[EEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING, VOL. BME-18, NO. 1, JANUARY 1971 47

Theoretical Analysis of a Left-Ventricular Pumping
Model Based on the Systolic Time-Varying
Pressure / Volume Ratio

HIROYUKI SUGA

Abstract—A left-ventricular pumping model based on a left-
ventricular systolic time-varying pressure/volume ratio e(f) has
been proposed on the basis of the physiological studies indicating
that the parameter e(t) is a function of time in systole, almost in-
dependent from left-ventricular volume and the arterial-loading
conditions, and is a good index of myocardial inotropism. The model
has been formulated by the following two equations:

t
() = e(l) 31‘(0) - fo i(l)dt%
pU) = F1i)}

where p(f) is the systolic left-ventricular pressure, v(o) is the left-
ventricular end-diastolic volume (at the onset of systole), i(?) is
the blood-flow rate ejected from the left ventricle, ¢ is the time
from the onset of systole, and f is a function of the hydraulic
impedance of the load against the ventricular ejection (including the
aortic valve). Some theoretical analyses of this model are attempted,
first analytically with simplifications of the time course of e(f) and
the hydraulic impedance of the load, and then by an analog computer
with e(#) approximated to the physiological data. Quantitative rela-
tionships among various hemodynamic parameters are obtained, and
these appear to be in good agreement with the physiological charac-
teristics of the left ventricle.

I. INTRODUCTION

HE TIME courses of pressure and volume of the
Tleft ventricle change in a complicated manner

when the ventricle of a given inotropic state
pumps blood under various alterations in the end-
diastolic volume and the arterial-loading conditions.
This complicated pressure-volume relationship has
been successfully analyzed physiologically from the view-
point of the myocardial tension—velocity relationship
[1]and also from the ventricular time-varying pressure/
volume ratio [2]-[4]. The myocardial tension—velocity
relationship combined with a ventricular geometrical
model has been used for simulation of the whole cir-
culatory system, and some of the fundamental hemo-
dynamic characteristics of the heart have been analyzed
[5]. Ventricular-pumping models based on the time-
varying pressure/volume ratio connected to various
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types of arterial-loading models have been used in
simulation of the cardiovascular dynamics [6]-[9].
The time courses of the ratio in these simulations,
however, have not been based on physiological data.
Moreover, fundamental hemodynamic characteristics
of the heart have not been analyzed systematically,
although time courses of various hemodynamic pa-
rameters are in good agreement with the physiological
data.

The purpose of the present investigations is to analyze
some fundamental hemodynamic characteristics of a
left-ventricular pumping model based on the left-
ventricular systolic time-varying pressure,/volume ratio
e(?) and to compare the results of this analysis with the
established physiological properties of the left ventricle.

II. HisToRICAL REVIEWS

Some of the systolic time courses of the left-ven-
tricular pressure/volume ratio e(f) used by previous
investigators are as follows:

e(f) = constant,

C(t) = €ed + {g(z'ed)}t7

(Warner [6])
(Defares [7])

where e.q is e(t) at the end of diastole (¢=0), g is the
function of left-ventricular end-diastolic volume veq
and is numerically calculated from physiological data,
and ¢ is the time in systole. e(f) is a function of time
similar to a half-wave-rectified sine wave (Beneken
[8]), or it is determined in order to obtain reasonable
ventricular pressure and volume curves (Snyder et al.
[9]). The left-ventricular pumping models based on
these time courses of e(f) were used in the simulation of
the whole circulatory system on an analog computer
connected to detailed arterial models where various
hemodynamic parameters were shown in most cases as
functions of time. The relationships among these param-
eters however, were not systematically discussed. More-
over, these e() were not induced from physiological data
on time courses of left-ventricular pressure and volume
in various circulatory conditions.

