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Role of tapering in aortic wave re#ection: hydraulic
and mathematical model study
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Abstract

Pressure and #ow have been measured simultaneously at six locations along the aorta of an anatomically correct 1 : 1 scale
hydraulic elastic tube model of the arterial tree. Our results suggest a discrete re#ection point at the level of the renal arteries based on
(i) the quarter-wavelength formula and (ii) the comparison of foot-to-foot (c

&&
) and apparent phase velocity (c

!11
). However,

separation of the pressure wave into an incident and re#ected wave at all six locations indicates continuous re#ection: a re#ected wave
is generated at each location as the forward wave passes by. We did a further analysis using a mathematical transmission line model
with a simple tapering geometry (length 50 cm, 31 and 11 mm proximal and distal diameter, respectively) for a low (0.32 ml/mmHg),
normal (1.6 ml/mmHg) and high (8 ml/mmHg) value of total arterial compliance. Using the quarter-wavelength formula, a discrete
re#ection point is found at x"33 cm, the level of the renal arteries, independent of the value of total compliance. However, local
analysis comparing c

&&
and c

!11
does not reveal a marked re#ection site, and the analysis of incident and re#ected waves merely

suggests a continuous re#ection. We therefore conclude that the measured in vivo aortic wave re#ection indices are the result of at
least two interacting phenomena: a continuous wave re#ection due to tapering, and local re#ections arising from branches at the level
of the diaphragm. The continuous re#ection is hidden in the input impedance pattern. Using the quarter-wavelength formula or the
classical wave separation theory, it appears as a re#ection coming from a single discrete site, confusingly also located at the level of the
diaphragm. Therefore, the quarter-wavelength formula and the linear wave separation theory should be used with caution to identify
wave re#ection zones in the presence of tapering, i.e., in most mammalian arteries. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Arterial wave re#ection is an important determinant of
pressure wave morphology (Milnor, 1989). Murgo et al.
(1980) classify aortic pressure waves (type A, B and C)
based on the occurrence of an in#ection point in systole.
This in#ection point arises from the interaction of a for-
ward wave with a re#ected wave. For type C waves, it
occurs in late systole. With progressing age, or in hyper-
tension, the re#ected wave arrives earlier in the cardiac
cycle and the in#ection point shifts to early systole, cre-
ating a shoulder-like ascending aorta wave pro"le (type
A) and higher systolic pressure and left ventricular load
(Murgo et al., 1980). As systolic pressure is an important
cardiac risk factor (Franklin and Weber, 1994), it is
important to know its determinants. This allows a better
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tracing and follow-up of high risk patients, early de-
tection of cardiovascular disease and the development of
more speci"c and target-oriented pharmacological
agents.

Using a linear wave separation theory, the ascending
aorta pressure wave can be decomposed into a forward
and a backward wave (Westerhof et al., 1972), each com-
ponent being the resultant of all antegrade and retro-
grade travelling waves (Berger et al., 1993). This wave
separation theory "ts within the concept of the arterial
system as a uniform tube, with an `e!ective lengtha, and
a single `apparenta re#ection site (Campbell et al., 1989).
Based on the same theory, one can derive the quarter-
wavelength formula which correlates the frequency of the
"rst minimum in the input impedance to the distance to
the apparent re#ection site.

Murgo et al. (1980) locate a single re#ection point at
the level of the aorto-iliac bifurcation. However,
O'Rourke (1967) states that at least two re#ection sites
are required to explain aortic wave phenomena: one at
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Fig. 1. Hydraulic model. Schematic planview drawing of the cardiovascular simulator (left) and the distal peripheral model (upper right). 1: Lung
reservoir; 2: pulmonary veins; 3: left atrium; 4: left ventricle; 5: aorta; 6: aorto-iliac bifurcation; 7: peripheral model; 8: veins; 9: venous return conduit; 10:
electromagnetic #ow meter, 11: venous over#ow; 12: bu!ering reservoir; 13: pump. Bottom right: indication of the six measuring locations along the
aorta. (1) Ascending aorta; (2) aortic arch; (3, 4) thoracic aorta; (5, 6) abdominal aorta.

the aorto-iliac bifurcation, and a second one closer to the
heart, representing the re#ections coming from arteries to
the head and upper limbs. This is the basis of the asym-
metric T-tube model (O'Rourke and Avolio, 1980). More
recently, Latham et al. (1985) measured pressure simulta-
neously at six locations in the human aorta. Analysis of
pressure wave propagation and re#ection in the time and
frequency domain con"rms the existence of a second
re#ection point, but they locate it in the aorta at the level
of the renal arteries. Karamanoglu et al. (1994) also stress
the impact of the arteries in the abdomen on the pressure
wave morphology, and identify these arteries as the ma-
jor source of re#ection.

