In particular, although the training set was improving 

by increasing the number of hidden neurons, the nRMSE 

of the validation set showed a different behaviour when 

the number of hidden neurons was increased beyond a 

certain number. The results presented in the plot showed 

that the best accuracy for the validation set was obtained 

when the selected number of hidden neurons was in the 

range of 22 to 25. To minimise the error and the noise of 

the training phase more hidden units were utilised. 

However, to decrease the complexity of the model and 

prone to overfitting [31] the number of nodes was set to 

22 in the hidden layer as an additional optimisation step, 

which yielded a nRMSE of 3.63%. 

 

 
Figure 3: Daily nRMSE (%) against the number of 

neurons for both the training and validation sets using a 

single hidden layer. 

 

 At this stage, the neural network was designed by 

specifying the number of input variables and amount of 

hidden neurons. The optimal model therefore comprised 

of the input parameters of GI, Tamb, AzS and AlS. The 

70% of randomly selected samples and a single hidden 

layer with 22 neurons (see Fig. 4) developed the training 

set of the ANN model. Additionally Eq. (12) describes 

the best-performing model. 

 

 
Figure 4: NID of the optimimally designed FFNN.  
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 When the testing set data were applied to the model, 

the daily average nRMSE was 3.60%, while 57% of the 

days demonstrated a nRMSE below 5% (Fig. 5). 

Furthermore, when typical weekly data with both clear 

and overcast days were applied to the model it was found 

that the systematic behaviour of the PV system was 

captured (see Fig. 6a). Specifically, the error relative to 

the capacity of the system for all points during clear sky 



was in most cases less than 0.1 W/Wp (see Fig. 6b).

  

 

  
Figure 5: Daily nRMSE over the test set samples. The 

dashed blue line represents the daily nRMSE of 3.60% 

while the red dashed line demonstrates the 5% threshold. 

 

 
Figure 6: Plot of daily (a) Actual against HA PV power 

forecast and (b) Error relative to the capacity.  

 

 In addition, the MBE of the testing set was found to 

be 0.1%, indicating that there is no significant bias in the 

forecasts (neither an overestimation nor an 

underestimation of the forecasted Pmp, over the actual 

Pmp) (see Fig. 7). 

 

 
 

Figure 7: Daily forecasted bias error. The blue dashed 

line represents the MBE (~0.1%). 

 

 

5 CONCLUSION 

  

 Increased PV penetration requires agile forecasting 

techniques in order to ensure grid stability and 

dispatchability. For the development of an accurate ANN 

model, a procedure with subsequent stages of training 

and testing steps was followed and the devised ANNs 

were assessed by tuning their input features and network 

architecture. More specifically, a conventional FFNN 

was designed, whose parameters were estimated by a 

feedforward supervised learning process, trained using 

the BP technique and regularised by employing L2 

regularisation. The final ANN comprised of 4 input 

parameters (GI, Tamb, AzS, AlS), 22 hidden neurons and 

was trained with a random samples of 70:15:15% train, 

validation and test set approach.  

 The forecasting results demonstrated that the average 

daily nRMSE was 3.60% over the tests period and the 

model performed very well during clear sky days 

exhibiting a nRMSE close to 1% while the MBE was 

0.15% indicating no biases between the forecasted and 

the actual power.  
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