Recently, the time course of left-ventricular systolic
pressure/volume ratio e(f) has been investigated in
detail in anesthetized, vagotomized, and stellectomized
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Fig. 1. Typical examples of time course of e(f) of the dog.

dogs [2]-[4]. These experimental results show that e()
has an approximately unchanged tendency of the time
course in systole without changes in the dog and e(?) is
nearly unchanged by alterations in the left-ventricular
end-diastolic volume and arterial conditions. However,
the cardiac~sympathetic stimulation increases the mag-
nitude of e(f) significantly and shortens the systolic
duration of ¢(t), but the cardiac vagal stimulation does
not alter e(t) at a fixed heart rate (Fig. 1) [2]-[4]. On
the basis of these fundamental properties of the ven-
tircular pressure—volume relationship, a left-ventricular
pumping model has been proposed with the ratio e(?)

[2].

111. MATHEMATICAL ANALYSIS

The left-ventricular pumping model proposed in the
previous paper is formulated as follows [2]:

p@t) = e®)r(®) 1)
v(t) = v(0) — f ti(t) dt )
p@) = fi®} 3)

where p({) is the systolic left-ventricular pressure, v(?) is
systolic left-ventricular volume, v(0) is v(f) at £=0, or
the left-ventricular end-diastolic volume, (f) is the
blood-flow rate ejected out of the ventricle, and f is a
function of the hydraulic impedance of the load against
the ejection. Fig. 2 shows the block diagram of this
model, in which e(t), heart rate, v(0), and the loading
properties are biologically controlled parameters. As
mentioned, e(#) is unchanged in its shape and magnitude
by alterations in #(0) and the loading conditions, but is
altered by stimulation of the cardiac sympathetic
nerves and changes in heart rate.

IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING, JANUARY 1971

Function
generator [(-======-==="

Biological
- control

p(t) N

Multiplier

t
g i(t)dt
0

i(t)

Integrator

I p,(t)

Fig. 2. Block diagram of left-ventricular pumping model based on
systolic ventricular pressure/volume ratio e(?). Integral of i(f) is
set to zero at onset of every systole.

It is almost impossible to solve (1)—(3) analytically
with the same e(f) as obtained in experiments on the
dog, since they are rearranged into a higher order non-
linear differential equation with time-varying parame-
ters. Therefore, they are solved in this paper first
analytically with some assumptions of e(t) and the load-
ing properties, and then they are solved by an analog
computer with e(#) approximated to that obtained in
the experiments. In the following analysis, the hemo-
dynamic properties of the aortic valve and the arterial
load are oversimplified in order that the analysis may
emphasize influences on ventricular pumping properties
of various important hemodynamic parameters and
also clarify fundamental characteristics of the left
ventricle itself.

A. Model Analysis

The first model analysis is made with the assump-
tions that e(t) is constant in systole and that the load is
a constant aortic pressure with a resistive aortic valve.
In order to solve (1)—(3), the following assumptions are
are made: 1) e(f) is a constant e, in systole (0St=t)
and zero in diastole (the same assumption as by Warner
[6]); 2) the load against ventricular ejection is a
constant-pressure (p.) arterial system (which will be
approximately realized by connecting a large com-
pliance to the arterial system or by using a pressure clamp
system) connected in series with the aortic valve with a
small forward resistance r and no back flow, making
and braking by the pressure difference. With these
assumptions, the previously mentioned equations are
rewritten as follows. In systole,

P(t) - esv(t)
0 - 3 d
o( ) j‘o Z(l) ¢

4

v(?) ®)
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Fig. 3. Time courses of left ventricular e(t), pressure p(¢), volume
v(#), and blood-flow rate ejected out of ventricle (from above
down) in model analyses. (a) From the model in Section III-A. (b)
From the model in Section I1I-B. (c) From the model in Section
ITI-C. (d) From the model in Section III-D. Broken lines show
arterial pressure pq or pa(t).

p(t) = Pa + rl(t) (6)

and in diastole, p(¢) and 7(f) are zero, besides which
v(¢) is set to v(0) at the end of diastole. Then the follow-
ing differential equation is obtained in systole:

(r/e)dp(t)/dt + p(t) = pa. (™)

The solutions are as follows in the case that p, is smaller
than e2(0):

p(0) = pa + {v(0)es — pa} exp (—eut/7) ®)

() = pa/es + {v(0) — po/e.} exp (—eit/r)  (9)
and

i(t) = {0(0)es — pa} exp (—eut/r)/r. (10)

These parameters are shown as functions of time in
Fig. 3(a). Various important hemodynamic parameters
are formulated according to their definitions from these
solutions; stroke volume is

v = {000) — po/e} {1 — exp (—et/r)}  (11)
residual volume,
v = pa/es + {0(0) — po/e.} exp (—ets/r)  (12)

ejection ratio (equal to the ratio of stroke volume to
end-diastolic volume),

¢ =[1—= po/{er(0)}]{1 — exp (—ato/r)}  (13)
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and the total mechanical energy generated by the
ventricle in a cardiac cycle (equal to [§ p(£)2(2) df) is
w, = p,,{v(O)es — pa} {1 — exp (—est,,/r)}/e,

+ {0(0)es — pa}2{1 — exp (—2eds/7)}/2e, (1)
where the first term is the mechanical energy con-
sumed by the arterial load (w:) and the second is that

consumed by the aortic valve (w,). Then w; is rewritten
as follows:

w1 = [0(0)%:%/4 — {v(0)e,/2 — pa}?]
. {1 — exp (—ests/r)}/e,. (15)
The definition of the total peripheral resistance R is

p./(HR v,); thus some of the previously mentioned
parameters are rewritten by the use of R as follows:

HR Rv(0){1 — exp (—est./r)}
"1+ HR R{1 — exp (—as/7)} /s
v(O){l — exp (—eddy/7)}
- 14+ HR R{l — exp (—e.t,/r)}/ea
w; = esv(O)z{l — exp (—eits/7)}
1 1 HR R{1 — exp (—edts/r)} \2
' {Z - (7 T et HR{R{I —exp (—e,t,/r)}) } - 18)

These relationships are shown graphically in Figs. 4-7.
If the aortic valvular resistance is negligibly small,
exp(—e,t,/r) in these equations is approximately zero.

a

(16)

(17)

Vs

B. Model Analysis

A second model analysis is made with the assump-
tions that e(#) is constant in systole and that the load
is a constant aortic pressure with blood inertia at the
aortic valve. Inertia of the blood at the aortic valve is
not negligible and is more important than blood vis-
cosity [10]. The previously mentioned aortic valvular
resistance is replaced here by inertia of the blood; (6)
is then replaced by the following equation. In systole,

p(®) = pa + Ldi(1)/dt 19

where L is the blood inertia at the aortic valve and
i(t) is not less than zero in systole and is zero in diastole.
Therefore, the following differential equation is derived
from (4), (5), and (19):

(L/es)d?p(2)/dt? 4 p(t) = pa.

The solutions are as follows in the case where p, is
smaller than ¢,2(0). In systole, for ¢ less than or equal to

w+/L/e.,

(20)

p(®) = {v(0)es — pa} cos (tv/e/L) + pa (21)
v(t) = {9(0) — pa/es} cos (1€ L) + pafes  (22)
i(t) = 1/veL{v(0)es — pa} sin (tv/e/I)  (23)
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All variables are normalized to the respective values shown in
lengend. e is the constant in the previous figure.

pressure as a parameter. (0), v;, and w, are normalized to the
respective values shown in the legend following the colon.

a = exp(-es ts/r)

1
0.5
mean aortic pressure P,ieg v(0)

Units on ¥ axis

stroke work w1:¢,9(0)2/4
residual volume v,:9(0)
stroke volume v,:9(0)
ejection ratio ¢:1

Fig. 5. Model analysis of relationships of ejection ratio, stroke
volume, residual volume, and stroke work to mean aortic pres-
sure. All variables are normalized to respective values shown in

legend. a is a constant decided by aortic valvular properties.