In this study, we hypothesise that aortic wave re#ec-
tion indices result from an interaction of continuous
wave re#ection, due to tapering, and to local re#ections.
In particular, we focus on comparing the location of the
wave re#ection site derived via (i) the quarter-
wavelength formula and/or the linear wave separation
theory and (ii) time and frequency domain analysis of
pressure and #ow waves along the aorta. We therefore
repeated the in vivo measurements of Latham et al.
(1985) in a hydraulic model with an averaged anatomy of
the arterial tree, including the aorta and the major large

elastic peripheral arteries. The wave re#ection indices in
the hydraulic model are compared to the in vivo "ndings
of Latham et al. Further, a simpli"ed transmission line
model of the tapering aorta will be used to clarify the role
of aortic taper in the complex wave re#ection pattern.

2. Materials and methods

2.1. Hydraulic model description

The hydraulic model is a 1 : 1 scale model of the
human left heart and the arterial tree (Fig. 1). The arterial
tree is the physical representation of the con"guration
published by Westerhof et al. (1969) matching the arterial
tree of a male subject of 1.75 m and 75 kg. The model
consists of 37 handmade tapering tubes with inner dia-
meters down to 2 mm (interosseus). The aorta has
a length of 50 cm, with its diameter varying linearly from
31 mm at the aortic valve (31 mm bioprosthesis) to
11 mm at the aorto-iliac bifurcation (bifurcation angle of
403). The model contains 28 end-arteries and distal peri-
pheral models, simulating the resistive (pierced rubber)
and capacitive (adjustable air volume) properties of the
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small-sized arteries, arterioles and capillaries (Westerhof
et al., 1971). The arterial network is mounted in supine
position on a supporting structure and is "xed at discrete
locations to avoid bending of the arteries and disturbing
oscillations of the arteries. The arteries are not stretched
during the experiments. The complete arterial model is
submersed in water to allow for ultrasound #ow
measurements. Total compliance of the model, estimated
from pressure}volume measurements, is 0.8 ml/mmHg;
total resistance, calculated as the ratio of mean aorta
pressure and #ow is 1.1 mmHg/(ml/s). The model yields
a physiologic input impedance pattern, aortic character-
istic impedance (0.054 mmHg/(ml/s) and relevant wave
phenomena (wave steepening, systolic rise, wave vel-
ocities 6}15 m/s) (Segers et al., 1998).

2.2. Measurements and data analysis

The hydraulic model operates at 60 beats/min with
a cardiac output of 4.3 l/min and 122/60 mmHg sys-
tolic/diastolic ascending aorta pressure (mean 90
mmHg). Pressure is measured using a catheter tip pres-
sure manometer (Millar, Houston, TX) inserted into the
model via the left femoral artery. After positioning the
pressure transducer, an ultrasonic #ow probe (Transonic,
Ithaca, NY), matching aortic dimensions, is mounted
around the aorta immediately proximal to the pressure
tip transducer. At this location, pressure and #ow are
measured simultaneously at a sampling rate of 200 Hz
(computer A/D card, National Instruments, Texas, USA).
Moving the pressure transducer and #ow probe, pressure
and #ow are measured successively at respectively 1, 10,
20, 30, 36 and 48 cm in the arterial network model. At
each location, pressure and #ow are measured during
three consecutive heart beats, and Fourier analysis is
applied to this series. Only the "rst 10 harmonics are
taken into account. The input impedance (Z

*/
) is derived

at the six locations. Using the frequency of the "rst
minimum of Z

*/
( f

.*/
) and the wave velocity (c), the

distance to the e!ective re#ecting site (x
3%&-

) is derived
using the quarter-wavelength formula (Milnor, 1989):

x
3%&-

"

c

4 f
.*/

Characteristic impedance (Z
0
) is calculated averaging the

high frequency components over the frequency range
where Z

*/
oscillates around a constant value (Murgo et

al., 1980), in our case between 6 and 10 Hz. Pressure is
split into an incident or forward wave P

&
and a re#ected

or backward wave P
"

using (Westerhof et al., 1972):

P
&
"

P#Z
0
Q

2
, P

b
"

P!Z
0
Q

2
.