and for ¢ greater than w+/L/e,, p(t), v(t), and i(t) are
equal to those at t=w+/L/e;. These parameters are
shown as function of time in Fig. 3(b). As in the previous
section, various important hemodynamic parameters
are formulated as follows. For the end of systole, with

t, not greater than w+/L/e;,

v = {0(0) — pa/es} {1 — cos (t/e/L)} (24)
v, = Pn/es + {'L‘(O) - Pa/es} cos (l”vm) (25)
(26)

g=1[1-— p,,/{egu(O)}]{l — cos tg(\/m)}

ey v(0)/2)

(pa = constant)

7/
/ w, (p, =
/-1 "Fa
e
.
4
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LT

= eg v(0)/2)

0 L
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stroke work w1:€49(0)?
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Fig. 7. Model analysis of relationships of ejection ratio, stroke
volume, residual volume, and stroke work to systolic maximum
of left-ventricular pressure/volume ratio e(f) or es with mean
aortic pressure as a parameter. All variables are normalized to the

respective values shown in legend.

Wy = Pa{‘v(o)es - Pa} {1 — cos lS(\/m)}/es
+ {v(O)es — pa}z{l — cos (2t8\/Te,,/—L)}/23, 27

w; = [0(0)%.2/4 — {v(0)e./2 — pa}?]
. {1 — cos (tv/e/L)}/es (28)
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and for ¢, greater than w+/L/e,,

v, = 20(0) — 2p,/es (29)
7 = 2pa/es — v(0) (30)
g =2 — 2p./{v(0)e,} (31)
we = w1 = 2p{0(0) — pa/es} (32)
w, = 0. (33)

All these hemodynamic parameters can be formulated
by the corresponding equations in Section III-A with
exp(—est,/r) replaced by cos(tsv/e,/L). Therefore, the
relationships among these hemodynamic parameters in
this model with blood inertia are similar to those in
Section II1-A.

C. Model Analysis

A third model analysis is made with the assumptions
that e(f) is increased linearly in systole and that there is
no impedance between the ventricle and the constant
pressure load. The physiological e(f) obtained in the
experiments on the dog is a monotonically increasing
function of time in the first two thirds of systole, as
shown in Fig. 1; this increasing phase of ¢(¢) is approxi-
mated here by a linearly increasing function of time
e(t) =et. The aortic valvular impedance is neglected for
simplification of the analysis. Equations to be used
corresponding to (4)—(6) are the following.

For ¢ not greater than p,/ {esv(O) } ,

(1) = etv(0), () =0 (34)

and for ¢ greater than p./ {ew(0) },
p(t) = ete(t) (35)
2(f) = 2(0) — f ti(t) dt (36)
2(8) = pa. 37)

Hence the solutions are as follows:
v(l) = pa/(el) (38)
i(t) = pa/(et?). (39

The time courses of p(¢), v(t), and i(¢) are shown in Fig.
3(c). From these solutions various hemodynamic param-
eters are formulated. For f, greater than p./{ew(0) 1,

v = 9(0) — po/(et;) (40)
v = pa/(ets) (41)
g =1— p./{et(0)} (42)

w, = w; = et;w(0)2/4 — {etsv(O)/Z — pa}2/(el,). (43)

It should be noted that these formulations will be the
same as those in Section I1I-A if exp(—e.t,/7) and e, are
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replaced by 0 and et,, respectively; therefore, almost the
same types of relationships hold true among the param-
eters in this model as among those in Section I1I-A.

D. Model Analysis

A fourth model analysis is made with the assumptions
that e(f) is constant in systole and that the load is a
Windkessel model with a resistive aortic valve. The
input impedance of the arterial system can be approxi-
mated by the Windkessel model, where compliance C
of the arterial system is lumped and combined in
parallel with the total peripheral resistance R. Instead of
(6), the following two equations are used. In systole,

i(8) = pa()/R + Cdpa(t)/dt (44)
() = pa(t) + ri(0) (45)

where p.(t) is aortic blood pressure and 7 is the aortic
valvular resistance, as shown in Section III-A. In
diastole (¢ is from ¢, to t,+t4), p(f) and i(¢) are zero, and

pa(t) = pa(ts) exp {—(t — 4)/(RC)}. (46)

In systole the following second-order differential equa-
tion is obtained:

(CRr/es)d?*p(t)/dt*
+ (CR + R/e. + r/e)dp(t)/dt + p(t) = 0.

The solutions in the case of cardiac ejection in a steady
condition are as follows, omitting the intermediate
transformations:

#()) = v(0)e.{ D1(Ea — E1)F2 — Dy(Es — E5)Fy} /A (48)
Pa(t) = v(0)e, D1 Do{(E; — E))Fy — (Ea — E5)F1} /A (49)
o(t) = v(0){ Dy(Eqs — E)F; — Dy(Ea— E3)F1}/4  (50)

i() = v(0){d1Dy(Es — E9)F,
— d2Dy(Ea — E))F,} /4 (51)

(47)

where d; and d, are the roots of the characteristic equa-
tion of the differential equation (47) and

Dy =di+ e/r, Dy=ds+ e/r
E, = exp (dits), E; = exp (dals),
F, = exp (dif), Fy = exp (df)
A = (dy — d2)Eq + D:E;, — D;E,.

E; = exp {td/(RC)}

The time courses of p(¢), pa(2), (¢), and 7(¢) are shown in
Fig. 3(d). From these solutions,

9, =2(0) { D1(1— E;)(Ea— E;) — Dy(1— Ey)
(Ea—Ex)}/4 (52)
2, =2(0) {Ed(DlEZ—D2E1)+E1E2(d2_d1)}/A (53)
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Fig. 8. Model analysis of relationships of stroke volume, stroke
work, and mean aortic pressure to reciprocal of arterial compliance
with constant 9(0) and other parameters set to physiological
values of the dog.

g={D:1(1— Es)(Ea— E1)— D:(1—E)(Ba—En)} /A (54)
w,=9(0)2 ¢,{ D1 Ds(Eq— E1) (Fa— E») (Ey E2—1)
— D2(Eq— E1)*(E2—1)/2
— D2A(Ea— E2)*(Ei*—1)/2}/ A* (55)
w;=2(0)27 Dy D2f(dy Dads D1)(Es— Es)(Eq— Ey)
(Ey Ey—1)/(dy+ds) — Dy(Eq— E1)*(Es?—1)/2
— Dy(Es— E2)¥(E2—1)/2}/ A2 (56)

These equations are then numerically calculated with
their parameters set to typical physiological values, and
the relationships are in good agreement with those in
Figs. 4-7. Moreover, relationships of various hemo-
dynamic parameters to arterial compliance C are
formulated, and they are also numerically calculated
with their parameters substituted by typical values, an
example of which is graphically shown in Fig. 8.

E. Model Analysis

A fifth model analysis was made on an analog com-
puter with e(f) approximated to the experimentally ob-
tained time course. Equations (1)-(3) are computed
with e(t) approximated to the physiological data as
appear in Fig. 1. The loading properties are in general
easily programmed. Fig. 9 is an example of the programs
where the cardiac load is the resistive aortic valve and
the Windkessel model. Fig. 10 shows some examples of
the solutions where the relationship of aortic blood flow
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Fig. 9. Analog-computer program of simulation of left-ventricular
pumping. Load properties are shown surrounded by dotted line.
e(t) is generated periodically by function generator, and its period
is equivalent to cardiac cycle. Integrating capacitor of integrator
A is short-circuited at the end of each cardiac cycle. M is a mul-
tiplier.
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Fig. 10. Some examples of solutions of left-ventricular pumping
simulation with e(¢) approximated to physiological data. Cardiac
load is Windkessel with its compliance of 0.1 ml/mmHg and
variable resistance R. Aortic valvular impedance is resistance
r of 0.1 mmHg-s/ml.