The wave separation is done per harmonic in the
frequency domain, and all forward and backward

harmonics are added to reconstruct the incident and
re#ected component in the time domain.

As in Latham et al. (1985), the pressure wave velocity is
estimated in two di!erent ways. In the time domain, it is
calculated as the propagation speed of the foot of the
wave (foot-to-foot wave velocity c

&&
), the latter obtained

from the intersection of straight lines extrapolated from
the late diastolic part of the curve and from the steeply
rising wave front (Milnor, 1989). In the frequency do-
main, the apparent phase velocity c

!11
is computed from

the phase di!erence of individual harmonics:

c
!11

"

2pf*x

*u

with f the harmonic frequency, *x the distance between
locations and *u the phase di!erence (Milnor, 1989). The
average of the higher frequencies (5}10 Hz) gives c

!11
(Latham et al., 1985)

2.3. Mathematical model simulations

The tapering aorta is modelled as a sequence of trans-
mission line model segments (Avolio, 1980; Segers et al.,
1997). For each segment, the transmission line equations
describe the propagation of pressure (P) and #ow (Q)
harmonic waves

P(x)"P
&
e~cx#P

"
ecx

Q(x)"Q
&
e~cx#Q

"
ecx

with x the longitudinal co-ordinate and the subscripts
f and b indicating forward and backward waves, respec-
tively. The wave propagation coe$cient (c), accounting
for wave propagation and damping, is given as

c(u)"
iu/c

0
J1!F

10

with F
10

the Bessel functions as given by Womersley
(1957), u the angular frequency and c

0
the inviscid

Moens-Korteweg wave propagation speed given as

c
0
"S

Eh

oD(1!l2)

with E the Young elasticity modulus, h the vessel wall
thickness, o the blood density (1050 kg/m3), D the local
diameter and l the Poisson ratio (0.3). The relation be-
tween pressure and #ow harmonics is given by the char-
acteristic impedance (Z

0
) as

Z
0
"

P
&

Q
&

"!

P
"

Q
"

"

oc
0
/A

J1!F
10

with A the cross-section of the segment. The impedance
mismatch between the last segment and the load is ex-
plicitly modelled in terms of a re#ection coe$cient
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Fig. 2. Hydraulic model. Left: comparison of c
!11

with c
&&

between two
successive measuring locations in the aorta. Right: measuring locations
in the study of Latham et al. (1985) and comparison of c

!11
with c

&&
in

vivo derived from pressure measurements between successive locations
under control conditions (after Latham et al., 1985).

(Karamanoglu and Fenely, 1997), given by

C"C
0
e~uq

and with C
0
"0.7 and q"0, yielding a constant and real

re#ection coe$cient. This boundary condition sets the
relation C"P

"
/P

&
"!Q

"
/Q

&
at the distal end of the

tube.
The upstream boundary condition is a physiological
#ow wave. Using Fourier analysis, this wave is split into
harmonics, and the propagation of individual pressure
and #ow harmonics over the tube is calculated using the
above set of equations. Summation of harmonics "nally
yields pressure and #ow waves in the time domain.

Pressure and #ow are calculated in a model for the
tapering aorta with a total length of 50 cm. The model is
divided into 100 segments of 0.5 cm each, and with dia-
meters varying linearly from 31 mm (upstream diameter)
to 11 mm (downstream diameter). Vessel wall thickness is
uniform all over the model (0.85 mm). E is constant over
the aorta, but three di!erent values are used to yield (i) a
low compliance (LC) model with a total compliance of
0.32 ml/mmHg (E"2000 kPa), (ii) a normal compliance
(NC) model (1.6 ml/mmHg; E"400 kPa) and (iii) a high
compliance (HC) model (8 ml/mmHg; E"80 kPa). Pres-
sure and #ow are calculated at the inlet, outlet, and at
x"30 cm and are used for the computation of c

&&
and

c
!11

, Z
*/

, Z
0
, the distance to the re#ection site (x

3%&-
), and

the incident and re#ected wave P
&

and P
"
. We further

vary the number of arterial segments from 2 to 500 (for
the HC, NC and LC model) to evaluate the e!ect on the
value of x

3%&-
. Finally, the in#uence of the tapering angle

is studied by changing the value of the upstream diameter
from 1.1 (03) to 500 mm (793). These simulations are again
performed for the three models, and with 100 segments.

3. Results

3.1. Hydraulic model measurements

At x"1, the input impedance modulus is
1.26 mmHg/(ml/s) at 0 Hz (total peripheral resistance)
and reaches a "rst minimum of 0.048 mmHg/(ml/s) at
5 Hz. This minimum is accompanied by a phase angle
intersecting the x-axis between 5 and 6 Hz (see Segers et
al., 1998). Applying the quarter-wavelength formula on
the minimum of DZ

*/
D at 5 Hz with a wave velocity of

8 m/s (in the proximal aorta), a distance of 40 cm to the
apparent re#ection site is found. This location is situated
distal to location 5, at the level of the renal arteries.

The foot-to-foot wave velocity c
&&

increases over the
aorta from about 8 m/s in the thorax to 13 m/s in the
abdomen (Fig. 2). c

!11
is 6}8 m/s in the thorax. It is

maximal (27 m/s) between locations 4 and 5 (level of the
diaphragm). Below the diaphragm, c

!11
drops to 17 m/s.

With the exception of the measurements between loca-

tion 4 and 5, there is a good correspondence between c
!11

and c
&&
.

For the more distal locations, the input impedance
increases. Z

0
, calculated from the higher frequencies

(6}10 Hz), yields values of 0.053, 0.073, 0.084, 0.287, 0.495
and 0.781 mmHg/(ml/s) at the six locations. These values
are used for the separation of the waves into their for-
ward and backward components, shown in Fig. 3 for
locations 1, 4 and 6.

3.2. Mathematical model simulations

The input impedance patterns for the low (LC), normal
(NC) and high compliance (HC) model are given in Fig. 4.
In the LC model, the minimum of the input impedance
modulus is at 6.98 Hz. With an average wave velocity of
9.30 m, the distance to an apparent re#ection point is
x"33 cm. For the NC model, average wave speed is
4.16 m/s, f

.*/
"3.08 Hz and x"34 cm and for the HC

model, x"34 cm for an average wave speed of 1.86 m/s
and f

.*/
"1.35 Hz.

The average of the high frequencies (5}10 Hz) of c
!11

is
shown in Fig. 5, together with the foot-to-foot wave
velocity and the Moens-Korteweg wave velocity. Both
c
&&

and c
!11

overestimate the Moens-Korteweg wave ve-
locity at most locations, but the overestimation is highest
in the LC model and lowest in the HC model. At the
distal end, close to the terminal re#ection point, both
approximations overestimate the Moens-Korteweg velo-
city by a factor 2 or more.

The separation of the pressure wave into its forward
and re#ected component is given in Fig. 6 for the three
models. If the timing of the retrograde waves is studied
using the foot of the retrograde wave, the "rst retrograde
wave appears at the most proximal location. However,
using the zero reference level to study the time delay (*t)
between incident and re#ected wave, a delay of 0.05 s is
found in the LC model, corresponding to a re#ection site
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Fig. 3. Hydraulic model. Measured pressure and linear separation into a forward (P
&
) and re#ected (P

"
) wave at three locations along the aorta

(1: x"1 cm; 4: x"30 cm; 6: x"48 cm distal from the heart).

Fig. 4. Mathematical model. Input impedance modulus (top) and phase
angle (bottom) for the low (0.32 ml/mmHg), normal (1.6 ml/mmHg) and
high (8 ml/mmHg) compliance tapered aorta model, with indication of
the frequency of the "rst minimum of the impedance modulus.

Fig. 5. Mathematical model. Calculated foot-to-foot and apparent phase
velocity c

!11
(5}10 Hz) compared to the actual Moens-Korteweg wave

velocity in the low (top), normal (middle) and high (bottom) compliance
model.

at 23 cm (calculating the distance with the average wave
velocity). For the NC model and HC model, *t"0.14
and 0.38 s and the re#ections are found at 30 and 35 cm,
respectively. Computing incident and re#ected wave at
x"30 cm, there again exists a time delay corresponding
to distances of 11, 11 and 9 cm for the LC, NC and HC
model, respectively.