to arterial pressure is shown under various magnitudes
of the total peripheral resistance with fixed e(#). Fig. 11
shows another example of the solutions in which the
relationship among the constant loading pressure (pa)
and other hemodynamic parameters is shown with e()
unchanged. Fig. 12 is an example of the solutions where
the effect of blood inertia of a physiological value (0.005
mmHg-s?/ml in the dog) on some hemodynamic para-
meters is examined; aortic blood flow is smoothed by
the inertia, but there are almost no effects on left-
ventricular pressure, aortic pressure, and stroke volume.
Influences of the time course of ¢() on hemodynamics
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Fig. 11. Some examples of solutions with e(f) approximated to
physiological data and with constant aortic pressure load p,.

are examined in the pumping model with the values of
r, C, R, and heart rate fixed to physiologically typical
values (r=0.1 mmHg/ml, C=0.1 ml/mmHg, R=10
mmHg-s/ml, and HR=2/s, but blood inertia is neg-
lected). If the maximal value of e(¢) is unchanged with
various changes in its time course, mean aortic pressure
and stroke volume are not altered, although time courses
of aortic pressure, intraventricular pressure, intraven-
tricular volume, and aortic blood-flow velocity are
changed conspicuously. From these solutions in analog-
computer simulation, the relationships among various
hemodynamic parameters are obtained, and they are
quantitatively in good agreement with those obtained
in the previous sections.

IV. Discussions

In the left-ventricular pumping model based on e(t),
the left-ventricular systolic time-varying pressure/
volume ratio, is analyzed in various ways. The time
courses of e(f) used in the analysis are various; the
aortic valvular properties are either resistive or induc-
tive; the arterial load is a constant pressure or the
Windkessel model. Time courses of various important
hemodynamic parameters such as the left-ventricular
pressure p(t), volume 2(2), and aortic blood-flow velocity
1(t) are different from their respective correspondents in
different types of model analysis. However, almost the
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Fig. 12. Effects of blood inertia at aortic valve on various hemody-
namic parameters. At time indicated by arrow, blood inertia is
omitted with arterial compliance and total peripheral resistance
unchanged.

same relationships hold true in these different analyses
among mean or integrated values of stroke volume v,,
residual volume v,, stroke work w, and w;, and mean
aortic pressure p,. The main differences in their formula-
tions appear to be caused, at first glance, by the prop-
erties of the aortic valve since differences exist in the
coefficients exp(—es;/7), cos(t,\/e,/L), etc., wherer and
L are the characteristic constants of the aortic valve;
however, these terms are considered to be negligibly
small in the physiological range. The maximal value of
e(t) seems to have a much greater influence on the
amounts of stroke volume, mean aortic pressure, stroke
work, etc., than the whole time course of e(t).

In the physiological system of left-ventricular pump-
ing, the time course of e(¢) is like those in Fig. 1, the
hemodynamic characteristics of the aortic valve is
mainly the impedance due to blood inertia and viscosity
in the forward direction without back flow, and the
arterial system is a distributed constant system that can
be simulated approximately by the Windkessel model
and elaborately by more detailed models [9]. The previ-
ously mentioned relationships among various hemo-
dynamic parameters also seem approximately to hold
true to the physiological system since almost the same
relationships are obtained in various types of models in
which some of the fundamental properties of the cir-
culatory system are emphasized. Some of these rela-
tionships have been already analyzed qualitatively in
the previous simulations of other investigators [7] and
[9]. Itis interesting that the fundamental hemodynamic
relationships among mean or integrated parameters are
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the same in spite of conspicuous differences of respective
time courses.