The number of segments in the tapering model in#uen-
ces wave re#ection indices such as x

3%&-
(Fig. 7). For

2 segments (each 25 cm long), x
3%&-

is about 34 cm. With
increasing number, x

3%&-
reaches a minimum for 3}5 seg-

ments and a stable value for N'100. This value is

slightly lower than the value found for two segments. The
tapering angle has a more outspoken e!ect. For h"03
(straight tube), x

3%&-
is found at the distal end of the tube

(x"50 cm). x
3%&-

decreases rapidly and tends toward an
asymptotic value of 25 cm. For physiological tapering
angles (0}1.53), x

3%&-
varies between 50 and 30 cm.
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Fig. 6. Mathematical model. Computed pressure (right panels) and linear separation into a forward (P
&
) and re#ected (P

"
) wave at three locations (three

left panels) along the tapered aorta model (x"0, 30 and 50 cm) for the low (upper panels), normal (middle panels) and high (lower panels) compliance
model.

Fig. 7. Mathematical model. Parameter study showing the e!ect of an increased number of segments (left panel) and of tapering angle (right panel) on
distance to the apparent re#ection site. Results are given for the low, normal and high compliance model.

4. Discussion

The idea of the existence of an important re#ection site
in the human aorta, at the level of the renal arteries, was
introduced by Latham et al. (1985). This conclusion was
based on time and frequency domain analysis of pressure
waves measured at six locations along the aorta. In this
study, we repeated their work using a hydraulic arterial
network model. Our similar experimental observations

(discrepancy between foot-to-foot and apparent phase
velocity at the level of the diaphragm; re#ection site at
x"40 cm predicted by the quarter-wavelength formula)
apparently con"rm their "ndings. As our model provided
extra information, we could calculate the propagation of
forward and re#ected waves along the aorta. However,
instead of revealing a clear discrete re#ection point, this
analysis showed a continuous re#ection along the aorta.
In order to unravel these apparently con#icting results
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and to investigate the role of arterial tapering, we did
a mathematical model simulation on a simpli"ed model
of the tapering aorta.

Latham et al. (1985) formulated several arguments to
support the existence of a discrete re#ection site at the
renal arteries: (i) c

!11
reached a minimum at higher fre-

quencies ("closer to a re#ection site) in the segment
more proximal than distal to the renal arteries; (ii) the
ampli"cation of harmonics (associated with the presence
of a re#ection site) was strongest proximal to the renal
arteries under control conditions; (iii) angiograms
showed a signi"cant reduction in diameter of the aortic
segment crossing the diaphragm; (iv) the local re#ection
coe$cient was relatively high (0.43) (Latham et al., 1985).
These arguments, however, cannot account for our hy-
draulic model: (i) the minima in c

!11
are situated between

5 and 7 Hz for all aortic segments, with no clear distinc-
tion between the segments proximal or distal to the renal
arteries; (ii) the ampli"cation of the "rst four pressure
harmonics is maximal at the distal end of the aorta;
(iii) in the hydraulic model, the tapering of the aorta is
smooth with a linear reduction in diameter from the
ascending to the abdominal aorta; (iv) computation of
the local re#ection coe$cient in the tapering aorta from
Z

0
in the segment proximal (0.29 mmHg/(ml/s)) and dis-

tal (0.49 mmHg/(ml/s)) to the renal arteries gives
(0.49!0.29)/(0.49#0.29)"0.26. This value is an upper
limit, as no parallel branches are taken into account in
the computation of the local re#ection coe$cient. There-
fore, we cannot explain the wave re#ection phenomena at
the level of the diaphragm by a discrete re#ection point at
the level of the renal arteries, caused by a sudden reduc-
tion in aortic diameter.

Di!erences between in vivo measurements of Latham
et al. and our experimental "ndings may be partly due to
factors related to the experimental setting, in#uencing
wave re#ection. The compliance in our hydraulic model
was relatively low, giving less damping and higher wave
velocities (see Fig. 2). We also "xed the model at discrete
locations to avoid disturbing oscillations. We did not
directly study the impact of this "xation, but it is likely
that it generated only minor secondary e!ects seen the
physiological morphology of pressure and #ow waves
(Segers et al., 1998). Other di!erences are the termina-
tion of the arteries in our model (a linear hydraulic
resistance), branching angles, mechanical arterial
properties, etc.

The time course of the forward and retrograde wave at
the six locations along the aorta, obtained after splitting
total pressure, is not clear. For a single discrete re#ection
site, the backward wave is "rst generated at this location,
and then propagates in the upstream direction. This
is not the case in the hydraulic model: taking the foot
of the backward wave as a reference, it appears that
a backward wave is generated as the forward wave ar-
rives, suggesting continuous re#ection along the tapering

aorta. The pattern is even more confusing using the zero
pressure as a reference line: the time delay between inci-
dent and re#ected wave practically does not change from
location 1 to location 6. The presence of a continuous
re#ection is consistent with classic wave re#ection theory,
that predicts wave re#ection with any change in the
characteristic impedance (Milnor, 1989). In the tapering
aorta, Z

0
increases continuously.

The e!ect of aortic tapering on wave re#ection is
studied by means of a mathematical model, using a sim-
pli"ed geometry of the aorta, and for three di!erent
sti!ness values covering the range of arterial elasticity
observed in normal and pathological conditions (pulse
wave velocity between 1.9 and 9.3 m/s). As in the hydrau-
lic model, the aortic diameter varies in a linear way, with
a constant tapering angle along the aorta (1.13). Our only
goal, justifying this simple geometry, is to demonstrate
the e!ect of tapering on wave re#ection, and on indices
characterising wave re#ection. It is shown that when the
quarter-wavelength formula and the input impedance
minimum are used to calculate a re#ection point in the
tapering tube, an `apparenta re#ection point is found.
For our simulations this re#ection point is located about
33 cm distal to the aortic valve, practically independent
of compliance. This distance is close to the level of the
renal arteries.

The simpli"ed model of the tapering aorta cannot
explain the discrepancy between c

&&
and c

!11
observed

in the hydraulic model and in vivo by Latham et al.
(1985). This discrepancy is probably due to high local
re#ections, arising from the short branches to the
abdominal organs. In our mathematical model, local
wave re#ection is high at the distal end, and here also c

!11
overestimated c

&&
by a factor 2 or more. The overestima-

tion is higher in the low compliance model, and the
in#uence of the local distal re#ection is present over
a longer section.

Calculating incident and re#ected waves in the taper-
ing model, the interpretation of the timing of incident and
re#ected waves depends on which reference point on the
backward wave is used, and on the compliance of the
model. Taking the foot of the backward wave, the pattern
of a continuous re#ection is found in the normal and low
compliance models, with the backward wave occurring
"rst in the most proximal part of the tube. In the high
compliance model, the backward wave "rst occurs at the
downstream end and propagates towards the inlet. How-
ever, using the zero pressure as a reference line, a clear
delay between incident and re#ected wave is present in all
models. This delay corresponds to the distance to a re-
#ection site. For the tube inlet, the so found re#ection site
is close to the `apparenta re#ection site found using the
quarter-wavelength formula. Both distances should be
close, as the equations behind both approaches are de-
rived within the same conceptual model, where the arter-
ial tree is seen as a single tube with a discrete terminal
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re#ection site. At x"30 cm, near the `apparenta re#ec-
tion site, there is again a time delay between the incident
and re#ected wave. This delay corresponds to a new
distance of 9 to 11 cm. Using the linear wave separation
theory at x"30 cm, the remaining 20 cm of the tapering
tube is again abstracted as a single tube model, again
yielding a new `apparenta re#ection site and a new `e!ec-
tivea length of about 60% of its total length.

In the mathematical model, tapering is modelled as
a stepwise reduction in diameter, and it is expected that
the number of segments a!ects wave re#ection and de-
rived indices. We estimated x

&3%-
using 2 to 500 segment

elements. Note that N"1 corresponds to a straight tube,
where x

3%&-
"50 cm. x

3%&-
is highest for N"2, but al-

ready within 1 cm of the value found for N'100. The
shortest distance is found for N between 5 and 8. A more
important determinant of x

3%&-
is the tapering angle.

Changing h a!ects both geometric and elastic tapering, as
the latter is determined by the elasticity modulus and by
the ratio of local wall thickness to diameter. Changes in
h from 0 to 23 (increase in geometric and elastic taper)
shift x

3%&-
from the distal tube end (x"50 cm) to

x"30 cm.
In summary, we believe that measured in vivo aortic

wave re#ection indices are the result of at least two
interacting phenomena: a continuous wave re#ection due
to arterial tapering, and local re#ections arising from
branches at the level of the diaphragm. The continuous
re#ection is hidden in the input impedance pattern. Us-
ing the quarter-wavelength formula or the classical wave
separation theory, it appears as a re#ection coming from
a single discrete site, confusingly also located at the level
of the diaphragm. Therefore, the quarter-wavelength for-
mula and the linear wave separation theory should be
used with caution to identify wave re#ection zones in the
presence of tapering, i.e. in most mammalian arteries.
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