The relationships among the previously mentioned
hemodynamic parameters have been investigated phy-
siologically in animal experiments, and it seems neces-
sary to the evaluation of the concept of e(t) to compare
the previously mentioned results from the theoretical
analysis with the corresponding physiological data. The
theoretical relationships of stroke volume and stroke
work to end-diastolic volume as in Fig. 4 are qualita-
tively in good agreement with the correspondents in
physiology called either the Frank-Starling law of the
heart [11] or Sarnoff’s ventricular function curve [12].
Mean aortic pressure is theoretically an important
parameter that varies their quantitative relationships,
but this has not been studied in detail in animal ex-
periments. Moreover, a detailed comparison of the
theoretical curves and the experimental data is difhcult
since mean left-atrial pressure or left-ventricular end-
diastolic pressure has been measured instead of left-
ventricular volume in almost all previous works, and
there exists some nonlinearity in the left-ventricular
pressure—volume relationship in diastole. The theoret-
ical relationships of stroke volume and stroke work to
mean arterial pressure with constant left-ventricular
end-diastolic volume, as in Fig. 5, or to the total peri-
pheral resistance, as in Fig. 6, are also qualitatively in
good agreement with the corresponding physiological
data [13] and [14]. The theoretical relationships of
various parameters to the maximal value of e(f) as in
Fig. 7 has no correspondents in physiological data;
nevertheless e(t) is roughly compatible with physio-
logical properties of the left ventricle since the maximum
of e(f) is a good index of myocardial inotropism [4]. The
theoretical effect of arterial compliance on various
hemodynamic parameters, as in Fig. 8, also approxi-
mately agrees with physiological data [15].

From these discussions, the theoretical properties of
the left-ventricular pumping model based on the systolic
pressure/volume ratio are considered to be in satisfac-
tory agreement with the established experimental data
on properties of the left ventricle. Consequently, the
concept of systolic left-ventricular pressure/volume
ratio e(t) appears to explain the basic characteristics of
the pumping left ventricle, and the analysis in this in-
vestigation corroborates the conclusion of the physio-
logical experimentation, indicating that e(f) is a good
index of the pumping left ventricle.

Moreover, the myocardial tension—velocity relation-
ship in physiology has been recently deduced theoret-
ically from e(¢) and a ventricular geometrical model
[16], indicating that the pumping properties of the left
ventricle can be described by e(t) from the viewpoint of
the ventricle as a whole and by the tension—velocity
relationship from the viewpoint of the myocardium as
the ventricular constituent. In this respect, the hemo-
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dynamic characteristics of the Beneken’s model [5]
based on the tension—velocity relationship is considered
to be compatible with the models based on e(z).

NOMENCLATURE

Compliance of the arterial system (ml/mmHg).
e Constantin Section I1I-C.
e, Constant in Section II1I-A and systolic left-ven-
tricular pressuce/volume ratio (mmHg/ml).

e(t) Systolic left-ventricular pressure/volume ratio
(mmHg/ml).

HR Heartrate (beats/s).

i(f) Blood-flow rate ejected out of the left ventricle

(ml/s).

L Blood inertia at the aortic value (mmHg-s%/ml).

p. Constant aortic pressure (mmHg).

Aortic pressure (mmHg).

Left ventricular pressure in systole (mmHg).

¢ Ejection ratio of the left ventricle [1].

R Total peripheral resistance (mmHg-s/ml).

r Aortic valvular resistance (mmHg-s/ml).

{ Time from the onset of systole (s).

ts Diastolic interval (s).

t, Systolic interval (s).

Left-ventricular end-diastolic volume, or left-

ventricular volume at the onset of systole (ml).

v, Residual volume of the left ventricle (ml).

v, Stroke volume of the left ventricle (ml).

Left ventricular volume in systole (ml).

w; Mechanical energy consumed by the arterial load
in one cardiac cycle (mmHg - ml).

w, Total mechanical energy generated by the left
ventricle in one cardiac cycle (mmHg - ml).

w, Mechanical energy consumed at the aortic valve
(mmHg ml).
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